Progress

FUSE

FUSE" Message Broker

Security Guide

Version 5.3
Febuary 2009

SOFTWARE

Security Guide
Version 5.3

Publication date 23 Jul 2009
Copyright © 2001-2009 Progress Software Corporation and/or its subsidiaries or affiliates.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix;, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of Progress Software Corporation. No third-party intellectual
property right liability is assumed with respect to the use of the information contained herein. Progress Software Corporation
assumes no responsibility for errors or omissions contained in this publication. This publication and features described herein
are subject to change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents

1. SSL/TLS SOCUIEY eueneiiiiiiiiiiiiii e ettt e s s s s s s s sasasasasasasasnsnannnnsnsnsnenensnsnrnrnrn 11
INTrOdUCHION 10 SSL/ TLS et e e e e 12
Secure TranSPOrt ProtOCOISuie i e 15
JAVA KBY S OIS . ettt s 16
How 10 Use X.509 CertifiCatesiueiiieiiii e e ee e 18
Configuring JSSE System Propertiesc.oiiiiiiiiiiiiii i e 22
Setting Security Context for the Openwire/SSL Protocolccoiriiiiiiii e, 25
BT I I T 1) (o T 27

2. Managing Certificatesccciiiiiiiiiii s ans 33
What is an X.509 Certificale?o.iiiii e 34
Certification AULNOIITIESie e e e 36

L8] T oI 0 Y 37
Commercial Certification AUNOIITIESovieii e 38
Private Certification AUthOIIEIES e 39
Certificate Chaining ... e e e 40
Special Requirements on HTTPS CertifiCatesocuvuviieiiiii e 41
Creating Your OWN CertifiCatesiuieiiiii e 44
PR EIEQUISIEES ..ttt e 45
SEE UDP YOUI OWN CA ottt 46
Use the CA to Create Signed Certificates in a Java Keystorecccooiiiiiiiiiiiiiiiiiiien, 50
Adding Trusted CAs to a Java Trust Storeooiiiiii e 53

3. Authentication and Authorizationcccoiiiii 55
Programming Client Credentialsc.oeiiiiiiiii i e 56
Configuring Credentials for Broker COMPONENTSuuieieiiii e 57
Simple Authentication PlUg-In ... 59
JAAS AUTNENTICATION ..o e 61

INTrOdUCHION 10 JAAS oo e e 62
JAAS Simple Authentication PIUg-IN ... 65
JAAS Certificate Authentication Plug-In ... 68
JAAS LDAP Authentication Plug-In ..o 72
Broker-to-Broker Authenticationo 78
AUhONIZatioN PlUG-IN o e 79
Programming Message-Level Authorization ... 82

4. LDAP Authentication Tutorialcoeiiiiiiiii e 85
LT oY= IO 1YY VTt 86
Tutorial: Install a Directory Server and BrOWSErv.iuiieieiiii e eeaes 87
Tutorial: Add User Entries to the DireCtory SErVEIo 89
Tutorial: Enable LDAP Authentication in the Broker and its Clientsccooiiiiiiiiiiieens 97

A. ASN.1 and Distinguished NAmeSsccccciiiiiiiiiiiiiiere e r s s s s ar s s s s s s s snsnrnss 101
] 102
DistiNgUISNEA INAMIESt e e 103

FUSE" Message Broker Security Guide Version 5.3 3

FUSE" Message Broker Security Guide Version 5.3

List of Figures

1.1. Target-Only Authentication Scenariococoviiiiiiiiiiiiinnnn. 18
1.2. Mutual Authentication Scenarioccoceviiiiiiiiiiiiiieeens 19
2.1. A Certificate Chain of Depth 2ccoiiiiii e 40
2.2. A Certificate Chain of Depth 3ooiiiiii 40
4.1. New LDAP Connection Wizardccccviiiiiiiiiiiiiiiiieiiienenes 90
4.2. Authentication Step of New LDAP Connectionc..ceeveeee. 91
4.3. New Entry Wizardccooiniiiiniii e 93
4.4. Distinguished Name Step of New Entry Wizard 94
4.5. Attributes Step of New Entry Wizardcoooiviiiiiiiinnn, 95

FUSE" Message Broker Security Guide Version 5.3 5

FUSE" Message Broker Security Guide Version 5.3

List of Tables

1.1. Secure Transport Protocolsccoiiiiiiiiiiiiiiiieeeeeee 15
1.2. JSSE System Propertiesccoveiiiiiiiiiiiiiee 22
A.1. Commonly Used Attribute Typescovoeeiiiiiiiiiiiiiiinceeene, 104
FUSE" Message Broker Security Guide Version 5.3 7

FUSE" Message Broker Security Guide Version 5.3

List of Examples

FUSE" Message Broker Security Guide Version 5.3

3.1
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.

Simple Authentication Configurationcccoooiiii. 59
JAAS Login Configuration File Formatooooiiiiiinn.. 62
JAAS Login Entry for Simple Authenticationel. 65
JAAS Login Entry for Certificate Authentication 68
LDAP Login ENtry ...eoeii i 72
Authorization Plug-In Configurationcocoooviiiiiiiiicninn, 79
Implementation of MessageAuthorizationPolicy 82

10

FUSE" Message Broker Security Guide Version 5.3

Chapter 1. SSL/TLS Security

You can use SSL/TLS security to secure connections to brokers for a variety of different protocols: Openwire over
TCP/IP. Openwire over HTTR, and Stomp.

Ty o o [0 Tox T a T (0 TR ST I I T 12
Secure TranSPOrt PrOtOCOISuit ettt ettt e et e e e e e et e e e e ee e 15
JAVA KBy S OIS ..ttt s 16
How 10 Use X.509 CertifiCates ..uuinieiiii it e et e eea e 18
Configuring JSSE System PropeItiest e 22
Setting Security Context for the Openwire/SSL ProtoColcveiiiieii e 25
BT I I T 11 (o - P 27

FUSE" Message Broker Security Guide Version 5.3 11

Chapter 1. SSL/TLS Security

Introduction to SSL/TLS

Overview

SSL/TLS security features

Cipher suites

Public key cryptography

! http://tools.ietf.org/html/rfc5246

12

The Secure Sockets Layer (SSL) protocol was originally developed by Netscape
Corporation to provide a mechanism for secure communication over the
Internet. Subsequently, the protocol was adopted by the Internet Engineering
Task Force (IETF) and renamed to Transport Layer Security (TLS). The latest
specification of the TLS protocol is RFC 5246,

The SSL/TLS protocol sits between an application protocol layer and a reliable
transport layer (such as TCP/IP). It is independent of the application protocol
and can thus be layered underneath many different protocols, for example:
HTTP, FTR, SMTP, and so on.

The SSL/TLS protocol supports the following security featues:

* Privacy—messages are encrypted using a secret symmetric key, making it
impossible for eavesdroppers to read messages sent over the connection.

* Message integrity—messages are digitally signed, to ensure that they cannot
be tampered with.

» Authentication—the identity of the target (server program) is authenticated
and (optionally) the client as well.

* Immunity to man-in-the-middle attacks—because of the way authentication
is performed in SSL/TLS, it is impossible for an attacker to interpose itself
between a client and a target.

To support all of the facets of SSL/TLS security, a number of different security
algorithms must be used together. Moreover, for each of the security features
(for example, message integrity), there are typically several different algorithms
available. To manage these alternatives, the security algorithms are grouped
together into cipher suites. Each cipher suite contains a complete collection
of security algorithms for the SSL/TLS protocol. />.

Public key cryptography (also known as asymmetric cryptography) plays a
critically important role in SSL/TLS security. With this form of cryptography,
encryption and decryption is performed using a matching pair of keys: a public

FUSE" Message Broker Security Guide Version 5.3

http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246

X.509 certificates

2 http://tools.ietf.org/html/rfc4158

Introduction to SSL/TLS

key and a private key. A message encrypted by the public key can only be
decrypted by the private key; and a message encrypted by the private key
can only be decrypted by the public key. This basic mathematical property
has some important consequences for cryptography:

* |t becomes extremely easy to establish secure communications with people
you have never previously had any contact with. Simply publish the public
key in some accessible place. Anyone can now download the public key
and use it to encrypt a message that only you can decrypt, using your
private key.

* You can use your private key to digitally sign messages. Given a message
to sign, simply generate a hash value from the message, encrypt that hash
value using your private key, and append it to the message. Now, anyone
can use the public key to decrypt the hash value and check that the
message has not been tampered with.

(® Note

Actually, it is not compulsory to use public key cryptography with
SSL/TLS. But the SSL/TLS protocol is practically useless (and very
insecure) without it.

An X.509 certificate provides a way of binding an identity (in the form of an
X.500 distinguished name) to a public key. X.509 is a standard specified by
the IETF and the most recent specification is RFC 41582, The X.509 certificate
consists essentially of an identity concatenated with a public key, with the
whole certificate being digitally signed in order to guarantee the association
between the identity and the public key.

But who signs the certificate? It has to be someone (or some identity) that
you trust. The certificate signer could be one of the following:

» Self—if the certificate signs itself, it is called a self-signed certificate. If
you need to deploy a self-signed certificate, the certificate must be obtained
from a secure channel. The only guarantee you have of the certificate's
authenticity is that you obtained it from a trusted source.

* CA certificate—a more scalable solution is to sign certificates using a
Certificate Authority (CA) certificate. In this case, you only need to be careful
about deploying the original CA certificate (that is, obtaining it through a

FUSE" Message Broker Security Guide Version 5.3 13

http://tools.ietf.org/html/rfc4158
http://tools.ietf.org/html/rfc4158

Chapter 1. SSL/TLS Security

Target-only authentication

14

secure channel). All of the certificates signed by this CA, on the other hand,
can be distributed over insecure, public channels. The trusted CA can then
be used to verify the signature on the certificates. In this case, the CA
certificate is self-signed.

* Chain of CA certificates—an extension of the idea of signing with a CA
certificate is to use a chain of CA certificates. For example, certificate X
could be signed by CA foo, which is signed by CA bar. The last CA certificate
in the chain (the root certificate) is self-signed.

For more details about managing X.509 certificates, see "Managing
Certificates" on page 33.

The most common way to configure SSL/TLS is to associate an X.509
certificate with the target (server side) but not with the client. This implies
that the client can verify the identity of the target, but the target cannot verify
the identity of the client (at least, not through the SSL/TLS protocol). It might
seem strange that we worry about protecting clients (by confirming the target
identity) but not about protecting the target. Keep in mind, though, that
SSL/TLS security was originally developed for the Internet, where protecting
clients is a high priority. For example, if you are about to connect to your
bank's Web site, you want to be very sure that the Web site is authentic. Also,
it is typically easier to authenticate clients using other mechanisms (such as
HTTP Basic Authentication), which do not incur the high maintenance
overhead of generating and distributing X.509 certificates.

FUSE" Message Broker Security Guide Version 5.3

Secure Transport Protocols

Secure Transport Protocols

Overview FUSE Message Broker provides a common framework for adding SSL/TLS
security to its transport protocols. All of the transport protocols discussed here
are secured using the JSSE framework and most of their configuration settings

are shared.

Transport protocols Table 1.1 on page 15 shows the transport protocols that can be secured

using SSL/TLS.

Table 1.1. Secure Transport Protocols

URL

Description

ssl://Host: Port

Endpoint URL for Openwire over TCP/IP, where
the socket layer is secured using SSL or TLS.

https://Host: Port

Endpoint URL for Openwire over HTTP, where
the socket layer is secured using SSL or TLS.

stomp+ssl://Host: Port

Endpoint URL for Stomp over TCP/IP, where the
socket layer is secured using SSL or TLS.

FUSE" Message Broker Security Guide Version 5.3

15

Chapter 1. SSL/TLS Security

Java Keystores

Overview

Prerequisites

Default keystore provider

Customizing the keystore provider

Store password

16

Java keystores provide a convenient mechanism for storing and deploying
X.509 certificates and private keys. FUSE Message Broker uses Java keystore
files as the standard format for deploying certificates

The Java keystore is a feature of the Java platform Standard Edition (SE)
from Sun. To perform the tasks described in this section, you will need to
install a recent version of the Java Development Kit (JDK) and ensure that
the JDK bin directory is on your path. See http://java.sun.com/javase/.

Sun’s JDK provides a standard file-based implementation of the keystore. The
instructions in this section presume you are using the standard keystore. If
there is any doubt about the kind of keystore you are configured to use, check
the following line in your java.security file (located either in
JavalnstallDir/lib/security Of JavaInstallDir/jre/lib/security):

keystore.type=jks

The jxs (or gks) keystore type represents the standard keystore.

Java also allows you to provide a custom implementation of the keystore, by
implementing the java.security.KeystoreSpi class. For details of how
to do this see the following references:

* http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html
e http://java.sun.com/j2se/1.5.0/docs/guide/security/HowTolmplAProvider.html

If you use a custom keystore provider, you should consult the third-party
provider documentation for details of how to manage certificates and private
keys with this provider.

The keystore repository is protected by a store password, which is defined at
the same time the keystore is created. Every time you attempt to access or
modify the keystore, you must provide the store password.

FUSE" Message Broker Security Guide Version 5.3

http://java.sun.com/javase/
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/HowToImplAProvider.html

Keystore entries

Keystore utilities

Java Keystores

,'] Note

The store password can also be referred to as a keystore password
or a truststore password, depending on what kind of entries are stored
in the keystore file. The function of the password in both cases is
the same: that is, to unlock the keystore file.

The keystore provides two distinct kinds of entry for storing certificates and
private keys, as follows:

* Key entries—each key entry contains the following components:
* A private key.

e An X.509 certificate (can be v1, v2, or v3) containing the public key
that matches this entry’s private key.

» Optionally, one or more CA certificates that belong to the preceding
certificate’s trust chain.

@ Note

The CA certificates belonging to a certificate’s trust chain can be
stored either in its key entry or in trusted certificate entries.

In addition, each key entry is tagged by an alias and protected by a key
password. To access a particular key entry in the keystore, you must provide
both the alias and the key password.

 Trusted certificate entries—each trusted certificate entry contains just a
single X.509 certificate.

Each trusted certificate entry is tagged by an alias. There is no need to
protect the entry with a password, however, because the X.509 certificate
contains only a public key.

The Java platform SE provides two keystore utilities: keytool and jarsigner.
Only the keytool utility is needed here.

FUSE" Message Broker Security Guide Version 5.3 17

Chapter 1. SSL/TLS Security

How to Use X.509 Certificates

Overview

Target-only authentication

Mutual authentication

18

Before you can understand how to deploy X.509 certificates in a real system,
you need to know about the different authentication scenarios supported by
the SSL/TLS protocol. The way you deploy the certificates depends on what
kind of authentication scenario you decide to adopt for your application.

In the target-only authentication scenario, as shown in Figure 1.1 on page 18,
the target (in this case, the broker) presents its own certificate to the client
during the SSL/TLS handshake, so that the client can verify the target's
identity. In this scenario, therefore, the target is authentic to the client, but
the client is not authentic to the target.

Figure 1.1. Target-Only Authentication Scenario

Secure Association
=y 7N
Client > Server 1|
T T
| |
Trusted CA Lists : :
[T e e e Authenticate
| ‘ Certificat Cert file
| CA Cert List 1 | ertincate
|
| OO O e |
l |
l |
: CA Cert List 2 |
|
: |:| |:| |:| a0 }
l |
l |
l |
|

The broker is configured to have its own certificate and private key, which
are both stored in the file, broker. ks. The client is configured to have a trust
store, client.ts, that contains the certificate that originally signed the broker
certificate. Normally, the trusted certificate is a Certificate Authority (CA)
certificate.

In the mutual authentication scenario, as shown in Figure 1.2 on page 19,
the target presents its own certificate to the client and the client presents its

FUSE" Message Broker Security Guide Version 5.3

How to Use X.509 Certificates

own certificate to the target during the SSL/TLS handshake, so that both the
client and the target can verify each other's identity. In this scenario, therefore,
the target is authentic to the client and the client is authentic to the target.

Figure 1.2. Mutual Authentication Scenario

Trusted CA Lists
;’ 777777777777777 1
\ CA Cert List 1
|
Authenticate } D D D e
Client ‘
| CACertList2
|
- (g aag e
Cert file }
I | .
| | '
| [e
| |
|
A Secure Association
Client [1] > Server @

Trusted CA Lists
e ———— e S Authenticate \
CA Cert List 1 Target Cert file

|
| |
| |
| |
|
I |
| CACenList2 |
| |
| |
| |
| |
| |
| |

L] O[] e-

Because authentication is mutual in this scenario, both the client and the
target must be equipped with a full set of certificates. The client is configured
to have its own certificate and private key in the file, client.ks, and a trust
store, client.ts, which contains the certificate that signed the target
certificate. The target is configured to have its own certificate and private key

FUSE" Message Broker Security Guide Version 5.3 19

Chapter 1. SSL/TLS Security

in the file, broker.ks, and a trust store, broker.ts, which contains the
certificate that signed the client certificate.

Selecting the authentication Various combinations of target and client authentication are theoretically

scenario supported by the SSL/TLS protocols. In general, SSL/TLS authentication
scenarios are controlled by selecting a specific cipher suite (or cipher suites)
and by setting flags in the SSL/TLS protocol layer (that is, the WantClientAuth
or NeedClientAuth flags). The following list describes all of the possible
authentication scenarios (some of which are not supported by FUSE Message
Broker):

20

Target-only authentication—(supported) this is the most important
authentication scenario. If you want to authenticate the client as well, the
most common approach is to let the client log on using username/password
credentials, which can be sent securely through the encrypted channel
established by the SSL/TLS session.

Target authentication and optional client authentication—(supported) if
you want to authenticate the client using an X.509 certificate, simply
configure the client to have its own certificate. By default, the target will
authenticate the client's certificate, if it receives one.

Target authentication and required client authentication—(not supported)
it is theoretically possible to configure a target to require client
authentication by setting the NeedClientAuth flag on the SSL/TLS protocol
layer. When this flag is set, the target would raise an error, if the client
fails to send a certificate during the SSL/TLS handshake. Currently, this
option is not supported by FUSE Message Broker. The NeedClientAuth
flag is always set to false.

No authentication—this scenario is potentially dangerous from a security
perspective, because it is susceptible to a man-in-the-middle attack. /t is
therefore recommended that you always avoid using this
(non-)authentication scenario.

It is theoretically possible to get this scenario, if you select one of the
anonymous Diffie-Hellman cipher suites for the SSL/TLS session. In practice,
however, you normally do not need to worry about these cipher suites,
because they have a low priority amongst the cipher suites supported by

FUSE" Message Broker Security Guide Version 5.3

Demonstration certificates

Custom certificates

How to Use X.509 Certificates

the sungssk security provider. Other, more secure cipher suites normally
take precedence.

FUSE Message Broker provides a collection of demonstration certificates,
located in the sacTIVEMO HOME/conf directory, that enable you to get started
quickly and run some examples using the secure transport protocols. The
following keystore files are provided (where, by convention, the . ks suffix
denotes a keystore file with key entries and the . ts suffix denotes a keystore
file with trusted certificate entries):

* broker.ks—Dbroker keystore, contains the broker's self-signed X.509
certificate and its associated private key.

* broker.ts—Dbroker trust store, contains the client's self-signed X.509
certificate.

* client.ks—=client keystore, contains the client's self-signed X.509
certificate and its associated private key.

* client.ts—<client trust store, contains the broker's self-signed X.509
certificate.

€9 Warning

Do not deploy the demonstration certificates in a live production
system! These certificate are provided for demonstration and testing
purposes only. For a real system, create your own custom certificates.

For a real deployment of a secure SSL/TLS application, you must first create
a collection of custom X.509 certificates and private keys. For detailed
instructions on how to go about creating and managing your X.509 certificates,
see . "Managing Certificates" on page 33

FUSE" Message Broker Security Guide Version 5.3 21

Chapter 1. SSL/TLS Security

Configuring JSSE System Properties

Overview Java Secure Socket Extension (JSSE) provides the underlying framework for
the SSL/TLS implementation in FUSE Message Broker. In this framework,
you configure the SSL/TLS protocol and deploy X.509 certificates using a
variety of JSSE system properties.

JSSE system properties Table 1.2 on page 22 shows the JSSE system properties that can be used
to configure SSL/TLS security for the SSL (Openwire over SSL), HTTPS
(Openwire over HTTPS), and Stomp+SSL (Stomp over SSL) transport
protocols.

Table 1.2. JSSE System Properties

System Property Name

Description

javax.net.ssl.keyStore

Location of the Java keystore file containing an application process's
own certificate and private key. On Windows, the specified pathname
must use forward slashes, /, in place of backslashes, \.

javax.net.ssl.keyStorePassword

Password to access the private key from the keystore file specified by
javax.net.ssl.keyStore. This password is used twice:

* To unlock the keystore file (store password), and
 To decrypt the private key stored in the keystore (key password).

In other words, the JSSE framework requires these passwords to be
identical.

javax.net.ssl.keyStoreType

(Optional) For Java keystore file format, this property has the value ks
(or Jks). You do not normally specify this property, because its default
value is already jks.

javax.net.ssl.trustStore

22

Location of the Java keystore file containing the collection of CA
certificates trusted by this application process (trust store). On Windows,
the specified pathname must use forward slashes, /, in place of
backslashes, \.

If a trust store location is not specified using this property, the SunJSSE
implementation searches for and uses a keystore file in the following
locations (in order):

FUSE" Message Broker Security Guide Version 5.3

Configuring JSSE System Properties

System Property Name

Description

1. sJAvA HOME/lib/security/jssecacerts

2. $JAVA_HOME/lib/security/cacerts

javax.net.ssl.trustStorePassword|Password to unlock the keystore file (store password) specified by

javax.net.ssl.trustStore.

javax.net.ssl.trustStoreType

(Optional) For Java keystore file format, this property has the value jks
(or gks). You do not normally specify this property, because its default
value is already jks.

javax.net.debug

To switch on logging for the SSL/TLS layer, set this property to ss1.

Setting properties at the
command line

€3 Warning

The default trust store locations (in the jssecacerts and the
cacerts directories) present a potential security hazard. If you do
not take care to manage the trust stores under the JDK installation
or if you do not have control over which JDK installation is used, you
might find that the effective trust store is too lax.

To be on the safe side, it is recommended that you always set the
javax.net.ssl.trustStore property for a secure client or server,
so that you have control over the CA certificates trusted by your
application.

On the client side and in the broker, you can set the JSSE system properties
on the Java command line using the standard syntax, -Dproperty=vaiue.
For example, to specify JSSE system properties to a client program,
com.progress.Client:

java -Djavax.net.ssl.trustStore=truststores/client.ts
com.progress.Client

To configure a broker to use the demonstration broker keystore and
demonstration broker trust store, you can set the sst._opTs environment
variable as follows, on Windows:

set SSL OPTS=-Djavax.net.ssl.keyStore=C:/Programs/FUSE/fuse-
message-broker-5.3.0.0/conf/broker.ks

FUSE" Message Broker Security Guide Version 5.3 23

Chapter 1. SSL/TLS Security

Setting properties by
programming

24

-Djavax.net.ssl.keyStorePassword=password

-Djavax.net.ssl.trustStore=C:/Programs/FUSE/fuse-
message-broker-5.3.0.0/conf/broker.ts

-Djavax.net.ssl.trustStorePassword=password

Or on UNIX platforms (Bourne shell):

SSL_OPTS=-Djavax.net.ssl.keyStore=/local/FUSE/fuse-message-

broker-5.3.0.0/conf/broker.ks
-Djavax.net.ssl.keyStorePassword=password
-Djavax.net.ssl.trustStore=/local/FUSE/fuse-message-

broker-5.3.0.0/conf/broker.ts
-Djavax.net.ssl.trustStorePassword=password

export SSL OPTS

You can then launch the broker using the bin/activemg[.bat|.sh] script

2) Note

The ss_opTs environment variable is simply a convenient way of
passing command-line properties to the bin/activemg[.bat | .sh]
script. It is not accessed directly by the broker runtime or the JSSE
package.

You can also set JSSE system properties using the standard Java API, as long
as you set the properties before the relevant transport protocol is initialized.
For example:

// Java
import java.util.Properties;

Properties systemProps = System.getProperties();
systemProps.put (
"javax.net.ssl.trustStore",
"C:/Programs/FUSE/fuse-message-broker-5.3.0.0/conf/cli
ent.ts"
) i

System.setProperties (systemProps) ;

FUSE" Message Broker Security Guide Version 5.3

Setting Security Context for the Openwire/SSL Protocol

Setting Security Context for the Openwire/SSL Protocol

Overview

Setting security context in the
broker configuration file

Apart from configuration using JSSE system properties, the Openwire/SSL
protocol (with schema, ss1:) also supports an option to set its SSL security
context using the broker configuration file.

(@ Note

The methods for setting the security context described in this section
are available exclusively for the Openwire/SSL protocol. These
features are not supported by the HTTPS protocol.

To configure the Openwire/SSL security context in the broker configuration
file, edit the attributes in the ss1context element. For example, the default
broker configuration file, conf/activemq.xm1, includes the following entry:

<beans ...>
<broker ...>
<sslContext>

<sslContext keyStore="file:${act
ivemqg.base}/conf/broker.ks"
keyStorePassword="password"
trustStore="file:${act
ivemg.base}/conf/broker.ts"
trustStorePassword="password" />
</sslContext>

</broker>
</beans>
Where the activemq.base property is defined in the activemq[.bat | .sh]

script. You can specify any of the following ss1context attributes:

* keyStore—equivalent to setting javax.net.ssl.keyStore

* keyStorePassword—equivalent to setting

javax.net.ssl.keyStorePassword

* keyStoreType—equivalent to setting javax.net.ssl.keyStoreType

FUSE" Message Broker Security Guide Version 5.3 25

Chapter 1. SSL/TLS Security

® keyStoreAlgorithm—
* trustStore—equivalent to setting javax.net.ssl.trustStore.

* trustStorePassword—equivalent to setting

javax.net.ssl.trustStorePassword.

* trustStoreType—equivalent to setting

javax.net.ssl.trustStoreType.

26 FUSE" Message Broker Security Guide Version 5.3

SSL/TLS Tutorial

Overview

Prerequisites

Sample consumer and producer
clients

Tutorial steps

SSL/TLS Tutorial

This tutorial demonstrates how to connect to a broker through the SSL protocol
(Openwire over SSL) and through the HTTPS protocol (Openwire over HTTPS).
For simplicity, the tutorial uses the demonstration certificates (key stores and
trust stores) provided with initial installation of FUSE Message Broker. These
demonstration certificates must not be used in a live production system,
however.

Before you can build and run the sample clients, you must have installed the
Apache Ant build tool, version 1.6 or later (see http://ant.apache.org/).

The OpenWire examples depend on the sample producer and consumer clients
located in the following directory:

FUSEInstallDir/fuse-message-broker-Version/example

For the purposes of testing and experimentation, FUSE Message Broker
provides a sample consumer client and a sample producer client in the
example subdirectory. You can build and run these clients using the consumer
and the producer Ant targets. In the following tutorial, these sample clients
are used to demonstrate how to connect to secure endpoints in the broker.

To try out the secure SSL and HTTPS protocols, perform the following steps:
1. "Set the broker environment" on page 28.
2. "Configure the broker" on page 28.

. "Configure the consumer and the producer clients" on page 29.

3
4. "Run the broker" on page 30

(&)

. "Run the consumer with the SSL protocol" on page 30.

6. "Run the producer with the HTTPS protocol" on page 31.

FUSE" Message Broker Security Guide Version 5.3 27

http://ant.apache.org/

Chapter 1. SSL/TLS Security

7. "Enable SSL logging in the consumer" on page 31.

Set the broker environment Create a script that sets the broker's JSSE system properties using the
SSL_OPTS environment variable. On Windows, create a setSs10pts.bat
script with the following contents:

set SSL_OPTS=-Djavax.net.ssl.keyStore=MessageBroker

Root/conf/broker.ks
-Djavax.net.ssl.keyStorePassword=password
-Djavax.net.ssl.trustStore=MessageBroker

Root/conf/broker.ts
-Djavax.net.ssl.trustStorePassword=password

On UNIX, create a setSs10pts.sh script with the following contents:

SSL_OPTS=-Djavax.net.ssl.keyStore=MessageBroker
Root/conf/broker.ks
-Djavax.net.ssl.keyStorePassword=password
-Djavax.net.ssl.trustStore=MessageBroker
Root/conf/broker.ts
-Djavax.net.ssl.trustStorePassword=password
export SSL_OPTS

€9 Warning

The demonstration broker key store and broker trust sture are
provided for testing purposes only. Do not deploy these certificates
in a production system. To set up a genuinely secure SSL/TLS system,
you must generate custom certificates, as described in "Managing
Certificates" on page 33.

Configure the broker Add the ss1 and https transport connectors to the default broker configuration
file (conf/activemqg.xml), as follows:

<beans ...>

<broker ...>
<sslContext>
<sslContext keyStore="file:${act

ivemg.base}/conf/broker.ks"
keyStorePassword="password"
trustStore="file:${act

ivemg.base}/conf/broker.ts"
trustStorePassword="password" />

28 FUSE" Message Broker Security Guide Version 5.3

Configure the consumer and the
producer clients

SSL/TLS Tutorial

</sslContext>
<transportConnectors>
<transportConnector name="ssl" uri="ssl://local
host:61617"/>
<transportConnector name="https" uri="https://loc
alhost:8443" />
</transportConnectors>
</broker>

</beans>

Configure the consumer and the producer clients to pick up the client trust
store. Edit the Ant build file, example/build.xml, and add the
javax.net.ssl.truststoreandjavax‘net.ssl.trustStorePassword
JSSE system properties to the consumer target and the producer target as
shown in the following example:

<project ...>

<target name="consumer" depends="compile" descrip
tion="Runs a simple consumer">

<java classname="ConsumerTool" fork="yes"
maxmemory="100M">
<classpath refid="javac.classpath" />
<jvmarg value="-server" />
<sysproperty key="activemg.home" value="${act
ivemg.home}" />
<sysproperty key="javax.net.ssl.trustStore"
value="$S{act
ivemg.home}/conf/client.ts"/>
<sysproperty key="javax.net.ssl.trustStorePass
word"
value="password"/>
<arg value="--url=S${url}" />

</java>
</target>

<target name="producer" depends="compile" descrip
tion="Runs a simple producer">

<java classname="ProducerTool" fork="yes"
maxmemory="100M">

FUSE" Message Broker Security Guide Version 5.3 29

Chapter 1. SSL/TLS Security

Run the broker

Run the consumer with the SSL
protocol

30

<classpath refid="javac.classpath" />
<jvmarg value="-server" />
<sysproperty key="activemg.home" value="${act
ivemg.home}" />
<sysproperty key="javax.net.ssl.trustStore"
value="${act
ivemqg.home}/conf/client.ts"/>
<sysproperty key="javax.net.ssl.trustStorePass
word"
value="password"/>
<arg value="--url=S${url}" />

</java>
</target>

</project>

In the context of the Ant build tool, this is equivalent to adding the system
properties to the command line.

Open a new command prompt and run the setSs10pts. [bat |sh] script to
initialize the ssL_opTs variable in the broker's environment. Now run the
default broker by entering the following at a command line:

activemg

The default broker automatically takes its configuration from the default
configuration file.

jl Note

The activemq script automatically sets the acTrveEmMo HOME and
ACTIVEMQ BASE environment variables to
FUSEInstallDir/fuse-message-broker-Version by default. If
you want the activemq script to pick up its configuration from a
non-default conf directory, you can set AcTIVEMQ BASE explicitly
in your environment. The configuration files will then be taken from
$ACTIVEMQ BASE/conf.

To connect the consumer tool to the ss1://localhost:61617 endpoint
(Openwire over SSL), change directory to example and enter the following
command:

ant consumer -Durl=ssl://localhost:61617 -Dmax=100

FUSE" Message Broker Security Guide Version 5.3

Run the producer with the HTTPS

protocol

Enable SSL logging in the
consumer

SSL/TLS Tutorial

You should see some output like the following:

Buildfile: build.xml
init:

compile:

consumer:

[echo] Running consumer against server at S$Surl =
ssl://localhost:61617 for subject $subject = TEST.FOO
[java] Connecting to URL: ssl://localhost:61617
[java] Consuming queue: TEST.FOO
[javal Using a non-durable subscription
[javal] We are about to wait until we consume: 100 mes
s

sage (s) then we will shutdown

To connect the producer tool to the https://localhost:8443 endpoint
(Openwire over HTTPS), open a new command prompt, change directory to
example and enter the following command:

ant producer -Durl=https://localhost:8443

In the window where the consumer tool is running, you should see some
output like the following:

[java] Received: Message: 0 sent at: Thu Feb 05 09:27:43
GMT 2009

[java] Received: Message: 1 sent at: Thu Feb 05 09:27:43
GMT 2009

[java] Received: Message: 2 sent at: Thu Feb 05 09:27:43
GMT 2009

[java] Received: Message: 3 sent at: Thu Feb 05 09:27:43
GMT 2009

To enable SSL logging in the consumer, edit the Ant build file,
example/build.xml, and set the javax.net.debug System property as
follows:

<project ...>

<target name="consumer" depends="compile" descrip
tion="Runs a simple consumer">

<java classname="ConsumerTool" fork="yes"
maxmemory="100M">

<sysproperty key="javax.net.debug" value="ssl"/>

FUSE" Message Broker Security Guide Version 5.3 31

Chapter 1. SSL/TLS Security

32

</java>
</target>

</project>

Now run the consumer tool using the same command as before:

ant consumer -Durl=ssl://localhost:61617 -Dmax=100

You should see some output like the following:

[Javal
[Javal

setting up default SSLSocketFactory
use default SunJSSE impl class:

com.sun.net.ssl.internal.ssl.SSLSocketFactoryImpl

[jJaval
oryImpl is

L=Unknown,
[jJaval

class com.sun.net.ssl.internal.ssl.SSLSocketFact
loaded
keyStore is : ../conf/client.ks
keyStore type is : jks
keyStore provider is
init keystore
init keymanager of type SunX509
* kK
found key for : client
chain [0] = [
[
Version: V1
Subject: CN=Unknown, OU=client, O=Unknown,
ST=Unknown, C=Unknown
Signature Algorithm: MD5withRSA, OID =

1.2.840.113549.1.1.4

FUSE" Message Broker Security Guide Version 5.3

Chapter 2. Managing Certificates

TLS authentication uses X.509 certificates—a common, secure and reliable method of authenticating your
application objects. This chapter explains how to create X.509 certificates that identify your FUSE Message
Broker applications.

What is an X.509 Certificale?oeiie e 34
Certification AUTNOIITIES e et e 36
0] T o) 0 37
Commercial Certification AUtNOITIESieie e 38
Private Certification AULNOIITIESc.iei e 39
Certificate ChaiNiNg .. e e e e 40
Special Requirements on HTTPS CertifiCatesouuiuiiieiii e 41
Creating Your OWN CertifiCateso.ieieiii e e e e 44
PR EIEQUISTEES ..ot 45
SEE UP YOUE OWN A ittt et 46
Use the CA to Create Signed Certificates in a Java Keystorecoovviiiiiiiiiiiiiiiiceeeee 50
Adding Trusted CAs to @ Java Trust StOrec.ouiiiii e b3

FUSE" Message Broker Security Guide Version 5.3 33

Chapter 2. Managing Certificates

What is an X.509 Certificate?

Role of certificates

Integrity of the public key

Digital signatures

The contents of an X.509
certificate

34

An X.509 certificate binds a name to a public key value. The role of the
certificate is to associate a public key with the identity contained in the X.509
certificate.

Authentication of a secure application depends on the integrity of the public
key value in the application’s certificate. If an impostor replaces the public
key with its own public key, it can impersonate the true application and gain
access to secure data.

To prevent this type of attack, all certificates must be signed by a certification
authority (CA). A CA is a trusted node that confirms the integrity of the public
key value in a certificate.

A CA signs a certificate by adding its digital signature to the certificate. A
digital signature is a message encoded with the CA’s private key. The CA's
public key is made available to applications by distributing a certificate for
the CA. Applications verify that certificates are validly signed by decoding the
CA's digital signature with the CA's public key.

€9 Warning

The demonstration certificates supplied with FUSE Message Broker
are self-signed certificates. These certificates are insecure because
anyone can access their private key. To secure your system, you
must create new certificates signed by a trusted CA. This chapter
describes the set of certificates required by a FUSE Message Broker
application and describes how to replace the default certificates.

An X.5009 certificate contains information about the certificate subject and
the certificate issuer (the CA that issued the certificate). A certificate is encoded
in Abstract Syntax Notation One (ASN.1), a standard syntax for describing
messages that can be sent or received on a network.

The role of a certificate is to associate an identity with a public key value. In
more detail, a certificate includes:

* A subject distinguished name (DN) that identifies the certificate owner.

FUSE" Message Broker Security Guide Version 5.3

What is an X.509 Certificate?

The public key associated with the subject.

X.509 version information.
* A serial number that uniquely identifies the certificate.

¢ An jssuer DN that identifies the CA that issued the certificate.

The digital signature of the issuer.

Information about the algorithm used to sign the certificate.

* Some optional X.509 v.3 extensions; for example, an extension exists that
distinguishes between CA certificates and end-entity certificates.

Distinguished names A DN is a general purpose X.500 identifier that is often used in the context
of security.

See Appendix A on page 101 for more details about DNs.

FUSE" Message Broker Security Guide Version 5.3 35

Chapter 2. Managing Certificates

Certification Authorities

(O T 1Tt T o AN 37
Commercial Certification AULNOIITIESviei i e 38
Private Certification AUTNOMTIES . ..o e et eeneas 39

36 FUSE" Message Broker Security Guide Version 5.3

Choice of CAs

Choice of CAs

A CA consists of a set of tools for generating and managing certificates and
a database that contains all of the generated certificates. When setting up a
FUSE Message Broker system, it is important to choose a suitable CA that is
sufficiently secure for your requirements.

There are two types of CA you can use:
* A commercial CA is a company that signs certificates for many systems.

* A private CA is a trusted node that you set up and use to sign certificates
for your system only.

FUSE" Message Broker Security Guide Version 5.3 37

Chapter 2. Managing Certificates

Commercial Certification Authorities

Signing certificates

Advantages of commercial CAs

Criteria for choosing a CA

38

There are several commercial CAs available. The mechanism for signing a
certificate using a commercial CA depends on which CA you choose.

An advantage of commercial CAs is that they are often trusted by a large
number of people. If your applications are designed to be available to systems
external to your organization, use a commercial CA to sign your certificates.
If your applications are for use within an internal network, a private CA might
be appropriate.

Before choosing a CA, consider the following criteria:
* What are the certificate-signing policies of the commercial CAs?
» Are your applications designed to be available on an internal network only?

* What are the potential costs of setting up a private CA compared to the
costs of subscribing to a commercial CA?

FUSE" Message Broker Security Guide Version 5.3

Private Certification Authorities

Private Certification Authorities

Choosing a CA software package

OpenSSL software package

Setting up a private CA using
OpenSSL

Choosing a host for a private
certification authority

Security precautions

If you want to take responsibility for signing certificates for your system, set
up a private CA. To set up a private CA, you require access to a software
package that provides utilities for creating and signing certificates. Several
packages of this type are available.

One software package that allows you to set up a private CA is OpenSSL,
http://www.openssl.org. OpenSSL is derived from SSLeay, an implementation
of SSL developed by Eric Young (<eay@cryptsoft.com>). Complete license
information can be found in Appendix B on page 107 . The OpenSSL package
includes basic command line utilities for generating and signing certificates.
Complete documentation for the OpenSSL command line utilities is available
at http://www.openssl.org/docs.

To set up a private CA, see the instructions in "Creating Your Own Certificates"
on page 44 .

Choosing a host is an important step in setting up a private CA. The level of
security associated with the CA host determines the level of trust associated
with certificates signed by the CA.

If you are setting up a CA for use in the development and testing of FUSE
Message Broker applications, use any host that the application developers
can access. However, when you create the CA certificate and private key, do
not make the CA private key available on any hosts where security-critical
applications run.

If you are setting up a CA to sign certificates for applications that you are
going to deploy, make the CA host as secure as possible. For example, take
the following precautions to secure your CA:

* Do not connect the CA to a network.
¢ Restrict all access to the CA to a limited set of trusted users.

* Use an RF-shield to protect the CA from radio-frequency surveillance.

FUSE" Message Broker Security Guide Version 5.3 39

http://www.openssl.org
http://www.openssl.org/docs

Chapter 2. Managing Certificates

Certificate Chaining

Certificate chain

Self-signed certificate

Example

Chain of trust

Certificates signed by multiple

CAs

Trusted CAs

40

A certificate chain is a sequence of certificates, where each certificate in the
chain is signed by the subsequent certificate.

The last certificate in the chain is normally a self-signed certificate—a
certificate that signs itself.

Figure 2.1 on page 40 shows an example of a simple certificate chain.

Figure 2.1. A Certificate Chain of Depth 2

Peer |, Signs CA | signs
Certificate | Certificate |

The purpose of a certificate chain is to establish a chain of trust from a peer
certificate to a trusted CA certificate. The CA vouches for the identity in the
peer certificate by signing it. If the CA is one that you trust (indicated by the
presence of a copy of the CA certificate in your root certificate directory), this
implies you can trust the signed peer certificate as well.

A CA certificate can be signed by another CA. For example, an application
certificate could be signed by the CA for the finance department of Progress
Software, which in turn is signed by a self-signed commercial CA.

Figure 2.2 on page 40 shows what this certificate chain looks like.

Figure 2.2. A Certificate Chain of Depth 3

Peer signs Finance signs Commercial signs
Certificate CA CA
Certificate Certificate

An application can accept a peer certificate, provided it trusts at least one of
the CA certificates in the signing chain.

FUSE" Message Broker Security Guide Version 5.3

Special Requirements on HTTPS Certificates

Special Requirements on HTTPS Certificates

Overview

HTTPS URL integrity check

Reference

How to specify the certificate
identity

The HTTPS specification mandates that HTTPS clients must be capable of
verifying the identity of the server. This can potentially affect how you generate
your X.509 certificates. The mechanism for verifying the server identity
depends on the type of client. Some clients might verify the server identity
by accepting only those server certificates signed by a particular trusted CA.
In addition, clients can inspect the contents of a server certificate and accept
only the certificates that satisfy specific constraints.

In the absence of an application-specific mechanism, the HTTPS specification
defines a generic mechanism, known as the HTTPS URL integrity check, for
verifying the server identity. This is the standard mechanism used by Web
browsers.

The basic idea of the URL integrity check is that the server certificate’s identity
must match the server host name. This integrity check has an important
impact on how you generate X.509 certificates for HTTPS: the certificate
identity (usually the certificate subject DN’s common name) must match
the host name on which the HTTPS server is deployed.

The URL integrity check is designed to prevent man-in-the-middle attacks.

(@ Note

FUSE Message Broker does not implement the HTTPS URL integrity
check. You can achieve a good degree of trust on the client side,
however, by deploying clients with very restrictive CA certificates.

The HTTPS URL integrity check is specified by RFC 2818, published by the
Internet Engineering Task Force (IETF) at http:/www.ietf.org/rfc/rfc2818.txt.

The certificate identity used in the URL integrity check can be specified in
one of the following ways:

¢ Using commonName

FUSE" Message Broker Security Guide Version 5.3 41

http://www.ietf.org/rfc/rfc2818.txt

Chapter 2. Managing Certificates

Using commonName

Using subjectAltName
(multi-homed hosts)

42

¢ Using subectAltName

The usual way to specify the certificate identity (for the purpose of the URL
integrity check) is through the Common Name (CN) in the subject DN of the
certificate.

For example, if a server supports secure TLS connections at the following
URL:

https://www.progress.com/secure

The corresponding server certificate would have the following subject DN:
C=IE,ST=Co. Dublin,L=Dublin,O=Progress,

OU=System, CN=www.progress.com

Where the CN has been set to the host name, www.progress.com.

For details of how to set the subject DN in a new certificate, see "Use the
CA to Create Signed Certificates in a Java Keystore" on page 50 and "Use
the CA to Create Signed Certificates in a Java Keystore" on page 50 .

Using the subject DN’s Common Name for the certificate identity has the
disadvantage that only one host name can be specified at a time. If you deploy
a certificate on a multi-homed host, however, you might find it is practical
to allow the certificate to be used with any of the multi-homed host names.
In this case, it is necessary to define a certificate with multiple, alternative
identities, and this is only possible using the subjectAltName certificate
extension.

For example, if you have a multi-homed host that supports connections to
either of the following host names:
WWwW.progress.com

fusesource.com

Then you can define a subjectaltName that explicitly lists both of these
DNS host names. If you generate your certificates using the openssl utility,
edit the relevant line of your openss1.cnf configuration file to specify the
value of the subjectaltName extension, as follows:

subjectAltName=DNS:www.progress.com,DNS: fusesource.com

FUSE" Message Broker Security Guide Version 5.3

Special Requirements on HTTPS Certificates

Where the HTTPS protocol matches the server host name against either of
the DNS host names listed in the subjectAltName (the subjectAltName
takes precedence over the Common Name).

The HTTPS protocol also supports the wildcard character, *, in host names.
For example, you can define the subjectaltName as follows:

subjectAltName=DNS:*.progress.com

This certificate identity matches any three-component host name in the domain
progress.com. For example, the wildcarded host name matches either
www.progress.com Of fusesource.com, but does not match
www.fusesource.com.

€3 Warning

You must never use the wildcard character in the domain name (and
you must take care never to do this accidentally by forgetting to type
the dot, ., delimiter in front of the domain name). For example, if
you specified *progress . com, your certificate could be used on any
domain that ends in the letters progress.

FUSE" Message Broker Security Guide Version 5.3 43

Chapter 2. Managing Certificates

Creating Your Own Certificates

PO B UISIEES ..t e ettt 45
IS 0 o T o TU T o PP 46
Use the CA to Create Signed Certificates in @ Java Keystorecveiiniiiiiii e 50
Adding Trusted CAs t0 @ Java Trust STOTEviieie e 53

44 FUSE" Message Broker Security Guide Version 5.3

Prerequisites

Prerequisites

OpenSSL utilities The steps described in this section are based on the OpenSSL command-line
utilities from the OpenSSL project. Further documentation of the OpenSSL
command-line utilities can be obtained at http://www.openssl.org/docs.

Sample CA directory structure For the purposes of illustration, the CA database is assumed to have the

following directory structure:
X509cA/ca

X509CA/certs
X509CA/newcerts

X509CA/crl

Where x509ca is the parent directory of the CA database.

FUSE" Message Broker Security Guide Version 5.3 45

http://www.openssl.org/docs

Chapter 2. Managing Certificates

Set Up Your Own CA

Substeps to perform

Add the bin directory to your
PATH

Create the CA directory hierarchy

46

This section describes how to set up your own private CA. Before setting up
a CA for a real deployment, read the additional notes in "Choosing a host for
a private certification authority" on page 39 .
To set up your own CA, perform the following steps:
1. "Add the bin directory to your PATH"

"Create the CA directory hierarchy"

2
3. "Copy and edit the openssl.cnf file"
4. 'Initialize the CA database"

5

"Create a self-signed CA certificate and private key"

On the secure CA host, add the OpenSSL bin directory to your path:

Windows

> set PATH=0OpenSSLDir\bin;$PATHS$

UNIX

% PATH=0OpenSSLDir/bin:$PATH; export PATH

This step makes the openssl utility available from the command line.

Create a new directory, x509ca, to hold the new CA. This directory is used
to hold all of the files associated with the CA. Under the x509ca directory,
create the following hierarchy of directories:

X509CA/ca
X509CA/certs

X509CA/newcerts

FUSE" Message Broker Security Guide Version 5.3

Copy and edit the openssl.cnf file

Initialize the CA database

Set Up Your Own CA

X509CcA/crl

Copy the sample openss1.cnf from your OpenSSL installation to the x509ca
directory.

Edit the openss1.cnf to reflect the directory structure of the x509ca directory,
and to identify the files used by the new CA.

Edit the [cA default] section of the openssl.cnf file to look like the
following:

FHEHHH AR R R R R
[CA default]

dir = X509CA # Where CA files are kept
certs = $dir/certs # Where issued certs are kept

crl dir = $dir/crl # Where the issued crl are kept
database = S$dir/index.txt # Database index file

new certs dir = $dir/newcerts # Default place for new certs
certificate = $dir/ca/new_ca.pem # The CA certificate
serial = S$dir/serial # The current serial number
crl = $dir/crl.pem # The current CRL

private key = $dir/ca/new_ca pk.pem # The private key
RANDFILE = $dir/ca/.rand

Private random number file

x509 extensions = usr cert # The extensions to add to the
cert

You might decide to edit other details of the OpenSSL configuration at this
point—for more details, see the OpenSSL documentation.

In the x509ca directory, initialize two files, serial and index.txt.
Windows

To initialize the serial file in Windows, enter the following command:

> echo 01 > serial

To create an empty file, index.txt, in Windows start Windows Notepad at
the command line in the x509ca directory, as follows:

FUSE" Message Broker Security Guide Version 5.3 47

Chapter 2. Managing Certificates

Create a self-signed CA certificate
and private key

48

> notepad index.txt

In response to the dialog box with the text, Cannot find the text.txt
file. Do you want to create a new file?, click Yes, and close
Notepad.

UNIX

To initialize the serial file and the index.txt file in UNIX, enter the
following command:

o°

echo "01" > serial
touch index.txt

o°

These files are used by the CA to maintain its database of certificate files.

(® Note

The index.txt file must initially be completely empty, not even
containing white space.

Create a new self-signed CA certificate and private key with the following
command:

openssl req -x509 -new -config X509CA/openssl.cnf -days 365 -out
X509cA/ca/new_ca.pem -keyout X509CA/ca/new_ca_ pk.pem

The command prompts you for a pass phrase for the CA private key and
details of the CA distinguished name. For example:

Using configuration from X509CA/openssl.cnf

Generating a 512 bit RSA private key

0 6 6 0 PTVIrT

B

writing new private key to 'new ca pk.pem'

Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.

What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE

FUSE" Message Broker Security Guide Version 5.3

Set Up Your Own CA

State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin

Organization Name (eg, company) []:Progress
Organizational Unit Name (eg, section) []:Finance
Common Name (eg, YOUR name) []:Gordon Brown

Email Address []:gbrown@progress.com

Note

The security of the CA depends on the security of the private key file
and the private key pass phrase used in this step.

You must ensure that the file names and location of the CA certificate and
private key, new ca.pem and new ca pk.pem, are the same as the values
specified in openssl.cnf (see the preceding step).

You are now ready to sign certificates with your CA.

FUSE" Message Broker Security Guide Version 5.3 49

Chapter 2. Managing Certificates

Use the CA to Create Signed Certificates in a Java Keystore

Substeps to perform

Add the Java bin directory to your
PATH

Generate a certificate and private
key pair

50

To create and sign a certificate in a Java keystore (JKS), certname.jks,
perform the following substeps:

1. "Add the Java bin directory to your PATH"

2. '"Generate a certificate and private key pair"

3. "Create a certificate signing request"

4. "Sign the CSR"

5. "Convert to PEM format"

6. "Concatenate the files"

7. "Update keystore with the full certificate chain"

8. "Repeat steps as required"

If you have not already done so, add the Java bin directory to your path:

Windows

> set PATH=JAVA HOME\bin; $PATHS$

UNIX

% PATH=JAVA HOME/bin:$PATH; export PATH

This step makes the keytool utility available from the command line.

Open a command prompt and change directory to the directory where you
store your keystore files, keystorepir. Enter the following command:

keytool -genkey -dname "CN=Alice, OU=Engineering, O=Progress,
ST=Co. Dublin, C=IE" -validity 365 -alias CertAlias -keypass
CertPassword —keystore CertName.jks —-storepass CertPassword

This keytool command, invoked with the -genkey option, generates an

X.509 certificate and a matching private key. The certificate and the key are
both placed in a key entry in a newly created keystore, certname.ks. Because

FUSE" Message Broker Security Guide Version 5.3

Create a certificate signing
request

Sign the CSR

Use the CA to Create Signed Certificates in a Java
Keystore

the specified keystore, certname. ks, did not exist prior to issuing the
command, keytool implicitly creates a new keystore.

The -dname and -validity flags define the contents of the newly created
X.509 certificate, specifying the subject DN and the days before expiration
respectively. For more details about DN format, see Appendix A on page 101.

Some parts of the subject DN must match the values in the CA certificate
(specified in the CA Policy section of the openss1.cnf file). The default
openssl.cnf file requires the following entries to match:

¢ Country Name (C)
* State or Province Name (ST)

 Organization Name (O)

@ Note

If you do not observe the constraints, the OpenSSL CA will refuse to
sign the certificate (see "Sign the CSR" on page 51).

Create a new certificate signing request (CSR) for the certname. ks certificate,
as follows:

keytool -certreq -alias CertAlias -file CertName csr.pem -key
pass CertPassword —-keystore CertName.jks -storepass CertPassword

This command exports a CSR to the file, certname csr.pem.

Sign the CSR using your CA, as follows:
openssl ca -config X509CA/openssl.cnf -days 365 -in Cert

Name csr.pem -out CertName.pem

To sign the certificate successfully, you must enter the CA private key pass
phrase (see "Set Up Your Own CA" on page 46).

FUSE" Message Broker Security Guide Version 5.3 51

Chapter 2. Managing Certificates

Convert to PEM format

Concatenate the files

Update keystore with the full
certificate chain

Repeat steps as required

52

jl Note

If you want to sign the CSR using a CA certificate other than the
default CA, use the -cert and -keyfile options to specify the CA
certificate and its private key file, respectively.

Convert the signed certificate, certname.pem, to PEM only format, as follows:

openssl x509 -in CertName.pem -out CertName.pem -outform PEM

Concatenate the CA certificate file and certname . pem certificate file, as follows:

Windows

copy CertName.pem + X509CA\ca\new_ca.pem CertName.chain

UNIX

cat CertName.pem X509CA/ca/new_ca.pem > CertName.chain

Update the keystore, certname. ks, by importing the full certificate chain
for the certificate, as follows:

keytool -import -file CertName.chain -keypass CertPassword
-keystore CertName.jks -storepass CertPassword

Repeat steps 2 through 7, to create a complete set of certificates for your
system.

FUSE" Message Broker Security Guide Version 5.3

Adding Trusted CAs to a Java Trust Store

Adding Trusted CAs to a Java Trust Store

CA certificate deployment in the To deploy one or more trusted root CAs using a Java keystore file, perform

FUSE Message Broker the following steps:

configuration file

1. Assemble the collection of trusted CA certificates that you want to deploy.

The trusted CA certificates can be obtained from public CAs or private
CAs (for details of how to generate your own CA certificates, see "Set
Up Your Own CA" on page 46). The trusted CA certificates can be in
any format that is compatible with the Java keystore utility; for example,

PEM format. All you need are the certificates themselves—the private
keys and passwords are not required.

2. Given a CA certificate, cacert.pem, in PEM format, you can add the

certificate to a JKS truststore (or create a new truststore) by entering the
following command:

keytool -import -file cacert.pem -alias CAAlias -keystore
truststore.ts -storepass StorePass

Where caaiias is a convenient tag that enables you to access this
particular CA certificate using the keytool utility. The file,
truststore.ts, is a keystore file containing CA certificates—if this file
does not already exist, the keytool utility creates one. The storePass
password provides access to the keystore file, truststore.ts.

3. Repeat step 2 as necessary, to add all of the CA certificates to the
truststore file, truststore.ts.

FUSE" Message Broker Security Guide Version 5.3 53

54

FUSE" Message Broker Security Guide Version 5.3

Chapter 3. Authentication and
Authorization

FUSE Message Broker has a flexible authentication model, which includes support for several different JAAS
authentication plug-ins. In addition, you can optionally enable an authorization feature which implements
group-based access control and allows you to control access at the granularity level of destinations or of individual
messages.

Programming Client Credentialsc.veirii e et 56
Configuring Credentials for Broker COMPONENTSoueiieiiiiie e 57
Simple Authentication PlUG-IN ... e 59
JAAS AUTNENTICALION oot e s 61
INTrOdUCTION 10 JA S o e e 62
JAAS Simple Authentication PIUZ-IN ... e 65
JAAS Certificate Authentication Plug-In ... 68
JAAS LDAP Authentication PIUG-INceei e 72
Broker-to-Broker AUThentiCationc.eeir i 78
AUTNOIZALION PIUG-IN o e e ettt 79
Programming Message-Level AUthOrization 82

FUSE" Message Broker Security Guide Version 5.3 55

Chapter 3. Authentication and Authorization

Programming Client Credentials

Overview

Setting login credentials for the
Openwire protocol

56

Currently, for Java clients of the FUSE Message Broker, you must set the
username/password credentials by programming. The
ActiveMQConnectionFactory provides several alternative methods for specifying
the username and password, as follows:

ActiveMQConnectionFactory (String userName, String password,
String brokerURL) ;

ActiveMQConnectionFactory (String userName, String password,
URI brokerURL) ;

Connection createConnection (String userName, String password) ;
QueueConnection createQueueConnection (String userName, String
password) ;

TopicConnection createTopicConnection (String userName, String
password) ;

Of these methods, createConnection (String userName, String
password) is the most flexible, since it enables you to specify credentials on
a connection-by-connection basis.

To specify the login credentials on the client side, pass the username/password
credentials as arguments to the
ActiveMQConnectionFactory.createConnection () method,asshown
in the following example:

// Java

public void run() {
user = "jdoe";
password = "secret";

ActiveMQConnectionFactory connectionFactory = new ActiveMQ
ConnectionFactory (url) ;

Connection connection = connectionFactory.createConnec
tion (user, password) ;

FUSE" Message Broker Security Guide Version 5.3

Configuring Credentials for Broker Components

Configuring Credentials for Broker Components

Overview

Default credentials for broker
components

Command agent

FUSE Mediation Router

Once authentication is enabled in the broker, every application component
that opens a connection to the broker must be configured with credentials.
This includes some standard broker components, which are normally
configured using Spring XML. To enable you to set credentials on these
components, the XML schemas for these components have been extended
as described in this section.

For convenience, you can configure default credentials for the broker
components by setting the activemg.username property and the
activemq.password property in the conf/credentials.properties file.
By default, this file has the following contents:

activemg.username=system
activemg.password=manager

You can configure the command agent with credentials by setting the
username attribute and the password attribute on the commandagent element
in the broker configuration file. By default, the command agent is configured
to pick up its credentials from the activemqg.username property and the
activemqg.password property as shown in the following example:

<beans>
<commandAgent xmlns="http://activemq.apache.org/schema/core"
brokerUrl="vm://localhost"

username="${activemq.username}"
password="§${activemqg.password}" />

</beans>

The default broker configuration file contains an example of a FUSE Mediation
Router route that is integrated with the broker. This sample route is defined
as follows:

<beans>

<camelContext id="camel" xmlns="http://act

FUSE" Message Broker Security Guide Version 5.3 57

Chapter 3. Authentication and Authorization

58

ivemqg.apache.org/camel/schema/spring">
<package>org.foo.bar</package>
<route>
<from uri="activemq:example.A"/>
<to uri="activemqg:example.B"/>
</route>
</camelContext>

</beans>

The preceding route integrates with the broker using endpoint URIs that have
the component prefix, activemq:. For example, the URI,
activemqg:example.A, represents a queue named example.a and the
endpoint URI, activemg:example.B, represents a queue named example.B.

The integration with the broker is implemented by the Camel component with
bean ID equal to activemg. When the broker has authentication enabled, it
is necessary to configure this component with a userName property and a
password property, as follows:

<beans>

<bean id="activemq" class="org.apache.activemqg.camel.compon
ent.ActiveMQComponent™ >
<property name="connectionFactory">
<bean class="org.apache.activemg.ActiveMQConnectionFact
ory">
<property name="brokerURL" value="vm://localhost?cre
ate=false&waitForStart=10000" />
<property name="userName" value="${activemq.user
name}"/>
<property name="password" value="${activemq.pass
word}" />
</bean>
</property>
</bean>

</beans>

FUSE" Message Broker Security Guide Version 5.3

Simple Authentication Plug-In

Simple Authentication Plug-In

Overview

Broker configuration for simple
authentication

The simple authentication plug-in provides the quickest way to enable
authentication in a broker. With this approach, all of the user data is
embedded in the broker configuration file. It is useful for testing purposes and
for small-scale systems with relatively few users, but it does not scale well
for large systems.

Example 3.1 on page 59 shows how to configure simple authentication by
adding a simpleAuthenticationPlugin element to the list of plug-ins in
the broker configuration.

Example 3.1. Simple Authentication Configuration

<beans>
<broker ...>

<plugins>
<simpleAuthenticationPlugin>
<users>
<authenticationUser username="system"
password="manager"
groups="users,admins" />
<authenticationUser username="user"
password="password"
groups="users"/>
<authenticationUser username="guest"
password="password"
groups="guests"/>
</users>
</simpleAuthenticationPlugin>
</plugins>

</broker>
</beans>

For each user, add an authenticationUser element as shown, setting the
username, password, and groups attributes. In order to authenticate a user
successfully, the username/password credentials received from a client must
match the corresponding attributes in one of the authenticationUser
elements. The groups attribute assigns a user to one or more groups
(formatted as a comma-separated list). If authorization is enabled, the assigned

FUSE" Message Broker Security Guide Version 5.3 59

Chapter 3. Authentication and Authorization

groups are used to check whether a user has permission to invoke certain
operations. If authorization is not enabled, the groups are ignored.

60 FUSE" Message Broker Security Guide Version 5.3

JAAS Authentication

JAAS Authentication

INErOAUCTION 10 JA S o e et et e 62
JAAS Simple Authentication PIU-IN ... e 65
JAAS Certificate Authentication PIUG-IN ... e 68
JAAS LDAP Authentication PIUG-INce e et 72

FUSE" Message Broker Security Guide Version 5.3 61

Chapter 3. Authentication and Authorization

Introduction to JAAS

Overview The Java Authentication and Authorization Service (JAAS) provides a general
framework for implementing authentication in a Java application. The
implementation of authentication is modular, with individual JAAS modules
(or plug-ins) providing the authentication implementations. In particular, JAAS
defines a general configuration file format that can be used to configure any
custom login modules.

For background information about JAAS, see the JAAS Reference Guide.

JAAS login configuration The JAAS login configuration file has the general format shown in
Example 3.2 on page 62.
Example 3.2. JAAS Login Configuration File Format
/* JAAS Login Configuration */
LoginEntry {

ModuleClass Flag Option="Value" Option="Value" ... ;
ModuleClass Flag Option="Value" Option="Value" ... ;

bi

LoginEntry {
ModuleClass Flag Option="Value" Option="Value" ... ;
ModuleClass Flag Option="Value" Option="Value" ... ;

}i

Where the file format can be explained as follows:

* LoginEntry labels a single entry in the login configuration. An application
is typically configured to search for a particular LoginEntry label (for
example, in FUSE Message Broker the LoginEntry label to use is specifed

in the broker configuration file). Each login entry contains a list of login
modules that are invoked in order.

* ModuleClass is the fully-qualified class name of a JAAS login module. For

example, org.apache.activemg.jaas.PropertiesLoginModule is the

! http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html

62 FUSE" Message Broker Security Guide Version 5.3

http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html

Location of the login configuration
file

Introduction to JAAS

class name of FUSE Message Broker's JAAS simple authentication login
module.

* Flag determines how to react when the current login module reports an
authentication failure. The F1ag can have one of the following values:

* required—authentication of this login module must succeed. Always
proceed to the next login module in this entry, irrespective of success or
failure.

* requisite—authentication of this login module must succeed. If
success, proceed to the next login module; if failure, return immediately
without processing the remaining login modules.

* sufficient—authentication of this login module is not required to

succeed. If success, return immediately without processing the remaining
login modules; if failure, proceed to the next login module.

* optional—authentication of this login module is not required to succeed.

Always proceed to the next login module in this entry, irrespective of
success or failure.

* option="value"—afterthe Flag, you can pass zero or more option settings

to the login module. The options are specified in the form of a
space-separated list, where each option has the form option="vaiue". The

login module line is terminated by a semicolon, ;.

There are two general approaches to specifying the location of the JAAS login
configuration file, as follows:

* Set a system property—set the value of the system property,
java.security.auth.login.config, to the location of the login

configuration file. For example, you could set this system property on the
command line, as follows:

java -Djava.security.auth.login.config=/var/activemg/con
fig/login.config ...

FUSE" Message Broker Security Guide Version 5.3 63

Chapter 3. Authentication and Authorization

64

* Configure the JDK—if the relevant system property is not set, JAAS checks
the $JAVA HOME/jre/lib/security/java.security security properties

file, looking for entries of the form:

login.config.url.1l=file:C:/activemqg/config/login.config

If there is more than one such entry, 1ogin.config.url.n, the entries
must be consecutively numbered. The contents of the login files listed in
java.security are merged into a single configuration.

In addition to these general approaches, FUSE Message Broker defines a
custom approach to locating the JAAS login configuration. If the system
property is not specified, the broker searches the CLASSPATH for a file named,

login.config.

FUSE" Message Broker Security Guide Version 5.3

JAAS Simple Authentication Plug-In

JAAS Simple Authentication Plug-In

Overview

Specifying the login.config file
location

login.config file

The JAAS simple authentication plug-in provides a light-weight authentication
implementation, where the relevant user security data is stored in a pair of
flat files. This is convenient for demonstrations and testing, but for an
enterprise system, the integration with LDAP is preferable (see "JAAS LDAP
Authentication Plug-In" on page 72).

The simplest way to make the login configuration available to JAAS is to add
the directory containing the file, 1ogin.config, to your CLASSPATH.

Alternatively, you can set the java.security.auth.login.config system
property at the command line, setting it to the pathname of the login
configuration file (for example, edit the bin/activemg script, adding an
option of the form, -Djava.security.auth.login.config=value o the
Java command line). If you are working on the Windows platform, note that
the pathname of the login configuration file must use forward slashes, /, in
place of backslashes, \.

The following PropertiesLogin login entry shows how to configure JAAS
simple authentication in the 1ogin.config file:

Example 3.3. JAAS Login Entry for Simple Authentication

PropertiesLogin {
org.apache.activemg.jaas.PropertiesLoginModule required
debug=true
org.apache.activemqg. jaas.properties.user="users.prop
erties”
org.apache.activemq.jaas.properties.group="groups.prop
erties”;

}i

JAAS simple authentication is configured by the
org.apache.activemq.jaas.PropertiesLoginModule login module. The
options supported by this login module are as follows:

* debug—boolean debugging flag. If true, enable debugging. This is used
only for testing or debugging. Normally, it should be set to false, or
omitted.

FUSE" Message Broker Security Guide Version 5.3 65

Chapter 3. Authentication and Authorization

users.properties file

groups.properties file

Enable the JAAS simple
authentication plug-in

66

* org.apache.activemq.jaas.properties.user—specifies the location

of the user properties file (relative to the directory containing the login
configuration file).

* org.apache.activemq.jaas.properties.group—specifies the location

of the group properties file (relative to the directory containing the login
configuration file).

In the context of the simple authentication plug-in, the users.properties
file consists of a list of properties of the form, vsernvame=pPassword. For
example, to define the users, system, user, and guest, you could create a
file like the following:

system=manager
user=password
guest=password

The groups.properties file consists of a list of properties of the form,
Group=UserList, Where UserList is a comma-separated list of users. For
example, to define the groups, admins, users, and guests, you could create
a file like the following:

admins=system
users=system, user
guests=guest

To enable the JAAS simple authentication plug-in, add the
jaasAuthenticationPlugin element to the list of plug-ins in the broker
configuration file, as shown:

<beans>
<broker ...>

<plugins>
<jaasAuthenticationPlugin configuration="PropertiesLogin"
/>

</plugins>
</broker>
</beans>

FUSE" Message Broker Security Guide Version 5.3

JAAS Simple Authentication Plug-In

The configuration attribute specifies the label of a login entry from the
login configuration file (for example, see Example 3.3 on page 65). In the
preceding example, the PropertiesLogin login entry is selected.

FUSE" Message Broker Security Guide Version 5.3 67

Chapter 3. Authentication and Authorization

JAAS Certificate Authentication Plug-In

Overview

Specifying the login.config file
location

login.config file

68

The JAAS certificate authentication plug-in must be used in combination with
an SSL/TLS protocol (for example, ss1: or https:) and the clients must be
configured with their own certificate. In this scenario, authentication is actually
performed during the SSL/TLS handshake, not directly by the JAAS certificate
authentication plug-in. The role of the plug-in is as follows:

 To further constrain the set of acceptable users, because only the user DNs
explicitly listed in the relevant properties file are eligible to be authenticated.

* To associate a list of groups with the received user identity, facilitating
integration with the authorization feature.

* To require the presence of an incoming certificate (by default, the SSL/TLS
layer is configured to treat the presence of a client certificate as optional).

The simplest way to make the login configuration available to JAAS is to add
the directory containing the file, 1ogin.config, to your CLASSPATH.

Alternatively, you can set the java.security.auth.login.config system
property at the command line, setting it to the pathname of the login
configuration file (for example, edit the bin/activemg script, adding an
option of the form, -Djava.security.auth.login.config=value o the
Java command line). If you are working on the Windows platform, note that
the pathname of the login configuration file must use forward slashes, /, in
place of backslashes, \.

The following certLogin login entry shows how to configure JAAS certificate
authentication in the 1ogin.config file:

Example 3.4. JAAS Login Entry for Certificate Authentication

CertLogin {
org.apache.activemg.jaas.TextFileCertificateLoginModule
required
debug=true
org.apache.activemg.jaas.textfiledn.user="users.prop
erties"”
org.apache.activemqg.jaas.textfiledn.group="groups.prop
erties”;

}i

FUSE" Message Broker Security Guide Version 5.3

JAAS Certificate Authentication Plug-In

JAAS simple authentication is configured by the

org.apache.activemq.jaas.TextFileCertificateLoginModule login

module. The options supported by this login module are as follows:

* debug—boolean debugging flag. If true, enable debugging. This is used
only for testing or debugging. Normally, it should be set to false, or
omitted.

* org.apache.activemq.jaas.textfiledn.user—specifies the location

of the user properties file (relative to the directory containing the login
configuration file).

* org.apache.activemq.jaas.textfiledn.group—specifies the location

of the group properties file (relative to the directory containing the login
configuration file).

users.properties file In the context of the certificate authentication plug-in, the users.properties
file consists of a list of properties of the form,
UserName=StringifiedSubjectDN. FOr example, to define the users, system,
user, and guest, you could create a file like the following:

system=CN=system, O=Progress, C=US
user=CN=humble user,O=Progress,C=US
guest=CN=anon, O=Progress, C=DE

Each username is mapped to a subject DN, encoded as a string (where the
string encoding is specified by RFC 2253%). For example, the system
username is mapped to the cN=system, O=Progress, c=Us subject DN.
When performing authentication, the plug-in extracts the subject DN from
the received certificate, converts it to the standard string format, and compares
it with the subject DNs in the users.properties file by testing for string
equality. Consequently, you must be careful to ensure that the subject DNs
appearing in the users.properties file are an exact match for the subject
DNs extracted from the user certificates.

(@ Note

Technically, there is some residual ambiguity in the DN string format.
For example, the domainComponent attribute could be represented
in a string either as the string, bc, or as the OID,

2 http://www.ietf.org/rfc/rfc2253.txt

FUSE" Message Broker Security Guide Version 5.3 69

http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2253.txt

Chapter 3. Authentication and Authorization

0.9.2342.19200300.100.1.25. Normally, you do not need to worry
about this ambiguity. But it could potentially be a problem, if you
changed the underlying implementation of the Java security layer.

Obtaining the subject DNs The easiest way to obtain the subject DNs from the user certificates is by
invoking the keytoo1 utility to print the certificate contents. To print the
contents of a certificate in a keystore, perform the following steps:

1. Export the certificate from the keystore file into a temporary file. For
example, to export the certificate with alias broker-1ocalhost from the

broker.ks keystore file, enter the following command:

keytool -export -file broker.export -alias broker-localhost
-keystore broker.ks -storepass password

After running this command, the exported certificate is in the file,
broker.export

2. Print out the contents of the exported certificate. For example, to print out
the contents of broker.export, enter the following command:

keytool -printcert -file broker.export

Which should produce output like the following

Owner: CN=localhost, OU=broker, O=Unknown, L=Unknown,
ST=Unknown, C=Unknown
Issuer: CN=localhost, OU=broker, O=Unknown, L=Unknown,
ST=Unknown, C=Unknown
Serial number: 4537c82e
Valid from: Thu Oct 19 19:47:10 BST 2006 until: Wed Jan 17
18:47:10 GMT 2007

Certificate fingerprints:

MD5 :
3F:6C:0C:89:A8:80:29:CC:F5:2D:DA:5C:D7:3F:AB:37

SHAL:
FO0:79:0D:04:38:5A:46:CE:86:E1:8A:20:1F:7B:AB:3A:46:E4:34:5C

The string following owner: gives the subject DN, but you must remove
the spaces appearing after each of the commas. For example, the preceding

70 FUSE" Message Broker Security Guide Version 5.3

JAAS Certificate Authentication Plug-In

output represents a certificate with subject DN equal to
CN=localhost, OU=broker, O=Unknown, L=Unknown, ST=Unknown, C=Unknown.

groups.properties file The groups.properties file consists of a list of properties of the form,
Group=UserList, Where UserList is @ comma-separated list of users. For
example, to define the groups, admins, users, and guests, you could create
a file like the following:

admins=system
users=system, user
guests=guest

Enable the JAAS certificate To enable the JAAS certificate authentication plug-in, add the
authentication plug-in jaasCertificateAuthenticationPlugin element to the list of plug-ins
in the broker configuration file, as shown:

<beans>
<broker ...>
<plugins>
<jaasCertificateAuthenticationPlugin configura
tion="CertLogin" />
</plugins>
</broker>
</beans>
The configuration attribute specifies the label of a login entry from the

login configuration file (for example, see Example 3.4 on page 68). In the
preceding example, the certLogin login entry is selected.

FUSE" Message Broker Security Guide Version 5.3 71

Chapter 3. Authentication and Authorization

JAAS LDAP Authentication Plug-In

Overview

Specifying the login.config file
location

login.config file

72

The LDAP authentication plug-in enables you to perform authentication by
checking the incoming credentials against user data stored in a central X.500
directory server. For systems that already have an X.500 directory server in
place, this means that you can rapidly integrate FUSE Message Broker with
the existing security database and user accounts can be managed using the
X.500 system.

The simplest way to make the login configuration available to JAAS is to add
the directory containing the file, 1ogin.config, to your CLASSPATH.

Alternatively, you can set the java.security.auth.login.config system
property at the command line, setting it to the pathname of the login
configuration file (for example, edit the bin/activemg script, adding an
option of the form, -Djava.security.auth.login.config=value o the
Java command line). If you are working on the Windows platform, note that
the pathname of the login configuration file must use forward slashes, /, in
place of backslashes, \.

Example 3.5 on page 72 shows an example of a login entry for the LDAP
authentication plug-in, connecting to a directory repository with the URL,
ldap://localhost:10389.

Example 3.5. LDAP Login Entry

LDAPLogin {
org.apache.activemqg.jaas.LDAPLoginModule required
debug=true
initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory

connectionURL="1dap://localhost:10389"
connectionUsername="uid=admin, ou=system"
connectionPassword=secret
connectionProtocol=""
authentication=simple
userBase="ou=users,ou=system"
userSearchMatching=" (uid={0})"
userSearchSubtree=false
roleSearchMatching=" (uid={1})"

’

FUSE" Message Broker Security Guide Version 5.3

JAAS LDAP Authentication Plug-In

The preceding login entry is configured to search for users under the
ou=users, ou=system level in the Directory Information Tree (DIT). For
example, an incoming username, jdoe, would match the entry whose DN is
uid=jdoe, ou=users, ou=system.

LDAP login entry options The LDAP login entry supports the following options:

debug—>boolean debugging flag. If true, enable debugging. This is used
only for testing or debugging. Normally, it should be set to false, or
omitted.

initialContextFactory—(mandatory) must always be set to

com.sun.jndi.ldap.LdapCtxFactory.

connectionURL—(mandatory) specify the location of the directory server
using an Idap URL, 1dap://Host: Port. You can optionally qualify this
URL, by adding a forward slash, /, followed by the DN of a particular node

in the directory tree. For example,
ldap://ldapserver:10389/ou=systemn.

connectionUsername—(0ptional)the DN of the user that opens the
connection to the directory server. For example, uid=admin, ou=system.

Directory servers generally require clients to present username/password
credentials in order to open a connection.

connectionPassword—(optional)the password that matches the DN from
connectionUsername. In the directory server, in the DIT, the password

is normally stored as a userpassword attribute in the corresponding
directory entry.

connectionProtocol—(mandatory)currently, the only supported value

is a blank string. In future, this option will allow you to select the Secure
Socket Layer (SSL) for the connection to the directory server.

J'Zl Note

This option must be set explicitly to an empty string, because it
has no default value.

FUSE" Message Broker Security Guide Version 5.3 73

Chapter 3. Authentication and Authorization

3 http://www.ietf.org/rfc/rfc2254 txt

* authentication—(mandatory)can take either of the values, simple or

none.

userBase—(mandatory)selects a particular subtree of the DIT to search

for user entries. The subtree is specified by a DN, which specifes the base
node of the subtree. For example, by setting this option to
ou=users, ou=system, the search for user entries is restricted to the subtree

beneath the ou=users, ou=system node.

userSearchMatching—(mandatory)specifies an LDAP search filter, which
is applied to the subtree selected by userBase. Before passing to the LDAP

search operation, the string value you provide here is subjected to string
substitution, as implemented by the java.text.MessageFormat class.

Essentially, this means that the special string, {0}, is substituted by the
username, as extracted from the incoming client credentials.

After substitution, the string is interpreted as an LDAP search filter, where
the LDAP search filter syntax is defined by the IETF standard, RFC 22543,
A short introduction to the search filter syntax is available from Sun's JNDI
tutorial, Search Filters®.

For example, if this option is set to (uid={0}) and the received username
is jdoe, the search filter becomes (uid=jdoe) after string substitution. If
the resulting search filter is applied to the subtree selected by the user
base, ou=users, ou=system, it would match the entry,

uid=jdoe, ou=users, ou=system (and possibly more deeply nested entries,
depending on the specified search depth—see the usersearchsubtree
option).

userSearchSubtree—(0optional)specify the search depth for user entries,

relative to the node specified by userBase. This option can take boolean
values, as follows:

* false—(default) try to match one of the child entries of the userBase

node (maps to
javax.naming.directory.SearchControls. ONELEVELisCOPE).

http://java.sun.com/products/jndi/tutorial/basics/directory/filter.html

74

FUSE" Message Broker Security Guide Version 5.3

http://www.ietf.org/rfc/rfc2254.txt
http://java.sun.com/products/jndi/tutorial/basics/directory/filter.html
http://www.ietf.org/rfc/rfc2254.txt
http://java.sun.com/products/jndi/tutorial/basics/directory/filter.html

JAAS LDAP Authentication Plug-In

* true—try to match any entry belonging to the subtree of the userBase

node (maps to
javax.naming.directory.SearchControls. SUBTREE78COPE).

* userRoleName—(0ptional)specifies the name of the multi-valued attribute

of the user entry that contains a list of role names for the user (where the
role names are interpreted as group names by the broker's authorization
plug-in). If you omit this option, no role names are extracted from the user
entry.

* roleBase—if you want to store role data directly in the directory server,
you can use a combination of role options (roleBase,

roleSearchMatching, roleSearchSubtree, and roleName) as an
alternative to (or in addition to) specifying the userRoleName option.

This option selects a particular subtree of the DIT to search for role entries.
The subtree is specified by a DN, which specifes the base node of the
subtree. For example, by setting this option to ou=roles, ou=system, the
search for user entries is restricted to the subtree beneath the

ou=roles, ou=system node.

* roleSearchMatching—(mandatory)specifies an LDAP search filter, which
is applied to the subtree selected by roleBase. This works in a similar
manner to the usersearchMatching option, except that it supports two
substitution strings, as follows:

* {0} substitutes the full DN of the matched user entry (that is, the result
of the user search). For example, for the user, jdoe, the substituted

string could be uid=jdoe, ou=users,ou=system.
* {1} substitutes the received username. For example, jdoe.

For example, if this option is set to (uid={1}) and the received username
is jdoe, the search filter becomes (uid=jdoe) after string substitution. If
the resulting search filter is applied to the subtree selected by the role base,
ou=roles, ou=system, it would match the entry,

uid=jdoe, ou=roles, ou=system (and possibly more deeply nested entries,
depending on the specified search depth—see the rolesearchSubtree
option).

FUSE" Message Broker Security Guide Version 5.3 75

Chapter 3. Authentication and Authorization

Creating a user entry in the
directory

Adding roles to the user entry

Enable the JAAS LDAP
authentication plug-in

76

j Note

This option must always be set, even if role searching is disabled,
because it has no default value.

* roleSearchSubtree—(0ptional)specify the search depth for role entries,
relative to the node specified by roleBase. This option can take boolean
values, as follows:

* false—(default) try to match one of the child entries of the roleBase

node (maps to
javax.naming.directory.SearchControls.ONELEVEL_SCOPE)

* true—try to match any entry belonging to the subtree of the roleBase

node (maps to
javax.naming.directory.SearchControls.SUBTREE78COPEX

* roleName—(optional)specifies the name of the multi-valued attribute of

the role entry that contains a list of role names for the current user. If you
omit this option, the role search feature is effectively disabled.

Add user entries under the node specified by the userBase option. When
creating a new user entry in the directory, choose an object class that supports
the userpassword attribute (for example, the person or inetOorgPerson
object classes are typically suitable). After creating the user entry, add the
userPassword attribute, to hold the user's password.

If you want to add roles to user entries, you will probably need to customize
the directory schema, by adding a suitable attribute type to the user entry's
object class. The chosen attribute type must be capable of handling multiple
values.

To enable the JAAS LDAP authentication plug-in, add the
jaasAuthenticationPlugin element to the list of plug-ins in the broker
configuration file, as shown:

<beans>
<broker ...>

FUSE" Message Broker Security Guide Version 5.3

JAAS LDAP Authentication Plug-In

<plugins>
<jaasAuthenticationPlugin configuration="LDAPLogin" />
</plugins>

</broker>
</beans>

The configuration attribute specifies the label of a login entry from the
login configuration file (for example, see Example 3.5 on page 72). In the
preceding example, the LDAPLogin login entry is selected.

FUSE" Message Broker Security Guide Version 5.3 77

Chapter 3. Authentication and Authorization

Broker-to-Broker Authentication

Overview

Configuring the network
connector

78

If you are deploying your brokers in a cluster configuration, and one or more
of the brokers is configured to require authentication, then it is necessary to
equip all of the brokers in the cluster with the appropriate credentials, so that
they can all talk to each other.

Given two brokers, Broker A and Broker B, where Broker A is configured to
perform authentication, you can configure Broker B to log on to Broker A by
setting the userName attribute and the password attribute in the
networkConnector element, as follows:

<beans ...>
<broker ...>

<networkConnectors>
<networkConnector name="BrokerABridge"
userName="user"
password="password"
uri="stat
ic://(ssl://brokerA:61616)"/>

</networkConnectors>

</broker>
</beans>
If Broker A is configured to connect to Broker B, Broker A's
networkConnector element must also be configured with username/password
credentials, even though Broker B is not configured to perform authentication.
Broker A's authentication plug-in checks for Broker A's username. For example,
if Broker A has its authentication configured by a

simpleAuthenticationPlugin element, Broker A's username must appears
in this element.

FUSE" Message Broker Security Guide Version 5.3

Authorization Plug-In

Overview

Authorization Plug-In

In a security system without authorization, every successfully authenticated

user would have unrestricted access to every queue and every topic in the
broker. Using the authorization plug-in, on the other hand, you can restrict

access to specific destinations based on a user's group membership.

Configuring the authorization
plug-in

Example 3.6 on page 79.

Example 3.6. Authorization Plug-In Configuration

<beans>
<broker

<plugins>

<authorizationPlugin>

FUSE" Message Broker Security Guide Version 5.3

<authorizationMap>
<authorizationEntries>

<authorizationEntry

<authorizationEntry

<authorizationEntry

<authorizationEntry

<authorizationEntry

<authorizationEntry

queue=">"
read="admins"
write="admins"
admin="admins" />
queue="USERS.>"
read="users"
write="users"
admin="users" />
queue="GUEST.>"
read="guests"
write="guests,users"
admin="guests, users"
topic=">"
read="admins"
write="admins"
admin="admins" />
topic="USERS.>"
read="users"
write="users"
admin="users" />
topic="GUEST.>"
read="guests"
write="guests,users"

/>

To configure the authorization plug-in, add an authorizationPlugin element
to the list of plug-ins in the broker configuration, as shown in

79

Chapter 3. Authentication and Authorization

Authorization entries for named
destinations

80

admin="guests,users" />
</authorizationEntries>
<tempDestinationAuthorizationEntry>
<tempDestinationAuthorizationEntry
read="admins"
write="admins"
admin="admins"/>
</tempDestinationAuthorizationEntry>
</authorizationMap>
</map>
</authorizationPlugin>
</plugins>

</broker>
</beans>
The authorization plug-in contains two different kinds of entry, as follows:
» "Authorization entries for named destinations" on page 80.

» "Authorization entries for temporary destinations" on page 81.

A named destination is just an ordinary JMS queue or topic (these destinations
are named, in contrast to temporary destinations which have no permanent
identity).The authorization entries for ordinary destinations are defined by the
authorizationEntry element, which supports the following attributes:

* gueue Of topic—yYyou can specify either a queue or a topic attribute, but

not both in the same element. To apply authorization settings to a particular
queue or topic, simply set the relevant attribute equal to the queue or topic
name. The greater-than symbol, >, acts as a wildcard. For example, an

entry with, queue="USERS.>", would match any queue name beginning
with the useRrs. string.

* read—specifies a comma-separated list of groups that have permission to
consume messages from the matching destinations.

* write—specifies a comma-separated list of groups that have permission
to publish messages to the matching destinations.

FUSE" Message Broker Security Guide Version 5.3

Authorization Plug-In

* admin—specifies a comma-separated list of groups that have permission
to create destinations in the destination subtree.

Authorization entries for A temporary destination is a special feature of JMS that enables you to create

temporary destinations a queue for a particular network connection. The temporary destination exists
only as long as the network connection remains open and, as soon as the
connection is closed, the temporary destination is deleted on the server side.
The original motivation for defining temporary destinations was to facilitate
request-reply semantics on a destination, without having to define a dedicated
reply destination.

Because temporary destinations have no name, the
tempDestinationAuthorizationEntry element does not support any
queue Of topic attributes. The attributes supported by the
tempDestinationAuthorizationEntry element are as follows:

* read—specifies a comma-separated list of groups that have permission to
consume messages from all temporary destinations.

* write—specifies a comma-separated list of groups that have permission
to publish messages to all temporary destinations.

* admin—specifies a comma-separated list of groups that have permission
to create temporary destinations.

FUSE" Message Broker Security Guide Version 5.3 81

Chapter 3. Authentication and Authorization

Programming Message-Level Authorization

Overview

Implement the
MessageAuthorizationPolicy
interface

82

In the preceding examples, the authorization step is performed at the time of
connection creation and access is applied at the destination level of
granularity. That is, the authorization step grants or denies access to particular
queues or topics. It is conceivable, though, that in some systems you might
want to grant or deny access at the level of individual messages, rather than
at the level of destinations. For example, you might want to grant permission
to all users to read from a certain queue, but some messages published to
this queue should be accessible to administrators only.

You can achieve message-level authorization by configuring a message
authorization policy in the broker configuration file. To implement this policy,
you need to write some Java code.

Example 3.7 on page 82 shows an example of a message authorization
policy that allows messages from the webserver application to reach only
the admin user, with all other users blocked from reading these messages.
This example presupposes that the webserver application is configured to
set the oMsxappID property in the message's JMS header.

Example 3.7. Implementation of MessageAuthorizationPolicy

// Java
package com.acme;

public class MsgAuthzPolicy implements MessageAuthorization
Policy {

public boolean isAllowedToConsume (ConnectionContext context,
Message message)

{
if (message.getProperty ("JMSXAppID") .equals ("WebServer"))

if (context.getUserName ().equals ("admin")) {
return true;
}
else {
return false;
}
}
return true;

}

FUSE" Message Broker Security Guide Version 5.3

Configure the
messageAuthorizationPolicy
element

Programming Message-Level Authorization

The org.apache.activemg.broker.ConnectionContext class stores
details of the current client connection and the
org.apache.activemq.command.Message class is essentially an
implementation of the standard javax.jms.Message interface.

To install the message authorization policy, compile the preceding code,
package it as a JAR file, and drop the JAR file into the $ACTIVEMQ HOME/1ib
directory.

To configure the broker to install the message authorization policy from
Example 3.7 on page 82, add the following lines to the broker configuration
file, conf/activemq.xml, inside the broker element:

<broker>
<messageAuthorizationPolicy>
<bean class="com.acme.MsgAuthzPolicy"
xmlns="http://www.springframework.org/schema/beans" />

</messageAuthorizationPolicy>

</broker>

FUSE" Message Broker Security Guide Version 5.3 83

84

FUSE" Message Broker Security Guide Version 5.3

Chapter 4. LDAP Authentication
Tutorial

This chapter explains how to set up an X.500 directory server and configure the broker to use LDAP authentication.

B VLo = 1RO V7= V=Y 86
Tutorial: Install a Directory Server and BrOWSETueeii e re e nenenas 87
Tutorial: Add User Entries to the DIirectory SEIVEr ... 89
Tutorial: Enable LDAP Authentication in the Broker and its Clientscoviiiiiiiiiiiii e 97

FUSE" Message Broker Security Guide Version 5.3 85

Chapter 4. LDAP Authentication Tutorial

Tutorial Overview

Overview

Tutorial stages

86

This tutorial is aimed at users who are unfamiliar with LDAP and the X.500
directory services. It covers all of the steps required to set up an X.500
directory service and use it as a repository of security data for performing
authentication in a FUSE Message Broker application.

The tutorial consists of the following stages:
1. "Tutorial: Install a Directory Server and Browser" on page 87.
2. "Tutorial: Add User Entries to the Directory Server" on page 89.

3. "Tutorial: Enable LDAP Authentication in the Broker and its Clients"
on page 97.

FUSE" Message Broker Security Guide Version 5.3

Tutorial: Install a Directory Server and Browser

Tutorial: Install a Directory Server and Browser

Overview This section describes how to install an X.500 directory server and browser
client, which you can then use to test the LDAP authentication feature of
FUSE Message Broker. For the purpose of this tutorial, we recommend using
the relevant applications from the Apache Directory project.

Install Apache Directory Server Apache Directory Server (ApacheDS) is an open-source implementation of
an X.500 directory server. You can use this directory server as a store of
security data for the LDAP authentication feature of FUSE Message Broker.

To install Apache Directory Server, download ApacheDS 1.5 from http://
directory.apache.org/apacheds/1.5/downloads.html and run the installer.
During the installation process, you will be asked whether or not to install a
default instance of the directory server. Choose the default instance.

If you install on the Windows platform, the default instance of the directory
server is configured as a Windows service. Hence, you can stop and start the
directory server using the standard Services administrative tool. If you install
on a Linux or Mac OS platform, follow the instructions in Installing and Starting
the Server! for starting and stopping the directory server.

(@ Note
This tutorial was tested with version 1.5.4 of Apache Directory
Studio.

Install Apache Directory Studio The Apache Directory Studio is an Eclipse-based suite of tools for administering
an X.500 directory server. In particular, for this tutorial, you need the LDAP
Browser feature, which enables you to create new entries in the Directory
Information Tree (DIT).

There are two alternative ways of installing Apache Directory Studio:

! http://directory.apache.org/apacheds/1.5/13-installing-and-starting-the-server.html

FUSE" Message Broker Security Guide Version 5.3 87

http://directory.apache.org/apacheds/1.5/downloads.html
http://directory.apache.org/apacheds/1.5/downloads.html
http://directory.apache.org/apacheds/1.5/13-installing-and-starting-the-server.html
http://directory.apache.org/apacheds/1.5/13-installing-and-starting-the-server.html
http://directory.apache.org/apacheds/1.5/13-installing-and-starting-the-server.html

Chapter 4. LDAP Authentication Tutorial

» Standalone application—download the standalone distribution from the
Directory Studio downloads? page and follow the installation instructions
from the Apache Directory Studio User Guide®.

* Eclipse plug-in—if you already use Eclipse as your development
environment, you can install Apache Directory Studio as a set of Eclipse
plug-ins. The only piece of Apache Directory Studio that you need for this
tutorial is the LDAP Browser plug-in.

To install the LDAP Browser as an Eclipse plug-in, follow the install
instructions from the LDAP Browser Plug-In User Guide®.

2 http://directory.apache.org/studio/downloads.html
s http://directory.apache.org/studio/static/users_guide/apache_directory_studio/download_install.html
4 http://directory.apache.org/studio/static/users_guide/ldap_browser/gettingstarted_download_install.html

88 FUSE" Message Broker Security Guide Version 5.3

http://directory.apache.org/studio/downloads.html
http://directory.apache.org/studio/static/users_guide/apache_directory_studio/download_install.html
http://directory.apache.org/studio/static/users_guide/ldap_browser/gettingstarted_download_install.html
http://directory.apache.org/studio/downloads.html
http://directory.apache.org/studio/static/users_guide/apache_directory_studio/download_install.html
http://directory.apache.org/studio/static/users_guide/ldap_browser/gettingstarted_download_install.html

Tutorial: Add User Entries to the Directory Server

Tutorial: Add User Entries to the Directory Server

Overview The basic prerequisite for using LDAP authentication in the broker is to have
an X.500 directory server running and configured with a collection of user
entries. For users who are unfamiliar with X.500 directory servers, this section
briefly describes how to create user entries using the Apache Directory Studio
as an administrative tool.

Steps to add a user entry Perform the following steps to add a user entry to the directory server:

1. Ensure that the X.500 directory server is running (see "Install Apache
Directory Server' on page 87).

2. Start the LDAP Browser, as follows:

* |f you installed the standalone version of Apache Directory Studio,
double-click the relevant icon to launch the application.

* |f you installed the LDAP Browser plug-in into an existing Eclipse IDE,
start Eclipse and open the LDAP perspective. To open the LDAP
perspective, select Window | Open Perspective|Other and in the Open
Perspective dialog, select LDAP and click OK.

3. Open a connection to the directory server. Right-click inside the
Connections view in the lower left corner and select New Connection. The
New LDAP Connection wizard opens.

4. Specify the network parameters for the new connection. In the Connection
name field, enter Apache Directory Server. In the Hostname field

enter the name of the host where the Apache Directory Server is running.
In the Port field, enter the IP port of the directory server (for the default
instance of the Apache directory server, this is 10389). Click Next.

FUSE" Message Broker Security Guide Version 5.3 89

Chapter 4. LDAP Authentication Tutorial

Figure 4.1. New LDAP Connection Wizard

f~ New LDAP Connection

Network Parameter

Please enter connection name and network parameters. |

Connection name: | Apache Directory Server |

Network Parameter
Hostname: ‘ - ‘
Port: 10389 v

Encryption method: ‘No encryption v ‘

Warning: The current version doesn't support certificate validation,
be aware of invalid certificates or man-in-the-middle attacks!

Check Networlk P‘arameterl

@ 3ack Next = inis Cancel

5. Enter the parameters for simple authentication. In the Bind DN or user
field, enter the DN of the administrator's account on the directory server
(for the default instance of the Apache directory server, this is
uid=admin, ou=system). In the Bind password field, enter the

administrator's password (for the default instance of the Apache directory
server, the administrator's password is secret). Click Finish.

90 FUSE" Message Broker Security Guide Version 5.3

Tutorial: Add User Entries to the Directory Server

Figure 4.2. Authentication Step of New LDAP Connection

~ New LDAP Connection

Authentication _
Please select an authentification method and input authentification data. L LDAP
Authentication Method

Simple Authentication e ‘
Authentication Parameter
Bind DN or user: | uid=admin,ou=system v ‘
Bind password: | sssses |
SASL Realm:
Save password Check Authemjcaljonl
6] < Back H Next =] L Finish] l Cancel

6. If the connection is successfully established, you should see an outline of
the Directory Information Tree (DIT) in the LDAP Browser view. In the
LDAP Browser view, drill down to the ou=users node, as shown.

FUSE" Message Broker Security Guide Version 5.3 91

Chapter 4. LDAP Authentication Tutorial

% LDAP Browser &2 G|
=% DIT
=-{£1 Root DSE (3)
£ ou=schema
=& ou=system (5)
i uid=admin
& ou=configuration
£ OU=groups
[prefNodeName=sysPrefRoot
a
=4 Searches
LIl Bookmarks

7. Right-click on the ou=users node and select New Entry. The New Entry
wizard appears.

8. In the Entry Creation Method pane, you do not need to change any settings.
Click Next.

9. In the Object Classes pane, select inetorgpPerson from the list of Available

object classes on the left and then click Add to populate the list of Selected
object classes. Click Next.

92 FUSE" Message Broker Security Guide Version 5.3

Tutorial: Add User Entries to the Directory Server

Figure 4.3. New Entry Wizard

= New Entry

Object Classes

Please select object classes of the entry. Select at least one structural
_obectdass.

Available object classes Selected object dlasses

' ' @t inetOrgPerson

@ dynamicobject = E\Eorgr;w:atnnalPerson

@ extensibleObject b G

@ friendhyCountry Atop

Gt groupOfiames

@ groupOfUniqueMames

@t javaClass

@t javaContainer =

&} javaMarshalledObject

@ javaNamingReference
G} javaObject

@ javaSerializedObject

(@t javaStoredProcUnit

Gt javaxScriptStoredProcl
G krbSKDCENtry b

< [»

@ <Back | Next> Finish

10 In the Distinguished Name pane, complete the RDN field, putting uid in
front and jdoe after the equals sign. Click Next.

FUSE" Message Broker Security Guide Version 5.3 93

Chapter 4. LDAP Authentication Tutorial

Figure 4.4. Distinguished Name Step of New Entry Wizard

= New Entry

Distinguished Name

%

Please select the parent of the new entry and enter the RDN.

Parent: ‘ OU=USErs,ou=system

v ‘ [Browse... l

RDN: ' uid

v = | dod

L

DM Preview: | uid=jdoe,ou=users,ou=system

=< Back H Next =

Cancel

1L Now fill in the remaining mandatory attributes in the Attributes pane. Set
the cn (common name) attribute to Jonn Doe and the sn (surname)

attribute to poe. Click Finish.

94 FUSE" Message Broker Security Guide Version 5.3

Tutorial: Add User Entries to the Directory Server

Figure 4.5. Attributes Step of New Entry Wizard

£ New Entry

Attributes B

Please enter the attributes for the entry. Enter at least the MUST

attributes.
DN: uid=jdoe,ou=users,ou=system ey RIS
Attribute Description Value
objectClass inetOrgPerson {(structural)
objectClass organizationalPerson (structural)
objectClass person (structural)
objectClass top (abstract)
cn John Doe
uid jdoe

@ : Finish l [Cancel

12 Add a userpassword attribute to the user entry. In the LDAP Browser
view, you should now be able to see a new node, uid=jdoe. Select the
uid=jdoe node. Now, right-click in the Entry Editor view and select New
Attribute. The New Attribute wizard appears.

13 From the Attribute type drop-down list, select userpPassword. Click Finish.

FUSE" Message Broker Security Guide Version 5.3 95

Chapter 4. LDAP Authentication Tutorial

14 The Password Editor dialog appears. In the Enter New Password field,
enter the password, secret. Click Ok.

15 To add more users, repeat steps 7 to 14.

96 FUSE" Message Broker Security Guide Version 5.3

Tutorial: Enable LDAP Authentication in the Broker and
its Clients

Tutorial: Enable LDAP Authentication in the Broker

and its Clients

Overview

Steps to enable LDAP
authentication

This section describes how to configure LDAP authentication in the broker,
so that it can authenticate incoming credentials based on user entries stored
in the X.500 directory server. The tutorial concludes by showing how to
program credentials in Java clients and by running an end-to-end
demonstration using the consumer and producer tools.

Perform the following steps to enable LDAP authentication:

1. Create the login configuration file. Using a text editor, create the file,
login.conf under the directory, $ACTIVEMO HOME/conf. Paste the

following text into the 1ogin.conf file:

LDAPLogin {
org.apache.activemg.jaas.LDAPLoginModule required
debug=true
initialContextFactory=com.sun.jndi.ldap.LdapCtxFact
ory
connectionURL="1dap://localhost:10389"
connectionUsername="uid=admin, ou=system"
connectionPassword=secret
connectionProtocol=""
authentication=simple
userBase="ou=users,ou=system"
userSearchMatching=" (uid={0})"
userSearchSubtree=false
roleSearchMatching=" (uid={1})"

’

}i

Where these settings assume that the broker connects to a default instance
of the Apache Directory Server running on the local host. The account with
username, uid=admin, ou=system, and password, secret, is the default
administration account created by the Apache server.

2. Add the LDAP authentication plug-in to the broker configuration. Open the

broker configuration file, SACTIVEMQ HOME/conf/activemg.xml, with a
text editor and add the jaasauthenticationPlugin element, as follows:

FUSE" Message Broker Security Guide Version 5.3 97

Chapter 4. LDAP Authentication Tutorial

98

<beans>
<broker ...>

<plugins>
<jaasAuthenticationPlugin configuration="LDAPLogin"
/>
</plugins>
</broker>
</beans>

The value of the configuration attribute, LbaPLogin, references the login
entry from the 1ogin.conf file.

. Comment out the mediation router elements in the broker configuration.

Open the broker configuration file and comment out the camelContext
element as follows:

<beans>
<broker ...>

</broker>
€l==

<camelContext>

</camelContext>
-—>
</beans>
The Camel route is not used in the current tutorial. If you left it enabled,

you would have to supply it with appropriate username/password
credentials, because it acts as a broker client.

. Add username/password credentials to the consumer tool. Edit the file,

example/src/ConsumerTool.java, Search for the line that creates a
new ActiveMQConnectionFactory instance, and just before this line,

set the credentials, user and password, as shown:

// Java

public void run() {
user = "jdoe";
password = "secret";

ActiveMQConnectionFactory connectionFactory = new ActiveM

FUSE" Message Broker Security Guide Version 5.3

Tutorial: Enable LDAP Authentication in the Broker and
its Clients

QConnectionFactory (user, password, url);

}

5. Add username/password credentials to the producer tool. Edit the file,
example/src/ProducerTool.java, search for the line that creates a

new ActiveMQConnectionFactory instance, and just before this line,
set the credentials, user and password, just as you did for the consumer
tool.

6. Ensure that the X.500 directory server is running. If necessary, manually

restart the X.500 directory server. If the server is not running, all broker
connections will fail.

7. Run the broker. Open a new command prompt and start the broker by
entering the following command:

activemg

8. Run the consumer client. Open a new command prompt, change directory
to example and enter the following Ant command:

ant consumer -Durl=tcp://localhost:61616 -Dmax=100

9. Run the producer client. Open a new command prompt, change directory
to example and enter the following Ant command:

ant producer -Durl=tcp://localhost:61616

10 Perform a negative test. Edit one of the client source files (for example,
ConsumerTool.java) and change the credentials (username and

password) to some invalid values. Now, if you re-run the client, you will
get an authentication error.

FUSE" Message Broker Security Guide Version 5.3 99

100 FUSE" Message Broker Security Guide Version 5.3

Appendix A. ASN.1 and Distinguished
Names

The OSI Abstract Syntax Notation One (ASN.1) and X.500 Distinguished Names play an important role in the
security standards that define X.509 certificates and LDAP directories.

AN . L e 102
DistinGUISNE NAIMES ... euiee e et ettt et et e 103

FUSE" Message Broker Security Guide Version 5.3 101

ASN.1

Overview

BER

DER

References

102

The Abstract Syntax Notation One (ASN.1) was defined by the OSI standards
body in the early 1980s to provide a way of defining data types and structures
that are independent of any particular machine hardware or programming
language. In many ways, ASN.1 can be considered a forerunner of modern
interface definition languages, such as the OMG’s IDL and WSDL, which are
concerned with defining platform-independent data types.

ASN.1 is important, because it is widely used in the definition of standards
(for example, SNMP, X.509, and LDAP). In particular, ASN.1 is ubiquitous
in the field of security standards—the formal definitions of X.509 certificates
and distinguished names are described using ASN.1 syntax. You do not require
detailed knowledge of ASN.1 syntax to use these security standards, but you
need to be aware that ASN.1 is used for the basic definitions of most
security-related data types.

The OSlI's Basic Encoding Rules (BER) define how to translate an ASN.1 data
type into a sequence of octets (binary representation). The role played by BER
with respect to ASN.1 is, therefore, similar to the role played by GIOP with
respect to the OMG IDL.

The OSI's Distinguished Encoding Rules (DER) are a specialization of the
BER. The DER consists of the BER plus some additional rules to ensure that
the encoding is unique (BER encodings are not).

You can read more about ASN.1 in the following standards documents:
¢ ASN.1 is defined in X.208.

* BER is defined in X.209.

FUSE" Message Broker Security Guide Version 5.3

Distinguished Names

Overview

String representation of DN

DN string example

Structure of a DN string

Historically, distinguished names (DN) are defined as the primary keys in an
X.500 directory structure. However, DNs have come to be used in many other
contexts as general purpose identifiers. In FUSE Services Framework, DNs
occur in the following contexts:

* X.509 certificates—for example, one of the DNs in a certificate identifies
the owner of the certificate (the security principal).

* LDAP—DNs are used to locate objects in an LDAP directory tree.

Although a DN is formally defined in ASN.1, there is also an LDAP standard
that defines a UTF-8 string representation of a DN (see Rrc 2253). The string
representation provides a convenient basis for describing the structure of a
DN.

,'] Note

The string representation of a DN does not provide a unique
representation of DER-encoded DN. Hence, a DN that is converted
from string format back to DER format does not always recover the
original DER encoding.

The following string is a typical example of a DN:

C=US, O0=IONA Technologies,OU=Engineering,CN=A. N. Other

A DN string is built up from the following basic elements:
* OID.
o Attribute Types .

* AVA.

FUSE" Message Broker Security Guide Version 5.3 103

oID

Attribute types

AVA

104

* RDN .

An OBJECT IDENTIFIER (OID) is a sequence of bytes that uniquely identifies
a grammatical construct in ASN.1.

The variety of attribute types that can appear in a DN is theoretically
open-ended, but in practice only a small subset of attribute types are used.
Table A.1 on page 104 shows a selection of the attribute types that you are
most likely to encounter:

Table A.1. Commonly Used Attribute Types

String X.500 Attribute Type |[Size of Data|Equivalent OID
Representation

C countryName 2 2.5.4.6
0 organizationName 1...64 2.5.4.10
ou organizationalUnitName|1...64 2.54.11
CN commonName 1...64 2543
ST stateOrProvinceName |1...64 2.5.4.8
L localityName 1...64 2.5.4.7
STREET streetAddress

DC domainComponent

uiD userid

An attribute value assertion (AVA) assigns an attribute value to an attribute
type. In the string representation, it has the following syntax:

<attr-type>=<attr-value>

For example:

CN=A. N. Other

Alternatively, you can use the equivalent OID to identify the attribute type in
the string representation (see Table A.1 on page 104). For example:

FUSE" Message Broker Security Guide Version 5.3

2.5.4.3=A. N. Other

RDN A relative distinguished name (RDN) represents a single node of a DN (the
bit that appears between the commas in the string representation). Technically,
an RDN might contain more than one AVA (it is formally defined as a set of
AVAs). However, this almost never occurs in practice. In the string
representation, an RDN has the following syntax:

<attr-type>=<attr-value>[+<attr-type>=<attr-value> ...]

Here is an example of a (very unlikely) multiple-value RDN:

OU=Engl+0U=Eng2+0U=Eng3

Here is an example of a single-value RDN:

OU=Engineering

FUSE" Message Broker Security Guide Version 5.3 105

106 FUSE" Message Broker Security Guide Version 5.3

Appendix B. Licenses

This appendix contains the text of licenses that are relevant to FUSE Services Framework.

OPENSSL LICBNSE . .uitititit ittt e e et ettt e e e e e 108

FUSE" Message Broker Security Guide Version 5.3 107

OpenSSL License

The licence agreement for using the OpenSSL command line utility shipped
with FUSE Services Framework SSL/TLS is as follows:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

) —c——==—==—========—==—===—==—===—===—==—===—===—==—==—===—=======c
* Copyright (c) 1998-1999 The OpenSSL Project. All rights reserved.
*

* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

*

*

*

*

* 3. All advertising materials mentioning features or use of this

* software must display the following acknowledgment:

* '"This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl|.org/)"
*
*
*
*
*
*
*
*

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written

108 FUSE" Message Broker Security Guide Version 5.3

permission of the OpenSSL Project.

acknowledgment:
"This product includes software developed by the OpenSSL Project

*

*

* 6. Redistributions of any form whatsoever must retain the following
*

*

* for use in the OpenSSL Toolkit (http://www.openssl.org/)"

*

* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS" AND ANY

* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR

* |ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

* OF THE POSSIBILITY OF SUCH DAMAGE.

* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).

*

*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

* All rights reserved.

*

* This package is an SSL implementation written

* by Eric Young (eay@cryptsoft.com).

* The implementation was written so as to conform with Netscapes SSL.
*

* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions

* apply to all code found in this distribution, be it the RC4, RSA,

* |hash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).

*

FUSE" Message Broker Security Guide Version 5.3 109

* Copyright remains Eric Young's, and as such any Copyright notices in

* the code are not to be removed.

* |If this package is used in a product, Eric Young should be given attribution

* as the author of the parts of the library used.

* This can be in the form of a textual message at program startup or

* in documentation (online or textual) provided with the package.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software

* must display the following acknowledgement:

* '"This product includes cryptographic software written by

* Eric Young (eay@cryptsoft.com)"

* The word 'cryptographic' can be left out if the rouines from the library

* being used are not cryptographic related :-).

* 4. If you include any Windows specific code (or a derivative thereof) from

* the apps directory (application code) you must include an acknowledgement:

* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

*

* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " “AS IS" AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

*

* The licence and distribution terms for any publically available version or

* derivative of this code cannot be changed. i.e. this code cannot simply be

* copied and put under another distribution licence

* [including the GNU Public Licence.]

*/

110 FUSE" Message Broker Security Guide Version 5.3

Index
A

Abstract Syntax Notation One (see ASN.1)
administration

OpenSSL command-line utilities, 45
ASN.1, 34, 101

attribute types, 104

AVA, 104

OID, 104
ASN.1:

RDN, 105
attribute value assertion, 104
AVA, 104

B

Basic Encoding Rules (see BER)
BER, 102

C

CA, 34
choosing a host, 39
commercial CAs, 38
index file, 47
list of trusted, 40
multiple CAs, 40
private CAs, 39
private key, creating, 48
security precautions, 39
self-signed, 48
serial file, 47

CA, setting up, 46

CAs, 46

certificate signing request, 51
signing, b1

certificates
chaining, 40
peer, 40
public key, 34
self-signed, 40, 48
signing, 34, 51

FUSE" Message Broker Security Guide Version 5.3

signing request, 51
X.509, 34
chaining of certificates, 40
CSR, 51

D
DER, 102
Distinguished Encoding Rules (see DER)
distinguished names
definition, 103
DN
definition, 103
string representation, 103

index file, 47

M

multiple CAs, 40

(0]

OpenSSL, 39

OpenSSL command-line utilities, 45
P

peer certificate, 40
private key, 48
public keys;, 34

R
RDN, 105

relative distinguished name, 105
root certificate directory, 40

S

self-signed CA, 48
self-signed certificate, 40
serial file, 47

signing certificates, 34
SSLeay, 39

T

trusted CAs, 40

X

X.500, 101
X.509 certificate
definition, 34

112

FUSE" Message Broker Security Guide Version 5.3

	Security Guide
	Table of Contents
	Chapter 1. SSL/TLS Security
	Introduction to SSL/TLS
	Secure Transport Protocols
	Java Keystores
	How to Use X.509 Certificates
	Configuring JSSE System Properties
	Setting Security Context for the Openwire/SSL Protocol
	SSL/TLS Tutorial

	Chapter 2. Managing Certificates
	What is an X.509 Certificate?
	Certification Authorities
	Choice of CAs
	Commercial Certification Authorities
	Private Certification Authorities

	Certificate Chaining
	Special Requirements on HTTPS Certificates
	Creating Your Own Certificates
	Prerequisites
	Set Up Your Own CA
	Use the CA to Create Signed Certificates in a Java Keystore
	Adding Trusted CAs to a Java Trust Store

	Chapter 3. Authentication and Authorization
	Programming Client Credentials
	Configuring Credentials for Broker Components
	Simple Authentication Plug-In
	JAAS Authentication
	Introduction to JAAS
	JAAS Simple Authentication Plug-In
	JAAS Certificate Authentication Plug-In
	JAAS LDAP Authentication Plug-In

	Broker-to-Broker Authentication
	Authorization Plug-In
	Programming Message-Level Authorization

	Chapter 4. LDAP Authentication Tutorial
	Tutorial Overview
	Tutorial: Install a Directory Server and Browser
	Tutorial: Add User Entries to the Directory Server
	Tutorial: Enable LDAP Authentication in the Broker and its Clients

	Appendix A. ASN.1 and Distinguished Names
	ASN.1
	Distinguished Names

	Appendix B. Licenses
	OpenSSL License

	Index

