Progress

FUSE

FUSE" Services Framework

Getting Started Developing Services
[DRAFT]

SOFTWARE

Getting Started Developing Services

Publication date 17 Jul 2009
Copyright © 2001-2009 Progress Software Corporation and/or its subsidiaries or affiliates.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix;, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of Progress Software Corporation. No third-party intellectual
property right liability is assumed with respect to the use of the information contained herein. Progress Software Corporation
assumes no responsibility for errors or omissions contained in this publication. This publication and features described herein
are subject to change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents

1. Introduction to FUSE Services Frameworkcciiiiiiiiiiiiiiiiriisinse s s sse s s s s s s sesnnnsnss 9
2. Developing Web SerVICESiuiiiiiiiiiii i ra s s s e e s e s s e s s s s s rarnsnsnsnsnnan 15
3. Developing RESTIUl SEIVICEScuiiiiiiiiiiiiiiiiiiiiir s rr st s s s s s s s sn s sasasnsnsnsnsnsnnan 19
4. Developing Services in JavaSCHiptccociiiiiiiiiii s 23
5. Running the FUSE Services Framework Samplescccvieiiiiiiiiiiiiicicrc s s e s s s s n e n e 25
Before RUNNING the SamMPIESuiui e e 26
WSDL-first JAX-WS Service Developmentcoeiiiiiiiiiii e 29
Java-First JAX-WS Service Development ... 39
JAX-RS Service DEVEIOPMENTt 44
LT L] =] o PP 51
T 1= P 53

FUSE" Services Framework Getting Started Developing Services 3

FUSE" Services Framework Getting Started Developing Services

List of Figures

1.1. FUSE Services Framework service development options

FUSE" Services Framework Getting Started Developing Services

FUSE" Services Framework Getting Started Developing Services

List of Examples

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.

WSDL-First Sample: hello_world.wsdlcccovviiiiiiiininn. 29
Schema Validation on the Clientcocooiiiiiiiin 34
Schema Validation on the Server Endpointcoooviiiiiiiineni. 34
Java-First Sample: hello_world.javac..cooeiiiiiininans 42
Java-First Sample: client.javacooovviiiiiiii, 43
JAX-RS Sample: Client.javacccoeoviiiiiiiiiiie e 48
JAX-RS Sample: SErver.javac.covvveeinieiiieiiiaeieeeeeen 49

FUSE" Services Framework Getting Started Developing Services 7

FUSE" Services Framework Getting Started Developing Services

Chapter 1. Introduction to FUSE
Services Framework

Overview

Features

! http://cxf.apache.org/

FUSE Services Framework is an open source services framework based on
Apache CXF'. FUSE Services Framework provides a small footprint engine
for creating reusable services as part of a integration solution. You can use
FUSE Services Framework to service-enable new and legacy applications in
an enterprise integration infrastructure.

With FUSE Services Framework you can build and develop services using a
variety of container servers, languages, messaging systems, and protocols.
The flexible deployment model of FUSE Services Framework supports
standalone deployment and deployment in lightweight containers such as
Apache Tomcat, FUSE ESB, Spring-based, and J2EE.

Key features of FUSE Services Framework include the following:

* Support for web services standards — FUSE Services Framework supports
a variety of web service standards including SOAP, WSDL, WS-Addressing,
WS-Policy, WS-ReliableMessaging, and WS-Security.

* Support for various front ends — FUSE Services Framework supports a
variety of front end programming options, including JAX-WS web services
and RESTful services, and implements the JAX-WS and JAX-RS APIs. FUSE
Services Framework supports both contract first development with WSDL
and code first development starting from Java.

* Support for binary and legacy protocols — FUSE Services Framework
supports multiple protocols including SOAP, XML, HTTP, and RESTful
HTTP, and works over a variety of transports such as HTTP/S and JMS.
FUSE Services Framework provides a pluggable architecture that supports
both XML and non-XML type bindings, such as JSON and CORBA, in
combination with any type of transport.

* Ease of use — FUSE Services Framework provides simple APIs to quickly
build code-first services, Maven plug-ins to make tooling integration easy,
JAX-WS and JAX-RS API support, and Spring 2.0 XML for easy
configuration.

FUSE" Services Framework Getting Started Developing Services 9

http://cxf.apache.org/
http://cxf.apache.org/

Chapter 1. Introduction to FUSE Services Framework

Figure 1.1 summarizes the options that FUSE Services Framework supports
for your front ends, data bindings, messages bindings, and transports:

Figure 1.1. FUSE Services Framework service development options

------------- JAXWS JavaScript JAXRS
------------- A JSON

------------- o - CORBA
------------ H_I_?gg‘fjms HW)IE'NcI»IF{JMS coRA

FUSE Integration Designer

FUSE Integration Designer is an Eclipse based development environment you
can use to create web services based on FUSE Services Framework. FUSE
Integration Designer includes a wizard to assist you in:

* Creating a new web service
» Configuring a web service for deployment
* Deploying a web service to a server

When your web service is deployed, the wizard assists you in generating the
client proxy and a sample application to test the web service. When you have
completed testing, you can publish your web service to a UDDI business
registry using an export wizard.

See the Fuse Integration Designer 2 product web page for information about
installing and working with FUSE Integration Designer.

2 http://fusesource.com/products/fuse-integration-designer/

10

FUSE" Services Framework Getting Started Developing Services

http://fusesource.com/products/fuse-integration-designer/
http://fusesource.com/products/fuse-integration-designer/

Front end options

Supported data bindings

Front ends provide a programming model to interact with FUSE Services
Framework. A front end provides functionality through interceptors that are
added to services and endpoints.

FUSE Services Framework enables you to create your front end using any of
the following options:

* JAX-WS — Develop your services using either a Java-first or WSDL-first
development approach.

» See "Developing Web Services" on page 15 for information.

* See "WSDL-first JAX-WS Service Development" on page 29 and
"Java-First JAX-WS Service Development" on page 39 for samples that
use this development approach.

* JAX-RS — Develop RESTful services using the JAX-RS APIs.
* See "Developing RESTful Services" on page 19 for information.

* See "WSDL-first JAX-WS Service Development" on page 29 for a sample
that uses this development approach.

» JavaScript — Write your services in JavaScript, using FUSE Services
Framework code generation tools to produce proxy code and support classes.

» See "Developing Services in JavaScript' on page 23 for information.

Data bindings implement the mapping between XML and Java by converting
data to and from XML. Data bindings can also produce XML schema and
provide support for wsdl2java code generation, although not all data bindings
support all of this functionality.

In FUSE Services Framework, data binding components are responsible for
mapping between XML and Java objects. Each data binding implements a
particular discipline for mapping, such as JAXB or XML Beans.

There are three parts to a data binding:
* Mapping the live data as it comes into and out of services

* Providing XML schema based on Java objects for dynamic ?wsdl URLs and
java2ws

FUSE" Services Framework Getting Started Developing Services 11

Chapter 1. Introduction to FUSE Services Framework

Supported message bindings

12

* Generating Java code from WSDL for wsdl2java and dynamic clients

All data bindings provide the live data mapping. The other two parts are
optional.

Your choice of data binding is determined by the front end programming
option you use. FUSE Services Framework supports multiple data bindings,
including:

* JAXB — The default data binding, used with JAX-WS front ends. See
"JAXB data bindings" on page 17.

* JSON — Used with JAX-RS and JavaScript front ends. See "JSON data
bindings" on page 20.

See "Basic Data Binding Concepts" in Developing Applications Using JAX-WS
for information about using data bindings with FUSE Services Framework.

Message bindings map a service's messages to a particular protocol. FUSE
Services Framework supports the following message bindings:

* SOAP — This is the default binding. It maps messages to SOAP and can
be used with the various WS-* modules inside FUSE Services Framework.

* XML — The pure XML binding avoids serialization of a SOAP envelope and
just sends a raw XML message.

* HTTP — Maps a service to HTTP using RESTful semantics.

* CORBA — Maps messages from CORBA services. CORBA bindings are
described using a variety of WSDL extensibility elements within the WSDL
binding element. In most cases, the CORBA binding description is generated
automatically using the wsdl2corba utility. Usually, it is unnecessary to
modify generated CORBA bindings.

See Bindings in Using the Bindings and Transports for information about
using message bindings with FUSE Services Framework.

FUSE" Services Framework Getting Started Developing Services

http://fusesource.com/docs/framework/2.2/jaxws/jaxws.pdf
http://fusesource.com/docs/framework/2.2/bind_trans/bind_trans.pdf

Supported transports

Deploying services

Getting started

FUSE Services Framework uses a transport abstraction layer to hide
transport-specific details from the binding and front end layers. FUSE Services
Framework supports SOAP or XML over HTTP or JMS, and CORBA transports.

See Transports in Using the Bindings and Transports for information about
using transports with FUSE Services Framework.

You can deploy services developed with FUSE Services Framework to the
following containers:

* 0OSGi — Once installed in an OSGi container, applications can use many
of the advanced FUSE features.

* Spring — You can deploy any Spring-based application into a Spring
container, including a FUSE Services Framework service endpoint.

* Servlet — You can deploy and run a FUSE Services Framework endpoint
in any servlet container.

See Configuring and Deploying Endpoints for information about these service
deployment options.

"Running the FUSE Services Framework Samples" on page 25 describes
some of the samples available to help you get started developing services
with FUSE Services Framework:

* "WSDL-first JAX-WS Service Development" on page 29 describes a sample
web service developed with a WSDL-first approach. This sample includes
a configuration file that enables schema validation.

* "Java-First JAX-WS Service Development" on page 39 describes a sample
web service developed with a Java-first approach.

¢ "JAX-RS Service Development" on page 44 describes a sample RESTful
service developed with JAX-RS.

FUSE" Services Framework Getting Started Developing Services 13

http://fusesource.com/docs/framework/2.2/bind_trans/bind_trans.pdf
http://fusesource.com/docs/framework/2.2/deploy_guide/deploy_guide.pdf

14

FUSE" Services Framework Getting Started Developing Services

Chapter 2. Developing Web Services

Overview

Java-first development with
JAX-WS

With FUSE Services Framework you can develop your web services with
JAX-WS using either a Java-first or WSDL-first approach to development:

» Java-first — Considered easier to create and favored for tactical integrations.
Java-first services use Java annotations in the code. WSDL and XSD artifacts
are generated on-the-fly. See "Java-first development with JAX-WS" for
more information.

* WSDL-first — Preferred for strategic service-oriented architecture (SOA).
WSDL-first services tend to be modular, platform agnostic, and have better
attention to versioning. See "WSDL-first development with JAX-WS" for
more information.

Service-oriented design abstracts data into a common exchange format,
typically an XML grammar defined in XML Schema. The JAX-WS specification
calls for XML Schema types to be marshaled into Java objects, in accordance
with the Java Architecture for XML Binding (JAXB) specification. JAXB defines
bindings for mapping between XML Schema constructs and Java objects, and
defines rules for how to marshal the data. It also defines an extensive
customization framework for controlling how data is handled. See "JAXB data
bindings" on page 17 for more information.

You can develop your services from Java code using the JAX-WS APls,
bypassing the WSDL contract. The code can be a class, or classes, from a
legacy application that is being upgraded. It can also be a class that is
currently used as part of a non-distributed application with features that you
want to use in a distributed manner. To use the class, you annotate the Java
code and generate a WSDL document from the annotated code. If you do not
want to work with WSDL at all, you can create the entire application without
ever generating WSDL.

You might have Java code that already implements a set of functionality that
you want to expose as part of a service oriented application, or you might
want to avoid using WSDL to define your interface. Using JAX-WS annotations,
you can add the information required to service enable a Java class. You can
also create a Service Endpoint Interface (SEI) that can be used in place of a
WSDL contract. If you want a WSDL contract, FUSE Services Framework
provides tools to generate a contract from annotated Java code.

FUSE" Services Framework Getting Started Developing Services 15

Chapter 2. Developing Web Services

See the following references for more information:

» "Java-First JAX-WS Service Development" on page 39 explains how to
work with a sample using Java-first service development.

* Developing Applications Using JAX-WS provides information about
Java-first front end programming using JAX-WS.

* Tool Reference describes the code generation tools available with FUSE
Services Framework, including the java2ws tool.

* The use case "Creating and Hosting a Web Service" in the Logisticx Tutorial
Guide ! examines sample code that uses notations and an SEI in place of
a WSDL contract.

WSDL-first development with Another way to develop services is to start with a WSDL contract. The WSDL

JAX-WS contract provides an implementation-neutral way of defining the operations
a service exposes and the data that is exchanged with the service. FUSE
Services Framework provides tools to generate JAX-WS annotated code from
a WSDL contract. The code generators create all of the classes necessary to
implement any abstract data types defined in the contract.

In the top-down method of developing a service provider, you start from a
WSDL document that defines the operations and methods the service provider
will implement. Using the WSDL document, you generate starting point code
for the service provider. Adding the business logic to the generated code is
done using Java programming APIs.

See the following references for more information:

* "WSDL-first JAX-WS Service Development" on page 29 explains how to
work with a sample using WSDL-first service development.

» Developing Applications Using JAX-WS provides information about
WSDL-first front end programming using JAX-WS.

» Tool Reference describes the code generation tools available with FUSE
Services Framework, including wsdl2java and wsdI2js tools.

! http://fusesource.com/docs/logistix/index.html

16 FUSE" Services Framework Getting Started Developing Services

http://fusesource.com/docs/framework/2.2/jaxws/jaxws.pdf
http://fusesource.com/docs/framework/2.2/command_ref/command_ref.pdf
http://fusesource.com/docs/logistix/index.html
http://fusesource.com/docs/logistix/index.html
http://fusesource.com/docs/framework/2.2/jaxws/jaxws.pdf
http://fusesource.com/docs/framework/2.2/command_ref/command_ref.pdf
http://fusesource.com/docs/logistix/index.html

JAXB data bindings

Transports

You use Java Architecture for XML Binding (JAXB) data bindings with JAX-WS
front ends. JAXB is the default data binding for FUSE Services Framework.
If you do not specify different data bindings, you will automatically get JAXB
data bindings.

JAXB enables you to store and retrieve data in memory in any XML format,
without the need to implement a specific set of XML loading and saving
routines for the program's class structure. JAXB allows you to map Java classes
to XML representations, enabling you to:

¢ Marshal Java objects into XML
e Unmarshal XML back into Java objects

JAXB is particularly useful when your service specification is complex and
changing. Regularly changing the XML Schema definitions to keep them
synchronized with the Java definitions can be time consuming and error prone.

JAXB uses Java annotation combined with files found on the classpath to
build the mapping between XML and Java. JAXB supports both code-first and
schema-first programming. Schema-first programming supports the ability to
create a client proxy, dynamically, at runtime.

See the following references for information about JAXB data bindings:

* "Basic Data Binding Concepts" in Developing Applications Using JAX-WS
provides information about using data bindings with FUSE Services
Framework.

« JAXB section® of the Apache CXF User's Guide® provides additional
information about JAXB data bindings.

HTTP is the underlying transport for the web. It provides a standardized,
robust, and flexible platform for communicating between endpoints. Because
of these factors it is the assumed transport for most WS-* specifications.

See Using the Bindings and Transports for information about using transports
with FUSE Services Framework.

2 http://cwiki.apache.org/CXF20DOC/jaxb.html
s http://cwiki.apache.org/CXF20DOC/index.html

FUSE" Services Framework Getting Started Developing Services 17

http://fusesource.com/docs/framework/2.2/jaxws/jaxws.pdf
http://cwiki.apache.org/CXF20DOC/jaxb.html
http://cwiki.apache.org/CXF20DOC/index.html
http://fusesource.com/docs/framework/2.2/bind_trans/bind_trans.pdf
http://cwiki.apache.org/CXF20DOC/jaxb.html
http://cwiki.apache.org/CXF20DOC/index.html

18

FUSE" Services Framework Getting Started Developing Services

Chapter 3. Developing RESTful Services

RESTful services

JAX-RS front end development

The Representational State Transfer (REST) architectural style has a stateless
client-server architecture in which web services are treated as resources that
can be identified by their URLs. Web service clients can access these resources
using a small set of remote methods that describe the action to be performed
on the resource. REST style systems can take full advantage of the scalability
features of HTTP such as caching and proxies.

In REST, servers expose resources using a URI, and clients access these
resources using the four HTTP verbs (GET, POST, PUT, and DELETE). As
clients receive representations of a resource, they are placed in a state. When
they access a new resource, typically by following a link, they change, or
transition, their state.

REST systems are highly scalable and highly flexible. With REST systems,
clients are less affected by changes to servers because:

* Resources are accessed and manipulated using the four HTTP verbs
* Resources are exposed using a URI
* Resources are represented using standard grammars

The existing web architecture is an example of a system designed on REST

principles. Web browsers act as clients accessing resources hosted on Web

servers. The resources are represented using HTML or XML grammars that

all Web browsers can consume. The browsers can also easily follow the links
to new resources.

FUSE Services Framework supports JAX-RS (JSR-311), the Java API for
RESTful Web Services according to the REST architectural style. JAX-RS
provides a standard way to build RESTful services in Java, using annotations
to simplify the development and deployment of web service clients and
endpoints.

FUSE" Services Framework Getting Started Developing Services 19

Chapter 3. Developing RESTful Services

JSON data bindings

! http://jcp.org/en/jsr/detail?id=311
2 http://json.org/

Some features of using JAX-RS to develop RESTful services are:

* The URI bindings are local to the resource beans, which can be arbitrarily
nested. This feature simplifies refactoring.

* The loose coupling between the objects returned by the resource methods
and providers is clean, making it easy to drop in support for new
representations without changing the code of your resource beans (or
controllers). Instead, you can just modify an annotation.

« Static typing can be useful when binding URIs and parameters to your
controller, for example, having parameters and String, integer, and Date
fields prevents you from having to explicitly convert things in your controller.

See the following references for more information:

* "JAX-RS Service Development" on page 44 explains how to work with a
sample using JAX-RS service development.

* Developing RESTful Services provides information about JAX-RS front end
programming.

* The Java web site for the JAX-RS specification1 provides information about
the Java API for RESTful Web Services.

You use JavaScript Object Notation (JSON) bindings with JAX-RS front ends.
JSON is a lightweight data format for data exchange. It is a text-based,
human-readable format for representing simple data structures and associative
arrays (called objects).

An advantage of JSON is that is very easy for JavaScript developers to use,
because once it is evaluated it immediately becomes a JavaScript object.
JSON is supported through Jettison, a StAX implementation that reads and
writes JSON. Jettison intercepts calls to read/write XML and instead read/writes
JSON.

For information about using JSON data bindings, see the JSON web site? and
the JSON section® of the Apache CXF User's Guide*.

3 http://cwiki.apache.org/CXF20DOC/json-support.html
4 http://cwiki.apache.org/CXF20DOC/index.html

20

FUSE" Services Framework Getting Started Developing Services

http://fusesource.com/docs/framework/2.2/rest/rest.pdf
http://jcp.org/en/jsr/detail?id=311
http://json.org/
http://cwiki.apache.org/CXF20DOC/json-support.html
http://cwiki.apache.org/CXF20DOC/index.html
http://jcp.org/en/jsr/detail?id=311
http://json.org/
http://cwiki.apache.org/CXF20DOC/json-support.html
http://cwiki.apache.org/CXF20DOC/index.html

HTTP is the underlying transport for the Web. It provides a standardized,
robust, and flexible platform for communicating between endpoints. Because
of these factors it is integral to RESTful architectures. See Using the Bindings
and Transports for information about using transports with FUSE Services

Framework.

Transports

FUSE" Services Framework Getting Started Developing Services

21

http://fusesource.com/docs/framework/2.2/bind_trans/bind_trans.pdf
http://fusesource.com/docs/framework/2.2/bind_trans/bind_trans.pdf

22

FUSE" Services Framework Getting Started Developing Services

Chapter 4.
JavaScript

Overview

Service development

FUSE Services Framework code
generation tools

Developing Services in

JavaScript is a popular dynamic and lightweight programming language that
enables developers to quickly create functionality that runs on a large number
of platforms. FUSE Services Framework supports both services and clients
in JavaScript. FUSE Services Framework embeds Rhino, which provides a
friendly programming environment for JavaScript implementations of services.
FUSE Services Framework also provides a generator that produces clients for
web services with SOAP bindings.

The pattern used to develop services written in JavaScript is similar to JAX-WS
provider implementations that handle requests and responses (either SOAP
messages or SOAP payloads) as DOM documents.

Writing a service in JavaScript requires that you define the JAX-WS style
metadata and implement the service's business logic. Java providers typically
use Java annotations to specify JAX-WS metadata. Since JavaScript does not
support annotations, you use ordinary JavaScript variables to specify metadata
for JavaScript implementations. FUSE Services Framework treats any
JavaScript variable in your code whose name equals or begins with
WebServiceProvider as a JAX-WS metadata variable.

FUSE Services Framework provides tools for writing service consumers in
JavaScript. These tools enable you to generate code from existing applications
and download JavaScript from FUSE Services Framework-based services.
JavaScript client-side support allows you to create JavaScript service
consumers that can communicate natively with SOAP/HTTP service providers.
The code generators produce proxy code and support classes for
communicating directly with a service provider. Using the generated code,
you can use JavaScript to build web applications that access the back end
services. The consumers use asynchronous communication to access the
services, making interaction as smooth as possible.

FUSE" Services Framework Getting Started Developing Services 23

Chapter 4. Developing Services in JavaScript

24

See the following references for more information:

Developing Applications with JavaScript provides information about
JavaScript front end programming.

Tool Reference describes the code generation tools available with FUSE
Services Framework.

"Basic Data Binding Concepts" in Developing Applications Using JAX-WS
provides information about using data bindings with FUSE Services
Framework, including the wsdl2js tool.

Bindings in Using the Bindings and Transports provides information about
using message bindings with FUSE Services Framework.

Using the Bindings and Transports provides information about using
transports with FUSE Services Framework.

FUSE" Services Framework Getting Started Developing Services

http://fusesource.com/docs/framework/2.2/javascript/javascript.pdf
http://fusesource.com/docs/framework/2.2/command_ref/command_ref.pdf
http://fusesource.com/docs/framework/2.2/jaxws/jaxws.pdf
http://fusesource.com/docs/framework/2.2/bind_trans/bind_trans.pdf
http://fusesource.com/docs/framework/2.2/bind_trans/bind_trans.pdf

Chapter 5. Running the FUSE Services
Framework Samples

The following sections describe how to set up your environment and run the WSDL-first, Java-first, and JSX-RS
service development samples provided with FUSE Services Framework.

Before RUNNING the SamIPIES ... e 26
WSDL-first JAX-WS Service DevelopmMENtou i 29
Java-First JAX-WS Service DeVEIOPMENTt 39
JAX-RS Service DeVEIOPIMENTttt e et 44

FUSE" Services Framework Getting Started Developing Services 25

Chapter 5. Running the FUSE Services Framework
Samples

Before Running the Samples

Overview The following sections summarize the required software and setup steps for
working with the FUSE Services Framework samples. Refer to the Installing
FUSE Services Framework’ for detailed installation and setup instructions.

Requirements To work with the FUSE Services Framework samples as described in the
following sections, you must have an active internet connection. These
instructions use the Maven build engine, which connects to one or more
Maven repositories on the internet to download JAR files that are determined
to be dependencies of the current build.

If you prefer to run the samples using Apache Ant, wsdl2java, javac, or java,
see the ReadMe files for each sample for instructions. Also see the top level
ReadMe file in the install dir\samples directory for additional setup
requirements common to all the samples.

To work with the FUSE Services Framework samples, you must have the
following software installed:

* FUSE ESB 3.3.0.6 or higher — See "Installing FUSE ESB" .

* FUSE Services Framework 2.2 or higher — See "Installing FUSE Services
Framework" .

* Apache Maven 2.0.6 or higher — See "Installing and setting up Maven" .

« A Java 5 or Java 6 JDK — See the Sun Java Downloads® web site for the
downloadable files and installation instructions.

Refer to Installing FUSE Services Framework® for detailed instructions on
installing and setting up the required software.

L http://fusesource.com/docs/framework/2.1/install_guide/install_guide.pdf
http://java.sun.com/javase/downloads/index.jsp
3 http://fusesource.com/docs/framework/2.1/install_guide/install_guide.pdf

26 FUSE" Services Framework Getting Started Developing Services

http://fusesource.com/docs/framework/2.1/install_guide/install_guide.pdf
http://fusesource.com/docs/framework/2.1/install_guide/install_guide.pdf
http://java.sun.com/javase/downloads/index.jsp
http://fusesource.com/docs/framework/2.1/install_guide/install_guide.pdf
http://fusesource.com/docs/framework/2.1/install_guide/install_guide.pdf
http://java.sun.com/javase/downloads/index.jsp
http://fusesource.com/docs/framework/2.1/install_guide/install_guide.pdf

Installing FUSE ESB

Installing FUSE Services
Framework

Installing and setting up Maven

4 http://fusesource.com/downloads

Before Running the Samples

Download FUSE ESB 3.4.x or FUSE ESB 4.0.x from the fusesource®
downloads page.

The instructions for installing your version of FUSE ESB are available at the
FUSE Documentation® web site.

Installing FUSE Services Framework also installs the samp1es directory, which
contains sub-directories for all the samples.

Download FUSE Services Framework 2.x from the fusesource® downloads
page.

The instructions for installing FUSE Services Framework are available at the
FUSE Documentation” web site.

Download and install Maven. See the Apache Maven Project8 web site for
the downloadable files and installation instructions.

After installing Maven, you must change the following settings in your operating
system environment:

1. Setthe Mm2_nOME environment variable to point to the Maven root directory.
2. Add the Maven bin directory to your PATH:
e On Windows: $M2_ HOME%\bin

* On UNIX: $M2_HOME/bin

http://fusesource.com/documentation/fuse-esb-documentation/

http://fusesource.com/downloads
http://fusesource.com/documentation/
http://maven.apache.org/

FUSE" Services Framework Getting Started Developing Services 27

http://fusesource.com/downloads
http://fusesource.com/documentation/fuse-esb-documentation/
http://fusesource.com/downloads
http://fusesource.com/documentation/
http://maven.apache.org/
http://fusesource.com/downloads
http://fusesource.com/documentation/fuse-esb-documentation/
http://fusesource.com/downloads
http://fusesource.com/documentation/
http://maven.apache.org/

Chapter 5. Running the FUSE Services Framework

Samples

About Maven

° http://maven.apache.org/guides/index.html

28

Maven is a project management tool that encompasses a Project Object Model
(POM), a set of standards, a project lifecycle, a dependency management
system, and logic for executing plugin goals at defined phases in a lifecycle.

A POM is an XML file containing information about the project and
configuration details. Configuration information can include project
dependencies, plugins or goals to be executed, project versions, and so on.
Maven uses the configuration information in this file to build the project.

The POMs, along with dependencies that are downloaded and artifacts that
are generated when you run Maven commands, are stored on your system in
a Maven repository. This repository is located:

¢ On Windows, in:
...\Documents and Settings\username\.m2\repository\

e On UNIX, in: .../home/username/.m2/repository/
POMs and generated resources for the FUSE Services Framework samples

are stored in the Maven \repository directory in:
\org\apache\cxf\samples\sample name\1l.0\.

See the Apache Maven documentation® for more information.

FUSE" Services Framework Getting Started Developing Services

http://maven.apache.org/guides/index.html
http://maven.apache.org/guides/index.html

WSDL-first JAX-WS Service Development

WSDL-first JAX-WS Service Development

Overview The WSDL-first JAX-WS sample is a simple Hello World application developed
using the JAX-WS APIs. The sample demonstrates using a WSDLfirst
development approach to:

* Run a simple client against a standalone server using SOAP 1.1 over HTTP

* Configure FUSE Services Framework to enable schema validation on the
client and/or server side

This sample includes a WSDL file that defines the operations and the data
exchanged with the service. When you run this sample, the client and server
applications send greetings back and forth. The client sends one of the
messages with an invalid length string, which causes the server to throw an
exception defined in the WSDL file.

When you enable schema validation, the server and client throw marshaling
and unmarshaling exceptions defined in a configuration file that you add to
your CLASSPATH (see "Enabling schema validation" on page 33).

What happens when you run the The hello world.wsdl file for this sample defines four operations for the
sample service:

Example 5.1. WSDL-First Sample: hello_world.wsdl

<wsdl:portType name="Greeter">
<wsdl:operation name="sayHi">
<wsdl:input message="tns:sayHiRequest" name="sayHiRequest"/>
<wsdl:output message="tns:sayHiResponse" name="sayHiResponse"/>
</wsdl:operation>
<wsdl:operation name="greetMe">
<wsdl:input message="tns:greetMeRequest" name="greetMeRequest"/>
<wsdl:output message="tns:greetMeResponse" name="greetMeResponse"/>
</wsdl:operation>
<wsdl:operation name="greetMeOneWay">
<wsdl:input message="tns:greetMeOneWayRequest" name="greetMeOneWayRequest"/>
</wsdl:operation>
<wsdl:operation name="pingMe">
<wsdl:input name="pingMeRequest" message="tns:pingMeRequest"/>
<wsdl:output name="pingMeResponse" message="tns:pingMeResponse" />
<wsdl:fault name="pingMeFault" message="tns:pingMeFault"/>
</wsdl:operation>
</wsdl:portType>

FUSE" Services Framework Getting Started Developing Services 29

Chapter 5. Running the FUSE Services Framework

Samples

Using Maven

Building and running the sample

30

The client and server do the following when you run the sample:

1. The client invokes sayHi and the server responds.
2. The client invokes greetMe and the server responds.

3. The client invokes greetMe with an invalid length string and expects an
error. The server executes pingMe and throws a PingMeFault exception.

4. The client invokes greetMeOneway and expects no response from the
server.

These instructions use Maven to build and run the sample, using the pom. xm1
file located the base directory of this sample. If you prefer to use wsdl2java,
javac, and java to build and run the sample, see the ReadMe file located in
your install dir\samples\wsdl first directory

See "About Maven" on page 28 and "Installing and setting up Maven"
on page 27 for more information about using Maven with the FUSE Services
Framework samples.

Initially, you will run the sample without using a configuration file. Later you
will add the file, cxf.xm1, to the cLAsSPATH to run the sample with schema
validation.

To build and run the sample:

1. Open a console to the sample directory,
install dir\samples\wsdl first and enter the following command

to build the sample:

mvn install

FUSE" Services Framework Getting Started Developing Services

WSDL-first JAX-WS Service Development

Maven builds the sample and downloads required JAR files to your Maven
repository:

task-segment: [install]

[]
[]
[INFO] Building Unnamed - org.apache.cxf.samples:wsdl first:jar:1.0
[]
[]

[INFO] Installing install dir\samples\wsdl first\target\wsdl first-1.0.jar to
...\.m2\repository\org\apache\cxf\samples\wsdl first\1l.0\wsdl first-1.0.jar
[INFO] mmm = mm e e e e e e e e e e
[INFO] BUILD SUCCESSFUL

[INFO] m = mmmm e e e e e e e e e

2. Enter the following command to start the server:

mvn —-Pserver

When the server is started, the console displays the message server
ready....

3. Open another console at the same location and enter the following
command to start the client:

mvn -Pclient

The client starts and sends a greeting to the server. The client and server
consoles show the messages sent back and forth as the sample runs.

Examining the output The messages appear rapidly in the consoles as the sample runs. When the
messages have all been sent, you can scroll up in the console windows to
observe the following events:

1. The client invokes sayHi, and receives a response from the server:
Client Console

Invoking sayHi...
Server responded with: Bonjour

FUSE" Services Framework Getting Started Developing Services 31

Chapter 5. Running the FUSE Services Framework
Samples

Messages in the server console indicate that the server executes the sayHi
operation:

Server Console

Mar 23, 2009 9:45:57 AM demo.hw.server.GreeterImpl sayHi
INFO: Executing operation sayHi

Executing operation sayHi

2. The client (in this example, Bob) then invokes greetMe and receives a
response from the server:

Client Console
Invoking greetMe...
Server responded with: Hello Bob

Messages in the server console indicate that the server executes the
greetMe operation:

Server Console
demo.hw.server.GreeterImpl greetMe

INFO: Executing operation greetMe

Executing operation greetMe

Message received: Bob

3. The client invokes greetMe with an invalid length string and expects an
exception:

Client Console
Invoking greetMe with invalid length string, expecting excep
tion...

The server executes pingMe and throws a pingMeFault exception:

Server Console

...demo.hw.server.GreeterImpl greetMe

INFO: Executing operation greetMe

Executing operation greetMe

Message received: Invoking greetMe with invalid length string, expecting exception...

...demo.hw.server.GreeterImpl pingMe

INFO: Executing operation pingMe, throwing PingMeFault exception
Executing operation pingMe, throwing PingMeFault exception

32 FUSE" Services Framework Getting Started Developing Services

WSDL-first JAX-WS Service Development

4. The client invokes greetMeOnewWay and gets no response because this is
a one-way operation:

Client Console
Invoking greetMeOneWay. ..
No response from server as method is OneWay

5. The client invokes pingMe and expects an exception:

Client Console

Invoking pingMe, expecting exception...

Expected exception: PingMeFault has occurred: PingMeFault raised by server
FaultDetail major:2

FaultDetail minor:1

The server throws an exception, executes greetMeOnewWay, and exits:

Server Console

...org.apache.cxf.phase.PhaselInterceptorChain doIntercept

INFO: Application has thrown exception, unwinding now: org.apache.hello world soap http.Ping
MeFault:

PingMeFault raised by server

...demo.hw.server.GreeterImpl greetMeOneWay

INFO: Executing operation greetMeOneWay

Executing operation greetMeOneWay

Hello there Bob

To remove the code generated from the WSDL file and the *.c1ass files, run
mvn clean.

Enabling schema validation By default, message parameters are not validated, but you can use a
configuration file to enable message parameter validation. This sample includes
a configuration file, cxf.xm1, that changes the default behavior to enable
schema validation on the client proxy and server endpoint:

* A JAX-WS client proxy created for the port
{http://apache.org/hello world soap http}SoapPort Will have

schema validation enabled.

The cx£ . xm1 configuration file includes the following bean to enable schema
validation on the client:

FUSE" Services Framework Getting Started Developing Services 33

Chapter 5. Running the FUSE Services Framework
Samples

Example 5.2. Schema Validation on the Client

<jaxws:client name="{http://apache.org/hello world soap http}SoapPort"
createdFromAPI="true">
<jaxws:properties>
<entry key="schema-validation-enabled" value="true" />
</jaxws:properties>
</jaxws:client>

* A JAX-WS server endpoint created for the port
{http://apache.org/hello world soap http}SoapPort Will have

schema validation enabled.

The cx£ . xml configuration file includes the following bean to enable schema
validation on the server endpoint:

Example 5.3. Schema Validation on the Server Endpoint

<jaxws:endpoint name="{http://apache.org/hello world soap http}SoapPort"
wsdlLocation="wsdl/hello world.wsdl" createdFromAPI="true">
<jaxws:properties>
<entry key="schema-validation-enabled" value="true" />
</jaxws:properties>
</jaxws:endpoint>

When you run this sample with the cxf.xml configuration file added to the
CLASSPATH, the client's second greetMe invocation causes an exception (a
marshaling error) on the client side. This exception occurs before the request
with the invalid parameter is sent.

You can comment out the definition of the jaxws:client element in the
cxf.xml configuration file, then run the sample again to observe that the
client's second greetmMe invocation still throws an exception. This time the
exception is caused by an unmarshaling error on the server side.

You can comment out both elements, or remove the cxf.xml file from your
CLASSPATH, to restore the default behavior.

Running the sample with schema To run the sample with schema validation.
validation
1. Add cxf.xml to your CLASSPATH environment variable.

2. Start the server and client again. After the sample runs, scroll through the
server and client consoles to observe the messages exchanged.

34 FUSE" Services Framework Getting Started Developing Services

WSDL-first JAX-WS Service Development

This time, when the client invokes greetMe with an invalid length string,
the client catches an WebServiceException before the message is sent,
and generates a marshaling error:

Client Console

Caught expected WebServiceException:

Marshalling Error: cvc-maxlLength-valid: Value 'Invoking greetMe with invalid
length string, expecting exception...' with length = '67' is not facet-valid
with respect to maxLength '30' for type 'MyStringType'.

3. Edit the configuration file to comment out the definition of the
<jaxws:client>. When you run the sample this time, the second greetMe

invocation throws an exception that is caused by an unmarshaling error
on the server side:

Server Console

...org.apache.cxf.phase.PhaselInterceptorChain doIntercept

INFO: Interceptor has thrown exception, unwinding now

org.apache.cxf.interceptor.Fault: Unmarshalling Error: cvc-maxLength-valid:

Value 'Invoking greetMe with invalid length string, expecting exception...' with

length = '67' is not facet-valid with respect to maxLength '30' for type 'MyStringType'.

Caused by: javax.xml.bind.UnmarshalException

- with linked exception:

[org.xml.sax.SAXParseException: cvc-maxLength-valid: Value 'Invoking greetMe with
invalid length string, expecting exception...' with length = '67' is not facet
-valid with respect to maxLength '30' for type 'MyStringType'.]

Messages in the client console show the that the WebServiceException is
caught and an unmarshalling error is generated:

Client Console

Invoking greetMe with invalid length string, expecting exception...

Caught expected WebServiceException:

Unmarshalling Error: cvc-maxLength-valid: Value 'Invoking greetMe with invalid length string,

expecting exception...' with length = '67' is not facet-valid
with respect to maxLength '30' for type 'MyStringType'.

FUSE" Services Framework Getting Started Developing Services 35

Chapter 5. Running the FUSE Services Framework

Samples

Understanding the sample

36

4. Edit the configuration file to comment out both the <jaxws:client> and
<jaxws:endpoint> elements to restore the default behavior. Alternatively,

remove cxf.xml from your CLASSPATH.

When you run the Maven mvn install command, Maven compiles the Java
files and creates Java class files. Maven creates the

install dir\samples\wsdl first\target directory, which includes the
client and server class files.

When you run the Maven mvn -Pserver and mvn -Pclient commands,
Maven starts the server and client and executes the operations in the WSDL
and Java class files.

The sample files in the wsdl first directory include the following:

* pom.xml — This file is used by the Maven tooling when creating the service

unit and required files for packaging and deploying the service into a
container.

* install dir\samples\wsdl first\wsdl\hello world.wsdl — Using

the WSDL-first approach, the first step in designing services is to define
your services in WSDL and XML Schema before writing any code. Examine
this file to see how the service is defined, including the following:

* The WSDL types for each of the elements used with the service, for
example:

<wsdl: types>

<simpleType name="MyStringType">
<restriction base="string">
<maxLength value="30" />
</restriction>
</simpleType>
<element name="greetMe'">
<complexType>
<sequence>
<element name="requestType"
type="tns:MyStringType" />
</sequence>
</complexType>
</element>

FUSE" Services Framework Getting Started Developing Services

WSDL-first JAX-WS Service Development

* The operations used with the service. Example 5.1 on page 29 shows
the operations defined for the service, including the three greetings sent
by the client and the pingMe that defines the PingMeFault exception

thrown for invalid length string greetings.
* The WSDL binding and transport used by the service. This sample

specifies a SOAP binding and a transport that corresponds to the HTTP
binding in the SOAP specification:

<wsdl:binding name="Greeter SOAPBinding"
type="tns:Greeter">

<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

Examine the WSDL file to see all the details of the service definition.

* install dir\samples\wsdl first\cxf.xml — This configuration file
enables schema validation when included on the cLasspaTH. See "Enabling
schema validation" on page 33.

¢ install dir\samples\wsdl first\src\demo\hw\client*.java—
Java files that define the client classes. Examine client.java to see how
the client invokes the operations defined in hello world.wsdl.

® install dir\samples\wsdl first\src\demo\hw\server*.java—

Java files that define the server classes.

Deploying the sample into an 0OSGi is a mature, lightweight, component system that solves many challenges

0SGi container associated with medium and large scale development projects. Through the
use of bundles complexity is reduced by separating concerns and ensuring
dependencies are minimally coupled via well defined interface communication.
This also promotes the reuse of components in much the same way that SOA
promotes the reuse of services. And, since each bundle effectively is given
an isolated environment, and since dependencies are explicitly defined,
versioning and dynamic updates are possible. These are just a few of the
many benefits of OSGi. Users wishing to learn more should check out
http://www.osgi.org/Main/HomePage.

FUSE" Services Framework Getting Started Developing Services 37

Chapter 5. Running the FUSE Services Framework
Samples

Before you can install an application into an OSGi container, you must package
it into one or more OSGi bundles. An OSGi bundle is a JAR that contains extra
information that is used by the OSGi container. This extra information specifies
the packages this bundle exposes to the other bundles in the container and
any packages on which this bundle depends.

See the chapter "Deploying to an OSGi Container" in Configuring and
Deploying FUSE™ Services Framework Endpoints 10, for more information
about deploying to an OSGi container, and for instructions that use this
WSDL-first sample to demonstrate the steps of installing an application into
an OSGi container.

10 http://fusesource.com/docs/framework/2.2/deploy_guide/index.html

38 FUSE" Services Framework Getting Started Developing Services

http://fusesource.com/docs/framework/2.2/deploy_guide/index.html
http://fusesource.com/docs/framework/2.2/deploy_guide/index.html
http://fusesource.com/docs/framework/2.2/deploy_guide/index.html

Java-First JAX-WS Service Development

Java-First JAX-WS Service Development

Overview This sample provides an example of service development using a code first
approach using the JAX-WS APIs. The HelloWorld. java file included with
this sample defines the service, and the client.java file defines a client
class with a c1ient () method that calls different users.

Using Maven These instructions use Maven to build and run the sample, using the pom. xm1
file located the base directory of this sample. If you prefer to use wsdl2java,
javac, and java to build and run the sample, see the ReadMe file located in
your install dir\samples\java_first_jaxws directory

See "About Maven" on page 28 and "Installing and setting up Maven"
on page 27 for more information about using Maven with the FUSE Services
Framework samples.

Building and running the sample To build and run the sample using Maven commands:

1. Open a console to the sample directory,
install dir\samples\java_ first jaxws and enter the following

command to build the sample:

mvn install

Maven builds the sample and downloads required JAR files to your Maven

repository:
[INFO] Scanning for projects...
[INFO] = mmmm oo o
[INFO] Building Unnamed - org.apache.cxf.samples:java first jaxws:jar:1.0
[INFO] task-segment: [install]
[INFO] —mmm = oo e

[INFO] Installing install dir\samples\java first jaxws\target\java first jaxws-1.0.jar to
...\.m2\repository\org\apache\cxf\samples\java first jaxws\1l.0\java first jaxws-1.0.jar
[INFO] mmmmmmmm e m o e e

[INFO] BUILD SUCCESSFUL

[INFO] mmmmmmmm oo o e

FUSE" Services Framework Getting Started Developing Services 39

Chapter 5. Running the FUSE Services Framework

Samples

Examining the output

40

2. Enter the following command to start the server:

mvn —-Pserver

When the server is started, the console displays the message server
ready....

3. Open another console at the same location and enter the following
command to start the client:

mvn -Pclient

The client starts and sends a greeting to the server. Messages in the client
and server consoles show the messages sent as the sample runs.

The messages between the client and server appear rapidly in the consoles
as messages are exchanged. When the messages have all been sent, you can
scroll up in the console windows to track the following events:

1. The client creates the HellpwWorld service, and receives responses from
the server:

Client Console

INFO: Creating Service {http://server.hw.demo/}
HelloWorld from class demo.hw.server.HelloWorld
Hello World

Messages in the server console indicate that sayHi, sayHiToUser, and
getUsers are called:

Server Console
sayHi called
sayHiToUser called
sayHiToUser called
sayHiToUser called
getUsers called

FUSE" Services Framework Getting Started Developing Services

Java-First JAX-WS Service Development

2. The client receives responses to the sayHiToUser from the server, and
prints a list of users from the getUsers call:

Client Console
Hello World
Hello Galaxy
Hello Universe

Users:
1: World
2: Galaxy

3: Universe

3. To remove the code generated from the WSDL file and the *.class files,

run mvn clean.

Understanding the sample When you run the Maven mvn install command, Maven compiles the Java
files and creates Java class files. Maven creates the
install dir\samples\java_ first jaxws\target directory, which
includes the client and server class files.

When you run the Maven mvn -Pserver and mvn -Pclient commands,
Maven starts the server and client and executes the operations in the Java
class files.

The sample files in the wsdl_first directory include the following:

* pom.xml — This file is used by the Maven tooling when creating the service

unit and required files for packaging and deploying the service into a
container.

FUSE" Services Framework Getting Started Developing Services 41

Chapter 5. Running the FUSE Services Framework
Samples

® install dir\samples\java first jaxws\src\demo\hw\server\hello world.java
— This file defines the Hello World web service in this sample:

Example 5.4. Java-First Sample: hello_world.java

@WebService
public interface HelloWorld ({

String sayHi (String text);

/* Advanced usecase of passing an Interface in. JAX-WS/JAXB does not
* support interfaces directly. Special XmlAdapter classes need to

* be written to handle them

=y

String sayHiToUser (User user);

/* Map passing

* JAXB also does not support Maps. It handles Lists great, but Maps are
* not supported directly. They also require use of a XmlAdapter to map
* the maps into beans that JAXB can use.

=y

@XmlJavaTypeAdapter (IntegerUserMapAdapter.class)

Map<Integer, User> getUsers();

® install dir\samples\java first jaxws\src\demo\hw\server*.java

— Additional Java files that define classes used by the server when this
sample runs.

® install dir\samples\java first jaxws\src\demo\hw\client\client.java

— Java file that defines the client class.

42 FUSE" Services Framework Getting Started Developing Services

Java-First JAX-WS Service Development

The client.java file defines the client () method:

Example 5.5. Java-First Sample: client.java

private Client() {
}

public static void main(String args[]) throws Exception {
Service service = Service.create (SERVICE NAME) ;

// Endpoint Address

String endpointAddress = "http://localhost:9000/helloWorld";

// Add a port to the Service

service.addPort (PORT NAME, SOAPBinding.SOAPI11HTTP BINDING, endpointAddress) ;

HelloWorld hw = service.getPort (HelloWorld.class);
System.out.println (hw.sayHi ("World")) ;

User user = new UserImpl ("World");
System.out.println (hw.sayHiToUser (user)) ;

//say hi to some more users to fill up the map a bit
user = new UserImpl ("Galaxy");
System.out.println (hw.sayHiToUser (user)) ;

user = new UserImpl ("Universe");
System.out.println (hw.sayHiToUser (user)) ;

System.out.println();

System.out.println ("Users: ");

Map<Integer, User> users = hw.getUsers() ;

for (Map.Entry<Integer, User> e : users.entrySet()) {
System.out.println(" " + e.getKey() + ": " + e.getValue() .getName());

The c1ient () method in this Java file calls the Java classes defined on
the server to get the users Wworld, Galaxy, and Universe, and to map the
users and print out a list of users. Examine the client.java file and the

Java files for the server to see how this Java-first sample is coded and

implemented.

FUSE" Services Framework Getting Started Developing Services

43

Chapter 5. Running the FUSE Services Framework
Samples

JAX-RS Service Development

Overview This sample includes a basic REST-based web service developed using JAX-RS
(JSR-311). The client code in this sample demonstrates how to send HTTP
GET/POST/PUT/DELETE requests. The server code demonstrates how to build
a RESTful endpoint through JAX-RS (JSR-311) APls.

What happens when you run the The following events occur on the client and server when you run this sample:
sample
1. A RESTful customer service is provided on the URL

http://localhost:9000/customers. Users access this URI to operate
on a customer.

2. The server responds to an HTTP GET request to the URL
http://localhost:9000/customerservice/customers/123 and

returns an XML document with customer information for a customer
instance whose id is 123.

3. The server responds to an HTTP GET request to the URL
http://localhost:9000/customerservice/orders/223/products/323

and returns an XML document with product information for product 323
that belongs to order 223.

4. The server responds to an HTTP POST request to the URL
http://localhost:9000/customerservice/customers and adds a

customer named Jack.

5. The server responds to an HTTP PUT request to the URL
http://localhost:9000/customerservice/customers and updates

the customer instance whose id is 123.

44 FUSE" Services Framework Getting Started Developing Services

JAX-RS Service Development

Using Maven These instructions use Maven to build and run the sample. If you prefer to
use wsdl2java, javac, and java to build and run the sample, see the ReadMe
file located in your install dir\samples\jax rs\basic\ directory.

See "About Maven" on page 28 and "Installing and setting up Maven"
on page 27 for more information about using Maven with the FUSE Services
Framework samples.

Building and running the sample The pom.xm1 file located in the base directory of this sample is used to build
using Maven and run the demo.

To build and run the sample:

1. Open a console to the sample directory,
install dir\samples\jax rs\basic\ and enter the following command

to build the sample:

mvn install

Maven builds the sample and downloads required JAR files to your Maven

repository:
[INFO] Scanning for projects...
[INFO] —m—mm oo o oo
[INFO] Building Unnamed - org.apache.cxf.samples:jax rs basic:jar:1.0
[INFO] task-segment: [install]
[INFO] —m—mm oo oo

[INFO] Installing install dir\samples\jax rs\basic\target\jax rs basic-1.0.jar to
C:\Documents and Settings\kpatras\.m2\repository\org\apache\cxf\samples\jax rs basic\
1.0\jax_rs_basic-1.0.jar

0

[INFO] BUILD SUCCESSFUL

e

2. Enter the following command to start the server:

mvn —-Pserver

When the server is started, the console displays the message server
ready....

FUSE" Services Framework Getting Started Developing Services 45

Chapter 5. Running the FUSE Services Framework
Samples

3. Open another console at the same location and enter the following
command to start the client:

mvn -Pclient

The client starts and sends a greeting to the server. Messages in the client
and server consoles show the messages sent as the sample runs.

Examining the output The messages between the client and server appear rapidly in the consoles
as messages are exchanged. When the messages have all been sent, you can
examine the output in the client and server consoles to observe the following
events:

1. The client requests customer information:

Sent HTTP GET request to query customer info

The server invokes getCustomer to get customer information:

invoking getCustomer, Customer id is: 123

The client receives the customer information in an XML document:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Customer>

<id>123</id>

<name>John</name>
</Customer>

2. The client requests product information:

Sent HTTP GET request to query sub resource product info

The server invokes getOrder and getProduct:

invoking getOrder, Order id is: 223
invoking getProduct with id: 323

The client receives the product information in an XML document:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Product>

<description>product 323</description>

<id>323</id>
</Product>

46 FUSE" Services Framework Getting Started Developing Services

Understanding the sample

JAX-RS Service Development

3. The client request an update to the customer information:

Sent HTTP PUT request to update customer info

The server invokes updateCustomer:

invoking updateCustomer, Customer name is: Mary

The client receives a response with status code:

Response status code: 200
Response body:

. The client requests adding the customer:

Sent HTTP POST request to add customer

The server invokes addCustomer:

invoking addCustomer, Customer name is: Jack

The client receives a response with an XML document, and the sample
ends:

Response status code: 200
Response body:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Customer>
<id>124</id>
<name>Jack</name>
</Customer>

Client Invoking is succeeded!

When you run the Maven mvn install command, Maven compiles the Java
files and creates Java class files. Maven creates the

install dir\\samples\jax rs\basic\target directory, which includes
the client and server class files.

When you run the Maven mvn -Pserver and mvn -Pclient commands,
Maven starts the server and client and executes the operations in the Java
class files.

FUSE" Services Framework Getting Started Developing Services 47

Chapter 5. Running the FUSE Services Framework
Samples

The sample files in the jax_rs\basic directory include the following:

* pom.xml — This file is used by the Maven tooling when creating the service
unit and required files for packaging and deploying the service into a
container.

® install dir\samples\jax rs\basic\src\demo\jaxrs\client*.java
— Java files that define the client classes, including client.java, which
sends HTTP GET, PUT, and POST requests:

Example 5.6. JAX-RS Sample: Client.java

private Client () {

}

public static void main(String args[]) throws Exception {

48

// Sent HTTP GET request to query customer info

System.out.println ("Sent HTTP GET request to query customer info");

URL url = new URL("http://localhost:9000/customerservice/customers/123") ;
InputStream in = url.openStream() ;

System.out.println (getStringFromInputStream(in)) ;

// Sent HTTP GET request to query sub resource product info

System.out.println ("Sent HTTP GET request to query sub resource product info");
url = new
URL ("http://localhost:9000/customerservice/orders/223/products/323") ;
in = url.openStream() ;
System.out.println(getStringFromInputStream(in)) ;

// Sent HTTP PUT request to update customer info

System.out.println("Sent HTTP PUT request to update customer info");
Client client = new Client();
String inputFile = client.getClass().getResource ("update customer.txt").getFile();
File input = new File (inputFile);
PutMethod put = new
PutMethod ("http://localhost:9000/customerservice/customers") ;
RequestEntity entity = new FileRequestEntity (input, "text/xml; charset=IS0-8859-1");
put.setRequestEntity (entity);
HttpClient httpclient = new HttpClient();

// Sent HTTP POST request to add customer

System.out.println ("Sent HTTP POST request to add customer");
inputFile = client.getClass () .getResource ("add customer.txt").getFile();

FUSE" Services Framework Getting Started Developing Services

JAX-RS Service Development

input = new File (inputFile);
PostMethod post = new

PostMethod ("http://localhost:9000/customerservice/customers") ;
post.addRequestHeader ("Accept" , "text/xml");
entity = new FileRequestEntity (input, "text/xml; charset=IS0-8859-1");
post.setRequestEntity (entity);
httpclient = new HttpClient();

¢ install dir\samples\jax rs\basic\src\demo\jaxrs\server*.java

— Java files that define the server classes. These files include
Server.java, Which creates a new instance of the RESTful service,

CustomerService ():

Example 5.7. JAX-RS Sample: Server.java

package demo.jaxrs.server;

import org.apache.cxf.jaxrs.JAXRSServerFactoryBean;

import org.apache.cxf.jaxrs.lifecycle.SingletonResourcePro

vider;

public class Server {

protected Server () throws Exception {
JAXRSServerFactoryBean sf = new JAXRSServerFactory
Bean () ;

sf.setResourceClasses (CustomerService.class) ;
sf.setResourceProvider (CustomerService.class,
new SingletonResourceProvider (new CustomerService()));

sf.setAddress ("http://localhost:9000/") ;

sf.create();
public static void main(String args[]) throws Exception

new Server();
System.out.println("Server ready...");

FUSE" Services Framework Getting Started Developing Services 49

50

FUSE" Services Framework Getting Started Developing Services

Chapter 6. Next Steps

Further reading For more information about developing services with FUSE Services
Framework, see Using the Library. This guide provides links to the complete
set of FUSE Services Framework documentation, and suggests reading paths
for the following:

* Service consumer developers

* Java-first service developers

WSDL-first service developers

RESTful service developers

JavaScript service and consumer developers

Additional samples The FUSE Services Framework installation dir\samples directory
includes additional samples you can examine and run to more fully explore
developing services using JAX-WS and JAX-RS. These samples include:

* Java-first development with JAX-WS:

* java _first jaxws_ factory bean — Use JAX-WS factory beans
* java_first_pojo — Use a code-first, POJO approach

* java_first_spring support — Use Spring beans and setup a HTTP
servlet transport

* WSDL-first development with JAX-WS:

* wsdl first dynamic_client — Use a dynamic client against a
standalone server using SOAP over HTTP

* wsdl first https — Develop a service that uses HTTPS
communication

* wsdl first pure xml — Use an XML binding with the doc-literal style

FUSE" Services Framework Getting Started Developing Services 51

http://fusesource.com/docs/framework/2.2/library/library.pdf

Chapter 6. Next Steps

* wsdl first rpclit — Use the RPC-literal style binding

* wsdl first soapl2 — Implement SOAP 1.2 capabilities

* wsdl first xml wrapped — Examine how the XML binding works
with the doc-literal wrapped style

* wsdl_first xml beans2 — Usethe JAX-WS APIs with the XMLBeans

data binding to run a simple client against a standalone server using
SOAP over HTTP

* JAX-RS development with HTTPS, content negotiation, and Spring security

* jax_rs\basic_https — Extend the JAX-RS sample on page 44 to
implement communication using HTTPS

* jax_rs\content negotiation — Develop a RESTful service that

implements content negotiation so that the same resource can be served
using multiple representations

* jax_rs\spring security — Use Spring security to secure a RESTful

service
FUSE Services Framework also includes samples that illustrate the following:
¢ JMS queue and publish-and-subscribe messaging
» JavaScript service development
* WS addressing, policy, and security
* Additional topics

See the FUSE Services Framework samples directory for the complete set of
samples. Each sample includes a ReadMe file with instructions to run the
sample.

52 FUSE" Services Framework Getting Started Developing Services

Index
D

data bindings, 11
JAXB, 17
JSON, 20

F

front ends, 11
JavaScript, 23
JAX-RS, 19
JAX-WS, 15
FUSE Services Framework, 9
installing, 27

|
installing
FUSE ESB, 27
FUSE Services Framework, 27
Maven, 27
samples, 27

M
Maven, 28
message bindings, 12

R

RESTful services, 19

S

samples
additional samples, 51
Java-first JAX-WS service development, 39
JAX-RS service development, 44
schema validation, 33
WSDL-first JAX-WS service development, 29

T

transports, 13

FUSE" Services Framework Getting Started Developing Services

53

54

FUSE" Services Framework Getting Started Developing Services

	Getting Started Developing Services
	Table of Contents
	Chapter 1. Introduction to FUSE Services Framework
	Chapter 2. Developing Web Services
	Chapter 3. Developing RESTful Services
	Chapter 4. Developing Services in JavaScript
	Chapter 5. Running the FUSE Services Framework Samples
	Before Running the Samples
	WSDL-first JAX-WS Service Development
	Java-First JAX-WS Service Development
	JAX-RS Service Development

	Chapter 6. Next Steps
	Index

