
FUSE™ Message Broker

Getting Started

Version 5.3
Febuary 2009

Getting Started
Version 5.3

Publication date 23 Jul 2009
Copyright © 2001-2009 Progress Software Corporation and/or its subsidiaries or affiliates.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix;, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of Progress Software Corporation. No third-party intellectual
property right liability is assumed with respect to the use of the information contained herein. Progress Software Corporation
assumes no responsibility for errors or omissions contained in this publication. This publication and features described herein
are subject to change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents
1. Introducing FUSE Message Broker .. 11

What is FUSE Message Broker? ... 12
Supported Standards .. 13
Supported Wire Protocols and Clients ... 14
High Availability .. 15
Scalability .. 16
Persistence ... 17
Security ... 18
Performance ... 19

2. Key Concepts ... 21
JMS Broker Deployment Topologies .. 22
Configuring FUSE Message Broker ... 25
JMS Basics .. 27

3. Exploring JMS ... 31
Setting Up the Guided Tour of JMS ... 32
Running JMS Sample Applications ... 36

About the Exploring JMS Samples .. 37
Taking the Exploring JMS Guided Tour ... 39

Running Publish and Subscribe Messaging Samples ... 40
Running Point-to-Point Messaging Samples .. 47
Running Request and Reply Samples .. 53
Running the Queue Test Loop Sample ... 56

Changing Parameters and Modifying Source Code .. 57
Revising Parameters in the Build File .. 58
Analyzing and Modifying the Java Source Files .. 61

Index .. 63

3FUSE™ Message Broker Getting Started Version 5.3

FUSE™ Message Broker Getting Started Version 5.34

List of Figures
2.1. A Network of Brokers ... 24
2.2. Transport Connectors ... 26
2.3. Network Connectors ... 26
2.4. Point-to-point Messaging ... 28
2.5. Publish-Subscribe Messaging ... 29

5FUSE™ Message Broker Getting Started Version 5.3

FUSE™ Message Broker Getting Started Version 5.36

List of Tables
3.1. Command for Running the Installer in GUI Mode 32

7FUSE™ Message Broker Getting Started Version 5.3

FUSE™ Message Broker Getting Started Version 5.38

List of Examples
2.1. Starting an Embedded Broker ... 23
2.2. Starting a Named Embedded Broker 23
2.3. Defining Transport and Network Connectors 25

9FUSE™ Message Broker Getting Started Version 5.3

FUSE™ Message Broker Getting Started Version 5.310

Chapter 1. Introducing FUSE Message
Broker
This chapter provides an overview of the supported standards and available features in FUSE Message Broker.

What is FUSE Message Broker? ... 12
Supported Standards .. 13
Supported Wire Protocols and Clients ... 14
High Availability .. 15
Scalability .. 16
Persistence ... 17
Security ... 18
Performance ... 19

11FUSE™ Message Broker Getting Started Version 5.3

What is FUSE Message Broker?

ActiveMQ FUSE Message Broker is Progress Software's distribution of Apache ActiveMQ,
the open source message-oriented middleware (MOM) system.

Pure Java FUSE Message Broker is written in Java and fully implements the Java
Message Service (JMS) 1.1 specification. It also supports J2EE integration
features such as Java Database Connectivity (JDBC), J2EE Connector
Architecture (JCA), and Enterprise JavaBeans (EJB).

FUSE™ Message Broker Getting Started Version 5.312

Chapter 1. Introducing FUSE Message Broker

Supported Standards

JMS 1.1 JMS 1.1 allows J2EE application components to create, send, receive, and
read messages for reliable, loosely coupled communication across distributed
systems.

FUSE Message Broker supports the following JMS features:

• Queue- and topic-based messaging

• Persistent and non-persistent messaging

• JMS transactions

• XA transactions

J2EE 1.4 FUSE Message Broker can be used with your organization's existing J2EE
platform architecture. It supports any J2EE application server, such as
Geronimo 1.x, JBoss 4.x, WebSphere 6.x or WebLogic 9.x.

The JCA Resource Adapter allows a J2EE application server to efficiently pool
connections, control transactions, and manage security for FUSE Message
Broker.

JNDI Java Naming and Directory Interface (JNDI) enables applications to locate
and connect with services, for seamless connectivity to heterogeneous
enterprise naming and directory services. Developers rely on the JNDI standard
to build directory-enabled applications.

You can set up JNDI in FUSE Message Broker simply by adding a
jndi.properties file to your classpath.

AJAX and REST FUSE Message Broker facilitates integration of existing Internet applications
and wireless devices that depend on HTTP. It includes a Representational
State Transfer (REST) API that allows you to integrate Asynchronous JavaScript
and XML (AJAX) applications into your organization's messaging backbone.

13FUSE™ Message Broker Getting Started Version 5.3

Supported Standards

Supported Wire Protocols and Clients

Encoding formats While FUSE Message Broker is written in Java, it can also supports
connections with a host of different clients thanks to its support for the
OpenWire and STOMP encoding formats.

OpenWire The default wire protocol used by native Java FUSE Message Broker clients
is the OpenWire binary format. There are also OpenWire client libraries
available for C, C++ and .NET.

STOMP Streaming Text Oriented Messaging Protocol (STOMP) is used to support
FUSE Message Broker clients written in languages such as Ruby, Perl, Python,
and PHP.

FUSE™ Message Broker Getting Started Version 5.314

Chapter 1. Introducing FUSE Message Broker

High Availability

Clustering FUSE Message Broker supports reliable high performance load balancing of
messages on a queue across consumers. If a consumer dies, any
unacknowledged messages are redelivered to other consumers on the queue.
If one consumer is faster than the others it receives more messages.

Failover A client can connect to one broker node in a cluster and automatically fail
over to a new node in the cluster if there is a failure. On the broker side, FUSE
Message Broker uses a store-and-forward method to distribute messages over
a cluster.

15FUSE™ Message Broker Getting Started Version 5.3

High Availability

Scalability

High capacity brokers Each broker supports thousands of persistent messages per second with
minimal latency, and can handle a vast number of connections and
destinations.

Clustering Messaging loads can be shared among brokers in a cluster.

JMS streams for large messages When sending messages of 1GB or larger, JMS streams eliminate the
bottleneck that would occur as the JMS client tries to keep such large
messages in memory.

Message compression GZIP compression allows highly verbose messages to be compressed.

FUSE™ Message Broker Getting Started Version 5.316

Chapter 1. Introducing FUSE Message Broker

Persistence

Persistence options You can enable or disable persistence depending on your business
requirements. When persistence is enabled, you can configure FUSE Message
Broker to write messages directly to a database, or to the high performance
journal for increased throughput.

See Using Persistent Messages for details.

Supported databases You can use any JDBC-compliant database to store long-term persisted
messages. Supported databases include:

• Apache Derby

• Oracle

• Sybase

• DB2

• Microsoft SQL Server

• Postgresql

• MySQL

• Axion

• HSQL

17FUSE™ Message Broker Getting Started Version 5.3

Persistence

http://fusesource.com/docs/broker/5.3/persistence/persistence.pdf

Security

Encryption FUSE Message Broker supports Secure Sockets Layer (SSL) encryption for
transport over HTTPS.

Authentication and authorization FUSE Message Broker provides plug-in points to support custom authentication
and authorization, and supports third-party authentication providers, firewalls,
proxy servers, HTTP(s) tunneling and DMZ products.

FUSE™ Message Broker Getting Started Version 5.318

Chapter 1. Introducing FUSE Message Broker

Performance

Optimized for performance Although message oriented middleware is primarily focused on reliability over
performance, FUSE Message Broker is optimized for high performance through
its use of staged event-driven architecture (SEDA), straight through processing
(STP), reactive scalable flow control, and high-performance journaling.

Performance options You can optimize FUSE Message Broker by adjusting the following messaging
parameters:

• Message compression

• Message fragmentation

• Asynchronous message sends

• Disable time stamps

• Customizable message pre-fetching

• Disable message copying

• Optimized message dispatch

High performance journal The FUSE Message Broker high performance journal, which is enabled by
default, reduces latency by capturing messages, transaction commits/rollbacks,
and message acknowledgements faster than any database can. These are
then written to a JDBC database at regular intervals.

19FUSE™ Message Broker Getting Started Version 5.3

Performance

FUSE™ Message Broker Getting Started Version 5.320

Chapter 2. Key Concepts
This chapter introduces some concepts that are key to understanding broker topologies and the Java Message
Service (JMS).

JMS Broker Deployment Topologies .. 22
Configuring FUSE Message Broker ... 25
JMS Basics .. 27

21FUSE™ Message Broker Getting Started Version 5.3

JMS Broker Deployment Topologies

Broker functions The message broker is responsible for managing JMS clients and their
messages. The message broker is also responsible for providing quality of
service features, such as reliability, persistence, security, and availability.

You can deploy FUSE Message Broker as a standalone broker that hosts
clients running in other processes and other locations, or as an embedded
broker that can run client functions and broker functions concurrently in one
process, yet still enable connections by clients running in other processes and
other locations. Standalone brokers and embedded brokers can be configured
to work together to provide a more resilient network, or cluster, of brokers.

Standalone broker To start a standalone instance of FUSE Message Broker:

1. In a command prompt or terminal window, change directory to the FUSE
Message Broker installation directory.

2. Change directory to the bin directory.

3. Type the following:

• Windows:

activemq.bat

• UNIX:

./activemq

Embedded broker An embedded broker executes within the same JVM process as the clients
that are using its services. So rather than communicating across the network,
clients can communicate with the broker more efficiently using direct method
invocation.

FUSE™ Message Broker Getting Started Version 5.322

Chapter 2. Key Concepts

In addition, if the network fails, clients can continue to send messages to the
broker, which will hold the messages until the network is restarted.

Starting an embedded broker An embedded broker executes within the same JVM process as the clients
that are using its services. There are a number of ways to embed a broker.
The simplest is shown in Example 2.1 on page 23

Example 2.1. Starting an Embedded Broker

BrokerService broker = new BrokerService();
broker.addConnector("tcp://localhost:61616");
broker.start();

Clients running in the same VM can connect to the embedded broker using
the VM transport connector. External clients connect using the TCP transport
connector. If you have more than one broker running in the same VM, you
need to set a broker name, as follows:

Example 2.2. Starting a Named Embedded Broker

BrokerService broker = new BrokerService();
broker.setBrokerName("broker1");
broker.addConnector("tcp://localhost:61616");
broker.start();

Clients or other brokers connecting from within the same VM can then connect
using the virtual machine protocol on the named broker vm://broker1.

Network of brokers Brokers can be linked together to form a network or cluster of brokers. A
network of brokers can use various network topologies, such as hub-and-spoke,
daisy chain, or mesh.

23FUSE™ Message Broker Getting Started Version 5.3

JMS Broker Deployment Topologies

Figure 2.1. A Network of Brokers

FUSE™ Message Broker Getting Started Version 5.324

Chapter 2. Key Concepts

Configuring FUSE Message Broker

XML configuration FUSE Message Broker is configured using XBean XML. XBean is an extension
of the Spring Framework that has allowed the developers of Apache ActiveMQ
to develop a syntax that is less verbose and yet more expressive than basic
Spring configuration.

Configuration is stored in the activemq.xml file in the InstallDir/conf
directory.

Connectors The activemq.xml file allows you to configure transport and network
connectors for FUSE Message Broker, as shown below:

Example 2.3. Defining Transport and Network Connectors

<transportConnectors>
<transportConnector name="openwire" uri="tcp://local

host:61616" discoveryUri="multicast://default"/>
<transportConnector name="ssl" uri="ssl://localhost:61617"/>

<transportConnector name="stomp" uri="stomp://local
host:61613"/>
<transportConnector name="xmpp" uri="xmpp://local

host:61222"/>
</transportConnectors>

<networkConnectors>
<!-- by default auto discover other brokers
<networkConnector name="default-nc" uri="multicast://de

fault"/>-->
<!--

<networkConnector name="host1 and host2" uri="stat
ic://(tcp://host1:61616,tcp://host2:61616)"/>

-->
</networkConnectors>

Transport connectors are used for communication between clients and brokers.

25FUSE™ Message Broker Getting Started Version 5.3

Configuring FUSE Message Broker

Figure 2.2. Transport Connectors

A broker uses a network connector to communicate with another broker.

Figure 2.3. Network Connectors

Note
For more details on transport and network connectors, see the
Connectivity Guide guide.

FUSE™ Message Broker Getting Started Version 5.326

Chapter 2. Key Concepts

http://fusesource.com/docs/broker/5.3/connectivity_guide/connectivity_guide.pdf

JMS Basics

JMS components Java Message Service (JMS) is a Java Message Oriented Middleware (MOM)
API for sending messages between two or more clients. A JMS Provider is
the software that implements the Java Message Service (JMS) specification
for a messaging product's brokers and clients.

If you are unfamiliar with JMS, you may want to read the Java Message
Service API section of Sun Microsystems' J2EE 1.4 Tutorial1

A JMS messaging product is comprised of the following components:

• Brokers

• Messages

• Destinations

• Clients

• Connections

• Sessions

JMS broker A JMS broker provides clients with connectivity, and message storage/delivery
functions.

Messages A messages is an object that contains the required heading fields, optional
properties, and data payload being transferred between JMS clients.

Destinations Destinations are maintained by the message broker. They can be either queues
or topics.

Queues A queue is a destination that contains messages sent from a producer that
await delivery to one consumer. Messages are delivered in the order sent. A
message is removed from the queue once it has been acknowledged as
received by the consumer.

1 http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

27FUSE™ Message Broker Getting Started Version 5.3

JMS Basics

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

In this one-to-one messaging model, producers are senders and consumers
are receivers.

Figure 2.4. Point-to-point Messaging

Topics Topics are used to send messages to one or more consumers. Producers
publish messages to a topic and one or more consumers subscribe to the
topic

In this one-to-many messaging scenario, producers are also referred to as
publishers and consumers as subscribers.

FUSE™ Message Broker Getting Started Version 5.328

Chapter 2. Key Concepts

Figure 2.5. Publish-Subscribe Messaging

JMS Clients A JMS client is an application that uses the services of the message broker.
There are two client types in a JMS system:

Producer

Producers create messages and send or publish them to the broker for
delivery to a specified destination.

Consumer

Consumers retrieve messages from a destination.

Connections Connections are the technique used by clients to specify a protocol and
credentials for a sustained client interaction with a broker.

Sessions Sessions are defined by a client on a conection established with a broker.
Each session defines whether the messages will form transactions, and -- if
not -- the acknowledgement mode for messages.

29FUSE™ Message Broker Getting Started Version 5.3

JMS Basics

FUSE™ Message Broker Getting Started Version 5.330

Chapter 3. Exploring JMS
This chapter guides you through setting up an environment and running the samples packaged with FUSE™

Message Broker, and then modifying the runtime parameters and the Java source code.

Setting Up the Guided Tour of JMS ... 32
Running JMS Sample Applications ... 36

About the Exploring JMS Samples .. 37
Taking the Exploring JMS Guided Tour ... 39

Running Publish and Subscribe Messaging Samples ... 40
Running Point-to-Point Messaging Samples .. 47
Running Request and Reply Samples .. 53
Running the Queue Test Loop Sample ... 56

Changing Parameters and Modifying Source Code .. 57
Revising Parameters in the Build File .. 58
Analyzing and Modifying the Java Source Files .. 61

31FUSE™ Message Broker Getting Started Version 5.3

Setting Up the Guided Tour of JMS

Overview You need to install FUSE Message Broker, Apache Ant, and a Java JDK to
run the samples. You then need to identify those locations in the environment
settings for the scripted samples.

You avoid some common problems when you put all the software on the same
drive, and ensure that no paths contain spaces (such as Program Files).

Installing a Java JDK The exploring JMS samples require a Java JDK version 1.5.0_11 or higher.

Installing Ant Apache Ant is used to build and run the samples.

Access the Ant 1.6.5 (or higher) distribution for your platform at http://
ant.apache.org.

Installing FUSE Message Broker To install do the following:

1. Download the FUSE Message Broker 5.3 package for your platform from
http://fusesource.com/downloads/.

2. Launch the installer.

Table 3.1. Command for Running the Installer in GUI Mode

CommandPlatform

fuse-message-broker-5.3.0.0-windows.exeWindows

sh fuse-message-broker-5.3.0.0-unix.binUNIX

Warning
On UNIX/Linux/Macintosh, you might need to set or explicitly
specify the Java installation /bin to run the installer. On Linux,
you might also need to run the download.bin file using the
syntax:

sh download.bin LAX_VM jvm_install/bin/java

FUSE™ Message Broker Getting Started Version 5.332

Chapter 3. Exploring JMS

http://ant.apache.org
http://ant.apache.org
http://fusesource.com/downloads/

3. Follow the wizard prompts for a default installation.

For more information on installing FUSE Message Broker see Installation
Guide.

Adjusting the broker configuration The network connector feature in the default broker configuration attempts
to automatically discover and connect to other brokers. This default behavior
can be distracting to observing the behaviors in these samples. To shut off
network connections, navigate to your FUSE Message Broker's installation
directory, edit the file /conf/activemq.xml, and delete the
networkConnectors section. Save the edited file to enable the change when
you restart FUSE Message Broker.

Accessing the samples The sample applications used in this book are located in the exploring-jms
folder of the FUSE Message Broker installation.

Setting up the environment and
sample windows

The following procedures describe the steps on various platforms to set the
required HOME, PATH, and CLASSPATH values.

On Windows
To set the environment and set up sample windows on Windows:

1. Open a console window, and then enter:

set ANT_HOME=ant_install
set JAVA_HOME=jvm_install
set PATH=%JAVA_HOME%\bin;%ANT_HOME%\bin;%PATH%

2. Spawn the windows that will run the sample applications:

start "Window 1" cmd
start "Window 2" cmd
start "Window 3" cmd

3. Launch the broker:

set FUSE_MB_ROOT=InstallDir
%FUSE_MB_ROOT%\bin\activemq

You are ready to take a tour of the samples on your Windows system!

33FUSE™ Message Broker Getting Started Version 5.3

Setting Up the Guided Tour of JMS

http://fusesource.com/docs/broker/5.3/install/install_guide.pdf
http://fusesource.com/docs/broker/5.3/install/install_guide.pdf

On Linux
To set the environment and set up sample windows on Linux:

1. Open a terminal window, and then enter:

ANT_HOME=ant_install
export ANT_HOME
JAVA_HOME=jvm_install
export JAVA_HOME
PATH=$JAVA_HOME/bin:$ANT_HOME/bin:$PATH
export PATH
FUSE_MB_ROOT=InstallDir
export FUSE_MB_ROOT

2. Spawn the windows that will run the sample applications:

bg
xterm -title "Window 1" &
xterm -title "Window 2" &
xterm -title "Window 3" &

3. Launch the broker:

cd $FUSE_MB_ROOT/bin
./activemq

You are ready to take a tour of the samples on your Linux system!

On Macintosh

Tip
If you installed Apple's X11 for Mac OS X, you can use the xterm
commands described for Linux to spawn windows with the
environment preset, and then launch the broker.

To set the environment and set up sample windows on Macintosh:

1. Open a terminal window, and then enter:

ANT_HOME=ant_install
JAVA_HOME=jvm_install
PATH=$JAVA_HOME/bin:$ANT_HOME/bin:$PATH
FUSE_MB_ROOT=InstallDir

FUSE™ Message Broker Getting Started Version 5.334

Chapter 3. Exploring JMS

2. Launch the broker:

cd $FUSE_MB_ROOT/bin
./activemq

3. Open three terminal windows to run the sample applications. Set
the same environment variables as you set for the broker in each of
these windows.

You are ready to take a tour of the samples on your Macintosh system!

On UNIX
To set the environment and set up sample windows on UNIX:

1. Open a terminal window, and then enter:

ANT_HOME=ant_install
JAVA_HOME=jvm_install
PATH=$JAVA_HOME/bin:$ANT_HOME/bin:$PATH
FUSE_MB_ROOT=InstallDir

2. Spawn the windows that will run the sample applications:

bg
xterm -title "Window 1" &
xterm -title "Window 2" &
xterm -title "Window 3" &

3. Launch the broker:

cd $FUSE_MB_ROOT/bin
./activemq

You are ready to take a tour of the samples on your UNIX system!

35FUSE™ Message Broker Getting Started Version 5.3

Setting Up the Guided Tour of JMS

Running JMS Sample Applications
About the Exploring JMS Samples .. 37
Taking the Exploring JMS Guided Tour ... 39

Running Publish and Subscribe Messaging Samples ... 40
Running Point-to-Point Messaging Samples .. 47
Running Request and Reply Samples .. 53
Running the Queue Test Loop Sample ... 56

FUSE™ Message Broker Getting Started Version 5.336

Chapter 3. Exploring JMS

About the Exploring JMS Samples

Overview In these samples, the standard input and standard output displayed in the
console represents data flows to and from applications and Internet-enabled
devices such as:

• Application software for accounting, auditing, reservations, online ordering,
credit verification, medical records, and supply chains

• Real-time devices with embedded controls such as monitor cameras, cell
phones, medical delivery systems, and climate control systems, and
machinery

• Distributed knowledge bases such as collaborative designs, service histories,
medical histories, and workflow monitors

Note
The samples assume that you are using the default FUSE Message
Broker setup, which does not enable security; as such, user names
in the samples are arbitrary and not authenticated.

What is demonstrated The samples demonstrate the basic JMS features, as follows:

• Publish and Subscribe Messaging Samples— Basic messaging behaviors
of the Pub/Sub messaging model are demonstrated:Chat, DurableChat,

HierarchicalChat, MessageMonitor, MessageMonitor,

SelectorChat, TransactedChat

• Point-to-point Messaging Samples — Similar basic messaging behaviors
of the PTP messaging model are demonstrated:Talk, QueueMonitor,

SelectorTalk, TransactedTalk

• Request and Reply — These transacted examples show the mechanisms
for the producer requesting a reply and the consumer fulfilling that request:

• Originator’s Request — Requestor (PTP, Pub/Sub)

• Receiver’s Response — Replier (PTP, Pub/Sub)

37FUSE™ Message Broker Getting Started Version 5.3

About the Exploring JMS Samples

• Test Loop — This sample shows how quickly messages can be sent and
received in a test loop: QueueRoundTrip (PTP)

FUSE™ Message Broker Getting Started Version 5.338

Chapter 3. Exploring JMS

Taking the Exploring JMS Guided Tour
Running Publish and Subscribe Messaging Samples ... 40
Running Point-to-Point Messaging Samples .. 47
Running Request and Reply Samples .. 53
Running the Queue Test Loop Sample ... 56

39FUSE™ Message Broker Getting Started Version 5.3

Taking the Exploring JMS Guided Tour

Running Publish and Subscribe Messaging Samples

The tour starts with features of Publish and Subscribe messaging.

This series of samples explores basic subscriptions, durable subscriptions,
wildcards in topic hierarchies, filtered subscriptions, and batching in transacted
sessions.

Chat Application

What the sample does In the Chat application, whenever anyone sends a text message to a given
topic, all active applications running Chat receive that message as subscribers
to that topic. This is the most basic form of publish and subscribe activity.

Running the sample To run the chat sample do the following:

1. In window 1, enter: ant chat1, then type Hello, and press Enter.

Window 1 displays:

Chatter_1: Hello

2. In window 2, enter: ant chat2, then type Pronto, and press Enter.

Both subscribers get the message so both windows display:

Chatter_2: Pronto

3. In window 3, enter: ant chat3, then type Bonjour, and press Enter.

All three subscribers get the message, so each window displays:

Chatter_3: Bonjour

4. In window 3, stop chat3 by pressing Ctrl+C.

5. Send some messages in the chat1 and chat2 windows.

6. In window 3, run: ant chat3 again.

FUSE™ Message Broker Getting Started Version 5.340

Chapter 3. Exploring JMS

7. Send some messages in the chat1 and chat2 windows.

All three subscribers get the message. But Chatter_3 gets only the
messages since it reconnected, and gets none of the messages that were
sent while it was disconnected.

If subscribers miss some of the messages, they pick up just the latest
messages whenever they reconnect to the broker. Nothing is retained
and nothing is guaranteed to be delivered, so throughput is fast.

Stopping the sample To stop the Chat sessions press Ctrl+C in each of the windows.

DurableChat Application

What the sample does In Pub/Sub messaging, when messages are produced, they are sent to all
active consumers who subscribe to a topic. Some subscribers register an
enduring interest in receiving messages that were sent while they were
inactive. These durable subscriptions are permanent records in the broker’s
persistent storage mechanism.

Running the sample To run the DurableChatting sample do the following:

1. In window 1, enter ant durable1.

2. In window 2, enter ant durable2.

3. Type text in each window and press Enter. Each window displays all the
messages. Connected durable subscribers are the same as connected
nondurable subscribers.

4. In window 2, press Ctrl+C.

5. In window 1, type text, and press Enter.

6. In window 2, enter ant durable2 again.

When the window opens, it first displays all the messages that were
stored for its subscription. (If you waited a while, messages sent more
than 30 minutes ago were dropped.)

7. In window 3, enter ant durable3.

41FUSE™ Message Broker Getting Started Version 5.3

Taking the Exploring JMS Guided Tour

In the console window that opens, no messages are displayed. While it
is a durable subscriber, it had not yet established its durable subscription
on this broker topic.

Important
If this sample has run against this broker before this run, the
durable interest has been established so you do get the stored
messages. You could unsubscribe the user from the durable
subscription, but in the scope of this JMS exploration, you might
find it as easy to close all the open windows, delete the /data
directory, and then restart the exploration.

Important
While some applications tolerate multiple instances of the same user
producing or consuming on the same destination, running a second
instance of one of these DurableChatter scripts fails (as it should)
with the error (in the broker’s console window):

InvalidClientIDException:
Broker:localhost, Client:DurableChatter_n already connected

Stopping the sample To stop the DurableChat sessions press Ctrl+C in each of the windows.

HierarchicalChat Application

What the sample does FUSE Message Broker supports a hierarchical topic structure that allows
wildcard subscriptions.

Each application instance specifies a publish topic and a subscribe topic, as
follows:

• Chat:

• Publish to jms.samples.chat

• Subscribe to jms.samples.chat

• DurableChat:

FUSE™ Message Broker Getting Started Version 5.342

Chapter 3. Exploring JMS

• Publish to jms.samples.durablechat

• Subscribe to jms.samples.durablechat

• HierarchicalChat:

• Publish to jms.samples.hierarchicalchat

• Subscribe to jms.samples.*

You can see that each of the applications is publishing to a different topic.
However, the HierarchicalChat application is subscribing to a topic that
ends in asterisk (*), a wildcard that accepts any topic with the root
jms.samples. It is important to note that this is referred to a hierarchical
wildcard, as it must be adjacent to dot delimiters.

Running the sample To run the HierarchicalChatting sample do the following:

1. In window 1, enter ant chat1

2. In window 2, enter ant durable1

3. In window 3, enter ant wildcard

4. In the wildcard window, enter some text and then press Enter.

The message is displayed in only that window.

5. In the chat1 window, enter some text and then press Enter.

The message is displayed in that window and in the wildcard window.

6. In the durable1 window, enter some text and then press Enter.

The message is displayed in that window and in the wildcard window.

Stopping the sample To stop the wildcard session press Ctrl+C in window 3—the wildcard window.

43FUSE™ Message Broker Getting Started Version 5.3

Taking the Exploring JMS Guided Tour

MessageMonitor Application

What the sample does The MessageMonitor sample application provides an example of a supervisory
application with a graphical interface. By subscribing with the wildcard syntax
used in the HierarchicalChat, the monitor gets messages on all topics in
the topic hierarchy. The application listens for any message activity, and then
displays each message in its window.

Running the sample To start the MessageMonitor sample, enter ant tmonitor in window 3.

The MessageMonitor Java window opens.

To send messages to the MessageMonitor do the following:

1. In window 1, type Hello, and press Enter.

The message displays in the MessageMonitor window, noting that the
message was received on the jms.samples.chat topic

2. In window 2, type Hello, and press Enter.

The message displays in the MessageMonitor window, noting that the
message was received on the jms.samples.durablechat topic.

Because the MessageMonitor subscribes to the topic jms.samples.*,
messages are received from both publishers. The Chat and DurableChat
applications subscribe to only their respective topics.

3. Click the Clear button to empty the listed messages.

Stopping the sample To stop the applications, press Ctrl+C in each of the windows.

SelectorChat Application

What the sample shows While specific queues and topics provide focused content nodes for messages
that are of interest to an application, there are circumstances where the
application developer might want to qualify the scope of interest a consumer
has in messages using a syntax similar to an SQL WHERE clause.

In the SelectorChat samples, each of the SelectorChat samples publishes
to the jms.samples.chat topic with messages that have a property set to

FUSE™ Message Broker Getting Started Version 5.344

Chapter 3. Exploring JMS

a different value, and then sets the subscriber to select only messages set to
the appropriate property value.

Running the sample To run the SelectorChatting samples do the following:

1. In window 1, enter ant filterchat1.

2. In window 2, enter ant filterchat2.

3. In window 3, enter ant chat1.

4. In the SelectiveChatter_1 window, enter some text and then press Enter.

The message is displayed in that window and the Chatter_1 window.

5. In the SelectiveChatter_2 window, enter some text and then press Enter.

The message is displayed in that window and the Chatter_1 window.

6. In the Chatter_1 window, enter some text and then press Enter.

The message is displayed only in that window.

Stopping the samples To stop the SelectorChat applications, press Ctrl+C in window 1 and in
window 2.

TransactedChat Application

What that sample shows Transacted messages are a group of messages that form a single unit of work.
Much like an accounting transaction made up of a set of balancing entries,
a messaging example might be a set of financial statistics where each entry
is a completely formed message and the full set of data comprises the update.

A session is declared as transacted when the session is created. While
producers—PTP Senders and Pub/Sub Publishers—produce messages as
usual, the messages are stored at the broker until the broker is notified to act
on the transaction by delivering or deleting the messages. To determine when
the transaction is complete, the programmer must:

• Call the method to commit the set of messages. The session's commit()

method tells the broker to sequentially release each of the messages that

45FUSE™ Message Broker Getting Started Version 5.3

Taking the Exploring JMS Guided Tour

have been cached since the last transaction. In this sample, the commit
case is set for the string COMMIT.

• Call the method to roll back the set of messages. The session's
rollback() method tells the broker to flush all the messages that have

been cached since the last transaction ended. In this sample, the rollback
case is set for the string CANCEL.

Running the sample To run the Pub/Sub TransactedChat samples do the following:

1. In window 1, enter ant xnchat.

2. In the console window that opens, type text in the window and press
Enter.

3. Type COMMIT in the window and press Enter.

The message is delivered.

4. Type text in the window and press Enter.

5. Repeat to produce a few messages.

6. Type COMMIT in the window and press Enter.

The batch of messages is delivered as a series of individual messages.

7. Type text in the window and press Enter.

8. Repeat to produce a few messages.

9. Type CANCEL in the window and press Enter.

The batch of messages is dropped.

Subsequent entries will form a new transaction to either commit or rollback.

Stopping the sample To stop all the applications, press Ctrl+C in each of the windows.

FUSE™ Message Broker Getting Started Version 5.346

Chapter 3. Exploring JMS

Running Point-to-Point Messaging Samples

The following samples demonstrates how Point-to-point messaging differs
from Publish and Subscribe messaging.

Talk Application

What the sample does In the Talk application, whenever a text message is sent to a given queue,
all active Talk applications that are waiting to receive messages on that
queue take turns receiving the message at the front of the queue.

Running the sample To run the Talking sample do the following:

1. In window 1, enter ant talk1.

2. In window 2, enter ant talk2.

3. In window 3, enter ant talk3.

4. In the Talker1 window, type 1, and then press Enter.

The text is displayed in only one of the other Q1 receiver windows. A
point-to-point message has only one receiver.

5. Again, in the Talker1 window, type 2, and then press Enter.

The text is displayed in the other Q1 receiver window. Multiple receivers
on a queue take turns receiving messages.

6. In the Talker1 window, create several messages, such as 3 ,4, ..., 9.

Important
Be sure to press Enter between each message.

One of the Q1 receivers gets messages 1, 3, 5, 7, 9 while the other
gets 2, 4, 6, 8.

47FUSE™ Message Broker Getting Started Version 5.3

Taking the Exploring JMS Guided Tour

If you opened another Talker_2 or Talker_3 window, the distribution to
the Q1 receivers would be 1, 4, 7 for the first, 2, 5, 8 for the next
and 3, 6, 9 for the third.

Stopping the sample To stop the Talk sessions, press Ctrl+C in the Talk2 and the Talk3 window.

The QueueMonitor Application

What the sample does The QueueMonitor moves through a specified set of queues, listing the active
messages it finds as it examines each queue. In the examples to this point,
the Talk samples left no messages in any queue.

Comparing MessageMonitor and
QueueMonitor

The monitor samples each open GUI windows that provide a scrolling array
of its contents. The nature of the two monitors underscores fundamental
differences between the Publish and Subscribe messaging model and the
Point-to-point messaging model. The differences between MessageMonitor
and QueueMonitor are as follows:

What messages are displayed?

• MessageMonitor: Delivered.

• QueueMonitor: Undelivered.

When does the display update?

• MessageMonitor: When a message is published to a subscribed topic, it
is added to the displayed list.

• QueueMonitor: When you click the Browse Queues button, the list is
refreshed.

When does the message go away?

• MessageMonitor: When the display is cleared for any reason.

• QueueMonitor: When the message is delivered (or when it expires).

What happens when the broker and monitor are restarted?

• MessageMonitor: As messages are listed at the moment they are delivered,
there are no messages in the MessageMonitor until new deliveries occur.

FUSE™ Message Broker Getting Started Version 5.348

Chapter 3. Exploring JMS

• QueueMonitor: Listed messages marked PERSISTENT are stored in the

broker persistent storage mechanism. They are redisplayed when the broker
and the QueueMonitor restart and then choose to browse queues.

Running the sample To run the QueueMonitor sample do the following:

1. In window 3, enter ant qmonitor.

The QueueMonitor’s console window lists the queues that have been
specified for it to browse.

The QueueMonitor Java window opens.

2. Click Browse Queues.

The messages in the queue at the moment it is browsed are listed. If
you are following along carefully, there should be no messages in any
queue.

To put messages into a queue do the following:

1. In window 1 (where Talker1 is still running), type 1 and then press

Enter.

2. Repeat step 1 to create a few messages, such as 2 Enter, 3 Enter, 4

Enter.

3. In the QueueBrowser window, click Browse Queues.

The messages are in the queue. They will continue to be there until a
receiver receives them on that queue, or they expire (set to 30 minutes
by the sender).

The messages that are waiting on the queue will get delivered to the next
receiver that chooses to receive from that queue.

To receive the queued messages do the following:

1. In window 2, enter ant talk2.

2. When the Talker_2 window opens, it shows that it consumes the
messages in the queue is sequence.

49FUSE™ Message Broker Getting Started Version 5.3

Taking the Exploring JMS Guided Tour

3. In the QueueBrowser window, click Browse Queues.

The queues are all empty. As long as you have receivers on the sample
queues, no messages will display in the QueueMonitor window.

Stopping the sample To stop all the applications, press Ctrl+C in each of the windows.

SelectorTalk Application

What the sample does The SelectorTalk sample applications are similar yet consistent with the
behavior of the messaging model. The SelectiveTalkers both send and
receive on Q1. The Talkers do not specify selection parameters.

Running the sample To run the SelectorTalk sample do the following:

1. In window 1, enter ant filtertalk1.

2. In window 2, enter ant filtertalk2.

3. In window 3, enter ant talk2.

Talker_2 sends to Q2 and receives on Q1.

4. In the SelectiveTalker_1 window, enter some text and then press Enter.
Send a few messages in this window.

The messages are displayed in either that window or the Talker_2
window (usually alternately.)

5. In the SelectiveTalker_2 window, enter some text and then press Enter.
Send a few messages in this window.

The messages are displayed in either that window or the Talker_2
window (usually alternately.)

6. In the Talker_2 window, enter some text and then press Enter.

None of the windows receives the message. Talker_2 is receiving on Q2.
The selective talkers are receiving on Q1, but they are qualifying their
selection as only messages that have the specified property, and, at that,
set to their preferred value. So the message will be stored in Q1 even
though there are receivers on Q1.

FUSE™ Message Broker Getting Started Version 5.350

Chapter 3. Exploring JMS

7. In window 3, press Ctrl+C to stop Talker_2.

8. In window 3, enter ant talk1.

Talker_1 sends to Q2 and receives on Q1. When it starts, it immediately
receives the messages stored on Q1 (unless they have expired.)

Stopping the sample To stop the applications press Ctrl+C in each window.

TransactedTalk Application

What the sample does The transaction samples show that the transaction scope is between the client
in the JMS session and the broker. When the broker receives commitment,
the messages are placed onto queues or topics in the order in which they
were buffered as standard messages. The following message delivery is normal:

• Pub/Sub Messages — Messages are delivered in the order entered in the
transaction yet influenced by the priority setting of these and other
messages, the use of additional receiving sessions, and the use of additional
or alternate topics. The messages are not delivered as a group.

• PTP Messages — The order of messages in the queue is maintained with
adjustments for priority differences but there is no guarantee that—when
multiple consumers are active on the queue—a MessageConsumer will

receive one or more of the MessageProducer’s transacted messages.

Running the sample To run PTP TransactedTalk sample do the following:

1. In window 1, enter ant xntalk.

2. In the console window that opens, type text in the window and press
Enter.

3. Repeat to produce a few messages.

4. Type COMMIT in the window and press Enter.

5. In window 2, enter ant qmonitor.

51FUSE™ Message Broker Getting Started Version 5.3

Taking the Exploring JMS Guided Tour

6. In the QueueBrowser window, click Browse Queues.

The messages are listed.

7. In window 3, enter ant talk2.

The window opens with the series of messages in Q1 from the
TransactedTalker.

8. In window 1, type some text, and press Enter.

9. Repeat to produce a few messages.

10. Type CANCEL in the window and press Enter.

The batch of messages is dropped:

• In window 3—the talk2 window, no messages are received on Q1.

• In the QueueBrowser window, Browse Queues lists no messages in
Q1.

11. In window 1, do the following:

a. Type some text.

b. Press Enter.

c. Type COMMIT.

d. Press Enter.

The newly-committed transaction batch is received in window 3.

Stopping the sample To stop the applications press Ctrl+C in each window.

FUSE™ Message Broker Getting Started Version 5.352

Chapter 3. Exploring JMS

Running Request and Reply Samples

Loosely coupled applications require special techniques when it is important
for the publisher to certify that a message was delivered in either messaging
domain:

• Publish and Subscribe — While the publisher can send long-lived messages
to durable receivers and get acknowledgement from the broker, neither of
these techniques confirms that a message was actually delivered or how
many, if any, subscribers received the message.

• Point-to-point — While a sender can see if a message was removed from
a queue, implying that it was delivered, there is no indication where it
went.

A message producer can request a reply when a message is sent. A common
way to do this is to set up a temporary destination and header information
that the consumer can use to create a reply to the sender of the original
message.

In both request and reply samples, the replier’s task is a simple data
processing exercise: standardize the case of the text sent—receive text and
send back the same text as either all uppercase characters or all lowercase
characters—then publish the modified message to the temporary destination
that was set up for the reply.

While request-and-reply provides proof of delivery, it is a blocking
transaction—the requestor waits until the reply arrives. While this situation
might be appropriate for a system that, for example, issues lottery tickets, it
might be preferable in other situations to have a formally established return
destination that echoes the original message and a correlation identifier—a
designated identifier that certifies that each reply is referred to its original
requestor.

The sample applications use JMS sample classes TopicRequestor and
QueueRequestor. You should create the Request/Reply helper classes that
are appropriate for your application.

These request and reply samples show that request/reply mechanisms are
very similar across messaging models, and that, while there might be zero or
many subscriber replies, there will be, at most, one PTP reply.

53FUSE™ Message Broker Getting Started Version 5.3

Taking the Exploring JMS Guided Tour

Request and Reply (Pub/Sub)

What the sample does In this example in the Pub/Sub domain, the replier application must be started
before the requestor so that the Pub/Sub replier’s message listener can receive
the message and release the blocked requestor.

Running the sample To run the Pub/Sub Request and Reply sample do the following:

1. In window 1, enter ant trequest.

2. In window 2, enter ant treply.

3. In the Requestor window, type AaBbCc then press Enter.

The Replier window reflects the activity, displaying:

[Request] RequestingChatter:
AaBbCc

The replier completes its operation (converts text to uppercase) and sends
the result in a message to the requestor. The requestor gets the reply
from the replier:

[Reply] Transformed RequestingChatter: AaBbCc to all uppercase:
REQUESTINGCHATTER: AABBCC

Stopping the sample To stop the applications press Ctrl+C in each window.

Request and Reply (PTP)

Overview In the PTP domain, the requestor application can be started and even send
a message before the replier application is started. The queue holds the
message until the replier is available. The requestor is still blocked, but when
the replier’s message listener receives the message, it releases the blocked
requestor. The sample code includes an option (-m) to switch the mode
between uppercase and lowercase.

Running the sample To run the PTP Request and Reply sessions do the following:

FUSE™ Message Broker Getting Started Version 5.354

Chapter 3. Exploring JMS

1. In window 1, enter: ant qrequest.

2. In window 2, enter: ant qreply.

3. In the Requestor window, type AaBbCc then press Enter.

The Replier window reflects the activity, displaying:

[Request] RequestingTalker:
AaBbCc

The replier completes its operation (converts text to uppercase) and sends
the result in a message to the requestor. The requestor gets the reply
from the replier:

[Reply] Transformed RequestingTalker: AaBbCc to all uppercase:
REQUESTINGTALKER: AABBCC

Stopping the sample To stop the applications press Ctrl+C in each window.

55FUSE™ Message Broker Getting Started Version 5.3

Taking the Exploring JMS Guided Tour

Running the Queue Test Loop Sample

Overview A simple loop test lets you experiment with messaging performance.

The RoundTrip sample application sends a brief message to a sample queue
and then uses a temporary queue to receive the message back. A counter is
incremented and the message is sent for another trip. After completing the
number of cycles you entered when you started the test, the run completes
by displaying summary and average statistics.

Note
This sample is not intended as a performance tool.

Running the sample To run the QueueRoundTrip sample enter ant roundtrip in Window 1.

The QueueRoundTrip window produces and consumes queue messages in
a loop, producing the next message after the prior one has been consumed.
When it has completed the specified number of cycles (set to 10,000 for the
sample run), it reports how long it took to complete all the cycles.

FUSE™ Message Broker Getting Started Version 5.356

Chapter 3. Exploring JMS

Changing Parameters and Modifying Source Code
Revising Parameters in the Build File .. 58
Analyzing and Modifying the Java Source Files .. 61

While the exploration of the JMS samples ran the compiled applications, it
used an Ant build file provide optimal cross-platform porting and to preset
some parameter values to keep the samples on a defined track.

• Modify and extend application parameters in the Ant build file—You will
change a few of the parameters and reset some that were allowed to use
their default values. Then, you will run the same samples to observe the
changed behaviors.

• Analyze and modify the JMS methods and patterns in the Java source
files —You will examine some of the sample application source files to see
the JMS methods in the samples. The you will change some sample
applications to revise the quality of service and the functionality in the
scope of the original application. Then, compiling and running the
application will let us test out the changes.

57FUSE™ Message Broker Getting Started Version 5.3

Changing Parameters and Modifying Source Code

Revising Parameters in the Build File

Basics The Ant build.xml file was revised to add the FUSE Message Broker version
and installation location. Now you will change and add parameters in the
target section for each sample run. Each parameter's name-value pair is
presented as two sequential arguments. For example:

<target name="chat1">
<java classname="Chat" ...>
...
<arg value="-u"/>
<arg value="Chatter1"/>
</java>
</target>

That listing shows that the -u parameter, the user name, is assigned the
value "Chatter1"

Changing the User Name Change the user name value from "Chatter1" to "Fred" as shown:

<target name="chat1">
<java classname="Chat" ...>
...
<arg value="-u"/>
<arg value="Fred"/>
</java>
</target>

Save the file, and then enter ant chat1 in one of the sample windows, type
Hello, and then press Enter. The response line is:

[java] Fred: Hello

Note
The password parameter requires implementation of security. For
these samples, that would require all the user names and their
respective passwords be defined in the security store. That goes
beyond the scope of exploring JMS, and will be discussed in the
configuration guide. There, you will learn about the simple
authentication plugin (so you can specify credentials directly in the
configuration file), and how to access and set up the Java

FUSE™ Message Broker Getting Started Version 5.358

Chapter 3. Exploring JMS

Authentication and Authorization Service (JAAS) authentication plugin
for a more powerful and customizable solution.

Changing destination names The queue and topic names used in the sample are arbitrary and can be
created dynamically. Some TopicPubSub application applications let you
specify the publish topic and the subscribe topic as parameters. For wildcard,
the HierarchicalChat exposes the topic to which the application publishes
as the -t parameter, and the topic to which it subscribes as the -s parameter.
You could change these topics to demonstrate a FUSE Message Broker feature
by extending the publish topic to a fourth level, and changing the wildcard
on the subscriber topic from * to >. That expands the wildcard from all topics
at the current hierarchical level to all topics at that level or deeper.

<target name="wildcard">
<java classname="HierarchicalChat" fork="true">
...
<arg value="-u"/>
<arg value="HierarchicalChatter"/>
</java>
</target>

Other topic and queues could be changed in the build file so you can observe
how they interact with other sample applications. For the MessageMonitor
application, change its depth of topic hierarchies in its properties file,
MessageMonitor.properties, to subscriptionTopics jms.samples.>

Changing the queue round trips The QueueRoundTrip application is set in the build file to iterate 10,000
times through sending a message to a queue, receiving it off the queue, and
taking that as the cue to send another message. You can change that number
to a larger or smaller value to see start and stop operations are impactful. Try
1000 (one thousand), save the build file, and run ant roundtrip. Try 100000
(one hundred thousand), save the build file, and run ant roundtrip. For
example:

<target name="chat1">
<java classname="QueueRoundTrip" ...>
...
<arg value="-n"/>
<arg value="1000"/>

59FUSE™ Message Broker Getting Started Version 5.3

Revising Parameters in the Build File

</java>
</target>

Distributing the client and the
broker

At this point in exploring JMS, the broker used by the samples is always on
the computer where the sample applications run. While you might use a local
or an embedded broker, JMS messaging is designed so that the sample
applications can run on a computer that has the appropriate libraries, yet can
connect to a broker on a different system to produce and consume messages.
The standalone broker system would typically by in a location where it can
be monitored and provided resources that ensure optimal availability to any
applications that use it.

The sample applications provide a -b parameter to specify the protocol, host,
and port of the preferred broker. As the default broker configuration specifies
the TCP protocol on localhost, listening on port 61616, you can use another
installation of the Java, FUSE Message Broker, Ant, and the Exploring JMS
files (as described in the previous chapter) on another computer to experience
distributed connection. On one host set up and start the broker. On the other
host (the remote host), do the same.

Stop the broker on the remote host, then modify the build.xml file on the
remote host to specify add the connection parameter and specify the host
name where the broker is running. For example:

<target name="chat1">
<java classname="Chat" ...>
...
<arg value="-u"/>
<arg value="Fred"/>
<arg value="-b"/>
<arg value="tcp://remoteHostName:61616"/>
</java>
</target>

Save the build file and then run chat1 in a sample window on each of the
computers. When you enter messages in either Chatter_1 window, the
subscribers both get the message from the same broker.

FUSE™ Message Broker Getting Started Version 5.360

Chapter 3. Exploring JMS

Analyzing and Modifying the Java Source Files

Overview Now that you are familiar with JMS behavior, let's look inside the application
source files to examine some of the patterns that are used. You will see how
you can make and compile some changes to the source files that expose FUSE
Message Broker client's JMS features you can then test. (There are features
that require setting broker configurations; those will be discussed in a
forthcoming chapter.)

Basics The application source files and the class files that they create are located in
application-specific folders that are subfolders of the two messaging models,
QueuePTPSamples, and TopicPubSubSamples. The build file enabled you
to enter ant commands at the root of the samples such that ant chat1 did
the same as navigating to the TopicPubSubSamples/Chat directory to run
the Chat.class file at that location as:

java Chat -u Chatter1

The Chat folder contains the source file Chat.java.

When you make changes to that or any other .java file, compile the source
file to an updated class file and then run the modified file. To do this, you
need to have a Java Development Kit (JDK) specified as JAVA_HOME, and the
CLASSPATH needs to specify the JDK's tools JAR, the FUSE Message Broker's
activemq core JAR, and the Geronimo JMS JAR. For example, on a Windows
system, you might do the following:

set JAVA_HOME=C:\jdk1.5.0_11
set FUSE_MB_=C:\progress\fuse-message-broker-5.3.0.0
set CLASSPATH=.;%JAVA_HOME%\lib\tools.jar; \

%FUSE_MB%\lib\activemq-core-5.3.0.0-fuse.jar; \
%FUSE_MB%\lib\geronimo-jms_1.1_spec-1.1.1.jar

Then, with the command line located at the Chat directory, enter:

javac Chat.java

Setting noLocal in chat The TopicPubSub samples show that the message is received by every
subscriber to the topic and its hierarchy -- including the publisher's connection.
A feature of JMS is the ability to set a noLocal Boolean on the subscription
that inhibits echoing messages sent in the publisher's connection. In
Chat.java you can set the noLocal value to true but there is a catch: the

61FUSE™ Message Broker Getting Started Version 5.3

Analyzing and Modifying the Java Source Files

method signature that sets noLocal requires a message selector string also.
On line 82 of Chat.java, the message consumer is listed as:

javax.jms.MessageConsumer subscriber = subSession.createConsumer(topic);

Edit the line to set the message selector to a zero-length String to satisfy the
method signature, and then add the boolean value true, as follows:

javax.jms.MessageConsumer subscriber = subSession.createConsumer(topic, "", true);

When you save and compile this sample, see the effect in your samples. Start
chat1 and chat2. Send some messages from each of the chatters. The
messages are not echoed in that sender's window.

Steal this code! Use the patterns in these sample applications to meld them and transform
them from user interactive examples to applications that pass your data to
the message producer, and that take messages received by message
consumers to move them into your data stores and application logic. As
always, provide proper copyrights and licenses in your source files and
application packages.

FUSE™ Message Broker Getting Started Version 5.362

Chapter 3. Exploring JMS

Index
A
AJAX, 13
Apache ActiveMQ, 12
Asynchronous JavaScript and XML (see AJAX)
authentication, 18
authorization, 18

B
broker

embedded, 22
standalone, 22
topologies, 22

C
clustering, 15, 16
configuration, 25

D
databases, 17

E
encryption, 18

F
failover, 15

H
high availability, 15
high performance journal, 19

J
J2EE, 13
Java Message Service (see JMS)
Java Naming and Directory Interface (see JNDI)
JMS, 13, 27

broker, 27

clients, 29
consumers, 29
messages, 27
producers, 29
queues, 27
streams, 16
topics, 28

JNDI, 13

M
message compression, 16

N
network connectors, 25

P
performance, 19
persistence, 17

R
Representational State Transfer (see REST)
REST, 13

S
scalability, 16
security, 18
Spring Framework, 25

T
transport connectors, 25

X
XBean, 25

63FUSE™ Message Broker Getting Started Version 5.3

FUSE™ Message Broker Getting Started Version 5.364

	Getting Started
	Table of Contents
	Chapter 1. Introducing FUSE Message Broker
	What is FUSE Message Broker?
	Supported Standards
	Supported Wire Protocols and Clients
	High Availability
	Scalability
	Persistence
	Security
	Performance

	Chapter 2. Key Concepts
	JMS Broker Deployment Topologies
	Configuring FUSE Message Broker
	JMS Basics

	Chapter 3. Exploring JMS
	Setting Up the Guided Tour of JMS
	Running JMS Sample Applications
	About the Exploring JMS Samples
	Taking the Exploring JMS Guided Tour
	Running Publish and Subscribe Messaging Samples
	Chat Application
	DurableChat Application
	HierarchicalChat Application
	MessageMonitor Application
	SelectorChat Application
	TransactedChat Application

	Running Point-to-Point Messaging Samples
	Talk Application
	The QueueMonitor Application
	SelectorTalk Application
	TransactedTalk Application

	Running Request and Reply Samples
	Request and Reply (Pub/Sub)
	Request and Reply (PTP)

	Running the Queue Test Loop Sample

	Changing Parameters and Modifying Source Code
	Revising Parameters in the Build File
	Analyzing and Modifying the Java Source Files

	Index

