Progress

FUSE

FUSE" Message Broker

Using Persistent Messages

Version 5.3
Febuary 2009

SOFTWARE

Using Persistent Messages
Version 5.3

Publication date 23 Jul 2009
Copyright © 2001-2009 Progress Software Corporation and/or its subsidiaries or affiliates.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix;, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of Progress Software Corporation. No third-party intellectual
property right liability is assumed with respect to the use of the information contained herein. Progress Software Corporation
assumes no responsibility for errors or omissions contained in this publication. This publication and features described herein
are subject to change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents

1. Introduction to FUSE Message Broker Persistencecccociiiiiiiiiiiiiiiiiiissrrre e 11
2. Using the AMQ MeSSaBE SEOIEccuiuiuiiuieriiiirriis s re s re s s s s s s sa s sensasassnsasensasann 13
3. Using JDBC to Connect to a Database Storec.cocieiiiiiiiiiiiii e 19
Basics of Using the JDBC Persistence Adaplerouiuiiieiiiiiiiie e 20
Using JDBC with the High Performance Journalcooiiiiiiiii e 26
Using JDBC without the JOUrnal ... e 29
4. IMESSALE CUISOIS «.eueuiniuiniittstrrararasasasasasasasasasnnssssnsssssssssssssssssssssssasasnsnsnnnnensnnnsnsnsnsnsnnns 31
B3 S TEo o A O VT Yo £ PP PPPPN: 32
Configuring the Type of Cursor Used by a Destination ..o 36
T 1= G 39

FUSE" Message Broker Using Persistent Messages Version 5.3 3

FUSE" Message Broker Using Persistent Messages Version 5.3

List of Figures

2.1. Overview of the AMQ Message Store
2.2. AMQ Message Store Directory Layout
4.1. Store-based Cursors for a Fast Consumer
4.2. Store-based Cursors for a Slow Consumer

4.3. VM Cursors
4.4, File-based Cursors

FUSE" Message Broker Using Persistent Messages Version 5.3

FUSE" Message Broker Using Persistent Messages Version 5.3

List of Tables

1.1. Setting a Broker's Persistencecccoeeiiiiiiiiiiiiii,
2.1. Configuration Attributes for the AMQ Message Store
3.1. Statements for Configuring the SQL Statements Used by the JDBC
Persistence Adapter ..o
3.2. Attributes for Configuring the Journaled JDBC Persistence

0 = 0] =Y
3.3. Attributes for Configuring the Plain JDBC Persistence

0 = 0] =Y
4.1. Elements for Configuring the Type of Cursor to Use for Durable
SUDSCIIDEIS et e
4.2. Elements for Configuring the Type of Cursor to Use for Transient
SUDSCIIDEIS et
4.3. Elements for Configuring the Type of Cursor to Use for a

LT PN

FUSE" Message Broker Using Persistent Messages Version 5.3

FUSE" Message Broker Using Persistent Messages Version 5.3

List of Examples

1.1. Turning Off a Broker's Persistencecccocviiiiiiiiiiiiiiiiinnnn. 12
1.2. Adding Persistence Adapter Configurationc.cooinien. 12
2.1. Configuring the AMQ Message Storecocovvvivirieiieiieinnennnns 16
3.1. Configuration for Using the Default Database 21
3.2. Configuration for the Oracle JDBC Driverccccooviiiiiiniinnnn. 21
3.3. Fine Tuning the Database Schemaccccoiiiiiiiiiiiiiinnn, 22
3.4. Configuring a Generic JDBC Providerccccoviviiiiiniiinienne. 25
3.5. Configuring FUSE Message Broker to use the Journaled JDBC
Persistence Adapter ... 27
3.6. Configuring FUSE Message Broker to use the Plain JDBC

Persistence Adapterccoiiiiiii 30
4.1. Configuring a Topic's Cursor USagecoeevuviiuiiiiieeiiainenannes 37
4.2. Configuring a Queue's Cursor USagEocovvveiveeeiineiiiiinenananes. 38

FUSE" Message Broker Using Persistent Messages Version 5.3 9

10

FUSE" Message Broker Using Persistent Messages Version 5.3

Chapter 1. Introduction to FUSE
Message Broker Persistence

Message persistence allows for the recovery of undelivered messages in the event of a system failure. By default,
FUSE Message Broker's persistence features are activated. The default set up is fast and scalable. It is easy to
customize the set-up to use and JDBC compliant database.

Overview

Persistent message stores

Activating and deactivating
persistence

Loss of messages is not acceptable in mission critical applications. FUSE
Message Broker reduces the risk of message loss by using a persistent message
store by default. Persistent messages are written to the persistent store when
they are sent. The messages persist in the store until their delivery is
confirmed. This means that in the case of a system failure, FUSE Message
Broker can recover all of the undelivered messages at the time of the failure.

The default message store is embeddable and transactional. It both very fast
and extremely reliable. In addition to the default message store, FUSE Message
Broker offers a number of other persistent message store options. These
include:

* AMQ Message Store
* ajournaled JDBC adapter

* a non-journaled JDBC adapter

Persistence in FUSE Message Broker is controlled by a broker's XML
configuration file. To change a broker's persistence behavior you modify the
configuration's broker element's persistent attribute.

Table 1.1. Setting a Broker's Persistence

Value |Description

true |The broker will use message persistence.

false|The broker will not use message persistence. If you add persistence

adapters to a broker's configuration, this setting is ignored.

FUSE" Message Broker Using Persistent Messages Version 5.3 11

Chapter 1. Introduction to FUSE Message Broker

Persistence

Configuring persistence adapter
behavior

12

@ Tip
By default, a broker's persistent attribute is set to true.

Example 1.1 on page 12 shows a configuration snip-it for turning off a broker's
message persistence.

Example 1.1. Turning Off a Broker's Persistence

<broker persistent="false" ...>

</broker>

FUSE Message Broker offers a number of different persistence mechanisms
aside from the default message store. To use one of the alternative message
stores, or to modify the default behavior of the default message store, you
need to configure the persistence adapter. This is done by adding a
persistenceAdapter element to the broker's configuration file as shown in
Example 1.2 on page 12.

Example 1.2. Adding Persistence Adapter Configuration
<broker persistent="true" ...>
<persistenceAdapter>
<amgPersistenceAdapter ... />
</persistenceAdapter>
<broker>
The persistenceAdapter element has no attributes. The configuration for

the persistence adapter is specified using a child element for the desired
persistence adapter.

FUSE" Message Broker Using Persistent Messages Version 5.3

Chapter 2. Using the AMQ Message
Store

The default message store used by FUSE Message Broker is a light-weight transactional store that is fast and
reliable. It is a hybrid system that couples a transactional journal for message storage and a reference store for
quick retrieval. The AMQ message store is highly configurable.

Overview By default, FUSE Message Broker uses the AMQ Message Store to persist
message data. The AMQ message store is an embeddable, transactional
message store that is extremely fast and reliable. It is an evolution of the Kaha
system used by Active MQ 4.x. It uses a transactional journal to store message
data and a Kaha-based index to store message locations for quick retrieval.

Figure 2.1 on page 13 shows a high-level view of the AMQ message store.

Figure 2.1. Overview of the AMQ Message Store

{ } chackpoint

Cache

m‘-

Relarence Store
Indexes

Data Logs

Messages are stored in file-based data logs. When all of the messages in a
data log have been successfully consumed, the data log is marked as ready

FUSE" Message Broker Using Persistent Messages Version 5.3 13

Chapter 2. Using the AMQ Message Store

Data structure

to be deleted. At a predetermined clean-up interval, logs marked as deletable
are removed from the system.

Note

Message logs can also be archived.

An index of message locations is cached in memory to facilitate quick retrieval
of message data. At configurable checkpoint intervals, the references are
inserted into the persistent reference store.

The AMQ message store is a file-based message store and uses a layered
directory structure to store its data. Figure 2.2 on page 14 shows the layout
of the AMQ message store's files.

Figure 2.2. AMQ Message Store Directory Layout

14

data
R —
)
broker name
archive journal Kr-store tmp-slora
m lransmn; MESSAgE
data lags data lags storage
data slate
indexas durable subscribers

The top-level directory of a broker's message store is identified by the name
of the broker. For example a broker configured with the name JoeFred would
have a message store folder named JoeFred. Beneath the message store's

top-level folder are four folders:

FUSE" Message Broker Using Persistent Messages Version 5.3

archive

The archive folder stores archived message logs.

@ Note

This folder only exists when log archiving is activated.

& Tip

You can change the name of this folder by setting the AMQ
persistence adapter's directoryarchive attribute. See
"Configuration" on page 16.

journal

The journal folder stores the active message logs.

kr-store

The kr-store folder is used by the Kaha reference store when it saves
message references to disk. It has two sub-folders:

data

The data folder stores the indexes for referencing the logged
messages.

state
The state folder maintains state information regarding the message

store. The information contained her includes the name of durable
subscribers and information about transactions.

(@ Note

This folder is only used if the AMQ persistence adapter's
persistentIndex attribute is set to true. See "Configuration"
on page 16.

FUSE" Message Broker Using Persistent Messages Version 5.3 15

Chapter 2. Using the AMQ Message Store

tmp-storage

The tmp-storage folder stores transient messages that are cached to
free up memory. For example non-persistent messages may be stored
here while awaiting consumption by an active, but slow consumer.

Configuration FUSE Message Broker comes preconfigured to use the AMQ message store.
However, you can modify how the message store behaves by explicitly defining
its persistence adapter using the amgPersistenceadapter element as shown
in Example 2.1 on page 16.

Example 2.1. Configuring the AMQ Message Store
<broker brokerName="broker" persistent="true" useShutdownHook="false">

<persistenceAdapter>
<amgPersistenceAdapter directory="activemg-data" maxFileLength="32mb"/>
</persistenceAdapter>
</broker>

Table 2.1 on page 16 describes all of the attributes that can be used to
configure the AMQ message store.

Table 2.1. Configuration Attributes for the AMQ Message Store

Attribute Default Value |Description

directory activemg-data|Specifies the path to the top-level folder used to hold the
message store's data files.

useNIO true Specifies whether or not NIO is used to write messages to
the data logs.

syncOnWrite false Specifies whether or not to sync every write to a data log to
the disk.

maxFileLength 32mb Sets the maximum size of the logs used to store message

data. Any string value provided, in kilobytes, megabytes, or
gigabytes, is converted to a long value in bytes at runtime.
The conversion process ignores whitespace, is
case-insensitive, and accepts one- or two-letter acronyms
as units of measurement. Values written without units are
treated as bytes. For example, the following values are all
valid: 1024kb, 256 MB, 512m, 1G, 10000000.

16 FUSE" Message Broker Using Persistent Messages Version 5.3

Attribute

Default Value

Description

persistentIndex

true

Specifies whether or not to write the reference index to a
persistent store. If set this attribute is set to false the

reference index will be maintained in non-persistent memory.

checkpointInterval

6000

Specifies how often, in milliseconds, that data from the
journal is synchronized with the indexes.

maxCheckpointMessageAddSize

4096

Specifies the maximum number of messages to keep in a
transaction before automatically commiting them to the
message store.

cleanupInterval

30000

Specifies the interval, in milliseconds, between clean-up
sweeps of the message store.

indexBinSize

1024

Specifies the default number of bins used by the reference
index. Increasing the number of bins in use increases the
relative performance of the index.

indexKeySize

96

Specifies the size of the index key to use. The index key is
the message id.

indexPageSize

16kb

Specifies the size of the page file to use for the reference
index. Increasing the page file size increases the index's write
performance.

archiveDatalogs

false

Specifies whether or not old message logs are archived or
deleted. Setting this attribute to true specifies that old

message logs are copied to the message store's archive folder
instead of being deleted.

directoryArchive

archive

Specifies the name of the folder into which archived message
logs are stored.

Failure recovery

If the message broker does not shutdown properly, the reference store indexes
are cleaned and the message data files are replayed to rebuild the message
store's state information. It is possible to force automatic recovery by deleting
the kr-store/state/index-store-state file.

FUSE" Message Broker Using Persistent Messages Version 5.3 17

18

FUSE" Message Broker Using Persistent Messages Version 5.3

Chapter 3. Using JDBC to Connect to
a Database Store

FUSE Message Broker supports the use of relational databases as a message store through JDBC. You can use
the JDBC persistence adapter either coupled with a high performance journal or standalone.

Basics of Using the JDBC Persistence Adapteroeieieiiiiiiii e 20
Using JDBC with the High Performance Journalo e 26
Using JDBC without the JOUINal ... e 29

FUSE" Message Broker Using Persistent Messages Version 5.3 19

Chapter 3. Using JDBC to Connect to a Database Store

Basics of Using the JDBC Persistence Adapter

Overview For long term persistence you may want to use a relational database as your
persistent message store. FUSE Message Broker's default database when
using the JDBC persistence adapter is Apache Derby. FUSE Message Broker
also supports most major SQL databases. You can enable other databases
by properly configuring the JDBC connection in the broker's configuration file.

You can you use the JDBC persistence adapter either with or without
journaling. Using the journal provides two main benefits. First, it improves
the speed of the message store. Second, it provides support for JMS
transactions.

Supported databases FUSE Message Broker is known to work with the following databases:
* Apache Derby
* Axion
* DB2
e HSQL
* Informix
¢ MaxDB
e MySQL
* Oracle
* Postgresql
* SQLServer
¢ Sybase

In addition, FUSE Message Broker supports a number of generic JDBC
providers.

Specifying the type of JDBC store = FUSE Message Broker support two types of JDBC store:

to use
* ajournaled JDBC store

20 FUSE" Message Broker Using Persistent Messages Version 5.3

Basics of Using the JDBC Persistence Adapter

The journaled JDBC store is specified using the jounraledJDBC element.
For more information see "Using JDBC with the High Performance Journal"
on page 26.

* a non-journaled JDBC store

The non-journaled store is specified using the jdbcPersistenceAdapter
element. For more information see "Using JDBC without the Journal"
on page 29.

Configuring your JDBC driver FUSE Message Broker autodetects the JDBC driver that is in use at start-up.
For the supported databases, the JDBC adapter automatically adjusts the
SQL statements and JDBC driver methods to work with the driver. If you wish
to customize the names of the database tables or work with an unsupported
database, you can modify both the SQL statements and the JDBC driver
methods. See "Customizing the SQL statements used by the adapter"
on page 22 for information about modifying the SQL statements. See "Using
generic JDBC providers" on page 25 for information about changing the JDBC
methods.

The default configuration shipped with FUSE Message Broker
(rnsta1ilpir/conf/activemqg.xml) includes configuration examples for a
number of the supported databases. Example 3.1 on page 21 shows the
configuration for using the default database.

Example 3.1. Configuration for Using the Default Database

<beans ...>
<broker xmlns="http://activemg.org/config/1.0" brokerName="localhost">

<persistenceAdapter>
<jdbcPersistenceAdapter dataDirectory="activemg-data"/>
</persistenceAdapter<

</broker>
</beans>

Example 3.2 on page 21 shows the configuration for using the Oracle JDBC
driver. The persistence adapter configuration refers to the Spring bean element
that configures the JDBC driver.

Example 3.2. Configuration for the Oracle JDBC Driver

<beans ...>
<broker xmlns="http://activemqg.org/config/1.0" brokerName="localhost">

FUSE" Message Broker Using Persistent Messages Version 5.3 21

Chapter 3. Using JDBC to Connect to a Database Store

<persistenceAdapter>

<jounraledJDBC dataSource="#oracle-ds" />

</peristenceAdapter>

</broker>

<bean id="oracle-ds" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">

<property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
<property name="url" value="jdbc:oracle:thin:@localhost:1521:AMQDB"/>
<property name="username" value="scott"/>

<property name="password" value="tiger"/>

<property name="poolPreparedStatements" value="true"/>

</bean>

</beans>

Customizing the SQL statements
used by the adapter

The JDBC drivers are configured using a Spring bean element. The id attribute
specifies the name by which you will refer to the driver when configuring the
JDBC persistence adapter. The class attribute specifies the class that
implements the data source used to interface with the JDBC driver. The
destroy-method attribute specifies the name of the method to call when
the JDBC driver is shutdown.

In addition to the bean element, the JDBC driver configuration includes a
number of property elements. Each property element specifies a property
required by the JDBC driver. For information about the configurable properties
refer to your JDBC driver's documentation.

You can configure the SQL statements used to create the message store. This
is done by adding a statements element to your JDBC persistence adapters
configuration. Example 3.3 on page 22 shows a configuration snip-it that
specifies that long strings are going to be stored as VARCHAR(128).

Example 3.3. Fine Tuning the Database Schema

<persistenceAdapter>
<journaledJDBC ...>
<statements>

<statements stringIdDataType ="VARCHAR (128)"/>

</statements>
</journaledJDBC>
</persistenceAdapter>

22

FUSE" Message Broker Using Persistent Messages Version 5.3

Basics of Using the JDBC Persistence Adapter

The first statements element is a wrapper for one or more statements
elements. Each internal statements element specifies a single configuration
statement. Table 3.1 on page 23 describes the configurable properties.

Table 3.1. Statements for Configuring the SQL Statements Used by the JDBC Persistence Adapter

Attribute

Default

Description

tablePrefix

Specifies a prefix that is added to every table name. The prefix
should be unique per broker if multiple brokers will be sharing
the same database.

messageTableName

ACTIVEMQ MsSGs |Specifies the name of the table in which persistent messages are

stored.

durableSubAcksTableName

ACTIVEMQ ACKS|Specifies the name of the database table used to store

acknowledgment messages from durable subscribers.

lockTableName ACTIVEMQ LOCK |Specifies the name of the lock table used to determine the master
in a master/slave scenario.
binaryDataType BLOB Specifies the data type used to store the messages.

containerNameDataType

VARCHAR (250) |Specifies the data type used to store the destination name.

msgIdDataType VARCHAR (250) |Specifies the data type used to store a message id.
sequenceDataType INTEGER Specifies the datatype used to store the sequence id of a message.
longDataType BIGINT Specifies the data type used to store a Java long.
stringIdDataType VARCHAR (250) |Specifies the data type used to store long strings like client ids,

selectors, and broker names.

The properties listed in Table 3.1 on page 23 configure the default SQL
statements used by the JDBC adapter and work with all of the supported
databases. If you need to override the default statements to work with an
unsupported database, there are a number of other properties that can be
used. These include:

addMessageStatement

updateMessageStatement

removeMessageStatement

findMessageSequenceldStatement

FUSE" Message Broker Using Persistent Messages Version 5.3 23

Chapter 3. Using JDBC to Connect to a Database Store

® findMessageStatement

* findAllMessagesStatement

* findLastSequenceIdInMsgsStatement

® findLastSequenceIdInAcksStatement

® createDurableSubStatement

¢ findDurableSubStatement

® findAllDurableSubsStatement

® updatelastAckOfDurableSubStatement

® deleteSubscriptionStatement

* findAllDurableSubMessagesStatement

* findDurableSubMessagesStatement

® findAllDestinationsStatement

® removeAllMessagesStatement

® removeAllSubscriptionsStatement

® deleteOldMessagesStatement

® lockCreateStatement

® lockUpdateStatement

® nextDurableSubscriberMessageStatement
® durableSubscriberMessageCountStatement

® lastAckedDurableSubscriberMessageStatement

24 FUSE" Message Broker Using Persistent Messages Version 5.3

Basics of Using the JDBC Persistence Adapter

destinationMessageCountStatement

findNextMessageStatement

createSchemaStatements

dropSchemaStatements

Using generic JDBC providers To use a JDBC provider not natively supported by FUSE Message Broker you
can typically configure the JDBC persistence adapter to work, by setting the
persistence adapter's adapter attribute to one of the following values:

org

org.

org

org.

.activemg.store.jdbc.adapter

activemg.store.jdbc.adapter

.activemg.store.jdbc.adapter

activemg.store.jdbc.adapter

.BlobJDBCAdapter

.BytesJDBCAdapter

.DefaultJDBCAdapter

. ImageJDBCAdapter

The different settings change how the JDBC adapter stores and accesses
BLOB fields in the database. To determine the proper setting consult the
documentation for your JDBC driver and your database.

Example 3.4 on page 25 shows a configuration snip-it configuring the
journaled JDBC persistence adapter to use the blob JDBC adapter.

Example 3.4. Configuring a Generic JDBC Provider

<broker persistent="true" ...>

<persistenceAdapter>

<journaledJDBC adapter="org.activemq.store.jdbc.adapter.BlobJDBCAdapter" ... />

</persistenceAdapter>

</broker>

FUSE" Message Broker Using Persistent Messages Version 5.3

25

Chapter 3. Using JDBC to Connect to a Database Store

Using JDBC with the High Performance Journal

Overview

Configuration

Using the JDBC persistence adapter with FUSE Message Broker's high
performance journal boosts the performance of the persistence adapter in two
ways:

1. In applications where message consumers keep up with the message
producers, the journal makes it possible to lower the number of messages
that need to be committed to the data base. For example a message
producer could publish 10,000 messages between journal checkpoints.
If the message consumer pops 9,900 messages off of the queue during
the same interval, only 100 messages will be committed to the database
through the JDBC adapter.

2. In applications where the message consumers cannot keep up with the
message producers, or in applications where messages must persist for
long periods, the journal boosts performance by committing messages in
large batches. This means that the JDBC driver can optimize the writes to
the external database.

In addition to the performance gains, the high performance journal also makes
it possible to ensure the consistency of JMS transactions in the case of a
system failure.

To configure FUSE Message Broker to use the JDBC persistence adapter with
the high performance journal you add the journaleddpsc element to the
persistenceAdapter element in your broker's configuration as shown in
Example 3.5 on page 27.

Table 3.2 on page 26 describes the attributes used to configure the journaled
JDBC persistence adapter.

Table 3.2. Attributes for Configuring the Journaled JDBC Persistence Adapter

Attribute

Default Value |Description

adapter

Specifies the strategy to use when accessing a non-supported
database. For more information see "Using generic JDBC
providers" on page 25.

createTablesOnStartup

Specifies whether or not new database tables are created when
the broker starts. If the database tables already exist, the existing
tables are reused.

26

FUSE" Message Broker Using Persistent Messages Version 5.3

Using JDBC with the High Performance Journal

Attribute Default Value |Description

dataDirectory activemg-data |Specifies the directory into which the default Derby database
writes its files.

dataSource #derby Specifies the id of the Spring bean storing the JDBC driver's
configuration. For more information see "Configuring your JDBC
driver" on page 21.

journalArchiveDirectory Specifies the directory used to store archived journal log files.

journalLogFiles 2 Specifies the number of log files to use for storing the journal.

journallLogFileSize 20MB Specifies the size for a journal's log file.

journalThreadPriority |10 Specifies the thread priority of the thread used for journaling.

useDatabaseLock true Specifies whether or not an exclusive database lock should be
used to enable JDBC Master/Slave.

useJournal true Specifies whether or not to use the journal.

Example Example 3.5 on page 27 shows a configuration snip-it that configures the

journaled JDBC adapter to use a MySQL database.

Example 3.5. Configuring FUSE Message Broker to use the Journaled JDBC Persistence Adapter

<beans ...>
<broker ...>

©® <persistenceAdapter>
(2} <journaledJDBC journallLogFiles="5" dataSource="#mysqgl-ds" />
</persistenceAdapter>

<broker>
®<bean id="mysgl-ds" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
<property name="driverClassName" value="com.mysqgl.jdbc.Driver"/>
<property name="url" value="jdbc:mysqgl://localhost/activemg?relaxAutoCommit=true"/>
<property name="username" value="activemqg"/>
<property name="password" value="activemqg"/>

<property name="poolPreparedStatements" value="true"/>
</bean>

The configuration in Example 3.5 on page 27 has three noteworthy elements:

FUSE" Message Broker Using Persistent Messages Version 5.3 27

Chapter 3. Using JDBC to Connect to a Database Store

28

The persistenceAdapter element wraps the configuration for the
JDBC persistence adapter.
The journaledJDBC element specifies that the broker will use the JDBC

persistence adapter with the high performance journal. The element's
attributes configure the following properties:

* The journal will span five log files.

* Quick journaling will be used. Therefore only message references will
be written to the JDBC database.

* The configuration for the JDBC driver is specified in a bean element
with the id mysql-ds.

The bean element specified the configuration for the MySQL JDBC driver.

FUSE" Message Broker Using Persistent Messages Version 5.3

Using JDBC without the Journal

Using JDBC without the Journal

Overview For instances when journaling is not appropriate, or you wish to use your own
journaling system, you can used the JDBC persistence adapter without the
FUSE Message Broker high performance journal.

Configuration To configure FUSE Message Broker to use the JDBC persistence adapter
without the high performance journal you add the jdbcPersistenceAdapter
element to the persistenceAdapter element in your broker's configuration
as shown in Example 3.6 on page 30.

Table 3.3 on page 29 describes the attributes used to configure the
non-journaled JDBC persistence adapter.

Table 3.3. Attributes for Configuring the Plain JDBC Persistence Adapter

Attribute Default Value |Description

adapter Specifies the strategy to use when accessing a non-supported
database. For more information see "Using generic JDBC providers"
on page 25.

cleanupPeriod 300000 Specifies, in milliseconds, the interval at which acknowledged
messages are deleted.

createTablesOnStartup|true Specifies whether or not new database tables are created when the
broker starts. If the database tables already exist, the existing tables
are reused.

dataDirectory activemg-data |Specifies the directory into which the default Derby database writes
its files.

dataSource #derby Specifies the id of the Spring bean storing the JDBC driver's

configuration. For more information see "Configuring your JDBC
driver" on page 21.

useDatabaseLock true Specifies whether or not an exclusive database lock should be used
to enable JDBC Master/Slave.

Example Example 3.6 on page 30 shows a configuration snip-it that configures the
JDBC adapter to use the default database.

FUSE" Message Broker Using Persistent Messages Version 5.3 29

Chapter 3. Using JDBC to Connect to a Database Store

Example 3.6. Configuring FUSE Message Broker to use the Plain JDBC Persistence Adapter
<beans ...>

<broker ...>

©® <persistenceAdapter>
(2] <journaledJDBC dataSource="derby-ds" />
</persistenceAdapter>
<broker>
®<bean id="#derby-ds" class="org.apache.derby.jdbc.EmbeddedDataSource">
<property name="databaseName" value="derbydb"/>

<property name="createDatabase" value="create"/>
</bean>

The configuration in Example 3.6 on page 30 has three noteworthy elements:

©® The persistenceAdapter element wraps the configuration for the

JDBC persistence adapter.
® The jdocPersistenceAdapter element specifies that the broker will

use the plain JDBC persistence adapter and that the JDBC driver's
configuration is specified in a bean element with the id derby-ds.

® The bean element specified the configuration for the Derby JDBC driver.

30 FUSE" Message Broker Using Persistent Messages Version 5.3

Chapter 4. Message Cursors

FUSE Message Broker uses message cursors to improve the scalability of the persistent message store. By default,
a hybrid approach that uses an in memory dispatch queue for fast consumers and message cursors for slower
consumers is used. FUSE Message Broker also supports two alternative cursor implementations. The type of
cursor can be configured on a per-destination basis.

Types of Cursors
Configuring the Type of Cursor Used by a Destinationcc.ooiieiiiiiii e 36

Message cursors provide a means for optimizing a persistent message store.
They allow the persistent store to maintain a pointer to the next batch of
messages to pull from the persistent message store. FUSE Message Broker
has three types of cursors that can be used depending on the needs of your
application:

» Store-based cursors are the default cursor implementation. They offer the
best all around performance.

* VM cursors are very fast, but cannot handle slow message consumers.

* File-based cursors are useful when the message store is slow and message
consumers are relatively fast.

FUSE" Message Broker Using Persistent Messages Version 5.3 31

Chapter 4. Message Cursors

Types of Cursors

Store-based cursors

Store-based cursors are the default cursor implementation used by FUSE
Message Broker. Store-based cursors are a hybrid implementation that offers
the robustness of typical cursor implementations and the speed of in-memory
message reference implementations.

Typically messaging systems will pull persistent messages from long-term
storage in a batch when a client is ready to consume them. A cursor will be
used to maintain the position for the next batch of messages. While this
approach scales well and provides excellent robustness, it does not perform
well when message consumers keep pace with message producers.

As shown in Figure 4.1 on page 32, store-based cursors address the fast
consumer case by skipping the message cursor. When a message consumer
is keeping pace with the message producers, persistent messages are written
to the message store and moved directly into a dispatch queue for the
consumer.

Figure 4.1. Store-based Cursors for a Fast Consumer

Dispatching Messages for Fast Consumers

Inbound Messages

32

Pending
Message Store Cursor

FUSE" Message Broker Using Persistent Messages Version 5.3

Types of Cursors

When a consumer starts with a back log of messages or falls behind its
message producers, FUSE Message Broker changes the strategy used to
dispatch messages. As shown in Figure 4.2 on page 33, messages are held
in the message store and fed into the consumer's dispatch queue using the
pending cursor.

Figure 4.2. Store-based Cursors for a Slow Consumer

VM cursors

Dispatching Messages if Dispatch Queue is Full

FPage In to Dispatch Queue on demand

Inbound Messages . g

Pendi
Message Store - 0um;-g

— —_— e —

Buffer In from Store

When speed is the top priority and the consumers can definitely keep pace
with the message producers, VM cursors could be the best approach. In this
approach, shown in Figure 4.3 on page 34, messages are written to the
persistent store and then also stored in the pending cursor which is held
completely in memory. The messages are fed into the dispatch queue from
the pending cursor.

FUSE" Message Broker Using Persistent Messages Version 5.3 33

Chapter 4. Message Cursors

Figure 4.3. VM Cursors

VMCursor

Page In 10 Dispatch Queue on demand

Inbound Messages

Message Store

Because the message are dispatched from active memory when using VM
cursors, this method is exceptionally fast. However, if the number of
unconsumed messages gets large the producers will be throttled to avoid
exceeding the available memory.

File-based cursors File-based cursors are a variation of VM cursors that provides a buffer against
running out of memory when a consumer falls behind. As shown in
Figure 4.4 on page 35, the broker pages messages out to a temporary file
when the broker's memory limit is reached.

34 FUSE" Message Broker Using Persistent Messages Version 5.3

Types of Cursors

Figure 4.4. File-based Cursors
FileCursor

Page In to Dispaich Queue on demand

page in from temp files

Inbound Messages

Message Store

bufler to disk if full

Using a temporary file cushions the broker against situations where a consumer
occasionally falls behind or messages are produced in a burst. The broker
uses the temporary file instead of resorting to using slower persistent storage.

File-based cursors do not scale well when consumers are frequently behind
by a large margin. It is also not ideal when a fast long term message store is
available.

FUSE" Message Broker Using Persistent Messages Version 5.3 35

Chapter 4. Message Cursors

Configuring the Type of Cursor Used by a Destination

Overview

Configuring topics

By default, FUSE Message Broker uses store-based cursors. You can, however,
configure your destinations to use one of the alternative cursor implementations
by adding the appropriate policy entries into the destination's policy map.

You configure a destination's policy set using a destinationPolicy element.
The destinationPolicy element is a wrapper for a policyMap element.
The policyMap element is a wrapper for a policyEntries element. The
policyEntries element is a wrapper for one or more policyEntry elements.

The cursor policies are entered as children to a policyEntry element. The
configuration elements used to specify the type of destination you are
configuring. Topics use cursors for both durable subscribers and transient
subscribers, so it uses two sets of configuration elements. Queues only a
single cursor and only require a single set of configuration elements.

Topics maintain a dispatch queue and a pending cursor for every consumer
subscribed to the topic regardless of whether the subscription is durable or
transient. You can configure the cursor implementation used by durable
subscribers separately from the cursor implementation used by transient
subscribers.

() Important

If you want to use the store-based cursor implementation, you do
not add any extra elements to the configuration. FUSE Message
Broker uses store-based cursors by default.

You configure the cursor implementation used by durable subscribers by
adding PendingDurableSubscriberMessageStoragePolicy child element
to the topic's policyEntry element. Table 4.1 on page 36 describes the
possible children of PendingbDurableSubscriberMessageStoragePolicy

Table 4.1. Elements for Configuring the Type of Cursor to Use for Durable Subscribers

Element

Description

vmDurableCursor

Specifies the VM cursors will be used. See "VM cursors" on page 33 for
more information.

fileDurableSubscriberCursor

Specifies that file-based cursors will be used. See "File-based cursors"
on page 34 for more information.

36

FUSE" Message Broker Using Persistent Messages Version 5.3

Configuring the Type of Cursor Used by a Destination

You configure the cursor implementation used by transient subscribers by
adding pendingSubscriberPolicy child element to the topic's policyEntry
element. Table 4.2 on page 37 describes the possible children of
pendingSubscriberPolicy.

Table 4.2. Elements for Configuring the Type of Cursor to Use for Transient Subscribers

Element Description

vmCursor Specifies the VM cursors will be used. See "VM cursors" on page 33 for more information.

fileCursor |Specifies that file-based cursors will be used. See "File-based cursors" on page 34 for more
information.

Example 4.1 on page 37 shows a configuration snip-it that configures a topic
to use VM cursors for its transient subscribers and file-based cursors for its
durable subscribers.

Example 4.1. Configuring a Topic's Cursor Usage

<beans ... >
<broker ...>

<destinationPolicy>
<policyMap>
<policyEntries>
<policyEntry topic="com.iona.>">

<pendingSubscriberPolicy>
<vmCursor />
</pendingSubscriberPolicy>
<PendingDurableSubscriberMessageStoragePolicy>
<fileDurableSubscriberPolicy />
</PendingDurableSubscriberMessageStoragePolicy>

</policyEntry>
</policyEntries>
</policyMap>

</destinationPolicy>

</broker>

FUSE" Message Broker Using Persistent Messages Version 5.3 37

Chapter 4. Message Cursors

</beans>

Configuring queues Queues use a single pending cursor and dispatch queue. You configure the
type of cursor to use by adding a pendingQueuePolicy element to the
queue's policyEntry element. Table 4.3 on page 38 describes the possible
children elements of the pendingQueuePolicy element.

Table 4.3. Elements for Configuring the Type of Cursor to Use for a Queue

Element Description

vmQueueCursor Specifies the VM cursors will be used. See "VM cursors" on page 33 for more information.

more information.

fileQueueCursor |Specifies that file-based cursors will be used. See "File-based cursors" on page 34 for

Example 4.2 on page 38 shows a configuration snip-it that configures a
queue to use VM cursors.

Example 4.2. Configuring a Queue's Cursor Usage

<beans ... >
<broker ...>

<destinationPolicy>
<policyMap>
<policyEntries>
<policyEntry queue="com.iona.>">

<pendingQueuePolicy>
<vmQueueCursor />

</pendingQueuePolicy>
</policyEntry>
</policyEntries>

</policyMap>
</destinationPolicy>
</broker>

</beans>

38

FUSE" Message Broker Using Persistent Messages Version 5.3

Index
A

AMQ message store
archive folder, 15
journal folder, 15
kr-store folder, 15
tmp-storage folder, 16
amgPersistenceAdapter, 16
archiveDatalogs attribute, 17
checkpointinterval attribute, 17
cleanuplnterval attribute, 17
directory attribute, 16
directoryArchive attribute, 17
indexBinSize attribute, 17
indexKeySize attribute, 17
indexPageSize attribute, 17
maxCheckpointMessageAddSize attribute, 17
maxFileLength attribute, 16
syncOnWrite attribute, 16
useNIO attribute, 16
amqPersitenceAdapter
persistentindex attribute, 17

B

broker element, 11
persistent attribute, 11

C

configuration

turning persistence on/off, 11
cursors

file-based, 34

store-based, 32

VM, 33

D

destinationPolicy, 36
durable subscribers
configuring cursors, 36

FUSE" Message Broker Using Persistent Messages Version 5.3

using file-based cursors, 36
using VM cursors, 36

F

fileCursor, 37
fileDurableSubscriberCursor, 36
fileQueueCursor, 38

J

JDBC
using generic providers, 25

jdbcPersistenceAdapter, 29
adapter attribute, 25, 29
cleanupPeriod attribute, 29
createTablesOnStartup attribute, 29
dataDirectory attribute, 29
dataSource attribute, 29
useDatabaselock attribute, 29

journaledJDBC, 26
adapter attribute, 25, 26
createTablesOnStartup attribute, 26
dataDirectory attribute, 27
dataSource attribute, 27
journalArchiveDirectory attribute, 27
journalLogFiles attribute, 27
journalLogFileSize attribute, 27
journalThreadPriority attribute, 27
useDatabaselock attribute, 27
useJournal attribute, 27

P

PendingDurableSubscriberMessageStoragePolicy, 36
pendingQueuePolicy, 38

pendingSubscriberPolicy, 36

persistenceAdapter, 12, 16

policyEntries, 36

policyEntry, 36

policyMap, 36

R

reference store, 15

39

S

SQL data types, 22

statements, 22
binaryDataType, 23
containerNameDataType attribute, 23
durableSubAcksTableName attribute, 23
lockTableName attribute, 23
longDataType attribute, 23
messageTableName attribute, 23
msgldDataType attribute, 23
sequenceDataType attribute, 23
stringldDataType attribute, 23
tablePrefix attribute, 23

T

transient subscribers
configuring cursors, 36
using file-based cursors, 37
using VM cursors, 37

Vv

vmCursor, 37
vmDurableCursor, 36
vmQueueCursor, 38

40

FUSE" Message Broker Using Persistent Messages Version 5.3

	Using Persistent Messages
	Table of Contents
	Chapter 1. Introduction to FUSE Message Broker Persistence
	Chapter 2. Using the AMQ Message Store
	Chapter 3. Using JDBC to Connect to a Database Store
	Basics of Using the JDBC Persistence Adapter
	Using JDBC with the High Performance Journal
	Using JDBC without the Journal

	Chapter 4. Message Cursors
	Types of Cursors
	Configuring the Type of Cursor Used by a Destination

	Index

