MDrizzle

O Gearmsa

S

Eric Day - http://www.oddments.org/
Patrick Galbraith - http://patg.net/

Drizzle Overview
99 ¢

e Vision
o Community
 Microkernel Architecture

e Modules

- Storage Engines
- Protocol
- Replication

« Roadmap

5
0
B
CA

B

Q

S

y

M

Rethink Everything

(but do not assume everything was bad)

Do not play catch-up.
Leap Forward.

Vision
99 @

 Announced at OSCON 2008

* Microkernel Architecture

 |nfrastructure Aware

* Focus on Web Applications

 Modernize Codebase (C++, STL, OSS libs)
* Multi-Core/Concurrency

* 64-bit, lots of RAM

« UTF-8

Community
A

 Open Source

 All contributions treated equally

* No contributor license agreements
« Captain system

 All project information is public

* Release early and often (~2 weeks)
* 100+ Contributors

500+ On mailing list

Sun Team Values
99 @

Have open and well-documented interfaces

Have transparent goals and processes that are
communicated publicly

Have fun and encourage collaboration

Remove barriers to contribution and
participation for anyone

Enable contributors to build a business around
Drizzle

Community Tools
@9 @

* Launchpad
- Bugs
- Blueprints
- Translations (30+ Languages)

e BZR
e Buildbot
e Hudson

Microkernel
Architecture

conpress

CRC32 memcached

libdrizzle REST

Protocol

Multi M | LDAP
Scheduler Authentication ' PAM

S— Drizzle Kernel —

drizzled

Error Message | peXT
Replication
std;-:rr Gearman

Storage Engines
A

 Still have multiple storage engines

» Default to ACID compliant engine
- InnoDB (we have a PBXT tree to0)
* Interface updates

* Let engines supply their own metadata

 MyISAM now temp-table only
- May be removed at some point

New Protocol
99 @

* Asynchronous, Full Duplex
— Concurrent gueries on one connection
« Remove weak attack methods

* Built-in sharding
* Optional checksums
* Pluggable in server

@" @

: memcache il Gearman
Drizzle MySQL REST Client

4 3 8

libdrizzle httod Embedded @ Gearman
Server P inemcached Worker

Protocol Plugin Class
Parse Queries, Send Results

Drizzle

ibdrizzle
@> @

* https://launchpad.net/libdrizzle
« BSD License
e Supports both Drizzle and MySQL Protocols

 Provides client and server interfaces
- SQLite server example
 PHP, Perl, Python, and Ruby extensions

e Concurrent query API
- Reduce page load times

Replication
A

e New API for events

* Google Protobuffer messages
- Easy to read in any language
* File (binlog) and Gearman plugins underway

» Easy to write your own sender/applier

Other Plugins
A

* Logging
- Gearman, syslog, query analyzer

* Authentication now modular and optional
- PAM/LDAP, HTTP Auth

* Multi-language support in development

— Stored procedures (server-side scripting)
- Plugins from other languages

e Information/Performance Schema

— No materialization

‘ Where are we now?
A

« MySQL 6.0.5-alpha: 1,128,112 LoC

Drizzle lines of Code

312,000 ﬁ

310,000
308,000
306,000

304,000

Lines of Code

302,000

300,000

298,000
950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1070 1079

Build Number

Aloha Milestone
99 @

* Replication

* New Protocol

» Architectural Cleanup and Performance
* Table Discovery

 New Information Schema

* Plugin Dependency Checking

* Pluggable Configuration

Bell Milestone
99 @

« Server Side Scripting
e Performance Schema

» <insert your work> :)

Get Involved!
A

 http://drizzle.org/

* https://launchpad.net/drizzle

o #drizzle on irc.freenode.net
 https://launchpad.net/~drizzle-discuss

* Drizzle jobs avallable (see mailing list)

* OSCON — July 20™ in San Jose, CA

- 45 Minute Panel
- Birds of a Feather (BoF)
- Expo Hall Booth

©GeEs

Kittens!

(LiveJournal.com Image Processing)

“The way | like to think of Gearman is as a
massively distributed, massively
fault tolerant fork mechanism.”

- Joe Stump, Digg

Gearman Overview

e History
e Basics
 Distributed Processing

 Map/Reduce
* Log Collection and Analysis

 Roadmap

History

 Danga — Brad Fitzpatrick & Company
- Related to memcached, MogileFsS, ...
 Anagram for “manager”

- Gearman, like managers, assign the tasks but do
none of the real work themselves

* Digg: 45+ servers, 400K jobs/day
* Yahoo: 60+ servers, 6M jobs/day
 Many other organizations run it in production

Recent Development

« Rewrite in C
 New Language Bindings

- PHP ext, Perl XS, Drizzle, MySQL, PostgreSQL
« Command line tool

 Protocol Additions

* Multi-threaded (50k jobs/second)
e Persistent Queues

» Pluggable Protocol

Features

* Open Source (mostly BSD)
« Multi-language

- Mix clients and workers from different APIs
* Flexible Application Design

- Not restricted to a single distributed model
e Fast

* Embeddable

- Small & lightweight for applications of all sizes
* No Single Point of Failure

Basics

 Gearman provides a distributed application
framework

 Uses TCP port 4730 (was port 7003)

* Client — Create jobs to be run and send them
to a job server

 Worker — Register with a job server and grab
jobs to run

« Job Server — Coordinate the assignment from
clients to workers, handle restarts

Gearman Stack

Your Client Application Code

Gearman Client API
(C, PHP, Perl, MySQL UDF, ...)

Your Gearman Job Server Provided by
Application gearmand Gearman
1

Gearman Worker API
(C, PHP, Perl, ..))

Your Worker Application Code

Hello World

$client= new GearmanClient();
$client->addServer();
print $client->do("reverse", "Hello World!");

$worker= new GearmanwWorker();

$worker->addServer();

$worker->addFunction('"reverse", '"my_reverse_function");
while ($worker->work());

function my_reverse_function($job)

{

return strrev($job->workload());

}

http://www.php.net/print
http://www.php.net/strrev

Hello World

shell$ gearmand -d

shell$ php worker.php &
[1] 17510

shell$ php client.php
ldlrow olleH

No Single Point of Failure

How Is This Useful?

* Provides a distributed nervous system
* Natural load balancing

* Multi-language integration
 Distribute processing

- Possibly closer to data
* Asynchronous queues

Back to the Kittens

PHP PHP PHP
Resize Resize Resize

Gearman Gearman Storage
Job Server Job Server NFS, MogileFS

Image Resize Worker

$worker= new GearmanwWorker();

$worker->addServer();

$worker->addFunction("resize", "my_resize_function");
while ($worker->work());

function my_resize_function($job)

{
$thumb = new Imagick();

$thumb->readImageBlob($job->workload());
$thumb->scaleImage (200, 150);
return $thumb->getImageBlob();

¥

Image Resize Worker

shell$ gearmand -d

shell$ php resize.php &
[1] 17524

shell$ gearman -f resize < large.jpg > thumb.jpg

shell$ 1s -sh large.jpg thumb.jpg
3.0M large.jpg 32K thumb. jpg

What else?

Map/Reduce

Gearman Job Server

Map/Reduce Worker

Log Processing

* Bring Map/Reduce to Apache logs
» Get log storage off Apache nodes
e Push processing to storage nodes
 Combine data in some meaningful way

- Summary
- Distributed merge-sort algorithms

@ Log Processing

e Collection

- tail -f access log | gearman -n -f logger
- CustomLog "| gearman -n -f logger" common
- Write a Gearman Apache logging module

* Processing

- Distributed/parallel grep
- Log Analysis (AWStats, Webalizer, ...)
- Custom data mining & click analysis

Log Processing

Apache Apache Apache Apache
Node 1 Node 2 Node 3 Node 4
access_log access_log access_log access_log

Log Data
Partition 2

Asynchronous Queues

* They help you scale

 Distributed data storage

- Eventually consistent data models
- Choose “AP” Iin “CAP”, make EC work

 Background Tasks
 Narada

What's Next?

 More protocols (memcached, XMPP, ...)
 TLS, SASL, multi-tenancy

* Replication

* More language interfaces

- JMS, C-based Python
* Improved statistics reporting

 Event notification hooks
e Monitor service

Get Involved!

* http://www.gearman.org/
» #gearman on irc.freenode.net
* http://groups.google.com/group/gearman

e OSCON — July 20™ in San Jose, CA

- 3 Hour Tutorial

- 45 Minute Session

- Birds of a Feather (BoF)
- Expo Hall Booth

Narada®?

Narada
A

o Started from example in Patrick's book

Custom search engine

Perl, PHP, and Java implementations
Asynchronous queues

Drizzle or MySQL

Optionally use memcached

Easy to integrate into existing projects
https://launchpad.net/narada

URL Submission

Send UEL to Insert Worker

Search

Send request to Search Worker

Search Worker

document [Ds

om L

Narada

Insert Worker

- Insert URLs into UEL table
- Notify Fetch Worker

Fetch Worker
- Fetch URL

e HTML
] URLs

Drizzle Document Table

- Store title and document

Drizzle URL Table

- Store URL and MD5 for unique

Index Worker

- Throttle runs witt
Start Sphinx index

Sphinx

- Full-text document index
- Returns document IDs

Demo!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

