

Eric Day - http://www.oddments.org/

Patrick Galbraith - http://patg.net/

Drizzle Overview

● Vision
● Community
● Microkernel Architecture
● Modules

– Storage Engines

– Protocol

– Replication

● Roadmap

MySQL CAB '05

Rethink Everything
(but do not assume everything was bad)

Do not play catch-up.
Leap Forward.

Vision

● Announced at OSCON 2008
● Microkernel Architecture
● Infrastructure Aware
● Focus on Web Applications
● Modernize Codebase (C++, STL, OSS libs)
● Multi-Core/Concurrency
● 64-bit, lots of RAM
● UTF-8

Community

● Open Source
● All contributions treated equally
● No contributor license agreements
● Captain system
● All project information is public
● Release early and often (~2 weeks)
● 100+ Contributors
● 500+ On mailing list

Sun Team Values

● Have open and well-documented interfaces
● Have transparent goals and processes that are

communicated publicly
● Have fun and encourage collaboration
● Remove barriers to contribution and

participation for anyone
● Enable contributors to build a business around

Drizzle

Community Tools

● Launchpad
– Bugs

– Blueprints

– Translations (30+ Languages)

● BZR
● Buildbot
● Hudson

Microkernel
Architecture

Storage Engines

● Still have multiple storage engines
● Default to ACID compliant engine

– InnoDB (we have a PBXT tree too)

● Interface updates
● Let engines supply their own metadata
● MyISAM now temp-table only

– May be removed at some point

New Protocol

● Asynchronous, Full Duplex
– Concurrent queries on one connection

● Remove weak attack methods
● Built-in sharding
● Optional checksums
● Pluggable in server

libdrizzle

● https://launchpad.net/libdrizzle
● BSD License
● Supports both Drizzle and MySQL Protocols
● Provides client and server interfaces

– SQLite server example

● PHP, Perl, Python, and Ruby extensions
● Concurrent query API

– Reduce page load times

Replication

● New API for events
● Google Protobuffer messages

– Easy to read in any language

● File (binlog) and Gearman plugins underway
● Easy to write your own sender/applier

Other Plugins

● Logging
– Gearman, syslog, query analyzer

● Authentication now modular and optional
– PAM/LDAP, HTTP Auth

● Multi-language support in development
– Stored procedures (server-side scripting)

– Plugins from other languages

● Information/Performance Schema
– No materialization

Where are we now?

● MySQL 6.0.5-alpha: 1,128,112 LoC

950 970 990955 960 965 975 980 985 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1070 1079
298,000

300,000

302,000

304,000

306,000

308,000

310,000

312,000

Drizzle lines of Code

Build Number

Li
ne

s
of

 C
od

e

Aloha Milestone

● Replication
● New Protocol
● Architectural Cleanup and Performance
● Table Discovery
● New Information Schema
● Plugin Dependency Checking
● Pluggable Configuration

Bell Milestone

● Server Side Scripting
● Performance Schema
● <insert your work> :)

Get Involved!

● http://drizzle.org/
● https://launchpad.net/drizzle
● #drizzle on irc.freenode.net
● https://launchpad.net/~drizzle-discuss
● Drizzle jobs available (see mailing list)
● OSCON – July 20th in San Jose, CA

– 45 Minute Panel

– Birds of a Feather (BoF)

– Expo Hall Booth

Kittens!
(LiveJournal.com Image Processing)

“The way I like to think of Gearman is as a
massively distributed, massively
fault tolerant fork mechanism.”

- Joe Stump, Digg

Gearman Overview

● History
● Basics
● Distributed Processing
● Map/Reduce
● Log Collection and Analysis
● Roadmap

History

● Danga – Brad Fitzpatrick & Company
– Related to memcached, MogileFS, ...

● Anagram for “manager”
– Gearman, like managers, assign the tasks but do

none of the real work themselves

● Digg: 45+ servers, 400K jobs/day
● Yahoo: 60+ servers, 6M jobs/day
● Many other organizations run it in production

Recent Development

● Rewrite in C
● New Language Bindings

– PHP ext, Perl XS, Drizzle, MySQL, PostgreSQL

● Command line tool
● Protocol Additions
● Multi-threaded (50k jobs/second)
● Persistent Queues
● Pluggable Protocol

Features

● Open Source (mostly BSD)
● Multi-language

– Mix clients and workers from different APIs

● Flexible Application Design
– Not restricted to a single distributed model

● Fast
● Embeddable

– Small & lightweight for applications of all sizes

● No Single Point of Failure

Basics

● Gearman provides a distributed application
framework

● Uses TCP port 4730 (was port 7003)
● Client – Create jobs to be run and send them

to a job server
● Worker – Register with a job server and grab

jobs to run
● Job Server – Coordinate the assignment from

clients to workers, handle restarts

Gearman Stack

Hello World

$client= new GearmanClient();
$client->addServer();
print $client->do("reverse", "Hello World!");

$worker= new GearmanWorker();
$worker->addServer();
$worker->addFunction("reverse", "my_reverse_function");
while ($worker->work());

function my_reverse_function($job)
{
 return strrev($job->workload());
}

http://www.php.net/print
http://www.php.net/strrev

Hello World

shell$ gearmand -d

shell$ php worker.php &
[1] 17510

shell$ php client.php
!dlroW olleH

No Single Point of Failure

How Is This Useful?

● Provides a distributed nervous system
● Natural load balancing
● Multi-language integration
● Distribute processing

– Possibly closer to data

● Asynchronous queues

Back to the Kittens

Image Resize Worker

$worker= new GearmanWorker();
$worker->addServer();
$worker->addFunction("resize", "my_resize_function");
while ($worker->work());

function my_resize_function($job)
{
 $thumb = new Imagick();
 $thumb->readImageBlob($job->workload());
 $thumb->scaleImage(200, 150);
 return $thumb->getImageBlob();
}

Image Resize Worker

shell$ gearmand -d

shell$ php resize.php &
[1] 17524

shell$ gearman -f resize < large.jpg > thumb.jpg

shell$ ls -sh large.jpg thumb.jpg
3.0M large.jpg 32K thumb.jpg

What else?

Map/Reduce

Log Processing

● Bring Map/Reduce to Apache logs
● Get log storage off Apache nodes
● Push processing to storage nodes
● Combine data in some meaningful way

– Summary

– Distributed merge-sort algorithms

Log Processing

● Collection
– tail -f access_log | gearman -n -f logger

– CustomLog "| gearman -n -f logger" common

– Write a Gearman Apache logging module

● Processing
– Distributed/parallel grep

– Log Analysis (AWStats, Webalizer, ...)

– Custom data mining & click analysis

Log Processing

Asynchronous Queues

● They help you scale
● Distributed data storage

– Eventually consistent data models

– Choose “AP” in “CAP”, make EC work

● Background Tasks
● Narada

What's Next?

● More protocols (memcached, XMPP, ...)
● TLS, SASL, multi-tenancy
● Replication
● More language interfaces

– JMS, C-based Python

● Improved statistics reporting
● Event notification hooks
● Monitor service

Get Involved!

● http://www.gearman.org/
● #gearman on irc.freenode.net
● http://groups.google.com/group/gearman
● OSCON – July 20th in San Jose, CA

– 3 Hour Tutorial

– 45 Minute Session

– Birds of a Feather (BoF)

– Expo Hall Booth

Narada?

Narada

● Started from example in Patrick's book
● Custom search engine
● Perl, PHP, and Java implementations
● Asynchronous queues
● Drizzle or MySQL
● Optionally use memcached
● Easy to integrate into existing projects
● https://launchpad.net/narada

Narada

Narada

Demo!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

