Progress

FUSE

FUSE" Services Framework

Security Guide

Version 2.2.x
April 2009

SOFTWARE

Security Guide

Version 2.2.x

Publication date 17 Jul 2009
Copyright © 2001-2009 Progress Software Corporation and/or its subsidiaries or affiliates.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix;, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of Progress Software Corporation. No third-party intellectual
property right liability is assumed with respect to the use of the information contained herein. Progress Software Corporation
assumes no responsibility for errors or omissions contained in this publication. This publication and features described herein
are subject to change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents

1. Security for HTTP-Compatible Bindingscccoieiniiiiiiiii e s s r s s s e e e e e eas 11
2. Managing Certificatesccciiiiiiiiiii s aans 19
What is an X.509 Certificale?o.iiiii s 20
Certification AUNOIITIESie e e 22

0] T o 0 Y 23

Commercial Certification AUNOIITIESoviei e 24

Private Certification AUthOIIEIES e 25

Certificate Chaining ... e 26
O F I T 28
Special Requirements on HTTPS Certificatescoiiiiiiii e 30
Creating Your OWn CertifiCatesoiniii 33

PR EIEQUISIEES ..ttt e 34

St UP YOUE OWN CA e e e e 35

Use the CA to Create Signed Certificates in a Java Keystorecccoooviiiiiiiiiiiiiiiiiinns 39

Use the CA to Create Signed PKCS#12 Certificatesvviuiiiiiiiiiii e 42

3. ConfigUIING HT TP S Lottt et e e s s s s e s s s s s s rasasasnsnsnnnsnnnnnnsnsnsnsnsnsns 49
Authentication AREINAtIVES ... oo 50
Target-Only Authenticationo 51

Mutual AUThentiCation ... s 54

Specifying Trusted CA Certificatesouiviiiiii i e 56
When to Deploy Trusted CA CertifiCatesoveiuiiiiiii e 57

Specifying Trusted CA Certificates for HTTPS ... 58

Specifying an Application’s Own Certificateo 60
Deploying Own Certificate for HTTPS ..., 61

4. Configuring HTTPS Cipher SUIeScoeieieiiiiii s r s e e e en 63
SUPPOrEd CiPNEI SUITES .. vuiiit ittt et e e e e e e aneneans 64
CIpher SUItE Filers o e e e e e 66
SSL/TLS ProtOCOI VEISION ...ttt et e ettt e e et et et e e e e e e et e e e aeenenns 69

5. The WS-Policy FrameWOIKccciciiiiiiiiiiiiiiiiiiiiiie s s s s s s s s e et e e s s s s s s rasarasasnsnsnsnsnns 71
INTrodUCtION £0 WS-POIICY ..vtiie it et 72
POLICY EXPIESSIONS ...ttt e e e ettt 77

6. Message Protection ..o aas 83
Transport Layer Message Protection ... 84
SOAP MeSSage ProteCtiono.ieii e e 89
Introduction to SOAP Message Protectionccciiiiiiii e 90

Basic Signing and Encryption SCENarioc.oieiiiiii s 92

Specifying an AsymmetricBinding POIICYcuveieiiiii e 94

Specifying a SymmetricBinding PoliCYciuiii e 101

Specifying Parts of Message to Encrypt and Signcooiiiiiiiiii 105

Providing Encryption Keys and Signing KeYSccciiiiiiiiiiiii e 108

Specifying the Algorithm SUIte ... 116

FUSE" Services Framework Security Guide Version 2.2.x 3

2 - V14 U= o1 (o 1 RPN 123

Introduction to AUThenTiCAtIoN ... iu i 124
Specifying an Authentication POJICYoviuiriri i 125
Providing Client Credentialsccoeiiiii s 133
Authenticating Received Credentialsoviiiiiiiiii e 138
A. ASN.1 and Distinguished NQmEeSscccccviiiiiiiiiiiiiiiririre e s s s s s s e s s s s s snsnrarnrass 141
AN . L e 142
DiStiNGUISNEA INAMIES ..ot e 143
T 1= G PO 147

4 FUSE" Services Framework Security Guide Version 2.2.x

List of Figures

2.1. A Certificate Chain of Depth 2
2.2. A Certificate Chain of Depth 3

2.3. Elements in @ PKCS#12 File ..ovviviiiiiiiiieec e
3.1. Target Authentication Onlycoiiiiiiii
3.2. Mutual Authenticationcooiiiiiiii
6.1. Basic Signing and Encryption Scenario

FUSE" Services Framework Security Guide Version 2.2.x

FUSE" Services Framework Security Guide Version 2.2.x

List of Tables

4.1. Namespaces Used for Configuring Cipher Suite Filters 66
4.2. SSL/TLS Protocols Supported by SUN’s JSSE Provider 69
6.1. Encryption and Signing Propertiesccccoiiiiiiiiiiiin, 108
6.2. WSS4J Keystore Propertiescooeviiiiiiiiiniieiiieiiieeeenns 112
6.3. Properties for Specifying Crypto Objectscocoveiiiiiiiiiininni. 113
6.4. Algorithm SUITES ..oveii i 117
6.5. Key Length Propertiescccooiiiiiiiiiieee 121
7.1. Values of sp:IncludeTokencocvveiiiiiiiiiiii e, 128
7.2. Client Credentials Propertiesccocevviiiiiniiiiiiiiiiieeeennn 133
A.1. Commonly Used Attribute Typescovoeeiiiiiiiiiiiiiiinceeene, 144

FUSE" Services Framework Security Guide Version 2.2.x 7

FUSE" Services Framework Security Guide Version 2.2.x

List of Examples

(&2 I & 2 IS I S i e e e
WN R~ WN

oo oo
~WN -

Nooo
= OO

N
(N

. Specifying HTTPS in the WSDL ..o 12
. Specifying HTTPS in the Server Codecccooeviiiiiniiinnnene. 13
. Sample HTTPS Client with No Certificateccooeiiiinnnn. 13
. Sample HTTPS Client with Certificatecoooviiiiiiiininne. 14
. Sample HTTPS Server Configurationccoeviiiiiiininnn. 16
. Structure of a sec:cipherSuitesFilter Element 66
. The Empty POlICY oo 80
L The NUI POLICY wovnee e 80
. Normal Form Syntax ..o 80
. Client HTTPS Configuration in Springcccoveeiviiiiiniiennnnn. 84
. Server HTTPS Configuration in Springccooooviiiiiiiininn. 85
. Example of a Transport Bindingcccooeiiiiiiiiiiiien, 86
. Example of an Asymmetric Bindingcccooiiiiiiin 95
. Example of a Symmetric Bindingcccooiiiii 102
. Integrity and Encryption Policy Assertionscccoooiiiiiininnnns 107
. WSS4J Crypto Interfaceccvveeeiiiiiiiiiii e 114
. Example of a Supporting Tokens Policyccccooeiiiiiiiininnn... 126
. Callback Handler for UsernameToken Passwords 134

FUSE" Services Framework Security Guide Version 2.2.x 9

10

FUSE" Services Framework Security Guide Version 2.2.x

Chapter 1. Security for
HTTP-Compatible Bindings

This chapter describes the security features supported by the FUSE Services Framework HTTP transport. These
security features are available to any FUSE Services Framework binding that can be layered on top of the HTTP

transport.

Overview This section describes how to configure the HTTP transport to use SSL/TLS
security, a combination usually referred to as HTTPS. In FUSE Services
Framework, HTTPS security is configured by specifying settings in XML
configuration files.

The following topics are discussed in this chapter:

"Generating X.509 certificates"
"Enabling HTTPS"

"HTTPS client with no certificate"
"HTTPS client with certificate"

"HTTPS server configuration"

Generating X.509 certificates A basic prerequisite for using SSL/TLS security is to have a collection of X.509
certificates available to identify your server applications and, optionally, to
identify your client applications. You can generate X.509 certificates in one
of the following ways:

Use a commercial third-party to tool to generate and manage your X.509
certificates.

Use the free openssl utility (which can be downloaded from http://

www.openssl.org) and the Java keystore utility to generate certificates (see

"Use the CA to Create Signed Certificates in a Java Keystore" on page 39).

FUSE" Services Framework Security Guide Version 2.2.x 11

http://www.openssl.org
http://www.openssl.org

Chapter 1. Security for HTTP-Compatible Bindings

() Note

The HTTPS protocol mandates a URL integrity check, which requires
a certificate’s identity to match the hostname on which the server is
deployed. See "Special Requirements on HTTPS Certificates"

on page 30 for details.

Certificate format In the Java runtime, you must deploy X.509 certificate chains and trusted
CA certificates in the form of Java keystores. See "Configuring HTTPS"
on page 49 for details.

Enabling HTTPS A prerequisite for enabling HTTPS on a WSDL endpoint is that the endpoint
address must be specified as a HTTPS URL. There are two different locations
where the endpoint address is set and both must be modified to use a HTTPS
URL:

* HTTPS specified in the WSDL contract—you must specify the endpoint
address in the WSDL contract to be a URL with the https: prefix, as

shown in Example 1.1 on page 12.

Example 1.1. Specifying HTTPS in the WSDL

<wsdl:definitions name="HelloWorld"
targetNamespace="http://apache.org/hello world soap http"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" ... >

<wsdl:service name="SOAPService">
<wsdl:port binding="tns:Greeter SOAPBinding"
name="SoapPort">
<soap:address location="https://localhost:9001/SoapContext/SoapPort"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

Where the 1ocation attribute of the soap:address element is configured
to use a HTTPS URL. For bindings other than SOAP, you edit the URL
appearing in the 1ocation attribute of the http:address element.

* HTTPS specified in the server code—you must ensure that the URL
published in the server code by calling Endpoint.publish () is defined

with a https: prefix, as shown in Example 1.2 on page 13.

12 FUSE" Services Framework Security Guide Version 2.2.x

Example 1.2. Specifying HTTPS in the Server Code

// Java
package demo.hw https.server;
import javax.xml.ws.Endpoint;

public class Server {
protected Server () throws Exception {
Object implementor = new GreeterImpl () ;
String address = "https://localhost:9001/SoapContext/SoapPort";
Endpoint.publish (address, implementor) ;

HTTPS client with no certificate For example, consider the configuration for a secure HTTPS client with no

certificate, as shown in Example 1.3 on page 13.

Example 1.3. Sample HTTPS Client with No Certificate

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:sec="http://cxf.apache.org/configuration/security"
xmlns:http="http://cxf.apache.org/transports/http/configuration"
xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
xsi:schemaLocation="...">

<http:tlsClientParameters>
<sec:trustManagers>

e 0

<sec:keyStore type="JKS" password="password"
file="certs/truststore.jks"/>
</sec:trustManagers>
(4) <sec:cipherSuitesFilter>
<sec:include>.* WITH 3DES_ .*</sec:include>
<sec:include>.* WITH DES .*</sec:include>
<sec:exclude>.* WITH NULL .*</sec:exclude>
<sec:exclude>.* DH anon_.*</sec:exclude>
</sec:cipherSuitesFilter>
</http:tlsClientParameters>
</http:conduit>

</beans>

The preceding client configuration is described as follows:

FUSE" Services Framework Security Guide Version 2.2.x

<http:conduit name="{http://apache.org/hello world soap http}SoapPort.http-conduit">

13

Chapter 1. Security for HTTP-Compatible Bindings

©® The TLS security settings are defined on a specific WSDL port. In this
example, the WSDL port being configured has the QName,
{http://apache.org/hello world soap http}SoapPort.

® Thenttp:tlsClientParameters element contains all of the client’s

TLS configuration details.
® The sec:trustManagers element is used to specify a list of trusted CA

certificates (the client uses this list to decide whether or not to trust
certificates received from the server side).

The file attribute of the sec:keyStore element specifies a Java
keystore file, truststore.jks, containing one or more trusted CA
certificates. The password attribute specifies the password required to
access the keystore, truststore.jks. See "Specifying Trusted CA
Certificates for HTTPS" on page 58.

@ Note

Instead of the file attribute, you can specify the location of
the keystore using either the resource attribute or the ur1
attribute. You must be extremely careful not to load the
truststore from an untrustworthy source.

® The sec:cipherSuitesFilter element can be used to narrow the

choice of cipher suites that the client is willing to use for a TLS
connection. See "Configuring HTTPS Cipher Suites" on page 63 for
details.

HTTPS client with certificate Consider a secure HTTPS client that is configured to have its own certificate.
Example 1.4 on page 14 shows how to configure such a sample client.

Example 1.4. Sample HTTPS Client with Certificate

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:sec="http://cxf.apache.org/configuration/security"
xmlns:http="http://cxf.apache.org/transports/http/configuration"
xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
xsi:schemalocation="...">

<http:conduit name="{http://apache.org/hello world soap http}SoapPort.http-conduit">

<http:tlsClientParameters>
<sec:trustManagers>

14 FUSE" Services Framework Security Guide Version 2.2.x

<sec:keyStore type="JKS" password="password"
file="certs/truststore.jks"/>

</sec:trustManagers>

o <sec:keyManagers keyPassword="password">

(2] <sec:keyStore type="JKS" password="password"
file="certs/wibble.jks"/>

</sec:keyManagers>
<sec:cipherSuitesFilter>

<sec:include>.* WITH 3DES .*</sec:include>
<sec:include>.* WITH DES .*</sec:include>
<sec:exclude>.* WITH NULL .*</sec:exclude>
<sec:exclude>.* DH anon_ .*</sec:exclude>

</sec:cipherSuitesFilter>
</http:tlsClientParameters>
</http:conduit>

<bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl"/>

</beans>

The preceding client configuration is described as follows:

o

The sec:keyManagers element is used to attach an X.509 certificate

and a private key to the client. The password specified by the
keyPasswod attribute is used to decrypt the certificate’s private key.

The sec:keystore element is used to specify an X.509 certificate and

a private key that are stored in a Java keystore. This sample declares
that the keystore is in Java Keystore format (JKS).

The fi1le attribute specifies the location of the keystore file, wibble.jks,
that contains the client’s X.509 certificate chain and private key in a
key entry. The password attribute specifies the keystore password which
is required to access the contents of the keystore. It is expected that the
keystore file contains just one key entry, so it is not necessary to specify
a key alias to identify the entry.

For details of how to create such a keystore file, see "Use the CA to
Create Signed Certificates in a Java Keystore" on page 39.

(@ Note

Instead of the file attribute, you can specify the location of
the keystore using either the resource attribute or the ur1

FUSE" Services Framework Security Guide Version 2.2.x 15

Chapter 1. Security for HTTP-Compatible Bindings

attribute. You must be extremely careful not to load the
truststore from an untrustworthy source.

HTTPS server configuration Consider a secure HTTPS server that requires clients to present an X.509
certificate. Example 1.5 on page 16 shows how to configure such a server.

Example 1.5. Sample HTTPS Server Configuration

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:sec="http://cxf.apache.org/configuration/security"
xmlns:http="http://cxf.apache.org/transports/http/configuration"
xmlns:httpj="http://cxf.apache.org/transports/http-jetty/configuration"
xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
xsi:schemalLocation="...">

<httpj:engine-factory bus="cxf">
(1} <httpj:engine port="9001">
(2} <httpj:tlsServerParameters>
0 <sec:keyManagers keyPassword="password">
(4] <sec:keyStore type="JKS" password="password"
file="certs/cherry.jks"/>
</sec:keyManagers>
<sec:trustManagers>
<sec:keyStore type="JKS" password="password"
file="certs/truststore.jks"/>
</sec:trustManagers>
(6} <sec:cipherSuitesFilter>
<sec:include>.* WITH 3DES_ .*</sec:include>
<sec:include>.* WITH DES .*</sec:include>
<sec:exclude>.* WITH NULL .*</sec:exclude>
<sec:exclude>.* DH anon_.*</sec:exclude>
</sec:cipherSuitesFilter>
(7} <sec:clientAuthentication want="true" required="true"/>
</httpj:tlsServerParameters>
</httpj:engine>
</httpj:engine-factory>

o

<!-- We need a bean named "cxf" -->
<bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl"/>
</beans>

The preceding server configuration is described as follows:

16 FUSE" Services Framework Security Guide Version 2.2.x

©® On the server side, TLS is not configured for each WSDL port. Instead
of configuring each WSDL port, the TLS security settings are applied to
a specific /P port, which is 9001 in this example. All of the WSDL ports

that share this IP port are therefore configured with the same TLS security
settings.
® The nttp:tlsServerParameters element contains all of the server’s

TLS configuration details.
® The sec:keyManagers element is used to attach an X.509 certificate

and a private key to the server. The password specified by the
keyPasswod attribute is used to decrypt the certificate’s private key.

® The sec:keyStore element is used to specify an X.509 certificate and

a private key that are stored in a Java keystore. This sample declares
that the keystore is in Java Keystore format (JKS).

The £ile attribute specifies the location of the keystore file, cherry.jks,
that contains the client's X.509 certificate chain and private key in a
key entry. The password attribute specifies the keystore password,
which is needed to access the contents of the keystore. It is expected
that the keystore file contains just one key entry, so there is no need to
specify a key alias.

(® Note

Instead of the file attribute, you can specify the location of
the keystore using either the resource attribute or the ur1
attribute. You must be extremely careful not to load the
truststore from an untrustworthy source.

For details of how to create such a keystore file, see "Use the CA to
Create Signed Certificates in a Java Keystore" on page 39.
® The sec:trustManagers element is used to specify a list of trusted CA

certificates (the server uses this list to decide whether or not to trust
certificates presented by clients).

The file attribute of the sec:keyStore element specifies a Java
keystore file, truststore.jks, containing one or more trusted CA
certificates. The password attribute specifies the password required to
access the keystore, truststore.jks. See "Specifying Trusted CA
Certificates for HTTPS" on page 58.

FUSE" Services Framework Security Guide Version 2.2.x 17

Chapter 1. Security for HTTP-Compatible Bindings

18

() Note

Instead of the file attribute, you can specify the location of
the keystore using either the resource attribute or the ur1
attribute.

The sec:ciphersuitesFilter element can be used to narrow the

choice of cipher suites that the server is willing to use for a TLS
connection. See "Configuring HTTPS Cipher Suites" on page 63 for
details.

The sec:clientAuthentication element determines the server’s

disposition towards the presentation of client certificates. The element

has the following attributes:

* want attribute—If true (the default), the server requests the client
to present an X.509 certificate during the TLS handshake; if false,
the server does not request the client to present an X.509 certificate.

* required attribute—If true, the server raises an exception if a client

fails to present an X.509 certificate during the TLS handshake; if
false (the default), the server does not raise an exception if the client

fails to present an X.509 certificate.

FUSE" Services Framework Security Guide Version 2.2.x

Chapter 2. Managing Certificates

TLS authentication uses X.509 certificates—a common, secure and reliable method of authenticating your
application objects. This chapter explains how to create X.509 certificates that identify your FUSE Services
Framework applications.

What is an X.509 Certificale?oeiie e 20
Certification AUTNOIITIES e et e 22
0] T o) 0 23
Commercial Certification AUtNOITIESieie e 24
Private Certification AULNOIITIESc.iei e 25
CertifiCate ChaiNiNg . e e e e e 26
e SO 2 1Y 28
Special Requirements on HTTPS Certificatesoooiiiiii s 30
Creating Your OWN CertifiCateso.ieieiii e e 33
PRI QUISIEES ..o 34
SEE UP YOUE OWN A ettt e e e 35
Use the CA to Create Signed Certificates in a Java Keystorecoovviiiiiiiniiiiiicceeeeee 39
Use the CA to Create Signed PKCS#12 Certificatesvvueuiiiiiii e 42

FUSE" Services Framework Security Guide Version 2.2.x 19

Chapter 2. Managing Certificates

What is an X.509 Certificate?

Role of certificates

Integrity of the public key

Digital signatures

The contents of an X.509
certificate

20

An X.509 certificate binds a name to a public key value. The role of the
certificate is to associate a public key with the identity contained in the X.509
certificate.

Authentication of a secure application depends on the integrity of the public
key value in the application’s certificate. If an impostor replaces the public
key with its own public key, it can impersonate the true application and gain
access to secure data.

To prevent this type of attack, all certificates must be signed by a certification
authority (CA). A CA is a trusted node that confirms the integrity of the public
key value in a certificate.

A CA signs a certificate by adding its digital signature to the certificate. A
digital signature is a message encoded with the CA’s private key. The CA's
public key is made available to applications by distributing a certificate for
the CA. Applications verify that certificates are validly signed by decoding the
CA's digital signature with the CA's public key.

€9 Warning

The demonstration certificates supplied with FUSE Services
Framework are signed by the demonstration CA. This CA is completely
insecure because anyone can access its private key. To secure your
system, you must create new certificates signed by a trusted CA.
This chapter describes the set of certificates required by a FUSE
Services Framework application and describes how to replace the
default certificates.

An X.509 certificate contains information about the certificate subject and
the certificate issuer (the CA that issued the certificate). A certificate is encoded
in Abstract Syntax Notation One (ASN.1), a standard syntax for describing
messages that can be sent or received on a network.

The role of a certificate is to associate an identity with a public key value. In
more detail, a certificate includes:

FUSE" Services Framework Security Guide Version 2.2.x

What is an X.509 Certificate?

X.509 version information.

* A serial number that uniquely identifies the certificate.

* A subject distinguished name (DN) that identifies the certificate owner.
* The public key associated with the subject.

* An issuer DN that identifies the CA that issued the certificate.

* The digital signature of the issuer.

* Information about the algorithm used to sign the certificate.

* Some optional X.509 v.3 extensions; for example, an extension exists that
distinguishes between CA certificates and end-entity certificates.

Distinguished names A DN is a general purpose X.500 identifier that is often used in the context
of security.

See Appendix A on page 14 1for more details about DNs.

FUSE" Services Framework Security Guide Version 2.2.x 21

Chapter 2. Managing Certificates

Certification Authorities

(O T 1Tt T o AN 23
Commercial Certification AULNOIITIESviei i e 24
Private Certification AUTNOITIESoii i e et eeaeas 25

22 FUSE" Services Framework Security Guide Version 2.2.x

Choice of CAs

Choice of CAs

A CA consists of a set of tools for generating and managing certificates and
a database that contains all of the generated certificates. When setting up a
FUSE Services Framework system, it is important to choose a suitable CA
that is sufficiently secure for your requirements.

There are two types of CA you can use:
* A commercial CA is a company that signs certificates for many systems.

* A private CA is a trusted node that you set up and use to sign certificates
for your system only.

FUSE" Services Framework Security Guide Version 2.2.x 23

Chapter 2. Managing Certificates

Commercial Certification Authorities

Signing certificates

Advantages of commercial CAs

Criteria for choosing a CA

24

There are several commercial CAs available. The mechanism for signing a
certificate using a commercial CA depends on which CA you choose.

An advantage of commercial CAs is that they are often trusted by a large
number of people. If your applications are designed to be available to systems
external to your organization, use a commercial CA to sign your certificates.
If your applications are for use within an internal network, a private CA might
be appropriate.

Before choosing a CA, consider the following criteria:
* What are the certificate-signing policies of the commercial CAs?
» Are your applications designed to be available on an internal network only?

* What are the potential costs of setting up a private CA compared to the
costs of subscribing to a commercial CA?

FUSE" Services Framework Security Guide Version 2.2.x

Private Certification Authorities

Private Certification Authorities

Choosing a CA software package

OpenSSL software package

Setting up a private CA using
OpenSSL

Choosing a host for a private
certification authority

Security precautions

If you want to take responsibility for signing certificates for your system, set
up a private CA. To set up a private CA, you require access to a software
package that provides utilities for creating and signing certificates. Several
packages of this type are available.

One software package that allows you to set up a private CA is OpenSSL,
http://www.openssl.org. OpenSSL is derived from SSLeay, an implementation
of SSL developed by Eric Young (<eay@cryptsoft.com>). Complete license
information can be found in ???? . The OpenSSL package includes basic
command line utilities for generating and signing certificates. Complete
documentation for the OpenSSL command line utilities is available at http:/
www.openssl.org/docs.

To set up a private CA, see the instructions in "Creating Your Own Certificates"
on page 33 .

Choosing a host is an important step in setting up a private CA. The level of
security associated with the CA host determines the level of trust associated
with certificates signed by the CA.

If you are setting up a CA for use in the development and testing of FUSE
Services Framework applications, use any host that the application developers
can access. However, when you create the CA certificate and private key, do
not make the CA private key available on any hosts where security-critical
applications run.

If you are setting up a CA to sign certificates for applications that you are
going to deploy, make the CA host as secure as possible. For example, take
the following precautions to secure your CA:

* Do not connect the CA to a network.
¢ Restrict all access to the CA to a limited set of trusted users.

* Use an RF-shield to protect the CA from radio-frequency surveillance.

FUSE" Services Framework Security Guide Version 2.2.x 25

http://www.openssl.org
http://www.openssl.org/docs
http://www.openssl.org/docs

Chapter 2. Managing Certificates

Certificate Chaining

Certificate chain

Self-signed certificate

Example

Chain of trust

Certificates signed by multiple

CAs

Trusted CAs

26

A certificate chain is a sequence of certificates, where each certificate in the
chain is signed by the subsequent certificate.

The last certificate in the chain is normally a self-signed certificate—a
certificate that signs itself.

Figure 2.1 on page 26 shows an example of a simple certificate chain.

Figure 2.1. A Certificate Chain of Depth 2

Peer |, Signs CA | signs
Certificate | Certificate |

The purpose of a certificate chain is to establish a chain of trust from a peer
certificate to a trusted CA certificate. The CA vouches for the identity in the
peer certificate by signing it. If the CA is one that you trust (indicated by the
presence of a copy of the CA certificate in your root certificate directory), this
implies you can trust the signed peer certificate as well.

A CA certificate can be signed by another CA. For example, an application
certificate could be signed by the CA for the finance department of Progress
Software, which in turn is signed by a self-signed commercial CA.

Figure 2.2 on page 26 shows what this certificate chain looks like.

Figure 2.2. A Certificate Chain of Depth 3

Peer signs Finance signs Commercial signs
Certificate CA CA
Certificate Certificate

An application can accept a peer certificate, provided it trusts at least one of
the CA certificates in the signing chain.

FUSE" Services Framework Security Guide Version 2.2.x

Certificate Chaining

See "Specifying Trusted CA Certificates" on page 56.

FUSE" Services Framework Security Guide Version 2.2.x 27

Chapter 2. Managing Certificates

PKCS#12 Files

Overview

Contents of a PKCS#12 file

28

PKCS#12 is an industry-standard format for deploying certificates and private
keys as a file.

Figure 2.3 on page 28 shows the typical elements in a PKCS#12 file.

Figure 2.3. Elements in a PKCS#12 File

PKCS#12 File
X.509]
! — Certificate Chain
X.509
CcA
O—|—|-| <—t+—— Private Key

A PKCS#12 file contains the following:

¢ An X.509 peer certificate (first in a chain).

* All the CA certificates in the certificate chain.
¢ A private key.

The file is encrypted with a pass phrase.

(@ Note
The same pass phrase is used both for the encryption of the private

key within the PKCS#12 file, and for the encryption of the PKCS#12
file overall. This condition (same pass phrase) is not officially part

FUSE" Services Framework Security Guide Version 2.2.x

PKCS#12 Files

of the PKCS#12 standard, but it is enforced by most Web browsers
and by FUSE Services Framework.

Creating a PKCS#12 file To create a PKCS#12 file, see "Use the CA to Create Signed Certificates in
a Java Keystore" on page 39 .

Viewing a PKCS#12 file To view a PKCS#12 file, certname.p12, enter the following command:

openssl pkcsl2 -in CertName.pl2

Importing and exporting The generated PKCS#12 files generated by OpenSSL can be imported into
PKCS#12 files browsers such as Internet Explorer or Firefox. Exported PKCS#12 files from
these browsers can be used in FUSE Services Framework.
,'] Note

Use OpenSSL v0.9.2 or later.

FUSE" Services Framework Security Guide Version 2.2.x 29

Chapter 2. Managing Certificates

Special Requirements on HTTPS Certificates

Overview The HTTPS specification mandates that HTTPS clients must be capable of
verifying the identity of the server. This can potentially affect how you generate
your X.509 certificates. The mechanism for verifying the server identity
depends on the type of client. Some clients might verify the server identity
by accepting only those server certificates signed by a particular trusted CA.
In addition, clients can inspect the contents of a server certificate and accept
only the certificates that satisfy specific constraints.

In the absence of an application-specific mechanism, the HTTPS specification
defines a generic mechanism, known as the HTTPS URL integrity check, for
verifying the server identity. This is the standard mechanism used by Web
browsers.

HTTPS URL integrity check The basic idea of the URL integrity check is that the server certificate’s identity
must match the server host name. This integrity check has an important
impact on how you generate X.509 certificates for HTTPS: the certificate
identity (usually the certificate subject DN’s common name) must match
the host name on which the HTTPS server is deployed.

The URL integrity check is designed to prevent man-in-the-middle attacks.

Reference The HTTPS URL integrity check is specified by RFC 2818, published by the
Internet Engineering Task Force (IETF) at http://www.ietf.org/rfc/rfc2818.txt.

How to specify the certificate The certificate identity used in the URL integrity check can be specified in
identity one of the following ways:

¢ Using commonName

¢ Using subectAltName

Using commonName The usual way to specify the certificate identity (for the purpose of the URL
integrity check) is through the Common Name (CN) in the subject DN of the
certificate.

For example, if a server supports secure TLS connections at the following
URL:

30 FUSE" Services Framework Security Guide Version 2.2.x

http://www.ietf.org/rfc/rfc2818.txt

Using subjectAltName
(multi-homed hosts)

Special Requirements on HTTPS Certificates

https://www.progress.com/secure

The corresponding server certificate would have the following subject DN:
C=IE, ST=Co. Dublin,L=Dublin,O=Progress,

OU=System, CN=www.progress.com

Where the CN has been set to the host name, www.progress.com.

For details of how to set the subject DN in a new certificate, see "Use the
CA to Create Signed Certificates in a Java Keystore" on page 39 and "Use
the CA to Create Signed Certificates in a Java Keystore" on page 39 .

Using the subject DN'’s Common Name for the certificate identity has the
disadvantage that only one host name can be specified at a time. If you deploy
a certificate on a multi-homed host, however, you might find it is practical
to allow the certificate to be used with any of the multi-homed host names.
In this case, it is necessary to define a certificate with multiple, alternative
identities, and this is only possible using the subjectaltName certificate
extension.

For example, if you have a multi-homed host that supports connections to
either of the following host names:

WWW.Progress.com
fusesource.com

Then you can define a subjectaltName that explicitly lists both of these
DNS host names. If you generate your certificates using the openssl utility,
edit the relevant line of your openss1.cnf configuration file to specify the
value of the subjectAltName extension, as follows:

subjectAltName=DNS:www.progress.com, DNS: fusesource.com
Where the HTTPS protocol matches the server host name against either of

the DNS host names listed in the subjectAltName (the subjectAltName
takes precedence over the Common Name).

The HTTPS protocol also supports the wildcard character, *, in host names.
For example, you can define the subjectaltName as follows:

subjectAltName=DNS:*.progress.com

This certificate identity matches any three-component host name in the domain
progress.com. For example, the wildcarded host name matches either

FUSE" Services Framework Security Guide Version 2.2.x 31

Chapter 2. Managing Certificates

32

www.progress.com Of fusesource.com, but does not match
www . fusesource.com.

€9 Warning

You must never use the wildcard character in the domain name (and
you must take care never to do this accidentally by forgetting to type
the dot, ., delimiter in front of the domain name). For example, if
you specified *progress. com, your certificate could be used on any
domain that ends in the letters progress.

For details of how to set up the openss1.cnf configuration file to generate
certificates with the subjectaltName certificate extension, see "Use the CA
to Create Signed PKCS#12 Certificates" on page 42 .

FUSE" Services Framework Security Guide Version 2.2.x

Creating Your Own Certificates

Creating Your Own Certificates

PO B GUISIEES ..ttt e 34
ST T (o T8 T 171 o T 0 35
Use the CA to Create Signed Certificates in a Java Keystoreoooouviiniiiiini e 39
Use the CA to Create Signed PKCS# 12 CertifiCatesovviiiiiiiii e 42

FUSE" Services Framework Security Guide Version 2.2.x 33

Chapter 2. Managing Certificates

Prerequisites

OpenSSL utilities

Sample CA directory structure

34

The steps described in this section are based on the OpenSSL command-line
utilities from the OpenSSL project, http://www.openssl.org (see ????). Further
documentation of the OpenSSL command-line utilities can be obtained at
http://www.openssl.org/docs.

For the purposes of illustration, the CA database is assumed to have the
following directory structure:

X509CA/ca
X509CA/certs
X509CA/newcerts

X509CA/crl

Where x509ca is the parent directory of the CA database.

FUSE" Services Framework Security Guide Version 2.2.x

http://www.openssl.org
http://www.openssl.org/docs

Set Up Your Own CA

Substeps to perform

Add the bin directory to your
PATH

Create the CA directory hierarchy

Set Up Your Own CA

This section describes how to set up your own private CA. Before setting up
a CA for a real deployment, read the additional notes in "Choosing a host for
a private certification authority" on page 25 .

To set up your own CA, perform the following steps:
1. "Add the bin directory to your PATH"
2. "Create the CA directory hierarchy"

"Copy and edit the openssl.cnf file"

> oW

"Initialize the CA database"

5. "Create a self-signed CA certificate and private key"

On the secure CA host, add the OpenSSL bin directory to your path:

Windows

> set PATH=0OpenSSLDir\bin;$PATH$

UNIX

% PATH=0OpenSSLDir/bin:$PATH; export PATH

.}

This step makes the openssl utility available from the command line.

Create a new directory, x509ca, to hold the new CA. This directory is used
to hold all of the files associated with the CA. Under the x509ca directory,
create the following hierarchy of directories:

X509CA/ca
X509CA/certs

X509CA/newcerts

FUSE" Services Framework Security Guide Version 2.2.x 35

Chapter 2. Managing Certificates

Copy and edit the openssl.cnf file

Initialize the CA database

36

X509cA/crl

Copy the sample openss1.cnf from your OpenSSL installation to the x509ca
directory.

Edit the openss1.cnf to reflect the directory structure of the x509ca directory,
and to identify the files used by the new CA.

Edit the [cA default] section of the openssl.cnf file to look like the
following:

FHEHHHH AR AR R R
[CA default]

dir = X509CA # Where CA files are kept
certs = $dir/certs # Where issued certs are kept

crl dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # Database index file

new _certs dir = $dir/newcerts # Default place for new certs
certificate = $dir/ca/new_ca.pem # The CA certificate
serial = S$dir/serial # The current serial number
crl = $dir/crl.pem # The current CRL

private key = $dir/ca/new_ca pk.pem # The private key
RANDFILE = $dir/ca/.rand

Private random number file

x509 extensions = usr cert # The extensions to add to the
cert

You might decide to edit other details of the OpenSSL configuration at this
point—for more details, see 77?7 .

In the x509ca directory, initialize two files, serial and index.txt.
Windows

To initialize the serial file in Windows, enter the following command:

> echo 01 > serial

To create an empty file, index. txt, in Windows start Windows Notepad at
the command line in the x509ca directory, as follows:

FUSE" Services Framework Security Guide Version 2.2.x

Create a self-signed CA certificate
and private key

Set Up Your Own CA

> notepad index.txt

In response to the dialog box with the text, Cannot find the text.txt
file. Do you want to create a new file?, click Yes, and close
Notepad.

UNIX

To initialize the serial file and the index.txt file in UNIX, enter the
following command:

% echo "01" > serial
% touch index.txt

These files are used by the CA to maintain its database of certificate files.

(® Note

The index.txt file must initially be completely empty, not even
containing white space.

Create a new self-signed CA certificate and private key with the following
command:

openssl req -x509 -new -config Xx509CA/openssl.cnf -days 365 -out
X509cA/ca/new_ca.pem -keyout X509CA/ca/new_ca_ pk.pem

The command prompts you for a pass phrase for the CA private key and
details of the CA distinguished name. For example:

Using configuration from X509CA/openssl.cnf

Generating a 512 bit RSA private key

R

R

writing new private key to 'new ca pk.pem'

Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.

What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE

FUSE" Services Framework Security Guide Version 2.2.x 37

Chapter 2. Managing Certificates

38

State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin

Organization Name (eg, company) []:Progress
Organizational Unit Name (eg, section) []:Finance
Common Name (eg, YOUR name) []:Gordon Brown

Email Address []:gbrown@progress.com

Note

The security of the CA depends on the security of the private key file
and the private key pass phrase used in this step.

You must ensure that the file names and location of the CA certificate and
private key, new ca.pem and new ca pk.pem, are the same as the values
specified in openssl.cnf (see the preceding step).

You are now ready to sign certificates with your CA.

FUSE" Services Framework Security Guide Version 2.2.x

Use the CA to Create Signed Certificates in a Java
Keystore

Use the CA to Create Signed Certificates in a Java Keystore

Substeps to perform

Add the Java bin directory to your
PATH

Generate a certificate and private
key pair

To create and sign a certificate in a Java keystore (JKS), certname. ks,
perform the following substeps:

1. "Add the Java bin directory to your PATH"
2. '"Generate a certificate and private key pair"

"Create a certificate signing request"

> W

"Sign the CSR"

5. "Convert to PEM format"

6. "Concatenate the files"

7. '"Update keystore with the full certificate chain"

8. "Repeat steps as required"

If you have not already done so, add the Java bin directory to your path:

Windows

> set PATH=JAVA HOME\bin; $PATHS$

UNIX

% PATH=JAVA HOME/bin:$PATH; export PATH

This step makes the keytool utility available from the command line.

Open a command prompt and change directory to the directory where you
store your keystore files, keystorepir. Enter the following command:

keytool -genkey -dname "CN=Alice, OU=Engineering, O=Progress,
ST=Co. Dublin, C=IE" -validity 365 -alias CertAlias -keypass
CertPassword —-keystore CertName.jks -storepass CertPassword

This keytool command, invoked with the -genkey option, generates an
X.5009 certificate and a matching private key. The certificate and the key are
both placed in a key entry in a newly created keystore, certname.jks. Because

FUSE" Services Framework Security Guide Version 2.2.x 39

Chapter 2. Managing Certificates

Create a certificate signing
request

Sign the CSR

40

the specified keystore, certname. ks, did not exist prior to issuing the
command, keytool implicitly creates a new keystore.

The -dname and -validity flags define the contents of the newly created
X.509 certificate, specifying the subject DN and the days before expiration
respectively. For more details about DN format, see Appendix A on page 141.

Some parts of the subject DN must match the values in the CA certificate
(specified in the CA Policy section of the openss1.cnf file). The default
openssl.cnf file requires the following entries to match:

 Country Name (C)
* State or Province Name (ST)

* Organization Name (0)

@ Note

If you do not observe the constraints, the OpenSSL CA will refuse to
sign the certificate (see "Sign the CSR" on page 40).

Create a new certificate signing request (CSR) for the certname. ks certificate,
as follows:

keytool -certreq -alias CertAlias —-file CertName csr.pem -key
pass CertPassword —keystore CertName.Jjks -storepass CertPassword

This command exports a CSR to the file, certname csr.pem.

Sign the CSR using your CA, as follows:

openssl ca -config X509CA/openssl.cnf -days 365 -in Cert
Name_csr.pem -out CertName.pem

To sign the certificate successfully, you must enter the CA private key pass
phrase (see "Set Up Your Own CA" on page 35).

FUSE" Services Framework Security Guide Version 2.2.x

Convert to PEM format

Concatenate the files

Update keystore with the full
certificate chain

Repeat steps as required

Use the CA to Create Signed Certificates in a Java
Keystore

() Note

If you want to sign the CSR using a CA certificate other than the
default CA, use the -cert and -keyfile options to specify the CA
certificate and its private key file, respectively.

Convert the signed certificate, certname.pem, to PEM only format, as follows:

openssl x509 -in CertName.pem -out CertName.pem -outform PEM

Concatenate the CA certificate file and certname . pem certificate file, as follows:
Windows

copy CertName.pem + X509CA\ca\new_ca.pem CertName.chain

UNIX

cat CertName.pem X509CA/ca/new_ca .pem > CertName.chain

Update the keystore, certname. ks, by importing the full certificate chain
for the certificate, as follows:

keytool -import -file CertName.chain -keypass CertPassword
-keystore CertName.jks -storepass CertPassword

Repeat steps 2 through 7, to create a complete set of certificates for your
system.

FUSE" Services Framework Security Guide Version 2.2.x 41

Chapter 2. Managing Certificates

Use the CA to Create Signed PKCS#12 Certificates

Substeps to perform

Add the bin directory to your
PATH

Configure the subjectAltName
extension (Optional)

42

If you have set up a private CA, as described in "Set Up Your Own CA"
on page 35, you are now ready to create and sign your own certificates.

To create and sign a certificate in PKCS#12 format, certname.p12, perform
the following substeps:

1. "Add the bin directory to your PATH" .
"Configure the subjectAltName extension (Optional)" .
"Create a certificate signing request" .

2
3
4. 'Sign the CSR" .
5. "Concatenate the files" .
6

"Create a PKCS#12 file" .

N

"Repeat steps as required" .

8. "(Optional) Clear the subjectAltName extension" .

If you have not already done so, add the OpenSSL bin directory to your path,
as follows:

Windows

> set PATH=OpenSSLDir\bin;%PATH%

UNIX

% PATH=OpenSSLDir/bin:$PATH; export PATH

This step makes the openssl utility available from the command line.

Perform this step, if the certificate is intended for a HTTPS server whose
clients enforce URL integrity check, and if you plan to deploy the server on
a multi-homed host or a host with several DNS name aliases (for example,
if you are deploying the certificate on a multi-homed Web server). In this
case, the certificate identity must match multiple host names and this can

FUSE" Services Framework Security Guide Version 2.2.x

Use the CA to Create Signed PKCS#12 Certificates

be done only by adding a subjectaltName certificate extension (see "Special
Requirements on HTTPS Certificates" on page 30).

To configure the subjectAltName extension, edit your CA's openssl.cnf

file as follows:

1. Add the following req extensions setting to the [req)] section (if not
already present in your openssl.cnf file):

openssl Configuration File
[req]
req extensions=v3 req
2. Add the [v3_req] section header (if not already present in your
openssl.cnf file). Under the [v3 req] section, add or modify the

subjectAltName Setting, setting it to the list of your DNS host names.

For example, if the server host supports the alternative DNS names,
www.progress.conland fusesource.com, Set the subjectAltName

as follows:
openssl Configuration File
[v3 req]

subjectAltName=DNS:www.progress.com, DNS: fusesource.com

3. Add a copy extensions setting to the appropriate CA configuration

section. The CA configuration section used for signing certificates is one
of the following:

* The section specified by the -name option of the openssl ca command,

 The section specified by the default ca setting under the [ca]
section (usually [cA default]).

For example, if the appropriate CA configuration section is
[CA default], setthe copy extensions property as follows:

openssl Configuration File

[CA default]
copy_extensions=copy

FUSE" Services Framework Security Guide Version 2.2.x 43

Chapter 2. Managing Certificates

Create a certificate signing
request

44

This setting ensures that certificate extensions present in the certificate
signing request are copied into the signed certificate.

Create a new certificate signing request (CSR) for the certname.p12 certificate,
as shown:

openssl req -new -config X509CA/openssl.cnf -days 365 -out
X509CA/certs/CertName csr.pem —keyout X509CA/certs/CertName pk.pem

This command prompts you for a pass phrase for the certificate’s private key,
and for information about the certificate’s distinguished name.

Some of the entries in the CSR distinguished name must match the values
in the CA certificate (specified in the CA Policy section of the openss1.cnf
file). The default openss1.cnf file requires that the following entries match:

¢ Country Name
 State or Province Name
¢ Organization Name

The certificate subject DN's Common Name is the field that is usually used
to represent the certificate owner’s identity. The Common Name must comply
with the following conditions:

* The Common Name must be distinct for every certificate generated by the
OpenSSL certificate authority.

e |f your HTTPS clients implement the URL integrity check, you must ensure
that the Common Name is identical to the DNS name of the host where
the certificate is to be deployed (see "Special Requirements on HTTPS
Certificates" on page 30).

@ Note

For the purpose of the HTTPS URL integrity check, the
subjectAltName extension takes precedence over the Common
Name.

Using configuration from X509CA/openssl.cnf
Generating a 512 bit RSA private key
At

At

FUSE" Services Framework Security Guide Version 2.2.x

Sign the CSR

Use the CA to Create Signed PKCS#12 Certificates

writing new private key to

'X509CA/certs/CertName pk.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:
You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,

If you enter '.', the field will be left blank.
Country Name (2 letter code) []:IE

State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin

Organization Name (eg, company) []:Progress
Organizational Unit Name (eg, section) []:Systems
Common Name (eg, YOUR name) []:Artix

Email Address []:info@progress.com

Please enter the following 'extra' attributes
to be sent with your certificate request

A challenge password []:password

An optional company name []:Progress

Sign the CSR using your CA, as follows:

openssl ca -config x509CA/openssl.cnf -days 365 -in
X509CA/certs/CertName csr.pem -out X509CA/certs/CertName.pem

This command requires the pass phrase for the private key associated with
the new_ca.pem CA certificate. For example:

Using configuration from X509CA/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'IE'
stateOrProvinceName :PRINTABLE:'Co. Dublin'
localityName :PRINTABLE: 'Dublin'
organizationName :PRINTABLE:'Progress'
organizationalUnitName:PRINTABLE: 'Systems'
commonName :PRINTABLE: 'Bank Server Certificate'
emailAddress :IAS5STRING: 'info@progress.com'
Certificate is to be certified until May 24 13:06:57 2000 GMT
(365 days)

FUSE" Services Framework Security Guide Version 2.2.x 45

Chapter 2. Managing Certificates

Concatenate the files

Create a PKCS#12 file

Repeat steps as required

(Optional) Clear the
subjectAltName extension

46

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/nly
Write out database with 1 new entries

Data Base Updated

To sign the certificate successfully, you must enter the CA private key pass
phrase (see "Set Up Your Own CA" on page 35).

@ Note

If you did not set copy extensions=copy underthe [CA default]
section in the openss1.cnf file, the signed certificate will not include
any of the certificate extensions that were in the original CSR.

Concatenate the CA certificate file, certname.pen certificate file, and
certName_pk.pem private key file as follows:
Windows

copy X509CA\ca\new_ca.pem + X509CA\certs\CertName.pem +
X509CA\certs\CertName pk.pem X509CA\certs\CertName list.pem

UNIX

cat X509CA/ca/new_ca.pem X509CA/certs/CertName.pem
X509CA/certs/CertName pk.pem > X509CA/certs/CertName list.pem

Create a PKCS#12 file from the certname 1ist.pen file as follows:

openssl pkcsl2 -export -in X509CA/certs/CertName list.pem -out
X509CA/certs/CertName.pl2 -name "New cert"

You are prompted to enter a password to encrypt the PKCS#12 certificate.
Usually this password is the same as the CSR password (this is required by
many certificate repositories).

Repeat steps 3 through 6, to create a complete set of certificates for your
system.

After generating certificates for a particular host machine, it is advisable to
clear the subjectaltName setting in the openssi.cnf file to avoid
accidentally assigning the wrong DNS names to another set of certificates.

FUSE" Services Framework Security Guide Version 2.2.x

Use the CA to Create Signed PKCS#12 Certificates

In the openss1.cnf file, comment out the subjectaltName setting (by
adding a # character at the start of the line), and also comment out the
copy_extensions setting.

FUSE" Services Framework Security Guide Version 2.2.x 47

48

FUSE" Services Framework Security Guide Version 2.2.x

Chapter 3. Configuring HTTPS

This chapter describes how to configure HTTPS endpoints.

Authentication AREINALIVES e
Target-Only Authenticationo s
Mutual AUThentiCationo e

Specifying Trusted CA Certificatesouiiii i e,
When to Deploy Trusted CA Certificatesoooiiiiii e
Specifying Trusted CA Certificates for HTTPS ... i

Specifying an Application’s Own Certificateooiiiiiiiiii
Deploying Own Certificate for HTTPS ... e

FUSE" Services Framework Security Guide Version 2.2.x

49

Chapter 3. Configuring HTTPS

Authentication Alternatives

Target-Only AUThentiCAtIONo e 51
Mutual AUThENTICALION .. .e e e e b4

50 FUSE" Services Framework Security Guide Version 2.2.x

Target-Only Authentication

Target-Only Authentication

Overview

Security handshake

When an application is configured for target-only authentication, the target
authenticates itself to the client but the client is not authentic to the target
object, as shown in Figure 3.1 on page 51.

Figure 3.1. Target Authentication Only

Secure Association
P N
Client » Server
\ \
| |
Trusted CA Lists } }
i i Authenticate
\ : Certificat Cert file
‘ CA Cert List 1 | ertincate
|
‘ OO O e |
‘ |
‘ |
} CA Cert List 2 |
|
} |:| |:| |:| e I
‘ |
‘ |
‘ |
|

Prior to running the application, the client and server should be set up as
follows:

* A certificate chain is associated with the server. The certificate chain is
provided in the form of a Java keystore (ee "Specifying an Application’s
Own Certificate" on page 60).

¢ One or more lists of trusted certification authorities (CA) are made available
to the client. (see "Specifying Trusted CA Certificates" on page 56).

During the security handshake, the server sends its certificate chain to the
client (see Figure 3.1 on page 51). The client then searches its trusted CA

FUSE" Services Framework Security Guide Version 2.2.x 51

Chapter 3. Configuring HTTPS

HTTPS example

52

lists to find a CA certificate that matches one of the CA certificates in the
server’s certificate chain.

On the client side, there are no policy settings required for target-only
authentication. Simply configure your client without associating an X.509
certificate with the HTTPS port. You must provide the client with a list of
trusted CA certificates, however (see "Specifying Trusted CA Certificates"
on page 56).

On the server side, in the server’s XML configuration file, make sure that the
sec:clientAuthentication element does not require client authentication.
This element can be omitted, in which case the default policy is to not require
client authentication. However, if the sec:clientAuthentication element
is present, it should be configured as follows:

<http:destination id="{Namespace}PortName.http-destination">
<http:tlsServerParameters>

<sec:clientAuthentication want="false" required="false"/>
</http:tlsServerParameters>
</http:destination>

Where the want attribute is set to false (the default), specifying that the
server does not request an X.509 certificate from the client during a TLS
handshake. The required attribute is also set to false (the default),
specifying that the absence of a client certificate does not trigger an exception
during the TLS handshake.

(® Note

The want attribute can be set either to true or to false. If set to
true, the want setting causes the server to request a client certificate
during the TLS handshake, but no exception is raised for clients
lacking a certificate, so long as the required attribute is set to
false.

It is also necessary to associate an X.509 certificate with the server's HTTPS
port (see "Specifying an Application’s Own Certificate" on page 60) and to
provide the server with a list of trusted CA certificates (see "Specifying Trusted
CA Certificates" on page 56).

FUSE" Services Framework Security Guide Version 2.2.x

Target-Only Authentication

2) Note

The choice of cipher suite can potentially affect whether or not
target-only authentication is supported (see "Configuring HTTPS

Cipher Suites" on page 63).

FUSE" Services Framework Security Guide Version 2.2.x

53

Chapter 3. Configuring HTTPS

Mutual Authentication

Overview

Security handshake

54

When an application is configured for mutual authentication, the target
authenticates itself to the client and the client authenticates itself to the target.
This scenario is illustrated in Figure 3.2 on page 54 . In this case, the server
and the client each require an X.509 certificate for the security handshake.

Figure 3.2. Mutual Authentication

Trusted CA Lists
e
|
/_\ CA Cert List 1
I
Authenticate }
Client !
| CACertList2
|
I
Cert file }
I
I I
I
| L e
| |
I 1
Secure Association A
Client @ —_— Server @
T T
| |
| |
Trusted CA Lists } |
fm———————— L Authenticate
CA Cert List 1 Target Cert file

Prior to running the application, the client and server must be set up as
follows:

» Both client and server have an associated certificate chain (see "Specifying
an Application’s Own Certificate" on page 60).

* Both client and server are configured with lists of trusted certification
authorities (CA) (see "Specifying Trusted CA Certificates" on page 56).

FUSE" Services Framework Security Guide Version 2.2.x

-

HTTPS example

Mutual Authentication

During the TLS handshake, the server sends its certificate chain to the client,
and the client sends its certificate chain to the server—see
Figure 3.1 on page 51 .

On the client side, there are no policy settings required for mutual
authentication. Simply associate an X.509 certificate with the client’'s HTTPS
port (see "Specifying an Application’s Own Certificate" on page 60). You also
need to provide the client with a list of trusted CA certificates (see "Specifying
Trusted CA Certificates" on page 56).

On the server side, in the server’s XML configuration file, make sure that the
sec:clientAuthentication element is configured to require client
authentication. For example:

<http:destination id="{Namespace}PortName.http-destination">
<http:tlsServerParameters>

<sec:clientAuthentication want="true" required="true"/>
</http:tlsServerParameters>
</http:destination>

Where the want attribute is set to true, specifying that the server requests
an X.509 certificate from the client during a TLS handshake. The required
attribute is also set to t rue, specifying that the absence of a client certificate
triggers an exception during the TLS handshake.

It is also necessary to associate an X.509 certificate with the server's HTTPS
port (see "Specifying an Application’s Own Certificate" on page 60) and to
provide the server with a list of trusted CA certificates (see "Specifying Trusted
CA Certificates" on page 56).

@) Note

The choice of cipher suite can potentially affect whether or not mutual
authentication is supported (see "Configuring HTTPS Cipher Suites"
on page 63).

FUSE" Services Framework Security Guide Version 2.2.x 55

Chapter 3. Configuring HTTPS

Specifying Trusted CA Certificates

When to Deploy Trusted CA CertifiCatesouieiriiii e 57
Specifying Trusted CA Certificates for HTTPS ... i i i e 58

56 FUSE" Services Framework Security Guide Version 2.2.x

When to Deploy Trusted CA Certificates

When to Deploy Trusted CA Certificates

Overview When an application receives an X.509 certificate during an SSL/TLS
handshake, the application decides whether or not to trust the received
certificate by checking whether the issuer CA is one of a pre-defined set of
trusted CA certificates. If the received X.509 certificate is validly signed by
one of the application’s trusted CA certificates, the certificate is deemed
trustworthy; otherwise, it is rejected.

Which applications need to Any application that is likely to receive an X.509 certificate as part of an
specify trusted CA certificates? HTTPS or IIOP/TLS handshake must specify a list of trusted CA certificates.
For example, this includes the following types of application:

e All HTTPS clients.

* Any HTTPS servers that support mutual authentication.

FUSE" Services Framework Security Guide Version 2.2.x 57

Chapter 3. Configuring HTTPS

Specifying Trusted CA Certificates for HTTPS

CA certificate format

CA certificate deployment in the
FUSE Services Framework
configuration file

58

CA certificates must be provided in Java keystore format.

To deploy one or more trusted root CAs for the HTTPS transport, perform the
following steps:

1.

Assemble the collection of trusted CA certificates that you want to deploy.
The trusted CA certificates can be obtained from public CAs or private
CAs (for details of how to generate your own CA certificates, see "Set
Up Your Own CA" on page 35). The trusted CA certificates can be in
any format that is compatible with the Java keystore utility; for example,

PEM format. All you need are the certificates themselves—the private
keys and passwords are not required.

Given a CA certificate, cacert.pem, in PEM format, you can add the
certificate to a JKS truststore (or create a new truststore) by entering the
following command:

keytool -import -file cacert.pem -alias CAAlias —-keystore
truststore.jks -storepass StorePass

Where caaiias is a convenient tag that enables you to access this
particular CA certificate using the keytoo1l utility. The file,
truststore.jks, is a keystore file containing CA certificates—if this
file does not already exist, the keytool utility creates one. The
StorePass password provides access to the keystore file,
truststore.jks.

Repeat step 2 as necessary, to add all of the CA certificates to the
truststore file, truststore.jks.

Edit the relevant XML configuration files to specify the location of the
truststore file. You must include the sec:trustManagers element in

the configuration of the relevant HTTPS ports.

For example, you can configure a client port as follows:

<!-- Client port configuration -->
<http:conduit id="{Namespace}PortName.http-conduit">
<http:tlsClientParameters>

<sec:trustManagers>

FUSE" Services Framework Security Guide Version 2.2.x

Specifying Trusted CA Certificates for HTTPS

<sec:keyStore type="JKS"
password="StorePass"
file="certs/truststore.jks"/>
</sec:trustManagers>

</http:tlsClientParameters>
</http:conduit>

Where the type attribute specifes that the truststore uses the JKS
keystore implementation and storePass is the password needed to
access the truststore.jks keystore.

Configure a server port as follows:

<!-- Server port configuration -->
<http:destination id="{Namespace}PortName.http-destination">

<http:tlsServerParameters>

<sec:trustManagers>
<sec:keyStore type="JKS"
password="StorePass"
file="certs/truststore.jks"/>
</sec:trustManagers>

</http:tlsServerParameters>
</http:destination>

€3 Warning

The directory containing the truststores (for example,
X509Deploy/truststores/) should be a secure directory (that
is, writable only by the administrator).

FUSE" Services Framework Security Guide Version 2.2.x 59

Chapter 3. Configuring HTTPS

Specifying an Application’s Own Certificate

Deploying Own Certificate for HTTPS ... e 61

60 FUSE" Services Framework Security Guide Version 2.2.x

Deploying Own Certificate for HTTPS

Deploying Own Certificate for HTTPS

Overview When working with the HTTPS transport the application's certificate is
deployed using the XML configuration file.

Procedure To deploy an application’s own certificate for the HTTPS transport, perform
the following steps:

1.

Obtain an application certificate in Java keystore format, certname. jks.

For instructions on how to create a certificate in Java keystore format,
see "Use the CA to Create Signed Certificates in a Java Keystore"
on page 39.

,'] Note

Some HTTPS clients (for example, Web browsers) perform a
URL integrity check, which requires a certificate’s identity to
match the hostname on which the server is deployed. See
"Special Requirements on HTTPS Certificates" on page 30 for
details.

Copy the certificate’s keystore, certname. ks, to the certificates directory
on the deployment host; for example, x509peploy/certs.

The certificates directory should be a secure directory that is writable
only by administrators and other privileged users.

Edit the relevant XML configuration file to specify the location of the
certificate keystore, certnName.jks. You must include the
sec:keyManagers element in the configuration of the relevant HTTPS
ports.

For example, you can configure a client port as follows:

<http:conduit id="{Namespace}PortName.http-conduit">
<http:tlsClientParameters>

<sec:keyManagers keyPassword="CertPassword">
<sec:keyStore type="JKS"
password="KeystorePassword"
file="certs/CertName.jks" />

FUSE" Services Framework Security Guide Version 2.2.x 61

Chapter 3. Configuring HTTPS

62

</sec:keyManagers>

</http:tlsClientParameters>
</http:conduit>

Where the xeyPassword attribute specifies the password needed to
decrypt the certificate’s private key (that is, certpassword), the type
attribute specifes that the truststore uses the JKS keystore
implementation, and the password attribute specifies the password
required to access the certname. jks keystore (that is,
KeystorePassword).

Configure a server port as follows:

<http:destination i1d="{Namespace}PortName.http-destination">
<http:tlsServerParameters>

<sec:keyManagers keyPassword="CertPassword">
<sec:keyStore type="JKS"
password="KeystorePassword"
file="certs/CertName.jks"/>
</sec:keyManagers>

</http:tlsServerParameters>
</http:destination>

€3 Warning

The directory containing the application certificates (for example,
X509peploy/certs/) should be a secure directory (that is,
readable and writable only by the administrator).

€3 Warning

The directory containing the XML configuration file should be a
secure directory (that is, readable and writable only by the
administrator), because the configuration file contains passwords
in plain text.

FUSE" Services Framework Security Guide Version 2.2.x

Chapter 4. Configuring HTTPS Cipher
Suites

This chapter explains how to specify the list of cipher suites that are made available to clients and servers for
the purpose of establishing HTTPS connections. During a security handshake, the client chooses a cipher suite
that matches one of the cipher suites available to the server.

SUPPOIEd CIPNEr SUITES .. e ettt et ettt et e e enenas 64
CIPNET SUITE FIEIS et e e e ettt et e e 66
SSLITLS ProtoCOl VEISIONueii ittt e ettt et et e e eenes 69

FUSE" Services Framework Security Guide Version 2.2.x 63

Chapter 4. Configuring HTTPS Cipher Suites

Supported Cipher Suites

Overview

JCE/JSSE and security providers

SunJSSE provider

Cipher suites supported by
SunJSSE

A cipher suite is a collection of security algorithms that determine precisely
how an SSL/TLS connection is implemented.

For example, the SSL/TLS protocol mandates that messages be signed using
a message digest algorithm. The choice of digest algorithm, however, is
determined by the particular cipher suite being used for the connection.
Typically, an application can choose either the MD5 or the SHA digest
algorithm.

The cipher suites available for SSL/TLS security in FUSE Services Framework
depend on the particular JSSE provider that is specified on the endpoint.

The Java Cryptography Extension (JCE) and the Java Secure Socket Extension
(JSSE) constitute a pluggable framework that allows you to replace the Java
security implementation with arbitrary third-party toolkits, known as security
providers.

In practice, the security features of FUSE Services Framework have been
tested only with SUN’s JSSE provider, which is named sunJssk.

Hence, the SSL/TLS implementation and the list of available cipher suites in
FUSE Services Framework are effectively determined by what is available
from SUN’s JSSE provider.

The following cipher suites are supported by SUN’s JSSE provider in the J2SE
1.5.0 Java development kit (see also Appendix Al of SUN’s JSSE Reference
Guide):

¢ Standard ciphers:

SSL_DHE DSS EXPORT WITH DES40 CBC SHA
SSL_DHE DSS WITH 3DES EDE CBC SHA
SSL_DHE DSS WITH DES CBC_ SHA

SSL_DHE RSA EXPORT WITH DES40 CBC SHA
SSL_DHE RSA WITH 3DES EDE CBC SHA
SSL_DHE RSA WITH DES CBC_ SHA

SSL_RSA EXPORT WITH DES40 CBC SHA
SSL_RSA EXPORT WITH RC4 40 MD5

! http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.htmI#AppA

64

FUSE" Services Framework Security Guide Version 2.2.x

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#AppA
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#AppA

Supported Cipher Suites

SSL RSA WITH 3DES EDE CBC SHA

SSL RSA WITH DES CBC SHA

SSL RSA WITH RC4 128 MD5

SSL RSA WITH RC4 128 SHA

TLS DHE DSS WITH AES 128 CBC SHA
TLS DHE DSS WITH AES 256 CBC SHA
TLS DHE RSA WITH AES 128 CBC SHA
TLS DHE RSA WITH AES 256 CBC SHA
TLS KRB5 EXPORT WITH DES CBC 40 MD5
TLS KRB5 EXPORT WITH DES CBC 40 SHA
TLS KRB5 EXPORT WITH RC4 40 MD5

TLS KRB5 EXPORT WITH RC4 40 SHA
TLS KRB5 WITH 3DES EDE CBC MD5

TLS KRB5 WITH 3DES EDE CBC SHA

TLS KRB5 WITH DES CBC MD5

TLS KRB5 WITH DES CBC SHA

TLS KRB5 WITH RC4 128 MD5

TLS KRB5 WITH RC4 128 SHA

TLS RSA WITH AES 128 CBC SHA

TLS RSA WITH AES 256 CBC SHA

* Null encryption, integrity-only ciphers:

SSL_RSA WITH NULL MD5
SSL RSA WITH NULL SHA

* Anonymous Diffie-Hellman ciphers (no authentication):

SSL_DH anon EXPORT WITH DES40 CBC_SHA
SSL_DH anon EXPORT WITH RC4 40 MD5
SSL_DH anon WITH 3DES EDE CBC_SHA
SSL_DH anon WITH DES CBC_SHA

SSL DH anon WITH RC4 128 MD5

TLS DH anon WITH AES 128 CBC_SHA

TLS DH anon WITH AES 256 CBC_SHA

JSSE reference guide For more information about SUN'’s JSSE framework, please consult the JSSE
Reference Guide at the following location:

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html

FUSE" Services Framework Security Guide Version 2.2.x 65

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html

Chapter 4. Configuring HTTPS Cipher Suites

Cipher Suite Filters

Overview

Namespaces

In a typical application, you usually want to restrict the list of available cipher
suites to a subset of the ciphers supported by the JSSE provider.

Table 4.1 on page 66 shows the XML namespaces that are referenced in
this section:

Table 4.1. Namespaces Used for Configuring Cipher Suite Filters

Prefix

Namespace URI

http http://cxf.apache.org/transports/http/configuration

httpj|http://cxf.apache.org/transports/http-jetty/configuration

sec http://cxf.apache.org/configuration/security

sec:cipherSuitesFilter element

Semantics

66

You define a cipher suite filter using the sec:cipherSuitesFilter element,
which can be a child of either a http:tlsClientParameters elementor a
httpj:tlsServerParameters element. Atypical sec:cipherSuitesFilter
element has the outline structure shown in Example 4.1 on page 66 .

Example 4.1. Structure of a sec:cipherSuitesFilter Element

<sec:cipherSuitesFilter>
<sec:include>RegularExpression</sec:include>
<sec:include>RegularExpression</sec:include>

<sec:exclude>RegularExpression</sec:exclude>
<sec:exclude>RegularExpression</sec:exclude>

</sec:cipherSuitesFilter>

The following semantic rules apply to the sec:cipherSuitesFilter element:

1. [fasec:ciphersuitesFilter element does not appear in an endpoint’s
configuration (that is, it is absent from the relevant http:conduit or
httpij:engine-factory element), the following default filter is used:

FUSE" Services Framework Security Guide Version 2.2.x

Cipher Suite Filters

<sec:cipherSuitesFilter>
<sec:include>.* EXPORT_.*</sec:include>
<sec:include>.* EXPORT1024.*</sec:include>
<sec:include>.* DES_.*</sec:include>
<sec:include>.* WITH NULL .*</sec:include>
</sec:cipherSuitesFilter>

2. If the sec:ciphersuitesFilter element does appear in an endpoint’s
configuration, all cipher suites are excluded by default.

3. To include cipher suites, add a sec:include child element to the
sec:cipherSuitesFilter element. The content of the sec:include

element is a regular expression that matches one or more cipher suite
names (for example, see the cipher suite names in "Cipher suites supported
by SunJSSE" on page 7).

4. To refine the selected set of cipher suites further, you can add a
sec:exclude element to the sec:cipherSuitesFilter element. The
content of the sec:exclude element is a regular expression that matches
zero or more cipher suite names from the currently included set.

() Note

Sometimes it makes sense to explicitly exclude cipher suites that
are currently not included, in order to future-proof against
accidental inclusion of undesired cipher suites.

Regular expression matching The grammar for the regular expressions that appear in the sec:include
and sec:exclude elements is defined by the Java regular expression utility,
java.util.regex.Pattern. For a detailed description of the grammar,
please consult the Java reference guide, http://java.sun.com/j2se/1.5.0/docs/
api/java/util/regex/Pattern.html.

Client conduit example The following XML configuration shows an example of a client that applies a
cipher suite filter to the remote endpoint, { WSDLPortNamespace} PortName.
Whenever the client attempts to open an SSL/TLS connection to this endpoint,
it restricts the available cipher suites to the set selected by the
sec:cipherSuitesFilter element.

FUSE" Services Framework Security Guide Version 2.2.x 67

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

Chapter 4. Configuring HTTPS Cipher Suites

<beans ... >
<http:conduit name="{WSDLPortNamespace} PortName.http-conduit">

<http:tlsClientParameters>

<sec:cipherSuitesFilter>
<sec:include>.* WITH 3DES_.*</sec:include>
<sec:include>.* WITH DES_.*</sec:include>
<sec:exclude>.* WITH NULL .*</sec:exclude>
<sec:exclude>.* DH anon .*</sec:exclude>
</sec:cipherSuitesFilter>
</http:tlsClientParameters>
</http:conduit>

<bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl"/>
</beans>

68 FUSE" Services Framework Security Guide Version 2.2.x

SSL/TLS Protocol Version

SSL/TLS Protocol Version

Overview

SSL/TLS protocol versions
supported by SunJSSE

Specifying the SSL/TLS protocol
version

Client side SSL/TLS protocol
version

The versions of the SSL/TLS protocol that are supported by FUSE Services
Framework depend on the particular JSSE provider configured. By default,
the JSSE provider is configured to be SUN’s JSSE provider implementation.

Table 4.2 on page 69 shows the SSL/TLS protocol versions supported by
SUN’s JSSE provider.

Table 4.2. SSL/TLS Protocols Supported by SUN’s JSSE Provider

Protocol | Description

SSL Supports some version of SSL; may support other versions

ssLv2 |Supports SSL version 2 or higher

ssLv3 |Supports SSL version 3; may support other versions

TLS Supports some version of TLS; may support other versions

TLSv1 |Supports TLS version 1; may support other versions

You can specify the preferred SSL/TLS protocol version as an attribute on the
http:tlsClientParameters element (client side) or on the
httpj:tlsServerParameters element (server side).

You can specify the protocol to be TLS on the client side by setting the
secureSocketProtocol attribute as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans ... >

<http:conduit name="{Namespace}PortName.http-conduit">
<http:tlsClientParameters secureSocketProtocol="TLS">

</http:tlsClientParameters>
</http:conduit>

FUSE" Services Framework Security Guide Version 2.2.x 69

Chapter 4. Configuring HTTPS Cipher Suites

</beans>

Server side SSL/TLS protocol You can specify the protocol to be TLS on the server side by setting the
version secureSocketProtocol attribute as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans ... >

<httpj:engine-factory bus="cxf">
<httpj:engine port="9001">

<httpj:tlsServerParameters secureSocketProtocol="TLS">
</httpj:tlsClientParameters>
</httpj:engine>

</httpj:engine-factory>

</beans>

70 FUSE" Services Framework Security Guide Version 2.2.x

Chapter 5. The WS-Policy Framework

This chapter provides an introduction to the basic concepts of the WS-Policy framework, defining policy subjects
and policy assertions, and explaining how policy assertions can be combined to make policy expressions.

TN o e [0 Tox T g T (o T A E 11T 72
o] 110V o =1 o PP 77

FUSE" Services Framework Security Guide Version 2.2.x 71

Chapter 5. The WS-Policy Framework

Introduction to WS-Policy

Overview

Policies and policy references

! http://www.w3.org/TR/ws-policy/

72

The WS-Policy specification1 provides a general framework for applying policies
that modify the semantics of connections and communications at runtime in
a Web services application. FUSE Services Framework security uses the
WS-Policy framework to configure message protection and authentication
requirements.

The simplest way to specify a policy is to embed it directly where you want
to apply it. For example, to associate a policy with a specific port in the WSDL
contract, you can specify it as follows:

<wsdl:definitions targetNamespace="http://tempuri.org/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/o0asis—

200401-wss-wssecurity-utility-1.0.xsd"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
>

<wsdl:service name="PingServicelO">
<wsdl:port name="UserNameOverTransport IPingService"
binding="BindingName">
<wsp:Policy>
<!-- Policy expression comes here! -->
</wsp:Policy>
<soap:address location="SOAPAddress" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

An alternative way to specify a policy is to insert a policy reference element,
wsp:PolicyReference, at the point where you want to apply the policy and
then insert the policy element, wsp:Policy, at some other point in the XML
file. For example, to associate a policy with a specific port using a policy
reference, you could use a configuration like the following:

<wsdl:definitions targetNamespace="http://tempuri.org/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/ocasis-

200401-wss-wssecurity-utility-1.0.xsd"

FUSE" Services Framework Security Guide Version 2.2.x

http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/ws-policy/

Policy subjects

Service policy subject

Introduction to WS-Policy

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
>

<wsdl:service name="PingServicelO">
<wsdl:port name="UserNameOverTransport IPingService"
binding="BindingName">
<wsp:PolicyReference URI="#PolicyID"/>
<soap:address location="SOAPAddress"/>
</wsdl:port>
</wsdl:service>

<wsp:Policy wsu:Id="PolicyID">
<!-- Policy expression comes here ... -->
</wsp:Policy>
</wsdl:definitions>

Where the policy reference, wsp:PolicyReference, locates the referenced
policy using the ID, policy1D (note the addition of the # prefix character in
the ur1 attribute). The policy itself, wsp: Policy, must be identified by adding
the attribute, wsu:Id="rPolicyID".

The entities with which policies are associated are called policy subjects. For
example, you can associate a policy with an endpoint, in which case the
endpoint is the policy subject. It is possible to associate multiple policies with
any given policy subject. The WS-Policy framework supports the following
kinds of policy subject:

* "Service policy subject" on page 73.
¢ "Endpoint policy subject" on page 74.
» "Operation policy subject" on page 74.

* "Message policy subject" on page 75.

To associate a policy with a service, insert either a <wsp:Policy> element
or a <wsp:PolicyReference> element as a sub-element of the following
WSDL 1.1 element:

FUSE" Services Framework Security Guide Version 2.2.x 73

Chapter 5. The WS-Policy Framework

Endpoint policy subject

Operation policy subject

74

* wsdl:service—apply the policy to all of the ports (endpoints) offered by

this service.

To associate a policy with an endpoint, insert either a <wsp: Policy> element
or a <wsp:PolicyReference> element as a sub-element of any of the
following WSDL 1.1 elements:

* wsdl:portType—apply the policy to all of the ports (endpoints) that use
this port type.

* wsdl:binding—apply the policy to all of the ports that use this binding.
* wsdl:port—apply the policy to this endpoint only.

For example, you can associate a policy with an endpoint binding as follows
(using a policy reference):

<wsdl:definitions targetNamespace="http://tempuri.org/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-utility-1.0.xsd"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
>
<wsdl:binding name="EndpointBinding" type="1i0:IPingService">
<wsp:PolicyReference URI="#PolicyID"/>
</wsdl:binding>

<wsp:Policy wsu:Id="PolicyID"> ... </wsp:Policy>

</wsdl:definitions>

To associate a policy with an operation, insert either a <wsp:Policy> element
or a <wsp:PolicyReference> element as a sub-element of any of the
following WSDL 1.1 elements:

®* wsdl:portType/wsdl:operation

®* wsdl:binding/wsdl:operation

FUSE" Services Framework Security Guide Version 2.2.x

Introduction to WS-Policy

For example, you can associate a policy with an operation in a binding as
follows (using a policy reference):

<wsdl:definitions targetNamespace="http://tempuri.org/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/ocasis-

200401-wss-wssecurity-utility-1.0.xsd"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
>

<wsdl:binding name="EndpointBinding" type="1i0:IPingService">

<wsdl:operation name="Ping">
<wsp:PolicyReference URI="#PolicyID"/>
<soap:operation soapAction="http://xmlsoap.org/Ping"
style="document" />
<wsdl:input name="PingRequest"> ... </wsdl:input>
<wsdl:output name="PingResponse"> ... </wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsp:Policy wsu:Id="PolicyID"> ... </wsp:Policy>

</wsdl:definitions>

Message policy subject To associate a policy with a message, insert either a <wsp:Policy> element
or a <wsp:PolicyReference> element as a sub-element of any of the
following WSDL 1.1 elements:

® wsdl:message

® wsdl:portType/wsdl:operation/wsdl:input
* wsdl:portType/wsdl:operation/wsdl:output
* wsdl:portType/wsdl:operation/wsdl:fault
® wsdl:binding/wsdl:operation/wsdl:input

® wsdl:binding/wsdl:operation/wsdl:output

® wsdl:binding/wsdl:operation/wsdl:fault

FUSE" Services Framework Security Guide Version 2.2.x 75

Chapter 5. The WS-Policy Framework

For example, you can associate a policy with a message in a binding as follows
(using a policy reference):

<wsdl:definitions targetNamespace="http://tempuri.org/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-utility-1.0.xsd"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
>

<wsdl:binding name="EndpointBinding" type="1i0:IPingService">

<wsdl:operation name="Ping">
<soap:operation soapAction="http://xmlsoap.org/Ping"
style="document"/>
<wsdl:input name="PingRequest">
<wsp:PolicyReference URI="#PolicyID"/>
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="PingResponse"> ... </wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsp:Policy wsu:Id="PolicyID"> ... </wsp:Policy>

</wsdl:definitions>

76 FUSE" Services Framework Security Guide Version 2.2.x

Policy Expressions

Policy Expressions

Overview

Policy assertions

In general, a wsp:Policy element is composed of multiple different policy
settings (where individual policy settings are specified as policy assertions).
Hence, the policy defined by a wsp:Policy element is really a composite
object. The content of the wsp: Policy element is called a policy expression,
where the policy expression consists of various logical combinations of the
basic policy assertions. By tailoring the syntax of the policy expression, you
can determine what combinations of policy assertions must be satisfied at
runtime in order to satisfy the policy overall.

This section describes the syntax and semantics of policy expressions in detail.

Policy assertions are the basic building blocks that can be combined in various
ways to produce a policy. A policy assertion has two key characteristics: it
adds a basic unit of functionality to the policy subject and it represents a
boolean assertion to be evaluated at runtime. For example, consider the
following policy assertion that requires a WS-Security username token to be
propagated with request messages:

<sp:SupportingTokens xmlns:sp="http://schem
as.xmlsoap.org/ws/2005/07/securitypolicy">
<wsp:Policy>
<sp:UsernameToken/>
</wsp:Policy>
</sp:SupportingTokens>

When associated with an endpoint policy subject, this policy assertion has
the following effects:

* The Web service endpoint marshales/unmarshals the UsernameToken
credentials.

* At runtime, the policy assertion returns true, if UsernameToken credentials

are provided (on the client side) or received in the incoming message (on
the server side); otherwise the policy assertion returns false.

FUSE" Services Framework Security Guide Version 2.2.x 77

Chapter 5. The WS-Policy Framework

Policy alternatives

wsp:All element

78

Note that if a policy assertion returns false, this does not necessarily result
in an error. The net effect of a particular policy assertion depends on how it
is inserted into a policy and on how it is combined with other policy assertions.

A policy is built up using policy assertions, which can additionally be qualified
using the wsp:0ptional attribute, and various nested combinations of the
wsp:All and wsp:ExactlyoOne elements. The net effect of composing these
elements is to produce a range of acceptable policy alternatives. As long as
one of these acceptable policy alternatives is satisfied, the overall policy is
also satisified (evaluates to true).

When a list of policy assertions is wrapped by the wsp:211 element, all of
the policy assertions in the list must evaluate to true. For example, consider
the following combination of authentication and authorization policy assertions:

<wsp:Policy wsu:Id="AuthenticateAndAuthorizeWSSUsernameToken
Policy">
<wsp:All>
<sp:SupportingTokens>
<wsp:Policy>
<sp:UsernameToken/>
</wsp:Policy>
</sp:SupportingTokens>
<sp:SupportingTokens>
<wsp:Policy>
<sp:SamlToken/>
</wsp:Policy>
</sp:SupportingTokens>
</wsp:All>
</wsp:Policy>

The preceding policy will be satisfied for a particular incoming request, if the
following conditions both hold:

* WS-Security UsernameToken credentials must be present; and

* A SAML token must be present.

FUSE" Services Framework Security Guide Version 2.2.x

wsp:ExactlyOne element

The empty policy

Policy Expressions

() Note

The wsp:Policy element is semantically equivalent to wsp:a11.
Hence, if you removed the wsp:a11 element from the preceding
example, you would obtain a semantically equivalent example

When a list of policy assertions is wrapped by the wsp : Exact1yone element,
at least one of the policy assertions in the list must evaluate to true. The
runtime goes through the list, evaluating policy assertions until it finds a policy
assertion that returns true. At that point, the wsp:Exact1yone expression
is satisfied (returns true) and any remaining policy assertions from the list
will not be evaluated. For example, consider the following combination of
authentication policy assertions:

<wsp:Policy wsu:Id="AuthenticateUsernamePasswordPolicy">
<wsp:ExactlyOne>
<sp:SupportingTokens>
<wsp:Policy>
<sp:UsernameToken/>
</wsp:Policy>
</sp:SupportingTokens>
<sp:SupportingTokens>
<wsp:Policy>
<sp:SamlToken/>
</wsp:Policy>
</sp:SupportingTokens>
</wsp:ExactlyOne>
</wsp:Policy>

The preceding policy will be satisfied for a particular incoming request, if
either of the following conditions hold:

* WS-Security UsernameToken credentials are present; or
* A SAML token is present.

Note, in particular, that if both credential types are present, the policy would
be satisfied after evaluating one of the assertions, but no guarantees can be
given as to which of the policy assertions actually gets evaluated.

A special case is the empty policy, an example of which is shown in
Example 5.1 on page 80.

FUSE" Services Framework Security Guide Version 2.2.x 79

Chapter 5. The WS-Policy Framework

The null policy

Normal form

80

Example 5.1. The Empty Policy

<wsp:Policy ... >
<wsp:ExactlyOne>
<wsp:All/>
</wsp:ExactlyOne>
</wsp:Policy>

Where the empty policy alternative, <wsp:A11/>, represents an alternative
for which no policy assertions need be satisfied. In other words, it always
returns true. When <wsp:2A11/> is available as an alternative, the overall
policy can be satisified even when no policy assertions are true.

A special case is the null policy, an example of which is shown in
Example 5.2 on page 80.

Example 5.2. The Null Policy

<wsp:Policy ... >
<wsp:ExactlyOne/>
</wsp:Policy>

Where the null policy alternative, <wsp:ExactlyOne/>, represents an
alternative that is never satisfied. In other words, it always returns false.

In practice, by nesting the <wsp:211> and <wsp:ExactlyOne> elements,
you can produce fairly complex policy expressions, whose policy alternatives
might be difficult to work out. To facilitate the comparison of policy
expressions, the WS-Policy specification defines a canonical or normal form
for policy expressions, such that you can read off the list of policy alternatives
unambiguously. Every valid policy expression can be reduced to the normal
form.

In general, a normal form policy expression conforms to the syntax shown in
Example 5.3 on page 80.

Example 5.3. Normal Form Syntax

<wsp:Policy ... >
<wsp:ExactlyOne>
<wsp:All> <Assertion .../> ... <Assertion .../>
</wsp:All>
<wsp:All> <Assertion .../> ... <Assertion .../>
</wsp:All>

FUSE" Services Framework Security Guide Version 2.2.x

Policy Expressions

</wsp:ExactlyOne>
</wsp:Policy>

Where each line of the form, <wsp:A11>...</wsp:All>, represents a valid
policy alternative. If one of these policy alternatives is satisfied, the policy is
satisfied overall.

FUSE" Services Framework Security Guide Version 2.2.x 81

82

FUSE" Services Framework Security Guide Version 2.2.x

Chapter 6. Message Protection

The following message protection mechanisms are described in this chapter: protection against eavesdropping
(by employing encryption algorithms) and protection against message tampering (by employing message digest
algorithms). The protection can be applied at various levels of granularity and to different protocol layers. At the
transport layer, you have the option of applying protection to the entire contents of the message; while at the
SOAP layer, you have the option of applying protection to various parts of the message (bodies, headers, or
attachments).

Transport Layer Message ProteCtion ... 84
SOAP MESSAZE ProtECHION ...t it a 89
Introduction to SOAP Message ProteCtionoeiiiiiiiiiii 90
Basic Signing and Encryption SCeNArioccooiiiiiiiiiii 92
Specifying an AsymmetricBinding POIICYcuieieiii e 94
Specifying a SymmetricBinding POLICYvuiieii e 101
Specifying Parts of Message to Encrypt and Signoooiiiiiiiii e 105
Providing Encryption Keys and Signing KEYScuiiieiiiiiiii e 108
Specifying the Algorithm SUIte ... e 116

FUSE" Services Framework Security Guide Version 2.2.x 83

Chapter 6. Message Protection

Transport Layer Message Protection

Overview

Prerequisites

84

Transport layer message protection refers to the message protection (encryption
and signing) that is provided by the transport layer. For example, HTTPS
provides encryption and message signing features using SSL/TLS. In fact,
WS-SecurityPolicy does not add much to the HTTPS feature set, because
HTTPS is already fully configurable using Spring XML configuration (see
"Configuring HTTPS" on page 49). An advantage of specifying a transport
binding policy for HTTPS, however, is that it enables you to embed security
requirements in the WSDL contract. Hence, any client that obtains a copy of
the WSDL contract can discover what the transport layer security requirements
are for the endpoints in the WSDL contract.

If you use WS-SecurityPolicy to configure the HTTPS transport, you must also
configure HTTPS security appropriately in the Spring configuration.

Example 6.1 on page 84 shows how to configure a client to use the HTTPS
transport protocol. The sec: keyManagers element specifies the client's own
certificate, alice.pfx, and the sec:trustManagers element specifies the
trusted CA list. Note how the http:conduit element's name attribute uses
wildcards to match the endpoint address. For details of how to configure
HTTPS on the client side, see "Configuring HTTPS" on page 49.

Example 6.1. Client HTTPS Configuration in Spring

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:http="http://cxf.apache.org/transports/http/con
figuration"
xmlns:sec="http://cxf.apache.org/configuration/security"
>

<http:conduit name="https://.*/UserNameOverTransport.*">
<http:tlsClientParameters disableCNCheck="true">
<sec:keyManagers keyPassword="password">
<sec:keyStore type="pkcsl2" password="password" re
source="certs/alice.pfx"/>
</sec:keyManagers>
<sec:trustManagers>
<sec:keyStore type="pkcsl2" password="password" re
source="certs/bob.pfx"/>
</sec:trustManagers>
</http:tlsClientParameters>
</http:conduit>

FUSE" Services Framework Security Guide Version 2.2.x

Policy subject

Transport Layer Message Protection

</beans>

Example 6.2 on page 85 shows how to configure a server to use the HTTPS
transport protocol. The sec: keyManagers element specifies the server's own
certificate, bob.pfx, and the sec:trustManagers element specifies the
trusted CA list. For details of how to configure HTTPS on the server side, see
"Configuring HTTPS" on page 49.

Example 6.2. Server HTTPS Configuration in Spring

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:http="http://cxf.apache.org/transports/http/con
figuration"
xmlns:sec="http://cxf.apache.org/configuration/security"
>

<httpj:engine-factory id="tls-settings">
<httpj:engine port="9001">
<httpj:tlsServerParameters>
<sec:keyManagers keyPassword="password">
<sec:keyStore type="pkcsl2" password="password" re
source="certs/bob.pfx"/>
</sec:keyManagers>
<sec:trustManagers>
<sec:keyStore type="pkcsl2" password="password" re
source="certs/alice.pfx"/>
</sec:trustManagers>
</httpj:tlsServerParameters>
</httpj:engine>
</httpj:engine-factory>

</beans>

A transport binding policy must be applied to an endpoint policy subject (see
"Endpoint policy subject" on page 74). For example, given the transport
Undinng“Cy\Nhh|D,UserNameOverTranSport_IPingService_policy
you could apply the policy to an endpoint binding as follows:

<wsdl:binding name="UserNameOverTransport IPingService"
type="10:IPingService">

<wsp:PolicyReference URI="#UserNameOverTransport IPingSer
vice policy"/>

FUSE" Services Framework Security Guide Version 2.2.x 85

Chapter 6.

Message Protection

</wsdl:binding>

Syntax The TransportBinding element has the following syntax:
<sp:TransportBinding xmlns:sp="..." ... >
<wsp:Policy xmlns:wsp="...">
<sp:TransportToken ... >
<wsp:Policy> ... </wsp:Policy>
</sp:TransportToken>
<sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite>
<sp:Layout ... > ... </sp:Layout> ?
<sp:IncludeTimestamp ... /> ?
</wsp:Policy>
</sp:TransportBinding>
Sample policy Example 6.3 on page 86 shows an example of a transport binding that

86

requires confidentiality and integrity using the HTTPS transport (specified by
the sp:HttpsToken element) and a 256-bit algorithm suite (specified by the
sp:Basic256 element).

Example 6.3. Example of a Transport Binding

<wsp:Policy wsu:Id="UserNameOverTransport IPingService policy">

<wsp:ExactlyOne>
<wsp:All>
<sp:TransportBinding xmlns:sp="http://schem
as.xmlsoap.org/ws/2005/07/securitypolicy">
<wsp:Policy>
<sp:TransportToken>
<wsp:Policy>
<sp:HttpsToken RequireClientCertificate="false"/>

</wsp:Policy>
</sp:TransportToken>
<sp:AlgorithmSuite>

<wsp:Policy>

<sp:Basic256/>

</wsp:Policy>
</sp:AlgorithmSuite>
<sp:Layout>

FUSE" Services Framework Security Guide Version 2.2.x

sp:TransportToken

sp:AlgorithmSuite

sp:Layout

sp:IncludeTimestamp

sp:MustSupportRefKeyldentifier

Transport Layer Message Protection

<wsp:Policy>
<sp:Lax/>
</wsp:Policy>
</sp:Layout>
<sp:IncludeTimestamp/>
</wsp:Policy>
</sp:TransportBinding>

<sp:Wssl0 xmlns:sp="http://schem
as.xmlsoap.org/ws/2005/07/securitypolicy">
<wsp:Policy>
<sp:MustSupportRefKeyIdentifier/>
<sp:MustSupportRefIssuerSerial/>
</wsp:Policy>
</sp:Wssl0>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

This element has a two-fold effect: it requires a particular type of security
token and it indicates how the transport is secured. For example, by specifying
the sp:HttpsToken, you indicate that the connection is secured by the HTTPS
protocol and the security tokens are X.509 certificates.

This element specifies the suite of cryptographic algorithms to use for signing
and encryption. For details of the available algorithm suites, see "Specifying
the Algorithm Suite" on page 116.

This element specifies whether to impose any conditions on the order in which
security headers are added to the SOAP message. The sp:Lax element
specifies that no conditions are imposed on the order of security headers. The
alternatives to sp:Lax are sp:Strict, sp:LaxTimestampFirst, Of
sp:LaxTimestampLast.

If this element is included in the policy, the runtime adds a wsu:Timestamp
element to the wsse:security header. By default, the timestamp is not
included.

This element specifies that the security runtime must be able to process Key
Identifier token references, as specified in the WS-Security 1.0 specification.
A key identifier is a mechanism for identifying a key token, which may be

FUSE" Services Framework Security Guide Version 2.2.x 87

Chapter 6. Message Protection

used inside signature or encryption elements. FUSE Services Framework
requires this feature.

sp:MustSupportReflssuerSerial This element specifies that the security runtime must be able to process Issuer
and Serial Number token references, as specified in the WS-Security 1.0
specification. An issuer and serial number is a mechanism for identifying a
key token, which may be used inside signature or encryption elements. FUSE
Services Framework requires this feature.

88 FUSE" Services Framework Security Guide Version 2.2.x

SOAP Message Protection

SOAP Message Protection

Introduction to SOAP Message ProteCtionooieiiiniii e 90
Basic Signing and ENCryption SCENATIOvuieiii e 92
Specifying an AsymmetricBinding POICYooiieiiiii e 94
Specifying @ SymmetricBinding POlICYouiuiiiiiii e 101
Specifying Parts of Message to Encrypt and Sign ..o 105
Providing Encryption Keys and Signing KEYSouiiiiiiiii e 108
Specifying the AlGOrthm SUITE ... e e ns 116

FUSE" Services Framework Security Guide Version 2.2.x 89

Chapter 6. Message Protection

Introduction to SOAP Message Protection

Overview

Security bindings

Message protection

90

By applying message protection at the SOAP encoding layer, instead of at the
transport layer, you have access to a more flexible range of protection policies.
In particular, because the SOAP layer is aware of the message structure, you
can apply protection at a finer level of granularity—for example, by encrypting
and signing only those headers that actually require protection. This feature
enables you to support more sophisticated multi-tier architectures. For
example, one plaintext header might be aimed at an intermediate tier (located
within a secure intranet), while an encrypted header might be aimed at the
final destination (reached through an insecure public network).

As described in the WS-SecurityPolicy specification, one of the following
binding types can be used to protect SOAP messages:

* sp:TransportBinding—the transport binding refers to message protection

provided at the transport level (for example, through HTTPS). This binding
can be used to secure any message type, not just SOAP, and it is described
in detail in the preceding section, "Transport Layer Message Protection”
on page 84.

* sp:AsymmetricBinding—the asymmetric binding refers to message

protection provided at the SOAP message encoding layer, where the
protection features are implemented using asymmetric cryptography (also
known as public key cryptography).

* sp:SymmetricBinding—the symmetric binding refers to message

protection provided at the SOAP message encoding layer, where the
protection features are implemented using symmetric cryptography.
Examples of symmetric cryptography are the tokens provided by
WS-SecureConversation and Kerberos tokens.

The following qualities of protection can be applied to part or all of a message:
¢ Encryption.
* Signing.

« Signing+encryption (sign before encrypting).

FUSE" Services Framework Security Guide Version 2.2.x

Specifying parts of the message
to protect

Role of configuration

Introduction to SOAP Message Protection

 Encryption+signing (encrypt before signing).

These qualities of protection can be arbitrarily combined in a single message.
Thus, some parts of a message can be just encrypted, while other parts of
the message are just signed, and other parts of the message can be both
signed and encrypted. It is also possible to leave parts of the message
unprotected.

The most flexible options for applying message protection are available at the
SOAP layer (sp:AsymmetricBinding Of sp:SymmetricBinding). The
transport layer (sp: TransportBinding) only gives you the option of applying
protection to the whole message.

Currently, FUSE Services Framework enables you to sign or encrypt the

following parts of a SOAP message:

* Body—sign and/or encrypt the whole of the soap:BoDY element in a SOAP
message.

* Header(s)—sign and/or encrypt one or more SOAP message headers. You
can specify the quality of protection for each header individually.

» Attachments—sign and/or encrypt all of the attachments in a SOAP
message.

The WS-SecurityPolicy specification also defines policies for applying protection
to individual XML elements, but this is currently not supported in FUSE
Services Framework.

Not all of the details required for message protection are specified using
policies. The policies are primarily intended to provide a way of specifying
the quality of protection required for a service. Supporting details, such as
security tokens, passwords, and so on, must be provided using a separate,
product-specific mechanism. In practice, this means that in FUSE Services
Framework, some supporting configuration details must be provided in Spring
XML configuration files. For details, see "Providing Encryption Keys and
Signing Keys" on page 108.

FUSE" Services Framework Security Guide Version 2.2.x 91

Chapter 6. Message Protection

Basic Signing and Encryption Scenario

Overview The scenario described here is a client-server application, where an
asymmetric binding policy is set up to encrypt and sign the SOAP body of
messages that pass back and forth between the client and the server.

Example scenario Figure 6.1 on page 92 shows an overview of the basic signing and encryption
scenario, which is specified by associating an asymmetric binding policy with
an endpoint in the WSDL contract.

Figure 6.1. Basic Signing and Encryption Scenario

Initiator Recipient

Client - 'Alice’ > Server - 'Bob’

T Client Configuration T Server Configuration

Client Keystore Server Keystore

Scenario steps When the client in Figure 6.1 on page 92 invokes a synchronous operation
on the recipient's endpoint, the request and reply message are processed as
follows:

1. As the outgoing request message passes through the WS-SecurityPolicy
handler, the handler processes the message in accordance with the policies
specified in the client's asymmetric binding policy. In this example, the
handler performs the following processing:

a. Encrypt the SOAP body of the message using Bob’s public key.

b. Sign the encrypted SOAP body using Alice’s private key.

92 FUSE" Services Framework Security Guide Version 2.2.x

Basic Signing and Encryption Scenario

2. As the incoming request message passes through the server's
WS-SecurityPolicy handler, the handler processes the message in
accordance with the policies specified in the server’'s asymmetric binding
policy. In this example, the handler performs the following processing:

a. Verify the signature using Alice’s public key.
b. Decrypt the SOAP body using Bob's private key.

3. As the outgoing reply message passes back through the server's
WS-SecurityPolicy handler, the handler performs the following processing:

a. Encrypt the SOAP body of the message using Alice’s public key.
b. Sign the encrypted SOAP body using Bob's private key.

4. As the incoming reply message passes back through the client's
WS-SecurityPolicy handler, the handler performs the following processing:

a. Verify the signature using Bob’s public key.

b. Decrypt the SOAP body using Alice’s private key.

FUSE" Services Framework Security Guide Version 2.2.x 93

Chapter 6. Message Protection

Specifying an AsymmetricBinding Policy

Overview

Policy subject

Syntax

94

The asymmetric binding policy implements SOAP message protection using
asymmetric key algorithms (public/private key combinations) and does so at
the SOAP layer. The encryption and signing algorithms used by the asymmetric
binding are similar to the encryption and signing algorithms used by SSL/TLS.
A crucial difference, however, is that SOAP message protection enables you
to select particular parts of a message to protect (for example, individual
headers, body, or attachments), whereas transport layer security can operate
only on the whole message.

An asymmetric binding policy must be applied to an endpoint policy subject
(see "Endpoint policy subject" on page 74). For example, given the
asymmetric binding policy with ID,
MutualCertificatelOSignEncrypt IPingService policy, you could
apply the policy to an endpoint binding as follows:

<wsdl:binding name="MutualCertificatelOSignEncrypt IPingSer
vice" type="i0:IPingService">

<wsp:PolicyReference URI="#MutualCertificatelOSignEncrypt IP
ingService policy"/>

</wsdl:binding>

The AsymmetricBinding element has the following syntax:

<sp:AsymmetricBinding xmlns:sp="..." ... >
<wsp:Policy xmlns:wsp="...">
(
<sp:InitiatorToken>
<wsp:Policy> ... </wsp:Policy>
</sp:InitiatorToken>
)
<sp:InitiatorSignatureToken>
<wsp:Policy> ... </wsp:Policy>
</sp:InitiatorSignatureToken>
<sp:InitiatorEncryptionToken>
<wsp:Policy> ... </wsp:Policy>
</sp:InitiatorEncryptionToken>
)
(
<sp:RecipientToken>
<wsp:Policy> ... </wsp:Policy>

FUSE" Services Framework Security Guide Version 2.2.x

Sample policy

Specifying an AsymmetricBinding Policy

</sp:RecipientToken>

) I

<sp:RecipientSignatureToken>
<wsp:Policy> ... </wsp:Policy>

</sp:RecipientSignatureToken>

<sp:RecipientEncryptionToken>
<wsp:Policy> ... </wsp:Policy>

</sp:RecipientEncryptionToken>

)

<sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite>
<sp:Layout ... > ... </sp:Layout> ?
<sp:IncludeTimestamp ... /> ?
<sp:EncryptBeforeSigning ... /> ?
<sp:EncryptSignature ... /> ?

<sp:ProtectTokens ... /> ?
<sp:0nlySignEntireHeadersAndBody ... /> ?

</wsp:Policy>

</sp:AsymmetricBinding>

Example 6.4 on page 95 shows an example of an asymmetric binding that
supports message protection with signatures and encryption, where the signing
and encryption is done using pairs of public/private keys (that is, using
asymmetric cryptography). This example does not specify which parts of the
message should be signed and encrypted, however. For details of how to do
that, see "Specifying Parts of Message to Encrypt and Sign" on page 105.

Example 6.4. Example of an Asymmetric Binding

<wsp:Policy wsu:Id="MutualCertificatelOSignEncrypt IPingSer
vice policy">
<wsp:ExactlyOne>
<wsp:All>
<sp:AsymmetricBinding
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/se
curitypolicy">
<wsp:Policy>
<sp:InitiatorToken>
<wsp:Policy>
<sp:X509Token
sp:IncludeToken="http://schem
as.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Al
waysToRecipient">
<wsp:Policy>
<sp:WssX509V3Tokenl0/>
</wsp:Policy>

FUSE" Services Framework Security Guide Version 2.2.x 95

Chapter 6. Message Protection

sp:InitiatorToken

96

</sp:X509Token>
</wsp:Policy>
</sp:InitiatorToken>
<sp:RecipientToken>
<wsp:Policy>
<sp:X509Token
sp:IncludeToken="http://schem
as.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Never">

<wsp:Policy>
<sp:WssX509V3TokenlO0/>
</wsp:Policy>
</sp:X509Token>
</wsp:Policy>
</sp:RecipientToken>
<sp:AlgorithmSuite>
<wsp:Policy>
<sp:Basic256/>
</wsp:Policy>
</sp:AlgorithmSuite>
<sp:Layout>
<wsp:Policy>
<sp:Lax/>
</wsp:Policy>
</sp:Layout>
<sp:IncludeTimestamp/>
<sp:EncryptSignature/>
<sp:0nlySignEntireHeadersAndBody/>
</wsp:Policy>
</sp:AsymmetricBinding>
<sp:Wssl0 xmlns:sp="http://schem
as.xmlsoap.org/ws/2005/07/securitypolicy">
<wsp:Policy>
<sp:MustSupportRefKeyIdentifier/>
<sp:MustSupportRefIssuerSerial/>
</wsp:Policy>
</sp:Wssl1l0>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

The initiator token refers to the public/private key-pair owned by the initiator.
This token is used as follows:

* The token's private key signs messages sent from initiator to recipient.

* The token's public key verifies signatures received by the recipient.

FUSE" Services Framework Security Guide Version 2.2.x

Specifying an AsymmetricBinding Policy

* The token's public key encrypts messages sent from recipient to initiator.
* The token's private key decrypts messages received by the initiator.

Confusingly, this token is used both by the initiator and by the recipient.
However, only the initiator has access to the private key so, in this sense, the
token can be said to belong to the initiator. In "Basic Signing and Encryption
Scenario" on page 92, the initiator token is the certificate, Alice.

This element should contain a nested wsp:Policy element and
sp:X509Token element as shown. The sp: IncludeToken attribute is set to
AlwaysToRecipient, which instructs the runtime to include Alice's public
key with every message sent to the recipient. This option is useful, in case
the recipient wants to use the initiator's certificate to perform authentication.
The most deeply nested element, ssx509v3Token10 is optional. It specifies
what specification version the X.509 certificate should conform to. The
following alternatives (or none) can be specified here:

sp:WssX509V3Token10
This optional element is a policy assertion that indicates that an X509
Version 3 token should be used.

sp:WssX509Pkes7Token10
This optional element is a policy assertion that indicates that an X509
PKCS7 token should be used.

sp:WssX509PkiPathV1Token10
This optional element is a policy assertion that indicates that an X509
PKI Path Version 1 token should be used.

sp:WssX509V1Tokenl11
This optional element is a policy assertion that indicates that an X509
Version 1 token should be used.

sp:WssX509V3Tokenl1
This optional element is a policy assertion that indicates that an X509
Version 3 token should be used.

sp:WssX509Pkes7Token11
This optional element is a policy assertion that indicates that an X509
PKCS7 token should be used.

FUSE" Services Framework Security Guide Version 2.2.x 97

Chapter 6. Message Protection

sp:RecipientToken

sp:AlgorithmSuite

sp:Layout

98

sp:WssX509PkiPathV1Tokenl1
This optional element is a policy assertion that indicates that an X509
PKI Path Version 1 token should be used.

The recipient token refers to the public/private key-pair owned by the recipient.
This token is used as follows:

* The token's public key encrypts messages sent from initiator to recipient.
* The token's private key decrypts messages received by the recipient.

* The token's private key signs messages sent from recipient to initiator.

* The token's public key verifies signatures received by the initiator.

Confusingly, this token is used both by the recipient and by the initiator.
However, only the recipient has access to the private key so, in this sense,
the token can be said to belong to the recipient. In "Basic Signing and
Encryption Scenario" on page 92, the recipient token is the certificate, Bob.

This element should contain a nested wsp:Policy element and
sp:X509Token element as shown. The sp: IncludeToken attribute is set to
Never, because there is no need to include Bob's public key in the reply
messages.

jl Note

In FUSE Services Framework, there is never a need to send Bob's or
Alice's token in a message, because both Bob's certificate and Alice's
certificate are provided at both ends of the connection—see
"Providing Encryption Keys and Signing Keys" on page 108.

This element specifies the suite of cryptographic algorithms to use for signing
and encryption. For details of the available algorithm suites, see "Specifying
the Algorithm Suite" on page 116.

This element specifies whether to impose any conditions on the order in which
security headers are added to the SOAP message. The sp:Lax element
specifies that no conditions are imposed on the order of security headers. The

FUSE" Services Framework Security Guide Version 2.2.x

sp:IncludeTimestamp

sp:EncryptBeforeSigning

sp:EncryptSignature

Specifying an AsymmetricBinding Policy

alternatives to sp:Lax are sp:Strict, sp:LaxTimestampFirst, Or
sp:LaxTimestampLast.

If this element is included in the policy, the runtime adds a wsu:Timestamp
element to the wsse:Security header. By default, the timestamp is not
included.

If a message part is subject to both encryption and signing, it is necessary to
specify the order in which these operations are performed. The default order
is to sign before encrypting. But if you include this element in your asymmetric
policy, the order is changed to encrypt before signing.

(® Note

Implicitly, this element also affects the order of the decryption and
signature verification operations. For example, if the sender of a
message signs before encrypting, the receiver of the message must
decrypt before verifying the signature.

This element specifies that the message signature must be encrypted (by the
encryption token, specified as described in "Providing Encryption Keys and
Signing Keys" on page 108). Default is false.

,'] Note

The message signature is the signature obtained directly by signing
various parts of the message, such as message body, message
headers, or individual elements (see "Specifying Parts of Message
to Encrypt and Sign" on page 105). Sometimes the message signature
is referred to as the primary signature, because the WS-SecurityPolicy
specification also supports the concept of an endorsing supporting
token, which is used to sign the primary signature. Hence, if an
sp:EndorsingSupportingTokens element is applied to an
endpoint, you can have a chain of signatures: the primary signature,
which signs the message itself, and the secondary signature, which
signs the primary signature.

FUSE" Services Framework Security Guide Version 2.2.x 99

Chapter 6. Message Protection

sp:ProtectTokens

sp:OnlySignEntireHeadersAndBody

100

For more details about the various kinds of endorsing supporting
token, see "SupportingTokens assertions" on page 129.

This element specifies that signatures must cover the token used to generate
that signature. Default is false.

This element specifies that signatures can be applied only to an entire body
or to entire headers, not to sub-elements of the body or sub-elements of a
header. When this option is enabled, you are effectively prevented from using
the sp:SignedElements assertion (see "Specifying Parts of Message to
Encrypt and Sign" on page 105).

FUSE" Services Framework Security Guide Version 2.2.x

Specifying a SymmetricBinding Policy

Specifying a SymmetricBinding Policy

Overview The symmetric binding policy implements SOAP message protection using
symmetric key algorithms (shared secret key) and does so at the SOAP layer.
Examples of a symmetric binding are the Kerberos protocol and the
WS-SecureConversation protocol.

,'] Note

Currently, FUSE Services Framework supports only
WS-SecureConversation tokens in a symmetric binding.

Policy subject A symmetric binding policy must be applied to an endpoint policy subject
(see "Endpoint policy subject" on page 74). For example, given the symmetric
binding policy with ID,
SecureConversation MutualCertificatelOSignEncrypt IPingService policy.
you could apply the policy to an endpoint binding as follows:

<wsdl:binding name="SecureConversation MutualCertific

atelOSignEncrypt IPingService" type="i0:IPingService">
<wsp:PolicyReference URI="#SecureConversation MutualCerti

ficatelOSignEncrypt IPingService policy"/>

</wsdl:binding>

Syntax The symmetricBinding element has the following syntax:

<sp:SymmetricBinding xmlns:sp="..." ... >

<wsp:Policy xmlns:wsp="...">
(
<sp:EncryptionToken ... >

<wsp:Policy> ... </wsp:Policy>
</sp:EncryptionToken>
<sp:SignatureToken ... >

<wsp:Policy> ... </wsp:Policy>
</sp:SignatureToken>
) |«
<sp:ProtectionToken ... >

<wsp:Policy> ... </wsp:Policy>
</sp:ProtectionToken>
)
<sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite>

FUSE" Services Framework Security Guide Version 2.2.x 101

Chapter 6. Message Protection

Sample policy

102

<sp:Layout ... > ... </sp:Layout> ?
<sp:IncludeTimestamp ... /> ?
<sp:EncryptBeforeSigning ... /> ?
<sp:EncryptSignature ... /> ?
<sp:ProtectTokens ... /> ?
<sp:0nlySignEntireHeadersAndBody ... />

</wsp:Policy>

</sp:SymmetricBinding>

Example 6.5 on page 102 shows an example of a symmetric binding that
supports message protection with signatures and encryption, where the sighing
and encryption is done using a single symmetric key (that is, using symmetric
cryptography). This example does not specify which parts of the message
should be signed and encrypted, however. For details of how to do that, see
"Specifying Parts of Message to Encrypt and Sign" on page 105.

Example 6.5. Example of a Symmetric Binding

<wsp:Policy wsu:Id="SecureConversation MutualCertific

atelOSignEncrypt IPingService policy">
<wsp:ExactlyOne>
<wsp:All>

<sp:SymmetricBinding xmlns:sp="http://schem

as.xmlsoap.org/ws/2005/07/securitypolicy">
<wsp:Policy>
<sp:ProtectionToken>
<wsp:Policy>
<sp:SecureConversationToken>

</sp:SecureConversationToken>
</wsp:Policy>
</sp:ProtectionToken>
<sp:AlgorithmSuite>
<wsp:Policy>
<sp:Basic256/>
</wsp:Policy>
</sp:AlgorithmSuite>
<sp:Layout>
<wsp:Policy>
<sp:Lax/>
</wsp:Policy>
</sp:Layout>
<sp:IncludeTimestamp/>
<sp:EncryptSignature/>
<sp:0nlySignEntireHeadersAndBody/>

FUSE" Services Framework Security Guide Version 2.2.x

sp:ProtectionToken

sp:SignatureToken

sp:EncryptionToken

sp:AlgorithmSuite

sp:Layout

Specifying a SymmetricBinding Policy

</wsp:Policy>
</sp:SymmetricBinding>
<sp:Wssl0 xmlns:sp="http://schem
as.xmlsoap.org/ws/2005/07/securitypolicy">
<wsp:Policy>
<sp:MustSupportRefKeyIdentifier/>
<sp:MustSupportRefIssuerSerial/>
</wsp:Policy>
</sp:Wssl0>

</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

This element specifies a symmetric token to use for both signing and
encrypting messages. For example, you could specify a WS-SecureConversation
token here.

If you want to use distinct tokens for signing and encrypting operations, use
the sp:SignatureToken element and the sp:EncryptionToken element
in place of this element.

This element specifies a symmetric token to use for signing messages. It
should be used in combination with the sp:EncryptionToken element.

This element specifies a symmetric token to use for encrypting messages. It
should be used in combination with the sp:SignatureToken element.

This element specifies the suite of cryptographic algorithms to use for signing
and encryption. For details of the available algorithm suites, see "Specifying
the Algorithm Suite" on page 116.

This element specifies whether to impose any conditions on the order in which
security headers are added to the SOAP message. The sp:Lax element
specifies that no conditions are imposed on the order of security headers. The

FUSE" Services Framework Security Guide Version 2.2.x 103

Chapter 6. Message Protection

sp:IncludeTimestamp

sp:EncryptBeforeSigning

sp:EncryptSignature

sp:ProtectTokens

sp:OnlySignEntireHeadersAndBody

104

alternatives to sp:Lax are sp:Strict, sp:LaxTimestampFirst, Or
sp:LaxTimestampLast.

If this element is included in the policy, the runtime adds a wsu:Timestamp
element to the wsse:security header. By default, the timestamp is not
included.

When a message part is subject to both encryption and signing, it is necessary
to specify the order in which these operations are performed. The default
order is to sign before encrypting. But if you include this element in your
symmetric policy, the order is changed to encrypt before signing.

(® Note

Implicitly, this element also affects the order of the decryption and
signature verification operations. For example, if the sender of a
message signs before encrypting, the receiver of the message must
decrypt before verifying the signature.

This element specifies that the message signature must be encrypted. Default
is false.

This element specifies that signatures must cover the token used to generate
that signature. Default is false.

This element specifies that signatures can be applied only to an entire body
or to entire headers, not to sub-elements of the body or sub-elements of a
header. When this option is enabled, you are effectively prevented from using
the sp:signedElements assertion (see "Specifying Parts of Message to
Encrypt and Sign" on page 105).

FUSE" Services Framework Security Guide Version 2.2.x

Specifying Parts of Message to Encrypt and Sign

Specifying Parts of Message to Encrypt and Sign

Overview

Policy subject

Protection assertions

Encryption and signing provide two kinds of protection: confidentiality and
integrity, respectively. The WS-SecurityPolicy protection assertions are used
to specify which parts of a message are subject to protection. Details of the
protection mechanisms, on the other hand, are specified separately in the
relevant binding policy (see x "Specifying an AsymmetricBinding Policy"

on page 94, "Specifying a SymmetricBinding Policy" on page 101, and
"Transport Layer Message Protection" on page 84).

The protection assertions described here are really intended to be used in
combination with SOAP security, because they apply to features of a SOAP
message. Nonetheless, these policies can also be satisfied by a transport
binding (such as HTTPS), which applies protection to the entire message,
rather than to specific parts.

A protection assertion must be applied to a message policy subject (see
"Message policy subject" on page 75). In other words, it must be placed
inside a wsdl: input, wsdl:output, Or wsdl:fault element in a WSDL
binding. For example, given the protection policy with ID,
MutualCertificatelOSignEncrypt IPingService header Input policy
you could apply the policy to a wsdl:input message part as follows:

<wsdl:operation name="header">
<soap:operation soapAction="http://InteropBaseAddress/in
terop/header" style="document"/>
<wsdl:input name="headerRequest">
<wsp:PolicyReference
URI="#MutualCertificatelOSignEncrypt IPingService head
er Input policy"/>
<soap:header message="i0:headerRequest Headers"
part="CustomHeader" use="literal"/>
<soap:body use="literal"/>
</wsdl:input>

</wsdl:operation>

The following WS-SecurityPolicy protection assertions are currently supported
by FUSE Services Framework:

® SignedParts

FUSE" Services Framework Security Guide Version 2.2.x 105

Chapter 6. Message Protection

Syntax

Sample policy

106

® EncryptedParts

The following WS-SecurityPolicy protection assertions are not supported by
FUSE Services Framework:

® SignedElements

® EncryptedElements

® ContentEncryptedElements
® RequiredElements

® RequiredParts

The signedparts element has the following syntax:

<sp:SignedParts xmlns:sp="..." ... >
<sp:Body />?
<sp:Header Name="xs:NCName"? Namespace="xs:anyURI" ... />*

<sp:Attachments />?
</sp:SignedParts>

The EncryptedpParts element has the following syntax:

<sp:EncryptedParts xmlns:sp="..." ... >
<sp:Body/>?
<sp:Header Name="xs:NCName"? Namespace="xs:anyURI" ... />*

<sp:Attachments />?

</sp:EncryptedParts>

Example 6.6 on page 107 shows a policy that combines two protection
assertions: a signed parts assertion and an encrypted parts assertion. When
this policy is applied to a message part, the affected message bodies are
signed and encrypted. In addition, the message header named CustomHeader
is signed.

FUSE" Services Framework Security Guide Version 2.2.x

sp:Body

sp:Header

sp:Attachments

Specifying Parts of Message to Encrypt and Sign

Example 6.6. Integrity and Encryption Policy Assertions

<wsp:Policy wsu:Id="MutualCertificatelOSignEncrypt IPingSer
vice header Input policy">
<wsp:ExactlyOne>
<wsp:All>
<sp:SignedParts xmlns:sp="http://schem
as.xmlsoap.org/ws/2005/07/securitypolicy">
<sp:Body/>
<sp:Header Name="CustomHeader" Namespace="ht
tp://InteropBaseAddress/interop"/>
</sp:SignedParts>
<sp:EncryptedParts xmlns:sp="http://schem
as.xmlsoap.org/ws/2005/07/securitypolicy">
<sp:Body/>
</sp:EncryptedParts>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

This element specifies that protection (encryption or signing) is applied to the
body of the message. The protection is applied to the entire message body:
that is, the soap:Body element, its attributes, and its content.

This element specifies that protection is applied to the SOAP header specified
by the header's local name, using the Name attribute, and namespace, using
the Namespace attribute. The protection is applied to the entire message
header, including its attributes and its content.

This element specifies that a// SOAP with Attachments (SwA) attachments
are protected.

FUSE" Services Framework Security Guide Version 2.2.x 107

Chapter 6. Message Protection

Providing Encryption Keys and Signing Keys

Overview

Configuring encryption keys and
signing keys

108

The standard WS-SecurityPolicy policies are designed to specify security
requirements in some detail: for example, security protocols, security
algorithms, token types, authentication requirements, and so on, are all
described. But the standard policy assertions do not provide any mechanism
for specifying associated security data, such as keys and credentials.
WS-SecurityPolicy expects that the requisite security data is provided through
a proprietary mechanism. In FUSE Services Framework, the associated security
data is provided through Spring XML configuration.

You can specify an application's encryption keys and signing keys by setting
properties on a client's request context or on an endpoint context (see "Add
encryption and signing properties to Spring configuration" on page 109). The
properties you can set are shown in Table 6.1 on page 108.

Table 6.1. Encryption and Signing Properties

Property

Description

ws—-security.signature.properties

The WSS4J properties file/object
that contains the WSS4J
properties for configuring the
signature keystore (which is also
used for decrypting) and crypto

objects.

ws—-security.signature.username

(Optional) The username or alias
of the key in the signature
keystore to use. If not specified,
the alias set in the properties file
is used. If that is also not set,
and the keystore only contains
a single key, that key will be
used.

ws-security.encryption.properties

The WSS4J properties file/object
that contains the WSS4J
properties for configuring the
encryption keystore (which is
also used for validating
signatures) and crypto objects.

FUSE" Services Framework Security Guide Version 2.2.x

Add encryption and signing
properties to Spring configuration

Providing Encryption Keys and Signing Keys

Property Description

ws—-security.encryption.username (Optional) The username or alias
of the key in the encryption
keystore to use. If not specified,
the alias set in the properties file
is used. If that is also not set,
and the keystore only contains
a single key, that key will be

used.

@ Tip

The names of the preceding properties are not so well chosen,
because they do not accurately reflect what they are used for. The
key specified by ws-security.signature.properties is actually
used both for signing and decrypting. The key specified by
ws-security.encryption.properties is actually used both for
encrypting and for validating signatures.

Before you can use any WS-Policy policies in a FUSE Services Framework
application, you must add the policies feature to the default CXF bus. Add
the p:policies element to the CXF bus, as shown in the following Spring
configuration fragment:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:cxf="http://cxf.apache.org/core"
xmlns:p="http://cxf.apache.org/policy" ... >

<cxf:bus>
<cxf:features>
<p:policies/>
<cxf:logging/>
</cxf:features>
</cxf:bus>

</beans>

The following example shows how to add signature and encryption properties
to proxies of the specified service type (where the service name is specified
by the name attribute of the jaxws:client element). The properties are
stored in WSS4J property files, where alice.properties contains the

FUSE" Services Framework Security Guide Version 2.2.x 109

Chapter 6. Message Protection

110

properties for the signature key and bob . properties contains the properties
for the encryption key.

<beans ... >
<jaxws:client name="{http://InteropBaseAddress/interop}Mu
tualCertificatelOSignEncrypt IPingService"
createdFromAPI="true">
<jaxws:properties>
<entry key="ws-security.signature.properties"
value="etc/alice.properties"/>
<entry key="ws-security.encryption.properties"
value="etc/bob.properties"/>
</jaxws:properties>
</jaxws:client>
</beans>

In fact, although it is not obvious from the property names, each of these
keys is used for two distinct purposes on the client side:

* alice.properties (thatis, the key specified by
ws-security.signature.properties) is used on the client side as
follows:

* For signing outgoing messages.
* For decrypting incoming messages.
* bob.properties (that is, the key specified by

ws-security.encryption.properties) is used on the client side as
follows:

* For encrypting outgoing messages.
* For verifying signatures on incoming messages.

If you find this confusing, see "Basic Signing and Encryption Scenario"
on page 92 for a more detailed explanation.

The following example shows how to add signature and encryption properties
to a JAX-WS endpoint. The properties file, bob.properties, contains the
properties for the signature key and the properties file, alice.properties,
contains the properties for the encryption key (this is the inverse of the client
configuration).

FUSE" Services Framework Security Guide Version 2.2.x

Providing Encryption Keys and Signing Keys

<beans ... >
<jaxws:endpoint
name="{http://InteropBaseAddress/interop}MutualCerti
ficatelO0SignEncrypt IPingService"
id="MutualCertificatelOSignEncrypt"
address="http://localhost:9002/MutualCertificatel0SignEn

crypt"
serviceName="interop:PingServicelO"
endpointName="interop:MutualCertificatel0SignEncrypt IP
ingService"
implementor="interop.server.MutualCertificatel0SignEn
crypt">

<jaxws:properties>
<entry key="ws-security.signature.properties"
value="etc/bob.properties" />
<entry key="ws-security.encryption.properties"”
value="etc/alice.properties" />
</jaxws:properties>
</jaxws:endpoint>
</beans>
Each of these keys is used for two distinct purposes on the server side:

* bob.properties (that is, the key specified by
ws-security.signature.properties) is used on the server side as
follows:

* For signing outgoing messages.
» For decrypting incoming messages.

* alice.properties (thatis, the key specified by
ws-security.encryption.properties) is used on the server side as
follows:

* For encrypting outgoing messages.

FUSE" Services Framework Security Guide Version 2.2.x 111

Chapter 6. Message Protection

Define the WSS4J property files

Table 6.2. WSS4J Keystore Properties

* For verifying signatures on incoming messages.

FUSE Services Framework uses WSS4J property files to load the public keys

and the private keys needed for encryption and signing. Table 6.2 on page 112
describes the properties that you can set in these files.

Property

Description

crypto.provider

org.apache.ws.security.

Specifies an implementation of the crypto interface (see "WSS4J Crypto
interface" on page 113). Normally, you specify the default WSS4J
implementation of crypto,
org.apache.ws.security.components.crypto.Merlin.

The rest of the properties in this table are specific to the Merlin
implementation of the crypto interface.

org.apache.ws.security. (Optional) The name of the JSSE keystore provider to use. The default
crypto.merlin.keystore.provider |keystore provider is Bouncy Castle!. You can switch provider to Sun's
JSSE keystore provider by setting this property to sunJssk.
org.apache.ws.security. The Bouncy Castle keystore provider supports the following types of
crypto.merlin.keystore.type keystore: Jks and pxcsi12. In addition, Bouncy Castle supports the
following proprietary keystore types: BKS and UBER.
org.apache.ws.security. Specifies the location of the keystore file to load, where the location is
crypto.merlin.file specified relative to the Classpath.
org.apache.ws.security. (Optional) If the keystore type is Jks (Java keystore), you can select a
crypto.merlin.keystore.alias Igpacific key from the keystore by specifying its alias. If the keystore
contains only one key, there is no need to specify an alias.
org.apache.ws.security. The password specified by this property is used for two purposes: to
crypto.merlin.keystore.password |unlock the keystore (keystore password) and to decrypt a private key that

is stored in the keystore (private key password). Hence, the keystore
password must be same as the private key password.

For example, the etc/alice.properties file contains property settings to
load the PKCS#12 file, certs/alice.pfx, as follows:

org.apache.ws.security.crypto.provider=org.apache.ws.secur
ity.components.crypto.Merlin

! http://www.bouncycastle.org/specifications.html

112

FUSE" Services Framework Security Guide Version 2.2.x

http://www.bouncycastle.org/specifications.html
http://www.bouncycastle.org/specifications.html

Programming encryption keys and
signing keys

WSS4J Crypto interface

2 http://ws.apache.org/wss4j/

Providing Encryption Keys and Signing Keys

org.apache.ws.security.crypto.merlin.keystore.type=PKCS12
org.apache.ws.security.crypto.merlin.keystore.password=password
org.apache.ws.security.crypto.merlin.file=certs/alice.pfx

The etc/bob.properties file contains property settings to load the
PKCS#12 file, certs/bob.pfx, as follows:

org.apache.ws.security.crypto.provider=org.apache.ws.secur
ity.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.password=password

for some reason, bouncycastle has issues with bob.pfx
org.apache.ws.security.crypto.merlin.keystore.provider=SunJSSE
org.apache.ws.security.crypto.merlin.keystore.type=PKCS12
org.apache.ws.security.crypto.merlin.file=certs/bob.pfx

An alternative approach to loading encryption keys and signing keys is to use
the properties shown in Table 6.3 on page 113 to specify crypto objects that
load the relevant keys. This requires you to provide your own implementation
of the WSS4J crypto interface,

org.apache.ws.security.components.crypto.Crypto.

Table 6.3. Properties for Specifying Crypto Objects

Property Description

ws-security.signature.crypto |Specifies an instance of a crypto

object that is responsible for loading
the keys for signing and decrypting
messages.

ws-security.encryption.crypto |Specifies an instance of a crypto

object that is responsible for loading
the keys for encrypting messages and
verifying signatures.

Example 6.7 on page 114 shows the definition of the crypto interface that
you can implement, if you want to provide encryption keys and signing keys
by programming. For more information, see the WSS4J home pagez.

FUSE" Services Framework Security Guide Version 2.2.x 113

http://ws.apache.org/wss4j/
http://ws.apache.org/wss4j/

Chapter 6. Message Protection

114

Example 6.7. WSS4J Crypto Interface

// Java
package org.apache.ws.security.components.crypto;

import org.apache.ws.security.WSSecurityException;

import java.io.InputStream;

import java.math.BigInteger;

import java.security.KeyStore;

import java.security.PrivateKey;

import java.security.cert.Certificate;

import java.security.cert.CertificateFactory;
import java.security.cert.X509Certificate;

public interface Crypto {
X509Certificate loadCertificate (InputStream in)
throws WSSecurityException;

X509Certificate[] getX509Certificates (byte[] data, boolean
reverse)
throws WSSecurityException;

byte[] getCertificateData (boolean reverse, X509Certific
ate[] certs)
throws WSSecurityException;

public PrivateKey getPrivateKey (String alias, String
password)

throws Exception;

public X509Certificate[] getCertificates (String alias)
throws WSSecurityException;

public String getAliasForX509Cert (Certificate cert)
throws WSSecurityException;

public String getAliasForX509Cert (String issuer)
throws WSSecurityException;

public String getAliasForX509Cert (String issuer, BigInteger
serialNumber)

throws WSSecurityException;

public String getAliasForX509Cert (byte[] skiBytes)
throws WSSecurityException;

public String getDefaultX509Alias();

FUSE" Services Framework Security Guide Version 2.2.x

Providing Encryption Keys and Signing Keys

public byte[] getSKIBytesFromCert (X509Certificate cert)
throws WSSecurityException;

public String getAliasForX509CertThumb (byte[] thumb)
throws WSSecurityException;

public KeyStore getKeyStore();

public CertificateFactory getCertificateFactory()
throws WSSecurityException;

public boolean validateCertPath (X509Certificate[] certs)
throws WSSecurityException;

public String[] getAliasesForDN(String subjectDN)
throws WSSecurityException;

FUSE" Services Framework Security Guide Version 2.2.x 115

Chapter 6. Message Protection

Specifying the Algorithm Suite

Overview An algorithm suite is a coherent collection of cryptographic algorithms for
performing operations such as signing, encryption, generating message digests,
and so on.

For reference purposes, this section describes the algorithm suites defined
by the WS-SecurityPolicy specification. Whether or not a particular algorithm
suite is available, however, depends on the underlying security provider. FUSE
Services Framework security is based on the pluggable Java Cryptography
Extension (JCE) and Java Secure Socket Extension (JSSE) layers. By default,
FUSE Services Framework is configured with Sun's JSSE provider, which
supports the cipher suites described in Appendix A3 of Sun's JSSE Reference

Guide.
Syntax The AlgorithmSuite element has the following syntax:
<sp:AlgorithmSuite xmlns:sp="..." ... >

<wsp:Policy xmlns:wsp="...">
(<sp:Basic256 ... /> |
<sp:Basicl92 ... /> |
<sp:Basicl28 ... /> |
<sp:TripleDes ... /> |
<sp:Basic256Rsalb ... /> |
<sp:Basicl92Rsalb ... /> |
<sp:Basicl28Rsalb ... /> |
<sp:TripleDesRsal5 ... /> |
<sp:Basic256Sha256 ... /> |
<sp:Basicl92Sha256 ... /> |
<sp:Basicl28Sha256 ... /> |
<sp:TripleDesSha256 ... /> |
<sp:Basic256Sha256Rsalb ... /> |
<sp:Basicl92Sha256Rsal5 ... />
<sp:Basicl28Sha256Rsalb ... /> |
<sp:TripleDesSha256Rsal5 ... /> |
)
<sp:InclusiveCl4N ... /> 2
<sp:SOAPNormalizationlO ... /> ?
<sp:STRTransforml0 ... /> 2
(<sp:XPathlO ... /> |
<sp:XPathFilter20 ... /> |
<sp:AbsXPath ... /> |

)2

3 http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.htmI#AppA

116 FUSE" Services Framework Security Guide Version 2.2.x

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#AppA
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#AppA

Algorithm suites

Table 6.4. Algorithm Suites

Specifying the Algorithm Suite

</wsp:Policy>
</sp:AlgorithmSuite>

The algorithm suite assertion supports a large number of alternative algorithms
(for example, Basic256). For a detailed description of the algorithm suite
alternatives, see Table 6.4 on page 117.

Table 6.4 on page 117 provides a summary of the algorithm suites supported
by WS-SecurityPolicy. The column headings refer to different types of
cryptographic algorithm, as follows: [Dig] is the digest algorithm; [Enc] is the
encryption algorithm; [Sym KWT] is the symmetric key-wrap algorithm; [Asym
KWT1 is the asymmetric key-wrap algorithm; [Enc KD] is the encryption key
derivation algorithm; [Sig KD] is the signature key derivation algorithm.

Algorithm Suite [Dig]l |[Enc] [Sym KW] [Asym KW] |[Enc KD] |[Sig KD]

Basic256 Shal Aes256 KwAes256 KwRsaOaep |PShall256|PShalll92
Basicl92 Shal Aesl92 KwAes192 KwRsaOaep |PShalll92|PShalll92
Basicl28 Shal Aesl28 KwAes128 KwRsaOaep |PShalll28|PShalll28
TripleDes Shal TripleDes|KwTripleDes|KwRsaOaep [PShalLl92|PShalLl92
Basic256Rsalb Shal Aes256 KwAes256 KwRsal5 PShall256|PShalll92
Basicl92Rsalb Shal Aesl92 KwAes192 KwRsal5 PShalll92|PShallLl92
Basicl28Rsalb Shal Aesl28 KwAes128 KwRsalb PShallLl28|PShallLl28
TripleDesRsalb Shal TripleDes |KwTripleDes |KwRsal5 PShalll92|PShallLl92
Basic256Sha256 Sha256|Aes256 KwAes256 KwRsaOaep [PShall256|PShallLl92
Basicl92Sha256 Sha256|Aesl92 KwAesl192 KwRsaOaep |[PShalll92|PShallLl92
Basicl28Sha256 Sha256|Aesl28 KwAesl28 KwRsaOaep |PShalll28 |PShalll28
TripleDesSha256 Sha256|TripleDes |KwTripleDes|KwRsaOaep [PShalll92|PShallLl92
Basic256Sha256Rsal5 |Sha256|Aes256 KwAes256 KwRsal5b PShall256|PShallLl92
Basicl92Sha256Rsal5 |Sha256|Aesl92 KwAes192 KwRsal5b PShalll92|PShallLl92

FUSE" Services Framework Security Guide Version 2.2.x 117

Chapter 6. Message Protection

Algorithm Suite [Digl |[Enc] [Sym KW] [Asym KW] |[Enc KD] |[Sig KD]
Basicl28Sha256Rsal5 |Sha256|Aesl28 KwAes128 KwRsal5b PShallLl28|PShallLl28
TripleDesSha256Rsal5|Sha256|TripleDes |KwTripleDes|KwRsal5b PShalll92|PShalll92

Types of cryptographic algorithm

Symmetric key signature

Asymmetric key signature

118

The following types of cryptographic algorithm are supported by
WS-SecurityPolicy:

* "Symmetric key signature" on page 118

* "Asymmetric key signature" on page 118
* "Digest" on page 119

e "Encryption" on page 119

* "Symmetric key wrap" on page 119

e "Asymmetric key wrap" on page 120

* "Computed key" on page 120

* "Encryption key derivation" on page 120

* "Signature key derivation" on page 121

The symmetric key signature property, [Sym Sigl, specifies the algorithm for
generating a signature using a symmetric key. WS-SecurityPolicy specifies
that the Hmacsha1 algorithm is always used.

The HmacShal algorithm is identified by the following URI:

http://www.w3.0rg/2000/09/xmldsig#hmac-shal

The asymmetric key signature property, [Asym Sigl, specifies the algorithm
for generating a signature using an asymmetric key. WS-SecurityPolicy
specifies that the rRsasha1 algorithm is always used.

The rRsashal algorithm is identified by the following URI:

FUSE" Services Framework Security Guide Version 2.2.x

Digest

Encryption

Symmetric key wrap

Specifying the Algorithm Suite

http://www.w3.0rg/2000/09/xmldsig#rsa-shal

The digest property, [Digl, specifies the algorithm used for generating a
message digest value. WS-SecurityPolicy supports two alternative digest
algorithms: shal and sha256.

The sha1 algorithm is identified by the following URI:

http://www.w3.0rg/2000/09/xmldsig#shal

The sha256 algorithm is identified by the following URI:

http://www.w3.0rg/2001/04/xmlenc#sha256

The encryption property, [Enc], specifies the algorithm used for encrypting
data. WS-SecurityPolicy supports the following encryption algorithms: aes256,
Aesl92, Aesl28, TripleDes.

The nes256 algorithm is identified by the following URI:

http://www.w3.0rg/2001/04/xmlenc#aes256-cbc

The res192 algorithm is identified by the following URI:

http://www.w3.0rg/2001/04/xmlenc#aesl92-cbc

The res128 algorithm is identified by the following URI:

http://www.w3.0rg/2001/04/xmlenc#aesl28-cbc

The TripleDes algorithm is identified by the following URI:

http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc

The symmetric key wrap property, [Sym KWI, specifies the algorithm used
for signing and encrypting symmetric keys. WS-SecurityPolicy supports the
following symmetric key wrap algorithms: KwAes256, KwAes192, KwAes128,
KwTripleDes.

The kwaes256 algorithm is identified by the following URI:

http://www.w3.0rg/2001/04/xmlenc#kw-aes256

FUSE" Services Framework Security Guide Version 2.2.x 119

Chapter 6. Message Protection

Asymmetric key wrap

Computed key

Encryption key derivation

120

The kwaes192 algorithm is identified by the following URI:

http://www.w3.0rg/2001/04/xmlenc#kw-aesl92

The xwaes128 algorithm is identified by the following URI:

http://www.w3.0rg/2001/04/xmlenc#kw-aesl28

The kwTripleDes algorithm is identified by the following URI:

http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc

The asymmetric key wrap property, [Asym KW1, specifies the algorithm used
for signing and encrypting asymmetric keys. WS-SecurityPolicy supports the
following asymmetric key wrap algorithms: KwRsaOaep, KwRsal5.

The xwRsa0aep algorithm is identified by the following URI:

http://www.w3.0rg/2001/04/xmlenc#rsa-oaep-mgflp

The kwrRsa15 algorithm is identified by the following URI:

http://www.w3.0rg/2001/04/xmlenc#rsa-1 5

The computed key property, [Comp Key], specifies the algorithm used to
compute a derived key. When secure parties communicate with the aid of a
shared secret key (for example, when using WS-SecureConversation), it is
recommended that a derived key is used instead of the original shared key,
in order to avoid exposing too much data for analysis by hostile third parties.
WS-SecurityPolicy specifies that the psha1 algorithm is always used.

The psha1 algorithm is identified by the following URI:

http://docs.oasis-open.org/ws-sx/ws—-secureconversa
tion/200512/dk/p_shal

The encryption key derivation property, [Enc KD], specifies the algorithm used
to compute a derived encryption key. WS-SecurityPolicy supports the following
encryption key derivation algorithms: psha11.256, PShalL192, PShalL128.

The psha1 algorithm is identified by the following URI (the same algorithm
is used for PshalL256, PShalL192, and PshalL128; just the key lengths
differ):

FUSE" Services Framework Security Guide Version 2.2.x

Specifying the Algorithm Suite

http://docs.oasis-open.org/ws-sx/ws-secureconversa
tion/200512/dk/p_shal

Signature key derivation The signature key derivation property, [Sig KD], specifies the algorithm used
to compute a derived signature key. WS-SecurityPolicy supports the following
signature key derivation algorithms: Psha11192, PShalL128.

Key length properties Table 6.5 on page 121 shows the minimum and maximum key lengths
supported in WS-SecurityPolicy.

Table 6.5. Key Length Properties

Property Key Length
Minimum symmetric key length [Min SKL] 128, 192, 256
Maximum symmetric key length [Max SKL] [256

Minimum asymmetric key length [Min AKL] {1024
Maximum asymmetric key length [Max AKL]|4096

The value of the minimum symmetric key length, [Min SKL], depends on
which algorithm suite is selected.

FUSE" Services Framework Security Guide Version 2.2.x 121

122 FUSE" Services Framework Security Guide Version 2.2.x

Chapter 7. Authentication

This chapter describes how to use policies to configure authentication in a FUSE Services Framework application.
Currently, the only credentials type supported in the SOAP layer is the WS-Security UsernameToken.

Introduction to Authentication ... s 124
Specifying an Authentication POICYc.ieieiiii e 125
Providing Client Credentialsc.oeiiiiiiiii e 133
Authenticating Received Credentialsooieiiiiiiiii e 138
123

FUSE" Services Framework Security Guide Version 2.2.x

Chapter 7. Authentication

Introduction to Authentication

Overview In FUSE Services Framework, an application can be set up to use
authentication through a combination of policy assertions in the WSDL contract
and configuration settings in Spring XML.

(@ Note

Remember, you can also use the HTTPS protocol as the basis for
authentication and, in some cases, this might be easier to configure.
See "Authentication Alternatives" on page 50.

Steps to set up authentication In outline, you need to perform the following steps to set up an application
to use authentication:

1. Add a supporting tokens policy to an endpoint in the WSDL contract. This
has the effect of requiring the endpoint to include a particular type of token
(client credentials) in its request messages.

2. On the client side, provide credentials to send by configuring the relevant
endpoint in Spring XML.

3. (Optional) On the client side, if you decide to provide passwords using a
callback handler, implement the callback handler in Java.

4. On the server side, associate a callback handler class with the endpoint
in Spring XML. The callback handler is then responsible for authenticating
the credentials received from remote clients.

124 FUSE" Services Framework Security Guide Version 2.2.x

Specifying an Authentication Policy

Specifying an Authentication Policy

Overview

Syntax

If you want an endpoint to support authentication, associate a supporting
tokens policy assertion with the relevant endpoint binding. There are several
different kinds of supporting tokens policy assertions, whose elements all
have names of the form *SupportingTokens (for example,
SupportingTokens, SignedSupportingTokens, and soon). For a complete
list, see "SupportingTokens assertions" on page 129.

Associating a supporting tokens assertion with an endpoint has the following
effects:

* Messages to or from the endpoint are required to include the specified
token type (where the token's direction is specified by the
sp:IncludeToken attribute).

* Depending on the particular type of supporting tokens element you use,
the endpoint might be required to sign and/or encrypt the token.

The supporting tokens assertion implies that the runtime will check that these
requirements are satisified. But the WS-SecurityPolicy policies do not define
the mechanism for providing credentials to the runtime. You must use Spring
XML configuration to specify the credentials (see "Providing Client Credentials"
on page 133).

The *supportingTokens elements (that is, all elements with the
SupportingTokens suffix—see "SupportingTokens assertions" on page 129)
have the following syntax:

<sp:SupportingTokensElement xmlns:sp="..." ... >
<wsp:Policy xmlns:wsp="...">

[Token Assertion]+

<sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite> ?

(
<sp:SignedParts ... > ... </sp:SignedParts> |
<sp:SignedElements ... > ... </sp:SignedElements> |
<sp:EncryptedParts ... > ... </sp:EncryptedParts> |
<sp:EncryptedElements ... > ... </sp:EncryptedElements>

) *
</wsp:Policy>

</sp:SupportingTokensElement>

FUSE" Services Framework Security Guide Version 2.2.x 125

Chapter 7. Authentication

Sample policy

126

Where supportingTokensElement stands for one of the supporting token
elements, *supportingTokens.Typically, if you simply want to include a
token (or tokens) in the security header, you would include one or more token
assertions, [Token Assertion], in the policy. In particular, this is all that
is required for authentication.

If the token is of an appropriate type (for example, an X.509 certificate or a
symmetric key), you could theoretically also use it to sign or encrypt specific
parts of the current message using the sp:algorithmSuite,
sp:SignedParts, sp:SignedElements, sp:EncryptedParts, and
sp:EncryptedElements elements. This functionality is currently not
supported by FUSE Services Framework, however.

Example 7.1 on page 126 shows an example of a policy that requires a
WS-Security UsernameToken token (which contains username/password
credentials) to be included in the security header. In addition, because the
token is specified inside an sp:SignedSupportingTokens element, the
policy requires that the token is signed. This example uses a transport binding,
so it is the underlying transport that is responsible for signing the message.

For example, if the underlying transport is HTTPS, the SSL/TLS protocol
(configured with an appropriate algorithm suite) is responsible for signing the
entire message, including the security header that contains the specified
token. This is sufficient to satisfy the requirement that the supporting token
is signed.

Example 7.1. Example of a Supporting Tokens Policy

<wsp:Policy wsu:Id="UserNameOverTransport IPingService policy">

<wsp:ExactlyOne>
<wsp:All>
<sp:TransportBinding> ... </sp:TransportBinding>
<sp:SignedSupportingTokens
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/se
curitypolicy">
<wsp:Policy>
<sp:UsernameToken
sp:IncludeToken="http://schem
as.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Al
waysToRecipient">
<wsp:Policy>
<sp:WssUsernameTokenl0/>
</wsp:Policy>
</sp:UsernameToken>
</wsp:Policy>

FUSE" Services Framework Security Guide Version 2.2.x

Specifying an Authentication Policy

</sp:SignedSupportingTokens>

</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

Where the presence of the sp:WssUsernameToken10 sub-element indicates
that the UsernameToken header should conform to version 1.0 of the
WS-Security UsernameToken specification.

Token types In principle, you can specify any of the WS-SecurityPolicy token types in a
supporting tokens assertion. For SOAP-level authentication, however, only
the sp:UsernameToken token type is relevant.

sp:UsernameToken In the context of a supporting tokens assertion, this element specifies that a
WS-Security UsernameToken is to be included in the security SOAP header.
Essentially, a WS-Security UsernameToken is used to send username/password
credentials in the WS-Security SOAP header. The sp:UsernameToken element
has the following syntax:

<sp:UsernameToken sp:IncludeToken="xs:anyURI"? xmlns:sp="..."
oo >
(
<sp:Issuer>wsa:EndpointReferenceType</sp:Issuer> |

<sp:IssuerName>xs:anyURI</sp:IssuerName>
) 2

<wst:Claims Dialect="..."> ... </wst:Claims> ?
<wsp:Policy xmlns:wsp="...">
(
<sp:NoPassword ... /> |
<sp:HashPassword ... />

) 2

<sp:RequireDerivedKeys /> |

<sp:RequireImpliedDerivedKeys ... /> |
<sp:RequireExplicitDerivedKeys ... />
) 2
(
<sp:WssUsernameTokenlO ... /> |
<sp:WssUsernameTokenll ... />

) 2
</wsp:Policy>

</sp:UsernameToken>

FUSE" Services Framework Security Guide Version 2.2.x 127

Chapter 7. Authentication

sp:IncludeToken attribute

The sub-elements of sp:UsernameToken are all optional and are not needed
for ordinary authentication. Normally, the only part of this syntax that is
relevant is the sp: IncludeToken attribute.

(® Note

Currently, in the sp:UsernameToken syntax, only the
sp:WssUsernameToken10 sub-element is supported in FUSE Services
Framework.

Valid values of the sp:IncludeToken attribute are summarized in
Table 7.1 on page 128.

Table 7.1. Values of sp:includeToken

IncludeToken URI

Description

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never The token MUST

NOT be included in
any messages sent
between the
initiator and the
recipient; rather,
an external
reference to the
token should be
used.

128

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Once The token MUST

be included in only
one message sent
from the initiator to
the recipient.
References to the
token MAY use an
internal reference
mechanism.
Subsequent related
messages sent
between the
recipient and the
initiator may refer
to the token using

FUSE" Services Framework Security Guide Version 2.2.x

Specifying an Authentication Policy

IncludeToken URI Description

an external
reference
mechanism.

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient | The token MUST
be included in all
messages sent
from initiator to the
recipient. The
token MUST NOT
be included in
messages sent
from the recipient
to the initiator.

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysTolnitiator | The token MUST
be included in all
messages sent
from the recipient
to the initiator. The
token MUST NOT
be included in
messages sent
from the initiator to
the recipient.

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Always The token MUST
be included in all
messages sent
between the
initiator and the
recipient. This is
the default
behavior.

SupportingTokens assertions The following kinds of supporting tokens assertions are supported:
* "sp:SupportingTokens" on page 130.
* "sp:SignedSupportingTokens" on page 130.

* "sp:EncryptedSupportingTokens" on page 130.

FUSE" Services Framework Security Guide Version 2.2.x 129

Chapter 7. Authentication

* "sp:SignedEncryptedSupportingTokens" on page 131.
 "sp:EndorsingSupportingTokens" on page 131.

* "sp:SignedEndorsingSupportingTokens" on page 131.

* "sp:EndorsingEncryptedSupportingTokens" on page 132.

* "sp:SignedEndorsingEncryptedSupportingTokens" on page 132.

sp:SupportingTokens This element requires a token (or tokens) of the specified type to be included
in the wsse:security header. No additional requirements are imposed.

€9 Warning

This policy does not explicitly require the tokens to be signed or
encrypted. It is normally essential, however, to protect tokens by
signing and encryption.

sp:SignedSupportingTokens This element requires a token (or tokens) of the specified type to be included
in the wsse: security header. In addition, this policy requires that the token
is signed, in order to guarantee token integrity.

€9 Warning

This policy does not explicitly require the tokens to be encrypted. It
is normally essential, however, to protect tokens both by signing and
encryption.

sp:EncryptedSupportingTokens This element requires a token (or tokens) of the specified type to be included
in the wsse: security header. In addition, this policy requires that the token
is encrypted, in order to guarantee token confidentiality.

130 FUSE" Services Framework Security Guide Version 2.2.x

sp:SignedEncryptedSupportingTokens

sp:EndorsingSupportingTokens

sp:SignedEndorsingSupportingTokens

Specifying an Authentication Policy

€3 Warning

This policy does not explicitly require the tokens to be signed. It is
normally essential, however, to protect tokens both by signing and
encryption.

This element requires a token (or tokens) of the specified type to be included
in the wsse:security header. In addition, this policy requires that the token
is both signed and encrypted, in order to guarantee token integrity and
confidentiality.

An endorsing supporting token is used to sign the message signature (primary
signature). This signature is known as an endorsing signature or secondary
signature. Hence, by applying an endorsing supporting tokens policy, you
can have a chain of signatures: the primary signature, which signs the message
itself, and the secondary signature, which signs the primary signature.

(® Note

If you are using a transport binding (for example, HTTPS), the
message signature is not actually part of the SOAP message, so it is
not possible to sign the message signature in this case. If you specify
this policy with a transport binding, the endorsing token signs the
timestamp instead.

€9 Warning

This policy does not explicitly require the tokens to be signed or
encrypted. It is normally essential, however, to protect tokens by
signing and encryption.

This policy is the same as the endorsing supporting tokens policy, except that
the tokens are required to be signed, in order to guarantee token integrity.

FUSE" Services Framework Security Guide Version 2.2.x 131

Chapter 7. Authentication

sp:EndorsingEncryptedSupportingTokens

sxSgnedEndorsingEnarypledSupparingTokens

132

€9 Warning

This policy does not explicitly require the tokens to be encrypted. It
is normally essential, however, to protect tokens both by signing and
encryption.

This policy is the same as the endorsing supporting tokens policy, except that
the tokens are required to be encrypted, in order to guarantee token
confidentiality.

€9 Warning

This policy does not explicitly require the tokens to be signed. It is
normally essential, however, to protect tokens both by signing and
encryption.

This policy is the same as the endorsing supporting tokens policy, except that
the tokens are required to be signed and encrypted, in order to guarantee
token integrity and confidentiality.

FUSE" Services Framework Security Guide Version 2.2.x

Providing Client Credentials

Providing Client Credentials

Overview

Client credentials properties

Configuring client credentials in
Spring XML

There are essentially two approaches to providing UsernameToken client
credentials: you can either set both the username and the password directly
in the client's Spring XML configuration; or you can set the username in the
client's configuration and implement a callback handler to provide passwords
programmatically. The latter approach (by programming) has the advantage
that passwords are easier to hide from view.

Table 7.2 on page 133 shows the properties you can use to specify
WS-Security username/password credentials on a client's request context in
Spring XML.

Table 7.2. Client Credentials Properties

Properties Description

ws-security.username Specifies the username for
UsernameToken policy assertions.

ws-security.password Specifies the password for
UsernameToken policy assertions. If
not specified, the password is obtained
by calling the callback handler.

ws-security.callback-handler|Specifies the class name of the WSS4J
callback handler that retrieves
passwords for UsernameToken policy
assertions. Note that the callback
handler can also handle other kinds of
security events.

To configure username/password credentials in a client's request context in
Spring XML, set the ws-security.username and ws-security.password
properties as follows:

<beans ... >
<jaxws:client name="{NamespaceName}LocalPortName"
createdFromAPI="true">
<jaxws:properties>
<entry key="ws-security.username" value="Alice"/>

<entry key="ws-security.password" value="ab

FUSE" Services Framework Security Guide Version 2.2.x 133

Chapter 7. Authentication

Programming a callback handler
for passwords

134

cd!1234"/>
</jaxws:properties>
</jaxws:client>

</be$£é>
If you prefer not to store the password directly in Spring XML (which might

potentially be a security hazard), you can provide passwords using a callback
handler instead.

If you want to use a callback handler to provide passwords for the
UsernameToken header, you must first modify the client configuration in
Spring XML, replacing the ws-security.password setting by a
ws-security.callback-handler setting, as follows:

<beans ... >
<jaxws:client name="{NamespaceName}LocalPortName"
createdFromAPI="true">
<jaxws:properties>
<entry key="ws-security.username" value="Alice"/>

<entry key="ws-security.callback-handler"
value="interop.client.UTPasswordCallback"/>
</jaxws:properties>
</jaxws:client>

</beans>

In the preceding example, the callback handler is implemented by the
UTPasswordCallback class. You can write a callback handler by
implementing the javax.security.auth.callback.CallbackHandler
interface, as shown in Example 7.2 on page 134.

Example 7.2. Callback Handler for UsernameToken Passwords
package interop.client;

import java.io.IOException;

import java.util.HashMap;

import java.util.Map;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.callback.UnsupportedCallbackExcep
tion;

import org.apache.ws.security.WSPasswordCallback;

FUSE" Services Framework Security Guide Version 2.2.x

Providing Client Credentials

public class UTPasswordCallback implements CallbackHandler {

private Map<String, String> passwords =
new HashMap<String, String>();

public UTPasswordCallback () {

passwords.put ("Alice", "ecilA");
passwords.put ("Frank", "invalid-password");
//for MS clients

passwords.put ("abcd", "dcba"):;

public void handle(Callback[] callbacks) throws IOExcep

tion, UnsupportedCallbackException {
for (int 1 = 0; 1 < callbacks.length; i++) {
WSPasswordCallback pc = (WSPasswordCallback)call

backs[i];

String pass = passwords.get (pc.getlIdentifier());

if (pass != null) {
pc.setPassword (pass) ;
return;

throw new IOException();
}

// Bdd an alias/password pair to the callback mechanism.
public void setAliasPassword(String alias, String password)

passwords.put (alias, password);

The callback functionality is implemented by the
CallbackHandler.handle () method. In this example, it assumed that the
callback objects passed to the handle () method are all of
org.apache.ws.security.WSPasswordCalIbackl type (in a more realistic
example, you would check the type of the callback objects).

! http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/WSPasswordCallback.html

FUSE" Services Framework Security Guide Version 2.2.x 135

http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/WSPasswordCallback.html
http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/WSPasswordCallback.html

Chapter 7. Authentication

WSPasswordCallback class

A more realistic implementation of a client callback handler would probably
consist of prompting the user to enter their password.

When a callbackHandler is called in a FUSE Services Framework client
for the purpose of setting a UsernameToken password, the corresponding
WSPasswordCallback object has the USERNAME TOKEN usage code.

For more details about the wspasswordCallback class, see
org.apache.ws.security.WSPasswordCaIIbackz.

The wspasswordcallback class defines several different usage codes, as
follows:

USERNAME_TOKEN
Need the password to fill in or to verify UsernameToken credentials. In

other words, this usage code is used both on the client side (to obtain a
password to send to the server) and on the server side (to obtain a
password in order to compare it with the password received from the
client).

DECRYPT
Need a password to get the private key of this identifier (username) from
the keystore. WSS4J uses this private key to decrypt the session
(symmetric) key.

SIGNATURE
Need the password to get the private key of this identifier (username)
from the keystore. WSS4J uses this private key to produce a signature.

KEY_NAME
Need the key, not the password, associated with the identifier. WSS4J
uses this key to encrypt or decrypt parts of the SOAP request. Note, the
key must match the symmetric encryption/decryption algorithm specified
(refer to wsHandlerConstants.ENC_SYM ALGO).

USERNAME_TOKEN_UNKNOWN
Either an unspecified password type or the password type,
passwordText. In these both cases, only the password variable is set.

The callback class now may check if the username and password match.
If they do not match, the callback class must throw an exception. The

2 http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/WSPasswordCallback.html

136

FUSE" Services Framework Security Guide Version 2.2.x

http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/WSPasswordCallback.html
http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/WSPasswordCallback.html

Providing Client Credentials

exception can be a UnsupportedCallbackException Or an

IOException.

SECURITY_CONTEXT_TOKEN
Need the key to to be associated with a wsc: SecurityContextToken.

UNKNOWN
Not used by WSS4J.

FUSE" Services Framework Security Guide Version 2.2.x 137

Chapter 7. Authentication

Authenticating Received Credentials

Overview On the server side, you can verify that received credentials are authentic by
registering a callback handler with the FUSE Services Framework runtime.
You can either write your own custom code to perform credentials verification
or you can implement a callback handler that integrates with a third-party
enterprise security system (for example, an LDAP server).

Configuring a server callback To configure a server callback handler that verifies UsernameToken credentials
handler in Spring XML received from clients, set the ws-security.callback-handler property in
the server's Spring XML configuration, as follows:

<beans ... >
<jaxws:endpoint
id="UserNameOverTransport"
address="https://localhost:9001/UserNameOverTransport"

serviceName="interop:PingServicelQ"

endpointName="interop:UserNameOverTransport IPingSer
vice"

implementor="interop.server.UserNameOverTransport"

depends-on="tls-settings">

<jaxws:properties>
<entry key="ws-security.username" value="Alice"/>

<entry key="ws-security.callback-handler"
value="interop.client.UTPasswordCallback"/>
</jaxws:properties>
</jaxws:endpoint>
</beans>
In the preceding example, the callback handler is implemented by the
UTPasswordCallback Class.

Implementing the callback To implement a callback handler for checking passwords on the server side,

handler to check passwords implement the javax.security.auth.callback.CallbackHandler
interface. The general approach to implementing the callbackHandler
interface for a server is similar to implementing a callbackHandler for a
client. The interpretation given to the returned password on the server side

138 FUSE" Services Framework Security Guide Version 2.2.x

Authenticating Received Credentials

is different, however: the password from the callback handler is compared
against the received client password in order to verify the client's credentials.

For example, you could use the sample implementation shown in

Example 7.2 on page 134 to obtain passwords on the server side. On the
server side, the WSS4J runtime would compare the password obtained from
the callback with the password in the received client credentials. If the two
passwords match, the credentials are successfully verified.

A more realistic implementation of a server callback handler would involve
writing an integration with a third-party database that is used to store security
data (for example, integration with an LDAP server).

FUSE" Services Framework Security Guide Version 2.2.x 139

140 FUSE" Services Framework Security Guide Version 2.2.x

Appendix A. ASN.1 and Distinguished
Names

The OSI Abstract Syntax Notation One (ASN.1) and X.500 Distinguished Names play an important role in the
security standards that define X.509 certificates and LDAP directories.

AN . L e 142
DistinGUISNE NAIMES ... euiee e et ettt et et e 143

FUSE" Services Framework Security Guide Version 2.2.x 141

ASN.1

Overview

BER

DER

References

142

The Abstract Syntax Notation One (ASN.1) was defined by the OSI standards
body in the early 1980s to provide a way of defining data types and structures
that are independent of any particular machine hardware or programming
language. In many ways, ASN.1 can be considered a forerunner of modern
interface definition languages, such as the OMG’s IDL and WSDL, which are
concerned with defining platform-independent data types.

ASN.1 is important, because it is widely used in the definition of standards
(for example, SNMP, X.509, and LDAP). In particular, ASN.1 is ubiquitous
in the field of security standards—the formal definitions of X.509 certificates
and distinguished names are described using ASN.1 syntax. You do not require
detailed knowledge of ASN.1 syntax to use these security standards, but you
need to be aware that ASN.1 is used for the basic definitions of most
security-related data types.

The OSlI's Basic Encoding Rules (BER) define how to translate an ASN.1 data
type into a sequence of octets (binary representation). The role played by BER
with respect to ASN.1 is, therefore, similar to the role played by GIOP with
respect to the OMG IDL.

The OSI's Distinguished Encoding Rules (DER) are a specialization of the
BER. The DER consists of the BER plus some additional rules to ensure that
the encoding is unique (BER encodings are not).

You can read more about ASN.1 in the following standards documents:
¢ ASN.1 is defined in X.208.

* BER is defined in X.209.

FUSE" Services Framework Security Guide Version 2.2.x

Distinguished Names

Overview

String representation of DN

DN string example

Structure of a DN string

Historically, distinguished names (DN) are defined as the primary keys in an
X.500 directory structure. However, DNs have come to be used in many other
contexts as general purpose identifiers. In FUSE Services Framework, DNs
occur in the following contexts:

* X.509 certificates—for example, one of the DNs in a certificate identifies
the owner of the certificate (the security principal).

* LDAP—DNs are used to locate objects in an LDAP directory tree.

Although a DN is formally defined in ASN.1, there is also an LDAP standard
that defines a UTF-8 string representation of a DN (see Rrc 2253). The string
representation provides a convenient basis for describing the structure of a
DN.

,'] Note

The string representation of a DN does not provide a unique
representation of DER-encoded DN. Hence, a DN that is converted
from string format back to DER format does not always recover the
original DER encoding.

The following string is a typical example of a DN:

C=US, O0=IONA Technologies,OU=Engineering,CN=A. N. Other

A DN string is built up from the following basic elements:
* OID.
o Attribute Types .

* AVA.

FUSE" Services Framework Security Guide Version 2.2.x 143

oID

Attribute types

AVA

144

* RDN .

An OBJECT IDENTIFIER (OID) is a sequence of bytes that uniquely identifies
a grammatical construct in ASN.1.

The variety of attribute types that can appear in a DN is theoretically
open-ended, but in practice only a small subset of attribute types are used.
Table A.1 on page 144 shows a selection of the attribute types that you are
most likely to encounter:

Table A.1. Commonly Used Attribute Types

String X.500 Attribute Type |[Size of Data|Equivalent OID
Representation

C countryName 2 2.5.4.6
0 organizationName 1...64 2.5.4.10
ou organizationalUnitName|1...64 2.54.11
CN commonName 1...64 2543
ST stateOrProvinceName |1...64 2.5.4.8
L localityName 1...64 2.5.4.7
STREET streetAddress

DC domainComponent

uiD userid

An attribute value assertion (AVA) assigns an attribute value to an attribute
type. In the string representation, it has the following syntax:

<attr-type>=<attr-value>

For example:

CN=A. N. Other

Alternatively, you can use the equivalent OID to identify the attribute type in
the string representation (see Table A.1 on page 144). For example:

FUSE" Services Framework Security Guide Version 2.2.x

2.5.4.3=A. N. Other

RDN A relative distinguished name (RDN) represents a single node of a DN (the
bit that appears between the commas in the string representation). Technically,
an RDN might contain more than one AVA (it is formally defined as a set of
AVAs). However, this almost never occurs in practice. In the string
representation, an RDN has the following syntax:

<attr-type>=<attr-value>[+<attr-type>=<attr-value> ...]

Here is an example of a (very unlikely) multiple-value RDN:

OU=Engl+0U=Eng2+0U=Eng3

Here is an example of a single-value RDN:

OU=Engineering

FUSE" Services Framework Security Guide Version 2.2.x 145

146 FUSE" Services Framework Security Guide Version 2.2.x

Index
A

Abstract Syntax Notation One (see ASN.1)
administration

OpenSSL command-line utilities, 34
ASN.1, 20, 141

attribute types, 144

AVA, 144

OID, 144
ASN.1:

RDN, 145
attribute value assertion, 144
authentication

own certificate, specifying, 60

SSL/TLS, 51
mutual, 54
trusted CA list, 57
AVA, 144
B
Basic Encoding Rules (see BER)
BER, 142
C
CA, 20

choosing a host, 25
commercial CAs, 24
index file, 36
list of trusted, 26
multiple CAs, 26
private CAs, 25
private key, creating, 37
security precautions, 25
self-signed, 37
serial file, 36
trusted list, 57

CA, setting up, 35

CAs, 35

certificate signing request, 40, 44
signing, 40, 45

FUSE" Services Framework Security Guide Version 2.2.x

certificates
chaining, 26
creating and signing, 42
importing and exporting, 29
own, specifying, 60
peer, 26
PKCS#12 file, 28
public key, 20
security handshake, 51, 54
self-signed, 26, 37
signing, 20, 40, 45
signing request, 40, 44
trusted CA list, 57
X.509, 20
chaining of certificates, 26
CSR, 40, 44

D
DER, 142
Distinguished Encoding Rules (see DER)
distinguished names
definition, 143
DN
definition, 143
string representation, 143

index file, 36

M
multiple CAs, 26
mutual authentication, 54

(0]
OpenSSL, 25
OpenSSL command-line utilities, 34

P

peer certificate, 26

PKCS#12 files
creating, 29, 42

definition, 28
importing and exporting, 29
viewing, 29

private key, 37

public keys;, 20

R
RDN, 145

relative distinguished name, 145
root certificate directory, 26

S

security handshake

SSL/TLS, 51, 54
self-signed CA, 37
self-signed certificate, 26
serial file, 36
signing certificates, 20
SSL/TLS

security handshake, 51, 54
SSLeay, 25

T

target authentication, 51
target only, 51

trusted CA list policy, 57
trusted CAs, 26

X

X.500, 141
X.509 certificate
definition, 20

148 FUSE" Services Framework Security Guide Version 2.2.x

	Security Guide
	Table of Contents
	Chapter 1. Security for HTTP-Compatible Bindings
	Chapter 2. Managing Certificates
	What is an X.509 Certificate?
	Certification Authorities
	Choice of CAs
	Commercial Certification Authorities
	Private Certification Authorities

	Certificate Chaining
	PKCS#12 Files
	Special Requirements on HTTPS Certificates
	Creating Your Own Certificates
	Prerequisites
	Set Up Your Own CA
	Use the CA to Create Signed Certificates in a Java Keystore
	Use the CA to Create Signed PKCS#12 Certificates

	Chapter 3. Configuring HTTPS
	Authentication Alternatives
	Target-Only Authentication
	Mutual Authentication

	Specifying Trusted CA Certificates
	When to Deploy Trusted CA Certificates
	Specifying Trusted CA Certificates for HTTPS

	Specifying an Application’s Own Certificate
	Deploying Own Certificate for HTTPS

	Chapter 4. Configuring HTTPS Cipher Suites
	Supported Cipher Suites
	Cipher Suite Filters
	SSL/TLS Protocol Version

	Chapter 5. The WS-Policy Framework
	Introduction to WS-Policy
	Policy Expressions

	Chapter 6. Message Protection
	Transport Layer Message Protection
	SOAP Message Protection
	Introduction to SOAP Message Protection
	Basic Signing and Encryption Scenario
	Specifying an AsymmetricBinding Policy
	Specifying a SymmetricBinding Policy
	Specifying Parts of Message to Encrypt and Sign
	Providing Encryption Keys and Signing Keys
	Specifying the Algorithm Suite

	Chapter 7. Authentication
	Introduction to Authentication
	Specifying an Authentication Policy
	Providing Client Credentials
	Authenticating Received Credentials

	Appendix A. ASN.1 and Distinguished Names
	ASN.1
	Distinguished Names

	Index

