Progress

FUSE

FUSE" Services Framework

Developing RESTful Services

Version 2.2.x
April 2009

SOFTWARE

Developing RESTful Services

Version 2.2.x

Publication date 17 Jul 2009
Copyright © 2001-2009 Progress Software Corporation and/or its subsidiaries or affiliates.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix;, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of Progress Software Corporation. No third-party intellectual
property right liability is assumed with respect to the use of the information contained herein. Progress Software Corporation
assumes no responsibility for errors or omissions contained in this publication. This publication and features described herein
are subject to change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents

1. Introduction to RESTFUl SEIVICEScuiiiiieiiiiiiii s r s s s s r s s e s s s raranas 7
2. Using the HTTP BinNdiNgcuiuiniii it s s s s s s s s s s s s s s a s e s s s s s s e ensnsnsn 11
UsSIiNg AUTOMAtIC MaDPINgS ...vririiii ittt e e e ettt e e e aeaaaas 12
USING ANNOTAtIONS L.ouiniiii e et 15
Publishing a Service using the HTTP Bindingcooiiiiiii e 19
T 1= P 23

FUSE" Services Framework Developing RESTful Services Version 2.2.x 3

FUSE" Services Framework Developing RESTful Services Version 2.2.x

List of Examples

2.1. Widget Catalog CRUD Class

2.2. URI Template Syntaxcccoeiiiiiiiiiiiic e,
2.3. Usinga URI Template ...cooiniiiiiiiiie
2.4. SEl for a Widget Ordering Service
2.5. widgetordering with REST Annotations

2.6. Setting a Server Factory's Service Class
2.7. Setting Wrapped MOdec.oviiiiiiiiiii e

2.8. Selecting the REST Binding

2.9. Setting the Base URI ...

2.10. Setting the Service Invoker

2.11. Publishing the WidgetCatalog Service as a RESTful
ENdpoint ..o

FUSE" Services Framework Developing RESTful Services Version 2.2.x

FUSE" Services Framework Developing RESTful Services Version 2.2.x

Chapter 1. Introduction to RESTful

Services

Representational State Transfer (REST)is a software architecture style that centers around the transmission of
data over HTTR, using only the four basic HTTP verbs. It also eschews the use of any additional wrappers such
as a SOAP envelope and the use of any state data.

Overview

Basic REST principles

Representational State Transfer (REST) is an architectural style first described
in a doctoral dissertation by a researcher named Roy Fielding. In REST, servers
expose resources using a URI, and clients access these resources using the
four HTTP verbs. As clients receive representations of a resource they are
placed in a state. When they access a new resource, typically by following a
link, they change, or transition, their state. In order to work, REST assumes
that resources are capable of being represented using a pervasive standard
grammar.

The World Wide Web is the most ubiquitous example of a system designed
on REST principles. Web browsers act as clients accessing resources hosted
on Web servers. The resources are represented using HTML or XML grammars
that all Web browsers can consume. The browsers can also easily follow the
links to new resources.

The advantages of RESTful systems is that they are highly scalable and highly
flexible. Because the resources are accessed and manipulated using the four
HTTP verbs, the resources are exposed using a URI, and the resources are
represented using standard grammars, clients are not as affected by changes
to the servers. Also, REST style systems can take full advantage of the
scalability features of HTTP such as caching and proxies.

RESTful architectures adhere to the following basic principles:
* Application state and functionality are divided into resources.

* Resources are addressable using standard URIs that can be used as
hypermedia links.

* All resources use only the four HTTP verbs.

¢ DELETE

FUSE" Services Framework Developing RESTful Services Version 2.2.x 7

Chapter 1. Introduction to RESTful Services

Resources

REST best practices

¢® GET
¢ POST
¢ PUT

* All resources provide information using the MIME types supported by HTTP.
¢ The protocol is stateless.
* The protocol is cacheable.

¢ The protocol is layered.

Resources are central to REST. A resource is a source of information that can
be addressed using a URI. In the early days of the Web, resources were largely
static documents. In the modern Web, a resource can be any source of
information. For example a Web service can be a resource if it can be accessed
using a URI.

RESTful endpoints exchange representations of the resources they address.
A representation is a document containing the data provided by the resource.
For example, the method of a Web service that provides access to a customer
record would be a resource, the copy of the customer record exchanged
between the service and the consumer is a representation of the resource.

When designing RESTful services it is helpful to keep in mind the following:
* Provide a distinct URI for each resource you wish to expose.

For example, if you are building a system that deals with driving records,
each record should have a unique URI. If the system also provides
information on parking violations and speeding fines, each type of resource
should also have a unique base. For example, speeding fines could be
accessed through /speeding/driverip and parking violations could be
accessed through /parking/driverIp.

* Use nouns in your URlIs.

Using nouns highlights the fact that resources are things and not actions.
URIs such as /ordering imply an action, whereas /orders implies a
thing.

FUSE" Services Framework Developing RESTful Services Version 2.2.x

Implementing REST with FUSE
Services Framework

FUSE" Services Framework Developing RESTful Services Version 2.2.x

* Methods that map to GeT should not change any data.

¢ Use links in your responses.

Putting links to other resources in your responses makes it easier for clients
to follow a chain of data. For example, if your service returns a collection
of resources, it would be easier for a client to access each of the individual
resources using the provided links. If links are not included, a client needs
to have additional logic to follow the chain to a specific node.

* Make your service stateless.

Requiring the client or the service to maintain state information forces a
tight coupling between the two. Tight couplings make upgrading and
migrating more difficult. Maintaining state can also make recovery from
communication errors more difficult.

FUSE Services Framework provides an implementation of the JAX-RS APlIs
for developing RESTful services. The JAX-RS API provides a standardized way
to map POJOs to resources using a small set of annotations. The JAX-RS APIs
use JAXB objects to map the messages and data into Java objects that can
be manipulated using standard Java code.

The FUSE Services Framework RESTful implementation supports exchanging
data using JavaScript Object Notation (JSON). JSON is a popular data format
used buy Ajax developers. marshalling between JSON and JAXB is handled
by the FUSE Services Framework runtime.

FUSE Services Framework continues to support the old HTTP binding to map
Java interfaces into RESTful services. The HTTP binding provides basic
functionality and has a number of limitations. Developers are encouraged to
update their applications to use the JAX-RS APlIs.

10

FUSE" Services Framework Developing RESTful Services Version 2.2.x

Chapter 2. Using the HTTP Binding

FUSE Services Framework's HTTP binding provides both a convention based method and a set of annotations
that provide a quick way to create basic RESTful services from POJOs. It is limited in comparison to the JAX-RS
APls.

UsSIiNg AUTOMAtIC MaPPINGS .. v ettt ettt e 12
USING ANNOTALIONS ...ttt ettt et et e et e et e et 15
Publishing a Service using the HTTP Bindingccooiiiiiiiii e 19

FUSE Services Framework originally implemented an HTTP binding for
implementing RESTful services. The HTTP binding can map the methods of
a CRUD based class to a resource and the classes methods to the proper
HTTP verbs. It also provides a set of annotations that allow a developer to
map specific methods to HTTP verbs and a class to a URI.

() Important

The HTTP binding was superseded in FUSE Services Framework
version 2.2. It is provided for backwards compatibility, but is no
longer being actively updated. The JAX-RS APIs should be used for
all new development.

FUSE" Services Framework Developing RESTful Services Version 2.2.x 11

Chapter 2. Using the HTTP Binding

Using Automatic Mappings

Overview

Typical CRUD class

12

To simplify the creation of RESTful service endpoints, FUSE Services
Framework can map the methods of a CRUD (Create, Read, Update, and
Destroy) based Java bean class to URIs automatically. The mapping looks
for keywords in the method names of the bean, such as get, add, update, or
remove, and maps them onto HTTP verbs. It then uses the remainder of the
method name to create a URI by pluralizing the field name and appending it
to the base URI at which the endpoint is published.

(@ Note

For more information about publishing RESTful endpoints using the
HTTP binding, see "Publishing a Service using the HTTP Binding"
on page 19.

Example 2.1 on page 12 shows a CRUD based class for updating a catalog
of widgets.

Example 2.1. Widget Catalog CRUD Class

import javax.jws.WebService;

@WebService
public interface WidgetCatalog
{
Collection<Widget> getWidgets () ;
Widget getWidget (long id);
void addWidget (Widget widget) ;
void updateWidget (Widget widget) ;
void removeWidget (String type, long num) ;
void deleteWidget (Widget widget) ;
}

(1) Important

You must use the ewebservice annotation on any class or interface
that you wish to expose as a RESTful endpoint.

The class has six operations that are mapped to a URI/verb pair:

* getWidgets () iS mapped to a GET at baseURI/widgets.

FUSE" Services Framework Developing RESTful Services Version 2.2.x

Mapping to GET

Mapping to POST

Mapping to PUT

Using Automatic Mappings

* getWidget () is mapped to a GET at baseUrRI/widgets/id.

* addwWidget () is mapped to a POST at basevrI/widgets.

* updateWidget () is mapped to a PUT at basevrI/widgets.

* removeWidget () iS mapped to a DELETE at basevrI/widgets/ type/num.

* deleteWidget () is mapped to a DELETE at baseurRT/widgets.

When FUSE Services Framework sees a method name in the form of
getResource (), it maps the method to a ceT. The URI is generated by
appending the plural form of resource to the base URI at which the endpoint
is published. If rResource is already plural, it is not pluralized. For example,
getCustomer () iS mapped to a GET on /customers. The method
getCustomers () would result in the same mapping.

Any method parameters are appended to the URI. For example,
getWidget (long id) is mapped to /widgets/id and getCar (String
make, String model) would be mapped to /cars/make/model. A call to
getCar (plymouth, roadrunner) would be executed by a GET to
/cars/plymouth/roadrunner.

(D Important

FUSE Services Framework only supports get methods that use XML
primitives in their parameter list.

Methods of the form addresource () Or createRresource () are mapped to
posT. The URI is generated by pluralizing resource. For example
createCar (Car car) would be mapped to a posT at /cars.

Methods of the form updateresource () are mapped to puT. The URI is
generated by pluralizing Resource and appending any parameters except the
resource to be updated. For example updateHitter (long number, long
rotation, Hitter hitter) would be mapped to a puT at
/hitters/number/rotation.

FUSE" Services Framework Developing RESTful Services Version 2.2.x 13

Chapter 2. Using the HTTP Binding

Mapping to DELETE

14

(1) Important

FUSE Services Framework only supports get methods that use XML
primitives in their parameter list.

Methods of the form deleteRresource () Or removeResource () are mapped
to bELETE. The URI is generated by pluralizing Resource and appending any
parameters. For example removeCar (String make, long num) would be
mapped to a DELETE at /cars/make/num.

() Important

FUSE Services Framework only supports get methods that use XML
primitives in their parameter list.

FUSE" Services Framework Developing RESTful Services Version 2.2.x

Using Annotations

Using Annotations

Overview

Specifying the HTTP verb

Specifying the URI

Using URI templates

While the convention-based mappings provide an easy way to create a service
that maintains a collection of data, or looks like it does, it does not provide
the flexibility to create a full range of RESTful services that require operations
whose names don't fit into the CRUD format. FUSE Services Framework
provides a collection of annotations that allows you to define the mapping of
an operation to an HTTP verb/URI combination. The REST annotations allow
you to specify which verb to use for an operation and to specify a template
for creating a URI for the exposed resource.

FUSE Services Framework uses four annotations for specifying the HTTP verb
that will be used for a method:

* org.codehaus.jra.Delete specifies that the method maps to a DELETE.
* org.codehaus.jra.Get specifies that the method maps to a GeT.

* org.codehaus.jra.Post specifies that the method maps to a posT.

* org.codehaus.jra.Put specifies that the method maps to a purT.

When you map your methods to HTTP verbs, you must ensure that the
mapping makes sense. For example, if you map a method that is intended
to submit a purchase order, you would map it to a puT or a posT. Mapping
it to a GET or a DELETE would result in unpredictable behavior.

You specify the URI of the resource using the
org.codehaus.jra.HttpResource annotation. HttpResource has one
required attribute, l1ocation, that specifies the location of the resource in
relationship to the base URI specified when publishing the service (see
"Publishing a Service using the HTTP Binding" on page 19. For example, if
you specify carts as the location of the resource and the base URI is
http://myexample.iona.org, the full URI for the resource will be
http://myexample.iona.org/carts.

In addition to specifying hard coded resource locations, FUSE Services
Framework provides a facility for creating URIs on the fly using either the
method's parameters or a field from the JAXB bean in the parameter list.
When providing a value for the Ht tpresource annotation's l1ocation

FUSE" Services Framework Developing RESTful Services Version 2.2.x 15

Chapter 2. Using the HTTP Binding

Example

16

parameter you provide a URI template using the syntax in
Example 2.2 on page 16.

Example 2.2. URI Template Syntax

@HttpResource (location="resourceName/{paraml}/../{paramnN}")

resourceName can be any valid string, and forms the base of the location.
Each param is the name of either a method parameter or a field in the JAXB
bean in the parameter list. To create the URI, FUSE Services Framework
replaces param with the value of the associated parameter. For example, if
you have the method shown in Example 2.3 on page 16 and wanted to
access the record at id 42, you would perform a GeT at
http://myexample.iona.com/records/42

Example 2.3. Using a URI Template

@Get
@HttpResource (location="\records\{id}")
Record fetchRecord(long id);

() Important

The HTTP binding only supports XML primitives in URI templates.

If you wanted to implement a system for ordering widgets out of the catalog
defined by Example 2.1 on page 12 you may use an SEl like the one shown
in Example 2.4 on page 16.

Example 2.4. SEI for a Widget Ordering Service

@WebService
public interface WidgetOrdering
{
void placeOrder (WidgetOrder order);
OrderStatus checkOrder (long orderNum) ;
void changeOrder (WidgetOrder order, long orderNum) ;
void cancelOrder (long orderNum) ;

}

WidgetOrdering does not match any of the naming conventions outlined in
"Using Automatic Mappings" on page 12 so the RESTful binding cannot

automatically map the methods to verb/URI combinations. You will need to
provide the mappings using the Java REST annotations. To do this, you need

FUSE" Services Framework Developing RESTful Services Version 2.2.x

Using Annotations

to consider what each method in the interface does and how it correlates to

one of the HTTP verbs:

* placeOrder () creates a new order on the system. Resource creation
correlates with posT.

* checkOrder () looks up an order's status and returns it to the user.
Returning resources correlates with GeT.

* changeOrder () updates an order that has already been placed. Updating
an existing record correlates with purT.

* cancelorder () removes an order from the system. Removing a resource
correlates with DELETE.

For the URI, you would use a resource name that hinted at the purpose of
the resource. For this example, the resource name used is orders because
it is assumed that the base URI at which the endpoint is published provides
information about what is being ordered. For the methods that use ordernum
to identify a particular order, URI templating is used to append the value of
the parameter to the end of the URI.

Example 2.5 on page 17 shows widgetordering with the required
annotations.

Example 2.5. widgetordering with REST Annotations

import org.codehause.jra.*;

@WebService

public interface WidgetOrdering

{
@Post
Q@HttpResource (location="\orders")
void placeOrder (WidgetOrder order) ;

@Get
@HttpResource (location="\orders\{orderNum}")
OrderStatus checkOrder (long orderNum) ;

@Put

@HttpResource (location="\orders\{orderNum}")
void changeOrder (WidgetOrder order, long orderNum);

FUSE" Services Framework Developing RESTful Services Version 2.2.x 17

Chapter 2. Using the HTTP Binding

@Delete
@HttpResource (location="\orders\{orderNum}")
void cancelOrder (long orderNum) ;

}

To check the status of order number 236, you would perform a GeT at
baseURI/orders/236

18 FUSE" Services Framework Developing RESTful Services Version 2.2.x

Publishing a Service using the HTTP Binding

Publishing a Service using the HTTP Binding

Overview You publish RESTful services using the JaxWsServerFactoryBean object.
Using the JaxWsServerFactoryBean object, you specify the base URI for
the resources implemented by the service and whether the resources use
wrapped messages. You can then create a server object to start listening
for requests to access the service's resources.

Procedure To publish your RESTful service, do the following:

1. Create a new JaxWsServerFactoryBean.

2. Set the server factory's service class to the class of your RESTful service's
SEl using the factory's setserviceClass () method as shown in
Example 2.6 on page 19.

Example 2.6. Setting a Server Factory's Service Class

// Service factory sf obtained previously
sf.setServiceClass (widgetService.class);

3. If you want to use wrapped mode, set the factory's wrapped property to
true using the setWrapped () method as shown in
Example 2.7 on page 19.

Example 2.7. Setting Wrapped Mode

sf.getServiceFactory () .setWrapped (true) ;

4. Set the server factory's binding to the REST binding using the
setBindingId () method.

The REST binding is selected using the constant
HttpBindingFactory.HTTP_BINDING ID as shown in
Example 2.8 on page 19.

Example 2.8. Selecting the REST Binding

// Server factory sf obtained previously
sf.setBindingId (HttpBindingFactory.HTTP BINDING ID);

FUSE" Services Framework Developing RESTful Services Version 2.2.x 19

Chapter 2. Using the HTTP Binding

Example

20

5. Set the base URI for the service's resources using the setaddress ()
method as shown in Example 2.9 on page 20.

Example 2.9. Setting the Base URI

sf.setAddress ("http://localhost:9000") ;

6. Set server factory's service invoker to an instance of your service's
implementation class as shown in Example 2.10 on page 20.
Example 2.10. Setting the Service Invoker

widgetService service = new widgetServiceImpl () ;
sf.getServiceFactory() .setInvoker (new BeanInvoker (ser
vice));

7. Create a new server object from the server factory using the factory's
create () method.

Example 2.11 on page 20 shows the code for publishing a RESTful service
at http://3fu:9000. All of the resources implemented by the service will
use the published URI as the base address.

Example 2.11. Publishing the WidgetCatalog Service as a RESTful Endpoint

JaxWsServerFactoryBean sf = new JaxWsServerFactoryBean();
sf.setServiceClass (WidgetCatalog.class);

sf.setBindingId (HttpBindingFactory.HTTP BINDING ID);
sf.setAddress ("http://jfu:9000") ;

widgetService service = new WidgetCatalogImpl () ;
sf.setServiceFactory.setInvoker (new BeanlInvoker (service)) ;

Server svr = sf.create();

If you used Example 2.11 on page 20 to publish the service defined by
Example 2.1 on page 12, you would:

* Retrieve a list of all widgets in the catalog using a GeT at
http://jfu:9000/widgets

FUSE" Services Framework Developing RESTful Services Version 2.2.x

Publishing a Service using the HTTP Binding

* Retrieve information about widget 34 using a GET at

http://3£fu:9000/widgets/34.

* Modify a widget using a PUT at http://jfu:9000/widgets with an XML
document describing the widget to modify.

¢ Delete 15 round widgets from the catalog using a DELETE at

http://3fu:9000/widgets/round/15.

FUSE" Services Framework Developing RESTful Services Version 2.2.x 21

22

FUSE" Services Framework Developing RESTful Services Version 2.2.x

I n d ex ssetAddress(), 20

setBindingld(), 19

setServiceClass(), 19
SymbOIS setWrapped(), 19

@Delete, 15

@Get, 15

@HttpResource, 15 W

@Post, 15 wrapped mode
@Put, 15 activating, 19
A

annotations
@Delete (see @Delete)
@Get (see @Get)
@HttpResource (see @HttpResource)
@Post (see @Post)
@Put (see @Post)

D
deploying
RESTful service endpoint, 19

G

getResource(), 13

H

HTTP
DELETE, 14, 15
GET, 13,15
POST, 13, 15
PUT, 13, 15

P

publishing
RESTful service endpoint, 19

R
REST binding
activating, 19

FUSE" Services Framework Developing RESTful Services Version 2.2.x

23

24

FUSE" Services Framework Developing RESTful Services Version 2.2.x

	Developing RESTful Services
	Table of Contents
	Chapter 1. Introduction to RESTful Services
	Chapter 2. Using the HTTP Binding
	Using Automatic Mappings
	Using Annotations
	Publishing a Service using the HTTP Binding

	Index

