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Drizzle Overview

● Vision
● Community
● Microkernel Architecture
● Modules

– Storage Engines

– Protocol

– Replication

● Roadmap



  

 

MySQL CAB '05



  

 

Rethink Everything
(but do not assume everything was bad)



  

 

Do not play catch-up.
Leap Forward.



  

Vision

● Announced at OSCON 2008
● Microkernel Architecture
● Infrastructure Aware
● Focus on Web Applications
● Modernize Codebase (C++, STL, OSS libs)
● Multi-Core/Concurrency
● 64-bit, lots of RAM
● UTF-8



  

Community

● Open Source
● All contributions treated equally
● No contributor license agreements
● Captain system
● All project information is public
● Release early and often (~2 weeks)
● 100+ Contributors
● 500+ On mailing list



  

Sun Team Values

● Have open and well-documented interfaces
● Have transparent goals and processes that are 

communicated publicly
● Have fun and encourage collaboration
● Remove barriers to contribution and 

participation for anyone
● Enable contributors to build a business around 

Drizzle 



  

Community Tools

● Launchpad
– Bugs

– Blueprints

– Translations (30+ Languages)

● BZR
● Buildbot
● Hudson



  

 

Microkernel
Architecture



  



  

Storage Engines

● Still have multiple storage engines
● Default to ACID compliant engine

– InnoDB (we have a PBXT tree too)

● Interface updates
● Let engines supply their own metadata
● MyISAM now temp-table only

– May be removed at some point



  

New Protocol

● Asynchronous, Full Duplex
– Concurrent queries on one connection

● Remove weak attack methods
● Built-in sharding
● Optional checksums
● Pluggable in server



  

 



  

libdrizzle

● https://launchpad.net/libdrizzle
● BSD License
● Supports both Drizzle and MySQL Protocols
● Provides client and server interfaces

– SQLite server example

● PHP, Perl, Python, and Ruby extensions
● Concurrent query API

– Reduce page load times



  

Replication

● New API for events
● Google Protobuffer messages

– Easy to read in any language

● File (binlog) and Gearman plugins underway
● Easy to write your own sender/applier



  

Other Plugins

● Logging
– Gearman, syslog, query analyzer

● Authentication now modular and optional
– PAM/LDAP, HTTP Auth

● Multi-language support in development
– Stored procedures (server-side scripting)

– Plugins from other languages

● Information/Performance Schema
– No materialization



  

Where are we now?

● MySQL 6.0.5-alpha: 1,128,112 LoC
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Aloha Milestone

● Replication
● New Protocol
● Architectural Cleanup and Performance
● Table Discovery
● New Information Schema
● Plugin Dependency Checking
● Pluggable Configuration



  

Bell Milestone

● Server Side Scripting
● Performance Schema
● <insert your work> :)



  

Get Involved!

● http://drizzle.org/
● https://launchpad.net/drizzle
● #drizzle on irc.freenode.net
● https://launchpad.net/~drizzle-discuss
● Drizzle jobs available (see mailing list)
● OSCON – July 20th in San Jose, CA

– 45 Minute Panel

– Birds of a Feather (BoF)

– Expo Hall Booth



  

 



  

 

Kittens!
(LiveJournal.com Image Processing)



  

 

“The way I like to think of Gearman is as a 
massively distributed, massively
fault tolerant fork mechanism.”

- Joe Stump, Digg



  

Gearman Overview

● History
● Basics
● Distributed Processing
● Map/Reduce
● Log Collection and Analysis
● Roadmap



  

History

● Danga – Brad Fitzpatrick & Company
– Related to memcached, MogileFS, ...

● Anagram for “manager”
– Gearman, like managers, assign the tasks but do 

none of the real work themselves

● Digg: 45+ servers, 400K jobs/day
● Yahoo: 60+ servers, 6M jobs/day
● Many other organizations run it in production



  

Recent Development

● Rewrite in C
● New Language Bindings

– PHP ext, Perl XS, Drizzle, MySQL, PostgreSQL

● Command line tool
● Protocol Additions
● Multi-threaded (50k jobs/second)
● Persistent Queues
● Pluggable Protocol



  

Features

● Open Source (mostly BSD)
● Multi-language

– Mix clients and workers from different APIs

● Flexible Application Design
– Not restricted to a single distributed model

● Fast
● Embeddable

– Small & lightweight for applications of all sizes

● No Single Point of Failure



  

Basics

● Gearman provides a distributed application 
framework

● Uses TCP port 4730 (was port 7003)
● Client – Create jobs to be run and send them 

to a job server
● Worker – Register with a job server and grab 

jobs to run
● Job Server – Coordinate the assignment from 

clients to workers, handle restarts



  

Gearman Stack



  

Hello World

$client= new GearmanClient();
$client->addServer();
print $client->do("reverse", "Hello World!");

$worker= new GearmanWorker();
$worker->addServer();
$worker->addFunction("reverse", "my_reverse_function");
while ($worker->work());
 
function my_reverse_function($job)
{
  return strrev($job->workload());
}

http://www.php.net/print
http://www.php.net/strrev


  

Hello World

shell$ gearmand -d

shell$ php worker.php &
[1] 17510

shell$ php client.php
!dlroW olleH



  

No Single Point of Failure



  

How Is This Useful?

● Provides a distributed nervous system
● Natural load balancing
● Multi-language integration
● Distribute processing

– Possibly closer to data

● Asynchronous queues



  

Back to the Kittens



  



  

Image Resize Worker

$worker= new GearmanWorker();
$worker->addServer();
$worker->addFunction("resize", "my_resize_function");
while ($worker->work());
 
function my_resize_function($job)
{
  $thumb = new Imagick();
  $thumb->readImageBlob($job->workload());
  $thumb->scaleImage(200, 150);
  return $thumb->getImageBlob();
}



  

Image Resize Worker

shell$ gearmand -d

shell$ php resize.php &
[1] 17524

shell$ gearman -f resize < large.jpg > thumb.jpg

shell$ ls -sh large.jpg thumb.jpg
3.0M large.jpg   32K thumb.jpg



  

 

What else?



  

Map/Reduce



  

Log Processing

● Bring Map/Reduce to Apache logs
● Get log storage off Apache nodes
● Push processing to storage nodes
● Combine data in some meaningful way

– Summary

– Distributed merge-sort algorithms



  

Log Processing

● Collection
– tail -f access_log | gearman -n -f logger

– CustomLog "| gearman -n -f logger" common

– Write a Gearman Apache logging module

● Processing
– Distributed/parallel grep

– Log Analysis (AWStats, Webalizer, ...)

– Custom data mining & click analysis



  

Log Processing



  

Asynchronous Queues

● They help you scale
● Distributed data storage

– Eventually consistent data models

– Choose “AP” in “CAP”, make EC work

● Background Tasks
● Narada



  

What's Next?

● More protocols (memcached, XMPP, ...)
● TLS, SASL, multi-tenancy
● Replication
● More language interfaces

– JMS, C-based Python

● Improved statistics reporting
● Event notification hooks
● Monitor service



  

Get Involved!

● http://www.gearman.org/
● #gearman on irc.freenode.net
● http://groups.google.com/group/gearman
● OSCON – July 20th in San Jose, CA

– 3 Hour Tutorial

– 45 Minute Session

– Birds of a Feather (BoF)

– Expo Hall Booth



  

 

Narada?



  

Narada

● Started from example in Patrick's book
● Custom search engine
● Perl, PHP, and Java implementations
● Asynchronous queues
● Drizzle or MySQL
● Optionally use memcached
● Easy to integrate into existing projects
● https://launchpad.net/narada



  

Narada



  

Narada

Demo!
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