

Platform

– User Guide –

GeOxygene Project
March 2005
Version 1.0

GeOxygene Project

Title
GeOxygene Platform – User Guide

Keywords
GeOxygene, architecture, model, object oriented, platform, GIS, Java, DBMS, Oracle, PostGIS,
object/relational mapping, Web services, COGIT Laboratory.

Abstract
The GeOxygene open source project is the result of work by the COGIT laboratory of the Institut
Géographique National (IGN, France) to develop an open and modular software platform dedicated to
geographical information research applications, with a common architecture and data model so that
the software, documentation and maintenance can be shared. The GeOxygene prototype is based on
innovative technology to enable research applications to be deployed in the form of web services.
GeOxygene uses a long term, interoperable base and implements ISO standards and OGC
specifications.

This document describes the GeOxygene platform and how to use it.

Authors:
Thierry Badard
Arnaud Braun

Contributions and review:
Anne Ruas

GeOxygene Project
http://sourceforge.net/projects/oxygene-project

GeOxygene – User Guide 2

http://sourceforge.net/projects/oxygene-project

GeOxygene Project

TABLE OF CONTENTS

1. INTRODUCTION ..4
1.1. BACKGROUND... 4
1.2. AIM .. 4
1.3. GENERAL ARCHITECTURE.. 5
1.4. DIRECTORY STRUCTURE.. 7

2. INSTALLATION AND CONFIGURATION..9
2.1. REQUIREMENTS ... 9
2.2. COMPILING GEOXYGENE.. 9
2.3. CONFIGURATION .. 10

3. USING GEOXYGENE...12
3.1. SIMPLE MAPPING EXAMPLE ... 12
3.2. LOADING GEOGRAPHIC DATA.. 13
3.3. FIRST STEP IN GEOGRAPHICAL DATA HANDLING... 14
3.4. IMPLEMENTING A COMPLEX MODEL... 14
3.5. DATA HANDLING ... 15
3.6. THE VIEWER.. 16
3.7. THE BROWSER.. 16

APPENDIX A UNDERSTANDING THE SCHEMA...17
A.1. FEATURES (package fr.ign.cogit.geoxygene.feature) ... 17
A.2. GEOMETRY (package fr.ign.cogit.geoxygene.spatial) .. 17
A.3. TOPOLOGY (package fr.ign.cogit.geoxygene.spatial)... 20

APPENDIX B CODING CONVENTIONS ...22

GeOxygene – User Guide 3

GeOxygene Project

1. INTRODUCTION

1.1. BACKGROUND

Many problems have to be overcome to develop geographical information related applications.

• The data models of the various geographical information systems are not interoperable, despite
attempts made by ISO and OGC (Open Geospatial Consortium) to introduce standardised
interfaces. It is, therefore, unlikely that an application developed using a particular model can be
used with a different system without significant modification.

• The programming languages used by GIS applications are often proprietary languages.
Software cannot, therefore, be shared with other GIS applications and users are dependent on
the software suppliers for upgrades.

• Current GIS applications are not accessible via the Web without costly extensions. Moreover,
although these extensions enable data to be accessed on line, they do not always include web
services for remote procedure calls.

• Current GIS applications are not genuine database management systems and do not always
provide essential facilities for data management (concurrent access, security, etc.).

A number of software technologies can be used to address these problems: web accessible object
oriented languages (such as Java), object oriented reusable component design and analysis
techniques (such as UML), relational database management systems able to handle objects for
storing geographical data for geographical information systems (such as Oracle, PostGIS, etc.),
structured languages for transferring data over the Web (such as XML) and web service descriptions
and remote procedure calls in heterogeneous, distributed computing environments such as WSDL
(Web Services Description Language) and SOAP (Simple Object Access Protocol).

The COGIT laboratory of the Institut Géographique National (IGN), France, has designed and
developed a new platform called GeOxygene (originally OXYGENE) based on these technologies
(Badard and Braun, 2004)1. It replaces GéO2, a geographical system built on top of the O2 object
oriented database management system, that was developed in the 1990s. It provides a long term,
robust base for the COGIT Laboratory for their research work, in particular for research into search
aids, data distribution, data maintenance and processing.

At the beginning of 2005, the COGIT Laboratory decided to publish part of the GeOxygene source in
the form of an open source project.

1.2. AIM

GeOxygene was intended initially to provide an open, modular, interoperable framework for the
development of research applications at the COGIT Laboratory, for research on multiple
representation, data quality for risk studies, looking up and distributing data, using a common data
model and a common architecture, so that the software, documentation and maintenance could be
shared. The aim was (and still is) to establish and exploit research work. The GeOxygene prototype
based on innovative technology is designed to enable research applications to be deployed in the form
of web services. GeOxygene implements ISO standards and OGC specifications. It is designed for
total interoperability.

The aim of publishing part of the GeOxygene source code as open source is not to compete with or
replace any of the many current geographical open source projects, but rather to provide another
building brick for the construction of open source solutions. The GeOxygene project is certainly less
mature and complete than projects such as Geotools (http://www.geotools.org) or Deegree
(http://deegree.sourceforge.net), as it is more recent and has been developed with fewer resources.
However, even in its current state, GeOxygene can be considered to be a realistic starting point for a
complete, rigorous implementation of ISO 19107 and the specifications of features (features, feature

1 (Badard et Braun, 2004) Badard, T., Braun, A. OXYGENE: A Platform for the Development of interoperable Geographic
Applications and Web Services. Proceedings of the 15th International Workshop on Database and Expert Systems Applications
(DEXA'04), IEEE Press, August 30 - September 03, 2004, Zaragoza, Spain, pp. 888-892.

GeOxygene – User Guide 4

http://www.geotools.org/
http://deegree.sourceforge.net/

GeOxygene Project

collection and relationships between features), as well as a starting point for using JDO (Java Data
Objects) for geographical databases. GeOxygene is, therefore, a building brick for constructing
geographical information systems that are truly interoperable as they implement OGC specifications
and ISO standards. The GeoAPI project has been set up to rationalise the current open source
projects and, if GeOxygene is to be included, it must, in the near future, implement the Java interfaces
defined by GeoAPI.

GeOxygene is not designed for end users as it is not a turnkey product where everything is handled
invisibly behind graphical interfaces. It is destined for power users, Java developers and scientists
who need to write geographical information systems. It can, therefore, be considered as a kernel for
the development of such applications.

1.3. GENERAL ARCHITECTURE

GeOxygene is entirely modular (cf. below) using a network architecture to communicate between the
components and for the deployment of developments. The software components are independent and
interoperable and are used for the purposes for which they are best suited. For example, the DBMS is
used exclusively for storing data with the geometrical operators in a separate module. This approach
has been adopted to avoid the "all things to all men" type of architecture where a non-specific
component ends up carrying out operations for which it was not originally designed. This type of
approach leads to very rapid decline in performance and to serious problems in maintenance when
the original developers are no longer working on the system.

Architecture
• Web clients (browsers, applets)

• Web Services (WSDL, UDDI)

• etc.

SGBD
Oracle

PostGIS

Network

Spatial

Schéma objet

Web Map Server(OGC)

Web Feature Server (OGC)

Mapping Castor, OJB

SIG ClientsIDE
CASE tools
(UML, etc)

• Objecteering (UML)

• Perceptory

• MADS, etc

ArcSDE,
Deegree
GeoServer

ArcIMS, Deegree

Forte, Eclipse
(+ SOAP or WSDL plugin)

ArcView, MapInfo,
PCI geomatics ...

Libraries
(Java packages)

• Documentation (Javadoc)

• CVS (Concurrent Versions)

• SOAP (W3C)

Translator / loader

FME,
Oracle shape loader,
PostGIS shape loader

GeOxygene

OGC,
ISO,
GéO2,
Oracle
,...

GeOxygene platform architecture showing typical software components

GeOxygene – User Guide 5

GeOxygene Project

The software components

• The GeOxygene platform was developed mainly in Java, an object oriented language that was
chosen principally for its portability, incorporating some components from open source projects.
It can model and operate on all the aspects of geographical information (semantics, geometry,
topology and metadata) using an object oriented schema which implements OGC specifications
and ISO standards. The Java code for this object oriented schema is part of the open source
distribution.

• Data is stored in a relational DBMS (two systems are currently supported: Oracle with the
spatial cartridge and PostGIS, an open source geographical layer on PostgreSQL) to provide
fast response. The SQL scripts for handling the DBMS are included in the open source
distribution.

• Flexible mapping (i.e. the correspondence between Java classes and tables) between the
object schema and the relational tables is provided by OJB (ObJect relational Bridge, an open
source component from the Apache foundation). Users, therefore, have a consistent object view
of the information they are handling. The application is modelled in UML and written in Java,
using the platform's ISO/OGC object model. The XML mapping files are included in the open
source distribution, as well as all the software for using such files.

• The geographic functions are programmed in separate libraries to ensure that developments
are independent. These functions are to be found on the web (eg: the open source JTS
Topology Suite for geometric algorithms) or from old projects that have been carried out at
COGIT. They may be written in C, C++, Fortran or Ada, but are interfaced with Java using the
Java Native Interface (JNI). The interface functions for the JTS Topology Suite are included in
the open source distribution.

GeOxygene as used at COGIT has a number of other tools that are not included in the open source
distribution as each GeOxygene user can build his own system. These tools are used for:

• generating documentation (Javadoc)
• source code version maintenance (CVS: Concurrent Versions System)
• loading geographic data, displaying it and analysing it using GIS clients
• building applications with Computer Aided Software Engineering (CASE) tools
• developing applications with an Integrated Development Environment (IDE). The IDE used at

COGIT is Eclipse (from the Eclipse open source project, based on a contribution from IBM), with
a large number of plugins, in particular UML, which make it almost a CASE tool.

Two further tools have been developed and are included in the open source distribution to benefit from
the GeOxygene object oriented view of the geographical data: a geographical object viewer (based on
version 0.8 of the open source Geotools project) and a generic graphic object browser (to display the
status of an object at a given time and invoke the methods dynamically). These two components are
shown below.

GeOxygene – User Guide 6

GeOxygene Project

GeOxygene platform viewer and object graphic browser

Finally, GeOxygene was designed from the start to use SOAP and WSDL protocols and language
defined by the World Wide Web Consortium (W3C) and provide the WFS (Web Feature Service) and
WMS (Web Map Service) on line services specified by OGC. It can, therefore, be used to deliver the
functions developed for it as web services (Badard and Braun, 2003)2.

1.4. DIRECTORY STRUCTURE

GeOxygene is distributed with the following structure.

• The src directory has the implementations of standards, specifications and tools:
 o ISO 19107 (geometry and topology)
 o ISO 19109 (metamodels for defining application schemas)
 o ISO 19115 (metadata), partial implementation
 o OGC Features abstract specification (geographical objects)

o tools for accessing geographical databases using object/relational mapping
 o utilities:

→ in memory spatial indexing
→ loading data into Oracle and PostGIS
→ geometric algorithms
→ graphic object navigator
→ viewer

 o examples and tests

• The "data" directory has the geographical classes specific to each user.

2 (Badard et Braun, 2003) Badard, T., Braun, A. OXYGENE: An Open Framework For the Deployment of Geographic Web
Services, International Cartographic Conference, Durban, South Africa, 2003.

GeOxygene – User Guide 7

GeOxygene Project

• The source code for each user is placed in a directory specific to each user. For example, a

sample Douglas-Peucker filter is to be found in the src directory, in the
fr.ign.cogit.geoxygene.generalisation package.

The SQL scripts for accessing the DBMS are to be found in the sql directory which has two sub-
directories oracle and postgis for the scripts for the two DBMSs supported.

The XML object/relational mapping files are to be found in the mapping directory which has a sub-
directory ojb1 for the OJB mapping tool currently supported.

The files in the castor sub-directories of sql and mapping are the implementation of the Castor
mapping tool (http://castor.codehaus.org/index.html) which is less efficient than OJB, which is no
longer used and is not currently working. Given the modularity of GeOxygene, Castor could, however,
be put back in service with a significant modification of the code in these two sub-directories.

GeOxygene – User Guide 8

http://castor.codehaus.org/index.html

GeOxygene Project

2. INSTALLATION AND CONFIGURATION

2.1. REQUIREMENTS

� OPERATING SYSTEM
GeOxygene has been tested under Solaris, Linux and Windows.

� JAVA
Must be installed:

- Java Development Kit (JDK) Standard Edition (J2SE) 1.4 or later
- Java Development Kit (JDK) Enterprise Edition (J2EE) 1.3.1

NB: support for J2EE 1.4 has not been tested.

� ORACLE
Both

- the SDOAPI library (sdoapi.zip or sdoapi.jar depending on the Oracle version)
- the Oracle JDBC driver (eg: classes12.zip)

must be installed.

NB: currently, these libraries are required for compiling the project. They are, of course, not required if
you use a compiled version of the project with PostGIS.

2.2. COMPILING GEOXYGENE

GeOxygene can be compiled:

• Either by using Ant (http://ant.apache.org) developed by the Apache foundation
• Or by using the open source Eclipse IDE (http://www.eclipse.org)

� COMPILING USING APACHE ANT

Edit the file build.properties in the GeOxygene root directory. Set the path (j2ee.dir) for the J2EE
installation directory on your system. Save the changes and close the file.

Change the CLASSPATH variable so that the Oracle libraries are available to the Java compiler or
copy the two libraries required to the GeOxygene lib sub-directory.

The default build target for Ant will compile GeOxygene. Therefore, to compile GeOxygene, you just
need to type the command:

% ant

in the GeOxygene root directory (the directory which holds the file build.xml).

There are other build targets, type:

% ant -p

to display the list of build targets and their descriptions.

Note that you can also use the build.xml and build.properties files from Eclipse to compile GeOxgene,
generate the Java documentation, etc.

GeOxygene – User Guide 9

GeOxygene Project

� CONFIGURING ECLIPSE

Creating a project
 File Menu -> New -> Project, a window appears.
 On the left: “Java”, on the right “Java Project”, Next
 Project Name: “GeOxygene”
 Project Contents: uncheck “Use defaults”
 Select the “GeOxygene” root directory

(for example: D:\users\foo\GeOxygene).
 Next. There is a certain delay.

Configuring the compilation
 “Default output folder” (at the bottom): GeOxygene/classes

Select the directory using “Browse”, if necessary create the directory using “Create new
folder”.

“Source” tab: add the following two directories using “Add Folder”.

• GeOxygene/src
• GeOxygene/data

If the dialogue box “Do you want to remove the project as source folder” is displayed, select "Yes".

“Libraries” tab:
 Select the following libraries from the GeOxygene/lib directory using “Add JARs”:

• ojb-1.0.jar (or another version)
• batik-all.jar
• jdbc3-postgresql.jar
• postgis.jar
• jts.jar
• geotools1-cogit.jar (or another version)
• batik-all.jar

Using “Add External JARs”:

• select j2ee.jar from the J2EE lib installation directory (depends on the installation, but it is
often in C:\j2sdk1.3.1\lib under Windows or /usr/j2sdk1.3.1/lib under Unix/Linux)

• select the sdoapi.zip and classes12.zip files (or others, depending on the Oracle version
used) from the directory holding these libraries (cf. section 2.1).

Click “Finish” and the compilation will start.

2.3. CONFIGURATION

� CREATING THE BASIC DBMS TABLES
Before using the system for the first time, the script superscript_ojb.sql in the oracle or postgis sub-
directory of the sql directory must be executed for the DBMS. It creates the tables required for the
operation of the platform (the tables required for OJB and, for Oracle, the table required for certain
queries).
The script resultat.sql may be executed to create the table for storing results.

� CONFIGURING THE OJB.PROPERTIES FILE
Edit the OJB.properties file in the GeOxygene src directory.
Set the full pathname (not relative path) to the repository.xml mapping file.

For example:

RepositoryFile=D:/users/foo/GeOxygene/mapping/ojb1/duschmok/repository.xml

GeOxygene – User Guide 10

GeOxygene Project

� CONFIGURING THE REPOSITORY_DATABASE.XML FILE
This file is in the sub-directory mapping/ojb1. It holds the parameters for connecting to the DBMS
(name, password, etc). Edit it to specify your DBMS and connection parameters (server name, user
name, password). There are two sample configurations, one for Oracle and one for PostGIS.

GeOxygene – User Guide 11

GeOxygene Project

3. USING GEOXYGENE

3.1. SIMPLE MAPPING EXAMPLE

This section describes a simple example of creating and using a persistent class. The aim is to
understand how the Java code works: there is no question of geometry or geography.

Class fr.ign.cogit.geoxygene.example.tutorial.MyClass
Examine MyClass in the fr.ign.cogit.geoxygene.example.tutorial package.
This is a class like any other. There is nothing to show that it will be persistent (i.e. storable in a
database): the persistence is non-intrusive, that is it is not specified in the code. It is however
necessary to have a field for the identifier ("id").
This class is defined as a "bean", that is that each property has "get" and "set" methods called
accessors, to access it. This is the cleanest method of coding.

Create the corresponding table in the DBMS
Examine the maclasse.sql table creation SQL script in sql/oracle or sql/postgis. Execute this script for
the DBMS.

Mapping MaClasse
Examine the XML file repository_maclasse.xml in the directory mapping/ojb1. It shows the
correspondences between the Java world and the DBMS world. The syntax is fairly intuitive. This file
is used by OJB.

Configuring the OJB configuration file
Edit the file OJB.properties in the GeOxygene src directory.
Specify the full pathname of the mapping file repository.xml.
NB: the full pathname must be given, not the relative path.
For example: RepositoryFile=D:/users/duschmok/GeOxygene/mapping/ojb1/duschmok/repository.xml

Configuring mapping files
The repository.xml file is read by OJB to initialise the connection to the DBMS and load the mapping
data.
This file is stored in the mapping/ojb1 directory. Its pathname must be defined in the file
OJB.properties. Examine it.
This file points towards other XML files (repository_*.xml) which themselves hold the mapping data.
Two declarations MUST be uncommented.

• &database which specifies the repository_database.xml file. It holds the parameters for
connecting to the DBMS (name, password, etc). Edit it to specify your DBMS and connection
parameters (server name, user name, password). There are two sample configurations, one
for Oracle and one for PostGIS.

• This is followed by the list of mapping files to be used. Some files which are required for
GeOxygene are already specified. &tutorial should point to repository_maclasse.xml and
should be uncommented.

Executing the application
MyClass is now exercised by the class fr.ign.cogit.geoxygene.example.tutorialTestMyClass.

Look at the comments in the code.

This code shows the main functions of OJB: making objects persistent, loading objects from the
database into Java and making an OQL (Object Query Language) query.

The main points to remember from this example are:

� Geodatabase db = new GeodatabaseOjbOracle();

GeOxygene – User Guide 12

GeOxygene Project

This line initialises the DBMS connection and loads the mapping data. When this statement is
executed the file repository.xml is read and analysed by the OJB object/relational mapping
engine.

� db.begin();

This line begins a transaction.

� db.commit();

This line commits a transaction.

� db.makePersistent(obj);

This line makes an object (whose class is defined in the mapping file) persistent in the
database.

� db.loadAll(class);

This line loads all the objects of a class, i.e. all the DBMS records are translated into Java
objects. "load" has several different forms:

- db.load(class, id); → to load a single object of a class using its identifier.
- db.loadAllFeatures(class); → to load all geographic objects of a class.
- db.loadOQL(query, obj); → to load using an OQL query (an example of this

can be found in the "interroge" procedure). OQL is a database query language, similar
to SQL, that works directly on Java classes rather than working on DBMS tables.

3.2. LOADING GEOGRAPHIC DATA

Loading geographical data into the DBMS from GIS files (eg: ESRI Shapefile)
The data is loaded using your own preferred tools (eg: FME) or the GIS file loaders supplied by Oracle
and PostGIS (eg: shp2pgsql).

Creating Java classes and mapping files
Execute fr.ign.cogit.geoxygene.appli.Console
Select "SQL → Java".
Select the table that has been loaded into the DBMS.
Click OK to accept the default settings.

A message is displayed reminding you to compile the classes that have been generated. A Java class
will have been generated in the directory selected (geoxygene.geodata by default, in the data
directory). Edit this class and compile it. You will see that it reproduces the structure of the table. Note
the property geom of type GM_Object that represents the geometry.

Edit the file repository_geo.xml (or the name that you have given in the console if it is different) which
will be in the directory mapping/ojb1/. Remember to set the pointer to this file in the repository.xml file
(i.e.: the declaration geo should point to repository_geo.xml and &geo should be uncommented). Note
the mapping of the geometry property.

Formatting the data in the DBMS
Select "Manage Data".
For Oracle, the console will suggest that ids are generated. Accept. The console will create a column
COGITID in the table defined as the primary key.
The console will also suggest that the geometry should be made uniform. Accept. There are
sometimes composite geometry elements that are created owing to edge effects and shortcomings in
certain translators. These will be corrected here. It may take some time.

If there is a large amount of data in the table, it is probable that the console will run out of memory.
The console must be restarted with the "magic" option -Xmx512M (java -Xmx512M appli.Console), for

GeOxygene – User Guide 13

GeOxygene Project

example ;-) which increases the memory allocated to the virtual machine. You must restart directly at
this step.

Finally, the console suggests calculating a spatial index (for Oracle and PostGIS) and the space
required (for Oracle): accept these as well.

Click OK to start execution.

Difference between these two examples
In example 3.1, we started with Java code to generate the SQL code. This goes from design (in this
case a very simple design as there was only one class) to implementation. In example 3.2, we started
with an SQL table and generated the Java class from this table. This is based on the data loaded. The
last two steps above are used if and only if the database structure is generated from data loaded.

3.3. FIRST STEP IN GEOGRAPHICAL DATA HANDLING

Load a table of road segments, called Troncon_route, from any set of data. You should now know
enough to understand and execute the example FirstExample in the package
fr.ign.cogit.geoxygene.example. All the information necessary is in the Java code. If necessary,
change the test class name in the Java code (variable nomClasse).

NB: the declaration of the mapping file repository_result.xml must be uncommented. This file has the
mapping for the class fr.ign.cogit.geoxygene.example.Resultat which will be used in this example. The
SQL script resultat.sql must be executed to create the corresponding table.

This class has a constructor to set up the mapping. If you use PostGIS, change
GeodatabaseOjbOracle() to GeodatabaseOjbPostgis().

The first example (void exemple1()) loads an object using the id, retrieves its geometry, creates a
buffer for this geometry and then creates a new object of class Resultat, assigns the buffered
geometry and makes the object persistent.

The second example (void exemple2()) loads all the objects of the class and, for each of them,
retrieves the geometry, applies a Douglas-Peucker filter, creates a new object of class Resultat,
assigns the filtered geometry and makes the object persistent.

3.4. IMPLEMENTING A COMPLEX MODEL

The model in the package fr.ign.cogit.geoxygene.example.relations shows all the complex features
that may be encountered:

• Inheritance
• 1:1 relationships, uni-directional or bi-directional
• 1:n relationships, uni-directional or bi-directional
• n:m relationships, uni-directional or bi-directional

The relationships may be persistent or not.

NB. Implementing relationships in Java is tricky, especially for bi-directional relationships.

The model
No UML schema has been drawn as the model is very simple.

• Classes AAA and BBB both inherit from the abstract class ClasseMere.
• Classes AAA and BBB have 1:1, 1:n and n:m bi-directional relationships.
• Classes AAA have 1:1, 1:n and n:m uni-directional relationships towards BBB (i.e. you cannot

find AAA from BBB).

GeOxygene – User Guide 14

GeOxygene Project

Implementing the model in Java
This model is implemented in the package fr.ign.cogit.geoxygene.example.relations. Examine the
Java codes of classes ClasseMere, AAA and BBB.

Rules for converting UML to Java
• There is no problem with inheritance in Java (there is no multiple inheritance here).
• Implementing relationships in Java is tricky. Relationships are defined using properties.

- A 1:1 relationship is implemented as a property of type "la classe en relation".
- A 1:n or n:m relationship is implemented with a list of objects of type "la classe en relation".

• Accessors (get, set and add methods) are used to manage bi-directional relationships. Coding is

not simple. Examine the code carefully and cut and paste the code if you need relationships.
• The parent class of a hierarchy must have an “id” property to handle the persistence. This property

is the identifier for the objects. It is inherited by the child classes.

Implementing the model in SQL
Examine and execute the script init_relations_AAA_BBB.sql for the DBMS.

Implementing mapping
Examine the directory repository_AAA_BBB.xml. Try to understand its structure and how the
relationships are implemented, referring to the OJB documentation. Mapping bi-directional
relationships in one direction only is not obvious but it improves the performance and reduces the
number of joins on loading.

Application programs
There four test programs in the package fr.ign.cogit.geoxygene.example.relations that use this model:

• One for testing non-persistent uni-directional relationships
• One for testing persistent uni-directional relationships
• One for testing non-persistent bi-directional relationships
• One for testing persistent bi-directional relationships

3.5. DATA HANDLING

The package fr.ign.cogit.geoxygene.datatools has the classes required for data handling. It is
important for users to understand the operation of two classes.

Geodatabase interface
• Geodatabase is an interface for connecting to a DBMS via an object/relational mapper. This class

is used to begin transactions, to load persistent data, to make the data persistent, to query and to
commit or abort transactions. This interface is used for all operations on the database. It is
instanced by a class which depends on the type of object/relational mapper and the type of
DBMS.

For example:

Geodatabase db = new GeodatabaseOjbOracle ()

where GeodatabaseOjbOracle is the class for OJB and Oracle.

Metadata interface
Metadata represents the object/relational mapping metadata: which table corresponds with which
class and also the space required for the geographical data.

Example
Use the TestGeodatabase example in the package fr.ign.cogit.geoxygene.example to get an idea of
the scope of the Geodatabase and Metadata interfaces.

GeOxygene – User Guide 15

GeOxygene Project

3.6. THE VIEWER

A geographical object viewer has been developed for GeOxygene. It is run by using the command:

ObjectViewer viewer = new ObjectViewer (db);

where “db” represents the active Geodatabase.

The viewer is then asked to display collections of FT_Feature using the command:

Viewer.addFeatureCollection (collection, nom);

where "collection" is a FT_FeatureCollection and "nom" a string that will be the name (or title) of the
collection displayed by the viewer.

Use is fairly intuitive. The command to display a class can be invoked from the Java code or directly
from the interface.

Objects can be selected in the viewer and the browser run to view their properties, run methods and
navigate the object oriented model.

Use the TestViewer example in the package fr.ign.cogit.geoxygene.example to get an idea of the
scope of the viewer.

3.7. THE BROWSER

An graphic object browser has been developed for GeOxygene. It makes it possible to make full use
of the object oriented aspect of the data stored in the platform.

It can be run from the viewer when an object has been selected. It can also be run directly using Java:

ObjectBrowser.browse (obj);

where "obj" is any Java object.

Use the TestBrowser, TestBrowserObjTest and TestBrowserApplicationLauncher examples in the
package fr.ign.cogit.geoxygene.example to get an idea of the scope of the graphic object browser.

GeOxygene – User Guide 16

GeOxygene Project

APPENDIX A
UNDERSTANDING THE SCHEMA

This section gives the background concepts for the schema used by GeOxygene.

A.1. FEATURES (package fr.ign.cogit.geoxygene.feature)

• FT_Feature is the parent class of the geographical classes. FT_FeatureCollection is the collection

of FT_Feature objects. FT_FeatureCollection holds the spatial indexing methods. See example
fr.ign.cogit.geoxygene.example.TestIndex for an idea of the operation of the spatial indexes.

• The class DataSet represents a set of data: for example an extract from the database for a limited

geographical area, dated 2003, or the hydrographic "theme" from a topographical database. A
"theme" is a sub-set of a DataSet and is itself a DataSet. A DataSet holds metadata (area, year,
etc.).

• A DataSet is made up of several Populations. The class Population represents a particular

FT_FeatureCollection: it includes ALL the FT_Feature objects of a DataSet, of the same type.

DataSet

FT_FeatureCollection

Population FT_Feature

GM_Object

DataSet

TP_Object

Important: Although the classes FT_Feature and FT_FeatureCollection conform to the OGC model,
this is not the case for the DataSet and Population classes. These classes are extensions to the
OGC specifications. If these two classes are used, then the application will no longer be
interoperable with other OGC applications.

A.2. GEOMETRY (package fr.ign.cogit.geoxygene.spatial)

• GM_Object is a parent class of geographical objects. A GM_Object may be a primitive

(GM_Primitive), an aggregate (GM_Aggregate) or a complex (GM_Complex). Aggregates and
complexes are rather special collections of primitives (cf. below).

• The geometry is implemented in the package fr.ign.cogit.geoxyegene.spatial which is itself divided

into sub-packages.

� The package fr.ign.cogit.geoxyegene.spatial.geomroot has only the parent class GM_Object.
� The package fr.ign.cogit.geoxyegene.spatial.geomaggr has the aggregate geometrical

classes.
� The package fr.ign.cogit.geoxyegene.spatial.geomcomp has the geometrical complex classes.
� The package fr.ign.cogit.geoxyegene.spatial.geomprim has the classes of primitives that do

not store co-ordinates directly (including GM_Point, GM_Curve and GM_Surface).
� The package fr.ign.cogit.geoxyegene.spatial.coordgeom has the classes of primitives that

store co-ordinates (including DirectPosition, GM_LineString, GM_Polygon).

GeOxygene – User Guide 17

GeOxygene Project

GeOxygene – User Guide 18

• An aggregate is a collection of GM_Object without any internal structure. There are
heterogeneous aggregates (GM_Aggregate), i.e. composed of different types of primitive, and
homogenous aggregates (GM_MultiPrimitive and its sub-classes), i.e. composed of the same type
of primitive (point, line, surface).

• A complex is a structured collection of GM_Primitive. The primitives must be connected. The class

GM_Complex is composed of heterogeneous primitives and is not currently used. The sub-class
GM_Composite and its sub-classes are composed of a single type of primitive and are similar to
the primitive.

� A GM_CompositePoint is similar to a GM_Point, and is, therefore, composed of just one point

(not very useful! ☺)
� A GM_CompositeCurve is similar to a curve: it is composed of line primitives connected so

that the end point of one line is the start point for the following.
� A GM_Ring is a special case of GM_CompositeCurve which is closed (the start point of the

first primitive = end point of the last primitive).
� A GM_CompositeSurface is similar to a surface: it is composed of adjacent surface primitives

that do not overlap.
� A GM_Shell is a special case of GM_CompositeSurface which is closed.

• The line primitive is GM_Curve. A GM_Curve is composed of one or more GM_CurveSegment

objects. A GM_CurveSegment can be a polyline (GM_LineString), a series of arcs
(GM_ArcString), a spline curve (GM_SplineCurve), etc. The model allows for a large number of
GM_CurveSegment objects.

• The polyline GM_LineString is the only GM_CurveSegment implemented in GeOxygene. Current

DBMSs and GISs do not have very many alternatives for storing line primitives. GM_LineString is,
moreover, a special GM_Curve, composed of one and only one segment which is itself (extension
of the ISO standard). This extension makes it possible to work directly and easily using instances
of the class GM_LineString, which is the most common. However, GM_Curve exists and can be
used.

• The boundary of a GM_Polygon is a GM_Ring.

• The modelling of surfaces is similar to the modelling of lines. The surface primitive defined in the

standard is GM_Surface. It is composed of GM_SurfacePatch objects. A GM_SurfacePatch can
be a polygon (GM_Polygon) or more complicated forms for three dimensional surfaces (cylinder,
sphere, etc.). GM_Polygon is a special GM_Surface object composed of one and only one
GM_SurfacePatch which is itself. This makes it possible to work directly with GM_Polygon. In the
current version of GeOxygene, only class GM_Polygon can be used (GM_Surface cannot be
used).

• There are two orientable primitive classes (GM_OrientableCurve and GM_OrientableSurface).

The "primitive" (GM_Curve, GM_Polygon) has positive orientation. Each orientable primitive is
linked to its positive oriented primitive by the link primitive. In fact, the positive oriented primitive
and the primitive are same object and may be linked to a topological primitive. The primitive is
linked to its two oriented primitives by the link proxy (bear in mind that the positive oriented
primitive is itself …).

• The class DirectPosition represents an X,Y,Z, table with associated methods (not described here).

For two dimensional work, Z is not set. 3D primitives are not covered in this document.

• There are classes which are structures for representing the boundaries of geometrical objects

(GM_CurveBoundary to represent the boundary of a GM_Curve, GM_SurfaceBoundary to
represent the boundary of a GM_Polygon). They are not essential.

• Notes on the geometrical model

o Refer to the description of the model and ISO 19107.
o Look at the diagram on the following page.
o Use the example TestGeomCurve in the package fr.ign.cogit.geoxygene.example.

GeOxygene Project

GeOxygene – Us

SRS:
co-ordinate
system

GM_Object

GM_Complex GM_Composite

GM_CompositePoint

GM_CompositeCurve

GM_CompositeSurface

GM_CompositeSoli
d

GM_Primitive

GM_Point

GM_OrientableCurve

GM_OrientableSurface

GM_Solid

GM_CurveSegment GM_Curve

GM_SurfacePatch GM_Surface

SRS

GM_LineString

er Guide 19

GM_Aggregate GM_MultiPrimitiv

GM_MultiPoint

GM_MultiCurve

GM_MultiSurface

GM_MultiSolid

GM_Polygon

DirectPosition

Open GIS (feature geometry) / ISO 19107: diagram of geometrical classes
(abstract classes in italics)

GeOxygene Project

GeOxygene – User Guide 20

A.3. TOPOLOGY (package fr.ign.cogit.geoxygene.spatial)

• TP_Object is the abstract parent class for the topology in the same way as GM_Object was the

abstract parent class for the geometry.

• The GeOxygene topology is a standard topology map: there are edges (TP_Edge) defined by start

and end nodes (TP_Node) and faces (TP_Face). The edges have a left face and a right face.

• The topology may be a net: there are only nodes and edges (without faces).

• The model has many classes and methods for representing and operating on the topology:

directed nodes, directed edges, directed faces. The topological primitives can also be handled
using polynomials. These are not essential for understanding the model and are not dealt with
here.

• The topology is used to store spatial relationships, which are calculated when the geometry is

used. Therefore, the long geometric algorithms become much simpler.

• There are three directed primitive classes (TP_DirectedNode, TP_DirectedEdge and

TP_DirectedFace). The "primitive" (TP_Node, TP_Edge, TP_Face) has positive direction. Each
directed primitive is linked to its positive directed primitive by the link topo. In fact, the positive
directed primitive and the primitive are the same object and may be linked to a geometrical
primitive. The primitive is linked to its two directed primitives by the link proxy (bear in mind that
the positive directed primitive is itself …).

• The start node / end node links and left face / right face links define a topology map. They are not

covered by the standard but they are useful for storing the relationships efficiently.

• The primitives have boundary "boundary()" and "coBoundary()" methods which return sets of

TP_DirectedTopo objects. There are also methods for the next arc, previous arc, etc.

• TP_Expression objects are used for algebraic operations of directed primitives. This is useful, for

example, for route planning. Refer to the example TestTopo in the package
fr.ign.cogit.geoxygene.example.

• Notes on the topological model:

o Refer to the description of the model and ISO 19107.
o Look at the diagram on the following page.
o Use the example TestTopo in the package fr.ign.cogit.geoxygene.example.

TP_Object

TP_Node TP_Edge TP_Face

Start node / end node Left face / right face

GeOxygene Project

GeOxygene – User Guide

proxy

TP_Node TP_Edge TP_Face

GM_Primitive

Start node / end node Left face / right face

TP_Primitive

TP_DirectedNode TP_DirectedEdge TP_DirectedFace

TP_DirectedTopo

coBoundary coBoundary
boundary boundary

TP_Expression

proxy proxy

topotopo

TP_Object

topo

Open GIS (feature geometry) / ISO 19107: diagram of topology classes
(abstract classes in italics)

 21

GeOxygene Project

APPENDIX B
CODING CONVENTIONS

If you contribute to the development of GeOxygene, we should be grateful if you would follow the
following coding conventions which we have adopted to make the source code coherent and easier to
read and maintain.

� STRUCTURE AND DOCUMENTATION
• Organise the source code in packages. A file package.html in the package source directory should

provide a brief description of the contents and structure of the package. It will appear in the
javadoc.

• One class per file. The source organised as follows:
• Licence conditions, origin and disclaimers
• Package name
• Blank line
• Imports
• Javadoc comment /** … */. Do not forget the @author and @version tags.
• Code

• Put a javadoc /** ... */.comment on each public method and property
Parameters (tag @param) need not be described if they are intuitive.

• Use standard comments /* ... */ for comments that are not required for the documentation but are
useful for understanding the code (details of an algorithm, notes, link to a document). Do not just
describe what you are doing but why you are doing it.

• Use line comments // to comment sections of code that are a bit tricky. Ideally, avoid this. Rather
than writing tricky code and writing comments, write clear code ! ;-)

Example

int index = -1; // -1 serves as flag meaning the index is not valid

Rather:

static final int INVALID = -1;
int index = INVALID;

• One hundred characters maximum per line.
• Be spacious! Put in blank lines, use spaces to improve clarity.

� NAMING CONVENTIONS
• package: all lower case likethis
• class: first letter must be upper case LikeThis
• property: first letter must be lower case likeThis
• constant (final property): all in upper case, if necessary with underscores LIKE_THIS
• method: first letter must be lower case likeThis()
• method creating an object of type Fred: void createFred() or void newFred().
• method converting an object to type Fred: toFred()
• for a property prop of type Type

method getting the property prop: getProp()
method setting the property prop: void setProp(Type value)

• for a collection (set or list) thing containing objects of type Type
method getting the whole collection: Collection getThingList()
method getting an indexed element (if list): Type getThing(int i)
method setting a value for index i: void setThing(int i, Type value)
method adding an element in the thing collection at the end: void addThing(Type value)
method adding an element to the collection at index i: void addThing(int i, Type value)

GeOxygene – User Guide 22

GeOxygene Project

method removing an element from the collection thing: void removeThing(int i)
void removeThing (Type value)

method clearing the collection thing: void clearThing ()
method getting the size of the collection thing: int sizeThing ()
initialising an iterator in the collection: void initIteratorThing ()
next element: boolean hasNextThing ()

Type nextThing ()

� RECOMMENDATIONS
• Imports: avoid import package.*, say exactly what you are importing. This will help those who read

your code (use the function "organize imports" under Eclipse for example).
• Use double rather than float.
• Manage exceptions cleanly, i.e. using the language elements or by creating your own exception

handlers.
• The class with the method main must be used only for testing or for demonstrations.
• To compare objects, use the method equals rather than the operator ==.

GeOxygene – User Guide 23

	1. INTRODUCTION
	1.1. BACKGROUND
	1.2. AIM
	1.3. GENERAL ARCHITECTURE
	GeOxygene platform architecture showing typical software com
	GeOxygene platform viewer and object graphic browser

	1.4. DIRECTORY STRUCTURE

	2. INSTALLATION AND CONFIGURATION
	2.1. REQUIREMENTS
	2.2. COMPILING GEOXYGENE
	Creating a project
	Configuring the compilation

	2.3. CONFIGURATION

	3. USING GEOXYGENE
	3.1. SIMPLE MAPPING EXAMPLE
	Class fr.ign.cogit.geoxygene.example.tutorial.MyClass
	Create the corresponding table in the DBMS
	Mapping MaClasse
	Configuring the OJB configuration file
	Configuring mapping files
	Executing the application

	3.2. LOADING GEOGRAPHIC DATA
	Loading geographical data into the DBMS from GIS files (eg:
	Creating Java classes and mapping files
	Formatting the data in the DBMS
	Difference between these two examples

	3.3. FIRST STEP IN GEOGRAPHICAL DATA HANDLING
	3.4. IMPLEMENTING A COMPLEX MODEL
	The model

	3.5. DATA HANDLING
	Geodatabase interface
	Example

	3.6. THE VIEWER
	3.7. THE BROWSER

	APPENDIX A�UNDERSTANDING THE SCHEMA
	A.1. FEATURES (package fr.ign.cogit.geoxygene.feature)
	A.2. GEOMETRY (package fr.ign.cogit.geoxygene.spatial)
	A.3. TOPOLOGY (package fr.ign.cogit.geoxygene.spatial)

	APPENDIX B�CODING CONVENTIONS

