

Open Message Queue
Administration Guide

Release 4.5.2

February 2012

This guide provides background and information needed by
system administrators to set up and manage an Open
Message Queue 4.5.2 messaging system.

Open Message Queue Administration Guide, Release 4.5.2

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. xvii

Part I Introduction to Message Queue Administration

1 Administrative Tasks and Tools

Administrative Tasks ... 1-1
Administration in a Development Environment .. 1-1
Administration in a Production Environment... 1-1

Administration Tools ... 1-3
Built-in Administration Tools .. 1-3
JMX-Based Administration... 1-5

2 Quick-Start Tutorial

Starting the Administration Console ... 2-2
Administration Console Online Help.. 2-3
Working With Brokers... 2-4

Starting a Broker... 2-4
Adding a Broker to the Administration Console .. 2-4
Connecting to a Broker.. 2-5
Viewing Connection Services ... 2-6

Working With Physical Destinations ... 2-7
Creating a Physical Destination ... 2-7
Viewing Physical Destination Properties ... 2-8
Purging Messages From a Physical Destination... 2-10
Deleting a Physical Destination .. 2-10

Working With Object Stores ... 2-10
Adding an Object Store .. 2-11
Connecting to an Object Store ... 2-12

Working With Administered Objects.. 2-13
Adding a Connection Factory ... 2-13
Adding a Destination ... 2-14
Viewing Administered Object Properties.. 2-16
Deleting an Administered Object ... 2-16

Running the Sample Application .. 2-17
To Run the Sample Application .. 2-17

iv

Part II Administrative Tasks

3 Starting Brokers and Clients

Preparing System Resources .. 3-1
Synchronizing System Clocks .. 3-1
Setting the File Descriptor Limit .. 3-1

Starting Brokers .. 3-2
Starting Brokers Interactively... 3-2
Starting Brokers Automatically.. 3-3

Deleting a Broker Instance ... 3-6
Starting Clients ... 3-6

4 Configuring a Broker

Broker Services ... 4-1
Setting Broker Configuration Properties... 4-2

Modifying Configuration Files... 4-2
Setting Configuration Properties from the Command Line .. 4-4

5 Managing a Broker

Command Utility Preliminaries .. 5-1
Using the Command Utility ... 5-2

Specifying the User Name and Password .. 5-2
Specifying the Broker Name and Port... 5-2
Displaying the Product Version... 5-3
Displaying Help ... 5-3
Examples ... 5-3

Managing Brokers .. 5-4
Shutting Down and Restarting a Broker... 5-4
Quiescing a Broker ... 5-5
Pausing and Resuming a Broker.. 5-5
Updating Broker Properties.. 5-6
Viewing Broker Information .. 5-6

6 Configuring and Managing Connection Services

Configuring Connection Services ... 6-1
Port Mapper .. 6-3
Thread Pool Management... 6-4

Managing Connection Services ... 6-4
Pausing and Resuming a Connection Service.. 6-4
Updating Connection Service Properties ... 6-5
Viewing Connection Service Information .. 6-5

Managing Connections ... 6-7

7 Managing Message Delivery

Configuring and Managing Physical Destinations ... 7-1

v

Command Utility Subcommands for Physical Destination Management 7-2
Creating and Destroying Physical Destinations.. 7-2
Pausing and Resuming a Physical Destination ... 7-5
Purging a Physical Destination .. 7-6
Updating Physical Destination Properties ... 7-6
Viewing Physical Destination Information .. 7-7
Managing Physical Destination Disk Utilization .. 7-9
Using the Dead Message Queue ... 7-10

Managing Broker System-Wide Memory ... 7-11
Managing Durable Subscriptions.. 7-13
Managing Transactions .. 7-14

8 Configuring Persistence Services

Introduction to Persistence Services... 8-1
File-Based Persistence ... 8-2

File-Based Persistence Properties... 8-2
Configuring a File-Based Data Store ... 8-3
Securing a File-Based Data Store ... 8-3
Optimizing File-Based Transaction Persistence .. 8-4

JDBC-Based Persistence.. 8-4
JDBC-Based Persistence Properties ... 8-4
Configuring a JDBC-Based Data Store.. 8-6
Securing a JDBC-Based Data Store .. 8-7

Data Store Formats ... 8-7

9 Configuring and Managing Security Services

Introduction to Security Services .. 9-1
Authentication .. 9-3
Authorization.. 9-3
Encryption... 9-4

User Authentication ... 9-4
Using a Flat-File User Repository .. 9-4
Using an LDAP User Repository ... 9-9
Using JAAS-Based Authentication ... 9-11

User Authorization.. 9-15
Access Control File Syntax... 9-16
Application of Authorization Rules ... 9-17
Authorization Rules for Connection Services... 9-18
Authorization Rules for Physical Destinations... 9-18

Message Encryption .. 9-19
Using Self-Signed Certificates ... 9-20
Using Signed Certificates ... 9-24

Password Files.. 9-26
Security Concerns.. 9-27
Password File Contents .. 9-27

Connecting Through a Firewall.. 9-27

vi

To Enable Broker Connections Through a Firewall ... 9-28
Audit Logging with the Solaris BSM Audit Log... 9-28

10 Configuring and Managing Broker Clusters

Configuring Broker Clusters... 10-1
The Cluster Configuration File.. 10-1
Cluster Configuration Properties.. 10-2
Displaying a Cluster Configuration ... 10-5

Managing Broker Clusters... 10-7
Managing Conventional Clusters ... 10-7
Managing Enhanced Clusters ... 10-16
Converting a Conventional Cluster to an Enhanced Cluster ... 10-19

11 Managing Administered Objects

Object Stores .. 11-1
LDAP Server Object Stores .. 11-1
File-System Object Stores ... 11-2

Administered Object Attributes... 11-3
Connection Factory Attributes .. 11-3
Destination Attributes .. 11-9

Using the Object Manager Utility.. 11-9
Connecting to a Secured LDAP Server (ldaps)... 11-10
Adding Administered Objects .. 11-11
Deleting Administered Objects ... 11-12
Listing Administered Objects.. 11-12
Viewing Administered Object Information .. 11-13
Modifying Administered Object Attributes .. 11-13
Using Command Files .. 11-14

12 Configuring and Managing Bridge Services

The Bridge Service Manager ... 12-1
Bridge-Related Broker Properties ... 12-1
Bridge Manager Utility... 12-2
Logging of Bridge Services .. 12-2

Configuring and Managing JMS Bridge Services .. 12-3
JMS Bridge Components .. 12-3
JMS Bridge Features.. 12-4
Message Processing Sequence Across a Link in a JMS Bridge ... 12-8
Configuring a JMS Bridge.. 12-9
Starting and Stopping JMS Bridges .. 12-15
Starting and Stopping Links in a JMS Bridge ... 12-16

Configuring and Managing STOMP Bridge Services ... 12-17
Configuring the STOMP Bridge.. 12-17
Starting and Stopping the STOMP Bridge... 12-18
Message Processing Sequence Across the STOMP Bridge.. 12-19
STOMP Protocol Features and the STOMP Bridge .. 12-20

vii

13 Monitoring Broker Operations

Monitoring Services.. 13-1
Introduction to Monitoring Tools .. 13-2
Configuring and Using Broker Logging ... 13-4

Logger Properties .. 13-4
Log Message Format... 13-4
Default Logging Configuration... 13-5
Changing the Logging Configuration.. 13-5

Using the Command Utility to Display Metrics Interactively ... 13-8
imqcmd metrics ... 13-9
Metrics Outputs: imqcmd metrics .. 13-10
imqcmd query.. 13-11

Using the JMX Administration API... 13-12
Using the Java ES Monitoring Console... 13-12
Using the Message-Based Monitoring API ... 13-13

Setting Up Message-Based Monitoring.. 13-14
Security and Access Considerations... 13-15
Metrics Outputs: Metrics Messages.. 13-15

14 Analyzing and Tuning a Message Service

About Performance ... 14-1
The Performance Tuning Process ... 14-1
Aspects of Performance.. 14-1
Benchmarks.. 14-2
Baseline Use Patterns.. 14-3

Factors Affecting Performance.. 14-4
Message Delivery Steps.. 14-4
Application Design Factors Affecting Performance .. 14-5
Message Service Factors Affecting Performance.. 14-8

Adjusting Configuration To Improve Performance ... 14-12
System Adjustments ... 14-12
Broker Memory Management Adjustments.. 14-14
Client Runtime Message Flow Adjustments... 14-15
Adjusting Multiple-Consumer Queue Delivery .. 14-17

15 Troubleshooting

A Client Cannot Establish a Connection .. 15-1
Connection Throughput Is Too Slow .. 15-4
A Client Cannot Create a Message Producer ... 15-6
Message Production Is Delayed or Slowed.. 15-7
Messages Are Backlogged ... 15-9
Broker Throughput Is Sporadic.. 15-12
Messages Are Not Reaching Consumers .. 15-13
Dead Message Queue Contains Messages ... 15-14

To Inspect the Dead Message Queue ... 15-19

viii

Part III Reference

16 Command Line Reference

Command Line Syntax ... 16-1
Broker Utility ... 16-2
Command Utility... 16-5

General Command Utility Options .. 16-7
Broker Management ... 16-8
Connection Service Management ... 16-9
Connection Management ... 16-10
Physical Destination Management ... 16-10
Durable Subscription Management.. 16-12
Transaction Management... 16-12
JMX Management.. 16-13

Object Manager Utility .. 16-13
Database Manager Utility.. 16-14
User Manager Utility .. 16-16
Bridge Manager Utility .. 16-17
Service Administrator Utility.. 16-19
Key Tool Utility.. 16-20

17 Broker Properties Reference

Connection Properties .. 17-1
Routing and Delivery Properties ... 17-3
Persistence Properties ... 17-9

File-Based Persistence Properties.. 17-9
File-Based Persistence Properties for Transaction Logging.. 17-11
JDBC-Based Persistence Properties .. 17-14

Security Properties .. 17-16
Monitoring Properties .. 17-22
Cluster Configuration Properties ... 17-26
Bridge Properties ... 17-30
JMX Properties ... 17-32
Alphabetical List of Broker Properties.. 17-34

18 Physical Destination Property Reference

Physical Destination Properties ... 18-1

19 Administered Object Attribute Reference

Connection Factory Attributes.. 19-1
Connection Handling ... 19-1
Client Identification .. 19-5
Reliability and Flow Control ... 19-5
Queue Browser and Server Sessions .. 19-7
Standard Message Properties .. 19-8
Message Header Overrides.. 19-8

ix

Destination Attributes.. 19-9

20 JMS Resource Adapter Property Reference

About Shared Topic Subscriptions for Clustered Containers .. 20-1
Disabling Shared Subscriptions .. 20-2
Consumer Flow Control When Shared Subscriptions Are Used... 20-2

ResourceAdapter JavaBean ... 20-3
ManagedConnectionFactory JavaBean ... 20-4
ActivationSpec JavaBean ... 20-7

21 Metrics Information Reference

JVM Metrics ... 21-1
Brokerwide Metrics... 21-2
Connection Service Metrics... 21-3
Physical Destination Metrics .. 21-4

22 JES Monitoring Framework Reference

Common Attributes .. 22-1
Message Queue Product Information ... 22-1
Broker Information ... 22-2
Port Mapper Information... 22-2
Connection Service Information .. 22-3
Destination Information .. 22-4
Persistent Store Information ... 22-4
User Repository Information .. 22-5

Part IV Appendixes

A Distribution-Specific Locations of Message Queue Data

Installations from an IPS image ... A-1
Installations of Previous Message Queue Versions from Solaris SVR4 Packages..................... A-2
Installations of Previous Message Queue Versions from Linux RPMs.. A-3

B Stability of Message Queue Interfaces

Classification Scheme... B-1
Interface Stability .. B-1

C HTTP/HTTPS Support

HTTP/HTTPS Support Architecture ... C-1
Enabling HTTP/HTTPS Support ... C-2

Step 1 (HTTPS Only): Generating a Self-Signed Certificate for the Tunnel Servlet C-3
Step 2 (HTTPS Only): Specifying the Key Store Location and Password................................. C-4
Step 3 (HTTPS Only): Validating and Installing the Server's Self-Signed Certificate............. C-5
Step 4 (HTTP and HTTPS): Deploying the Tunnel Servlet ... C-7

x

Step 5 (HTTP and HTTPS): Configuring the Connection Service.. C-9
Step 6 (HTTP and HTTPS): Configuring a Connection ... C-10

Troubleshooting... C-12
Server or Broker Failure ... C-12
Client Failure to Connect Through the Tunnel Servlet ... C-12

D JMX Support

JMX Connection Infrastructure .. D-1
MBean Access Mechanism... D-1
The JMX Service URL ... D-2
The Admin Connection Factory.. D-3

JMX Configuration.. D-3
RMI Registry Configuration .. D-4
SSL-Based JMX Connections ... D-6
JMX Connections Through a Firewall.. D-7

E Frequently Used Command Utility Commands

Syntax .. E-1
Broker and Cluster Management ... E-1

Broker Configuration Properties (-o option) .. E-1
Service and Connection Management... E-2
Durable Subscriber Management .. E-2
Transaction Management... E-2
Destination Management .. E-2

Destination Configuration Properties (-o option).. E-3
Metrics ... E-3

xi

xii

List of Examples

2–1 Output from Sample Application.. 2-18
3–1 Displaying Broker Service Startup Options .. 3-6
5–1 Broker Information Listing.. 5-6
5–2 Broker Metrics Listing .. 5-8
6–1 Connection Services Listing .. 6-6
6–2 Connection Service Information Listing.. 6-6
6–3 Connection Service Metrics Listing.. 6-7
6–4 Broker Connections Listing ... 6-7
6–5 Connection Information Listing.. 6-8
7–1 Wildcard Publisher ... 7-4
7–2 Wildcard Subscriber ... 7-4
7–3 Physical Destination Information Listing.. 7-7
7–4 Physical Destination Metrics Listing.. 7-9
7–5 Destination Disk Utilization Listing... 7-9
7–6 Durable Subscription Information Listing ... 7-13
7–7 Broker Transactions Listing.. 7-14
7–8 Transaction Information Listing .. 7-14
8–1 Broker Properties for MySQL Database .. 8-5
9–1 Viewing Information for a Single User.. 9-9
9–2 Viewing Information for All Users... 9-9
9–3 Example 1 .. 9-16
9–4 Example 2 .. 9-17
9–5 Example 3 .. 9-17
9–6 Connection Services Listing ... 9-24
10–1 Configuration Listing for a Conventional Cluster .. 10-6
10–2 Configuration Listing for an Enhanced Cluster .. 10-6
11–1 Adding a Connection Factory .. 11-11
11–2 Adding a Destination to an LDAP Object Store .. 11-11
11–3 Adding a Destination to a File-System Object Store... 11-12
11–4 Deleting an Administered Object .. 11-12
11–5 Listing All Administered Objects .. 11-12
11–6 Listing Administered Objects of a Specific Type .. 11-13
11–7 Viewing Administered Object Information ... 11-13
11–8 Modifying an Administered Object's Attributes... 11-13
11–9 Object Manager Command File Syntax .. 11-14
11–10 Example Command File.. 11-14
11–11 Partial Command File.. 11-15
11–12 Using a Partial Command File ... 11-15
C–1 Tunnel Servlet Status Report.. C-11
D–1 JMX Service URL When Using an RMI Registry... D-5
D–2 JMX Service URL When Not Using an RMI Registry... D-6
D–3 JMX Configuration for Firewall When Not Using a RMI Registry..................................... D-7
D–4 JMX Configuration for Firewall When Using an RMI Registry .. D-8

xiii

List of Figures

1–1 Local and Remote Administration Utilities .. 1-4
2–1 Administration Console Window .. 2-2
2–2 Administration Console Help Window... 2-3
2–3 Add Broker Dialog Box .. 2-4
2–4 Broker Displayed in Administration Console Window.. 2-5
2–5 Connect to Broker Dialog Box... 2-5
2–6 Viewing Connection Services.. 2-6
2–7 Service Properties Dialog Box ... 2-7
2–8 Add Broker Destination Dialog Box... 2-8
2–9 Broker Destination Properties Dialog Box .. 2-9
2–10 Durable Subscriptions Panel ... 2-9
2–11 Add Object Store Dialog Box.. 2-11
2–12 Object Store Displayed in Administration Console Window ... 2-12
2–13 Add Connection Factory Object Dialog Box .. 2-13
2–14 Add Destination Object Dialog Box .. 2-15
2–15 Destination Object Displayed in Administration Console Window 2-16
4–1 Broker Configuration Files .. 4-3
6–1 Message Queue Connection Services... 6-2
8–1 Persistent Data Stores ... 8-2
9–1 Security Support.. 9-2
9–2 JAAS Elements.. 9-12
9–3 How Message Queue Uses JAAS... 9-12
9–4 Setting Up JAAS Support.. 9-13
13–1 Monitoring Services Support ... 13-2
14–1 Message Delivery Through a Message Queue Service... 14-4
14–2 Transport Protocol Speeds.. 14-10
C–1 HTTP/HTTPS Support Architecture .. C-2
D–1 Basic JMX Infrastructure ... D-2
D–2 Obtaining a Connector Stub from an RMI Registry.. D-3
D–3 Obtaining a Connector Stub from an Admin Connection Factory D-3

xiv

List of Tables

6–1 Message Queue Connection Service Characteristics .. 6-2
6–2 Connection Service Properties Updated by Command Utility... 6-5
7–1 Physical Destination Subcommands for the Command Utility .. 7-2
7–2 Dead Message Queue Treatment of Physical Destination Properties............................. 7-11
9–1 Initial Entries in Flat-File User Repository... 9-6
9–2 User Manager Subcommands .. 9-6
9–3 General User Manager Options ... 9-6
9–4 Broker Properties for JAAS Support .. 9-15
9–5 Authorization Rule Elements .. 9-16
9–6 Commands That Use Passwords .. 9-26
9–7 Passwords in a Password File ... 9-27
9–8 Broker Configuration Properties for Static Port Addresses.. 9-28
10–1 Broker States .. 10-6
11–1 LDAP Object Store Attributes ... 11-2
11–2 File-system Object Store Attributes.. 11-3
12–1 DMQ Message Propeties.. 12-7
12–2 Broker Properties for a JMS Bridge .. 12-9
12–3 jmsbridge Attributes... 12-11
12–4 link Attributes.. 12-11
12–5 source Attributes... 12-11
12–6 target Attributes .. 12-12
12–7 dmq Attributes .. 12-13
12–8 connection-factory Attributes ... 12-14
12–9 destination Attributes... 12-15
12–10 Broker Properties for the STOMP Bridge Service .. 12-18
12–11 STOMP Bridge Handling of Selected Command/Header Combinations 12-21
13–1 Benefits and Limitations of Metrics Monitoring Tools.. 13-3
13–2 Logging Levels .. 13-5
13–3 imqcmd metrics Subcommand Syntax .. 13-9
13–4 imqcmd metrics Subcommand Options.. 13-9
13–5 imqcmd query Subcommand Syntax .. 13-11
13–6 Metrics Topic Destinations .. 13-14
14–1 Comparison of High-Reliability and High-Performance Scenarios 14-5
16–1 Broker Utility Options.. 16-2
16–2 Command Utility Subcommands ... 16-5
16–3 General Command Utility Options .. 16-7
16–4 Command Utility Subcommands for Broker Management.. 16-8
16–5 Command Utility Subcommands for Connection Service Management 16-9
16–6 Command Utility Subcommands for Connection Service Management 16-10
16–7 Command Utility Subcommands for Physical Destination Management 16-11
16–8 Command Utility Subcommands for Durable Subscription Management.................. 16-12
16–9 Command Utility Subcommands for Transaction Management................................... 16-12
16–10 Command Utility Subcommand for JMX Management ... 16-13
16–11 Object Manager Subcommands .. 16-13
16–12 Object Manager Options .. 16-13
16–13 Database Manager Subcommands ... 16-15
16–14 Database Manager Options ... 16-16
16–15 User Manager Subcommands ... 16-16
16–16 General User Manager Options .. 16-17
16–17 Bridge Manager Subcommands for Bridge Management .. 16-17
16–18 Bridge Manager Subcommands for Link Management .. 16-18
16–19 Bridge Manager Options.. 16-19
16–20 Service Administrator Subcommands ... 16-19

xv

16–21 Service Administrator Options ... 16-20
17–1 Broker Connection Properties ... 17-2
17–2 Broker Routing and Delivery Properties ... 17-4
17–3 Broker Properties for Auto-Created Destinations.. 17-5
17–4 Broker Properties for Admin-Created Destinations .. 17-9
17–5 Global Broker Persistence Property ... 17-9
17–6 Broker Properties for File-Based Persistence .. 17-10
17–7 Broker Properties for File-Based Persistence Using the Transaction Logging Mechanism

17-12
17–8 Broker Properties for JDBC-Based Persistence ... 17-14
17–9 Broker Security Properties.. 17-17
17–10 Broker Security Properties for Flat-File Authentication... 17-19
17–11 Broker Security Properties for LDAP Authentication ... 17-20
17–12 Broker Security Properties for JAAS Authentication... 17-22
17–13 Broker Monitoring Properties ... 17-23
17–14 Broker Properties for Cluster Configuration .. 17-27
17–15 Broker Properties for the Bridge Service Manager .. 17-30
17–16 Broker Properties for a JMS Bridge Service... 17-31
17–17 Broker Properties for the STOMP Bridge Service .. 17-31
17–18 Broker Properties for JMX Support .. 17-33
17–19 Alphabetical List of Broker Properties... 17-34
18–1 Physical Destination Properties .. 18-1
19–1 Connection Factory Attributes for Connection Handling .. 19-2
19–2 Message Broker Addressing Schemes ... 19-4
19–3 Message Broker Address Examples ... 19-5
19–4 Connection Factory Attributes for Client Identification ... 19-5
19–5 Connection Factory Attributes for Reliability and Flow Control 19-6
19–6 Connection Factory Attributes for Queue Browser and Server Sessions 19-8
19–7 Connection Factory Attributes for Standard Message Properties 19-8
19–8 Connection Factory Attributes for Message Header Overrides....................................... 19-9
19–9 Destination Attributes .. 19-9
20–1 Resource Adapter Properties .. 20-3
20–2 Managed Connection Factory Properties .. 20-5
20–3 ActivationSpec Properties.. 20-7
21–1 JVM Metrics ... 21-2
21–2 Brokerwide Metrics .. 21-2
21–3 Connection Service Metrics ... 21-3
21–4 Physical Destination Metrics ... 21-5
22–1 JESMF Common Object Attributes... 22-1
22–2 JESMF-Accessible Message Queue Product Attributes... 22-2
22–3 JESMF-Accessible Message Queue Broker Attributes... 22-2
22–4 JESMF-Accessible Message Queue Port Mapper Attributes .. 22-2
22–5 JESMF-Accessible Message Queue Connection Service Attributes................................. 22-3
22–6 JESMF-Accessible Message Queue Destination Attributes .. 22-4
22–7 JESMF-Accessible Message Queue Persistent Store Attributes 22-4
22–8 JESMF-Accessible Message Queue User Repository Attributes 22-5
A–1 Message Queue Data Locations for Installations from an IPS Image A-1
A–2 Message Queue Data Locations for Installations from Solaris SVR4 Packages............... A-2
A–3 Message Queue Data Locations for Installations from Linux RPMs................................. A-4
B–1 Interface Stability Classification Scheme... B-1
B–2 Stability of Message Queue Interfaces ... B-1
C–1 Distinguished Name Information Required for a Self-Signed Certificate........................ C-3
C–2 Broker Configuration Properties for the httpjms and httpsjms Connection Services .. C-9
D–1 Advantages and Disadvantages of Using an RMI Registry ... D-4
E–1 Broker Configuration Properties (-o option) ... E-2

xvi

E–2 Destination Configuration Properties (-o option) ... E-3

xvii

Preface

This Administration Guide provides background and information needed by system
administrators to set up and manage an Open Message Queue messaging system.

This preface consists of the following sections:

■ Who Should Use This Book

■ Before You Read This Book

■ How This Book Is Organized

■ Documentation Conventions

■ Related Documentation

■ Documentation, Support, and Training

■ Documentation Accessibility

Who Should Use This Book
This guide is intended for administrators and application developers who need to
perform Message Queue administrative tasks. A Message Queue administrator is
responsible for setting up and managing a Message Queue messaging system,
especially the message broker at the heart of the system.

Before You Read This Book
Before reading this guide, you should read the Open Message Queue Technical Overview
to become familiar with the Message Queue implementation of the Java Message
Service specification, with the components of the Message Queue service, and with the
basic process of developing, deploying, and administering a Message Queue
application.

How This Book Is Organized
The following table describes the contents of this manual.

Chapter/Appendix Description

Introduction to Message Queue Administration

Chapter 1, "Administrative Tasks and Tools" Introduces Message Queue administrative tasks and tools.

xviii

Chapter 2, "Quick-Start Tutorial" Provides a hands-on tutorial to acquaint you with the Message
Queue Administration Console.

Administrative Tasks

Chapter 3, "Starting Brokers and Clients" Describes how to start the Message Queue broker and clients.

Chapter 4, "Configuring a Broker" Describes how configuration properties are set and read, and
gives an introduction to the configurable aspects of the broker.

Chapter 5, "Managing a Broker" Describes broker management tasks.

Chapter 6, "Configuring and Managing
Connection Services"

Describes configuration and management tasks relating to the
broker's connection services.

Chapter 7, "Managing Message Delivery" Describes how to create and manage physical destinations and
manage other aspects of message delivery.

Chapter 8, "Configuring Persistence Services" Describes how to set up a file-based or JDBC-based data store to
perform persistence services.

Chapter 9, "Configuring and Managing Security
Services"

Describes security-related tasks, such as managing password
files, authentication, authorization, and encryption.

Chapter 10, "Configuring and Managing Broker
Clusters"

Describes how to set up and manage a cluster of Message Queue
brokers.

Chapter 11, "Managing Administered Objects" Describes the object store and shows how to perform tasks
related to administered objects (connection factories and
destinations).

Chapter 12, "Configuring and Managing Bridge
Services"

Describes how to set up and manage The JMS and STOMP
bridge services.

Chapter 13, "Monitoring Broker Operations" Describes how to set up and use Message Queue monitoring
facilities.

Chapter 14, "Analyzing and Tuning a Message
Service"

Describes techniques for analyzing and optimizing message
service performance.

Chapter 15, "Troubleshooting" Provides suggestions for determining the cause of common
Message Queue problems and the actions you can take to
resolve them.

Reference

Chapter 16, "Command Line Reference" Provides syntax and descriptions for Message Queue command
line utilities.

Chapter 17, "Broker Properties Reference" Describes the configuration properties of Message Queue
message brokers.

Chapter 18, "Physical Destination Property
Reference"

Describes the configuration properties of physical destinations.

Chapter 19, "Administered Object Attribute
Reference"

Describes the configuration properties of administered objects
(connection factories and destinations).

Chapter 20, "JMS Resource Adapter Property
Reference"

Describes the configuration properties of the Message Queue
Resource Adapter for use with an application server.

Chapter 21, "Metrics Information Reference" Describes the metric information that a Message Queue message
broker can provide for monitoring, turning, and diagnostic
purposes. .

Chapter 22, "JES Monitoring Framework
Reference"

Lists Message Queue attributes that are accessible by means of
the Java Enterprise System Monitoring Framework (JESMF).

Appendixes

Chapter/Appendix Description

xix

Documentation Conventions
This section describes the following conventions used in Message Queue
documentation:

■ Typographic Conventions

■ Symbol Conventions

■ Shell Prompt Conventions

■ Directory Variable Conventions

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

Symbol Conventions
The following table explains symbols that might be used in this book.

Appendix A, "Distribution-Specific Locations of
Message Queue Data"

Lists the locations of Message Queue files and provides
information about the location of Message Queue files in
previous releases.

Appendix B, "Stability of Message Queue
Interfaces"

Describes the stability of various Message Queue interfaces.

Appendix C, "HTTP/HTTPS Support" Describes how to set up and use the Hypertext Transfer Protocol
(HTTP) for Message Queue communication.

Appendix D, "JMX Support" Describes Message Queue's administrative support for client
programs using the Java Management Extensions (JMX)
application programming interface

Appendix E, "Frequently Used Command
Utility Commands"

Lists some frequently used Message Queue Command utility
(imqcmd) commands.

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with
onscreen computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or
value

The command to remove a file is
rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Note: Some emphasized items appear
bold online.

Chapter/Appendix Description

xx

Shell Prompt Conventions
The following table shows the conventions used in Message Queue documentation for
the default UNIX system prompt and superuser prompt for the C shell, Bourne shell,
Korn shell, and for the Windows operating system.

Directory Variable Conventions
Message Queue documentation makes use of three directory variables; two of which
represent environment variables needed by Message Queue. (How you set the
environment variables varies from platform to platform.)

The following table describes the directory variables that might be found in this book
and how they are used. Some of these variables refer to the directory mqInstallHome,
which is the directory where Message Queue is installed to when using the installer or
unzipped to when using a zip-based distribution.

Symbol Description Example Meaning

[] Contains optional
arguments and
command options.

ls [-l] The -l option is not required.

{ | } Contains a set of
choices for a required
command option.

-d {y|n} The -d option requires that you
use either the y argument or
the n argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous
multiple keystrokes.

Control-A Press the Control key while
you press the A key.

+ Joins consecutive
multiple keystrokes.

Ctrl+A+N Press the Control key, release
it, and then press the
subsequent keys.

> Indicates menu item
selection in a graphical
user interface.

File > New > Templates From the File menu, choose
New. From the New submenu,
choose Templates.

Shell Prompt

C shell on UNIX, Linux, or AIX machine-name%

C shell superuser on UNIX, Linux, or AIX machine-name#

Bourne shell and Korn shell on UNIX, Linux, or AIX $

Bourne shell and Korn shell superuser on UNIX, Linux, or AIX #

Windows command line C:\>

Note: In this book, directory variables are shown without
platform-specific environment variable notation or syntax (such as
$IMQ_HOME on UNIX). Non-platform-specific path names use UNIX
directory separator (/) notation.

xxi

Related Documentation
The information resources listed in this section provide further information about
Message Queue in addition to that contained in this manual. The section covers the
following resources:

■ Message Queue Documentation Set

■ Java Message Service (JMS) Specification

■ JavaDoc

■ Example Client Applications

■ Online Help

Message Queue Documentation Set
The documents that constitute the Message Queue documentation set are listed in the
following table in the order in which you might normally use them. These documents
are available through the Oracle GlassFish Server documentation web site at

■ http://www.oracle.com/technetwork/indexes/documentation/index.h
tml

Variable Description

IMQ_HOME The Message Queue home directory:

■ For installations of Message Queue bundled with GlassFish Server, IMQ_
HOME is as-install-parent/mq, where as-install-parent is the parent directory
of the GlassFish Server base installation directory, glassfish3 by
default.

■ For installations of Open Message Queue, IMQ_HOME is
mqInstallHome/mq.

IMQ_VARHOME The directory in which Message Queue temporary or dynamically created
configuration and data files are stored; IMQ_VARHOME can be explicitly set as
an environment variable to point to any directory or will default as
described below:

■ For installations of Message Queue bundled with GlassFish Server, IMQ_
VARHOME defaults to as-install-parent/glassfish/domains/domain1/imq.

■ For installations of Open Message Queue, IMQ_HOME defaults to
mqInstallHome/var/mq.

IMQ_JAVAHOME An environment variable that points to the location of the Java runtime
environment (JRE) required by Message Queue executable files. By default,
Message Queue looks for and uses the latest JDK, but you can optionally set
the value of IMQ_JAVAHOME to wherever the preferred JRE resides.

Document Audience Description

Technical Overview Developers and
administrators

Describes Message Queue concepts, features, and
components.

Release Notes Developers and
administrators

Includes descriptions of new features, limitations,
and known bugs, as well as technical notes.

Administration Guide Administrators,
also recommended
for developers

Provides background and information needed to
perform administration tasks using Message
Queue administration tools.

xxii

Java Message Service (JMS) Specification
The Message Queue message service conforms to the Java Message Service (JMS)
application programming interface, described in the Java Message Service Specification.
This document can be found at the URL

■ http://www.oracle.com/technetwork/java/jms/index.html

JavaDoc
JMS and Message Queue API documentation in JavaDoc format is included in
Message Queue installations at IMQ_HOME/javadoc/index.html. This documentation
can be viewed in any HTML browser. It includes standard JMS API documentation as
well as Message Queue-specific APIs.

Example Client Applications
Message Queue provides a number of example client applications to assist developers.

Example Java Client Applications
Example Java client applications are included in Message Queue installations at IMQ_
HOME/examples. See the README files located in this directory and its subdirectories for
descriptive information about the example applications.

Example C Client Programs
Example C client applications are included in Message Queue installations at IMQ_
HOME/examples/C. See the README files located in this directory and its subdirectories
for descriptive information about the example applications.

Example JMX Client Programs
Example Java Management Extensions (JMX) client applications are included in
Message Queue installations at IMQ_HOME/examples/jmx. See the README files located in
this directory and its subdirectories for descriptive information about the example
applications.

Online Help
Online help is available for the Message Queue command line utilities; for details, see
Command Line Reference for details. The Message Queue graphical user interface
(GUI) administration tool, the Administration Console, also includes a
context-sensitive help facility; see Administration Console Online Help.

Developer's Guide for
Java Clients

Developers Provides a quick-start tutorial and programming
information for developers of Java client programs
using the Message Queue implementation of the
JMS or SOAP/JAXM APIs.

Developer's Guide for
C Clients

Developers Provides programming and reference
documentation for developers of C client programs
using the Message Queue C implementation of the
JMS API (C-API).

Developer's Guide for
JMX Clients

Administrators Provides programming and reference
documentation for developers of JMX client
programs using the Message Queue JMX API.

Document Audience Description

xxiii

Documentation, Support, and Training
The Oracle web site provides information about the following additional resources:

■ Documentation
(http://www.oracle.com/technetwork/indexes/documentation/inde
x.html)

■ Support (http://www.oracle.com/us/support/044752.html)

■ Training (http://education.oracle.com/pls/web_prod-plq-dad/db_
pages.getpage?page_id=315)

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

xxiv

Part I
Part I Introduction to Message Queue

Administration

■ Chapter 1, "Administrative Tasks and Tools"

■ Chapter 2, "Quick-Start Tutorial"

1

Administrative Tasks and Tools 1-1

1Administrative Tasks and Tools

This chapter provides an overview of Open Message Queue administrative tasks and
the tools for performing them, focusing on common features of the command line
administration utilities. It consists of the following sections:

■ Administrative Tasks

■ Administration Tools

Administrative Tasks
The typical administrative tasks to be performed depend on the nature of the
environment in which you are running Message Queue. The demands of a software
development environment in which Message Queue applications are being developed
and tested are different from those of a production environment in which such
applications are deployed to accomplish useful work. The following sections
summarize the typical administrative requirements of these two different types of
environment.

Administration in a Development Environment
In a development environment, the emphasis is on flexibility. The Message Queue
message service is needed principally for testing applications under development.
Administration is generally minimal, with programmers often administering their
own systems. Such environments are typically distinguished by the following
characteristics:

■ Simple startup of brokers for use in testing

■ Administered objects instantiated in client code rather than created
administratively

■ Auto-created destinations

■ File-system object store

■ File-based persistence

■ File-based user repository

■ No master broker in multiple-broker clusters

Administration in a Production Environment
In a production environment in which applications must be reliably deployed and run,
administration is more important. Administrative tasks to be performed depend on
the complexity of the messaging system and of the applications it must support. Such

Administrative Tasks

1-2 Open Message Queue 4.5.2 Administration Guide

tasks can be classified into two general categories: setup operations and maintenance
operations.

Setup Operations
Administrative setup operations in a production environment typically include some
or all of the following:

Administrator security

■ Setting the password for the default administrative user (admin) (Changing a
User's Password)

■ Controlling individual or group access to the administrative connection service
(Authorization Rules for Connection Services) and the dead message queue
(Authorization Rules for Physical Destinations)

■ Regulating administrative group access to a file-based or Lightweight Directory
Access Protocol (LDAP) user repository (User Groups and Status, Using an LDAP
User Repository)

General security

■ Managing the contents of a file-based user repository (Using the User Manager
Utility) or configuring the broker to use an existing LDAP user repository (Using
an LDAP User Repository)

■ Controlling the operations that individual users or groups are authorized to
perform (User Authorization)

■ Setting up encryption services using the Secure Socket Layer (SSL) (Message
Encryption)

Administered objects

■ Setting up and configuring an LDAP object store (LDAP Server Object Stores)

■ Creating connection factories and destinations (Adding Administered Objects)

Broker clusters

■ Creating a cluster configuration file (The Cluster Configuration File)

■ Designating a master broker (Managing a Conventional Cluster's Configuration
Change Record)

Persistence

■ Configuring a broker to use a persistent store (Configuring Persistence Services).

Memory management

■ Setting a destination's configuration properties to optimize its memory usage
(Updating Physical Destination Properties, Physical Destination Property
Reference)

Maintenance Operations
Because application performance, reliability, and security are at a premium in
production environments, message service resources must be tightly monitored and
controlled through ongoing administrative maintenance operations, including the
following:

Broker administration and tuning

Administration Tools

Administrative Tasks and Tools 1-3

■ Using broker metrics to tune and reconfigure a broker (Analyzing and Tuning a
Message Service)

■ Managing broker memory resources (Managing Broker System-Wide Memory)

■ Creating and managing broker clusters to balance message load (Configuring and
Managing Broker Clusters)

■ Recovering failed brokers (Starting Brokers).

Administered objects

■ Adjusting connection factory attributes to ensure the correct behavior of client
applications (Connection Factory Attributes)

■ Monitoring and managing physical destinations (Configuring and Managing
Physical Destinations)

■ Controlling user access to destinations (Authorization Rules for Physical
Destinations)

Client management

■ Monitoring and managing durable subscriptions (see Managing Durable
Subscriptions).

■ Monitoring and managing transactions (see Managing Transactions).

Administration Tools
This section describes the tools you use to configure and manageMessage Queue
broker services. The tools fall into two categories:

■ Built-in Administration Tools

■ JMX-Based Administration

Built-in Administration Tools
Message Queue's built-in administration tools include both command line and GUI
tools:

■ Command Line Utilities

■ Administration Console

Command Line Utilities
All Message Queue utilities are accessible via a command line interface. Utility
commands share common formats, syntax conventions, and options. These utilities
allow you to perform various administrative tasks, as noted below, and therefore can
require different administrative permissions:

■ The Broker utility (imqbrokerd) starts up brokers and specifies their configuration
properties, including connecting them together into a cluster. Permissions: User
account that initially started the broker.

■ The Command utility (imqcmd) controls brokers and their resources and manages
physical destinations. Permissions: Message Queue admin user account.

■ The Object Manager utility (imqobjmgr) manages provider-independent
administered objects in an object store accessible via the Java Naming and Directory
Interface (JNDI). Permissions: Object store (flat-file or LDAP server) access
account.

Administration Tools

1-4 Open Message Queue 4.5.2 Administration Guide

■ The Database Manager utility (imqdbmgr) creates and manages databases for
persistent storage that conform to the Java Database Connectivity (JDBC)
standard. Permissions: JDBC database manager account.

■ The User Manager utility (imqusermgr) populates a file-based user repository for
user authentication and authorization. Permissions: user account that initially
started the broker.

■ The Service Administrator utility (imqsvcadmin) installs and manages a broker as
a Windows service. Permissions: Administrator.

■ The Key Tool utility (imqkeytool) generates self-signed certificates for Secure
Socket Layer (SSL) authentication. Permissions: root user (Solaris and Linux
platforms) or Administrator (Windows platform).

The executable files for the above command line utilities are in the IMQ_HOME/bin
directory.

See Command Line Reference for detailed information on the use of these utilities.

Administration Console
The Message Queue Administration Console combines some of the capabilities of the
Command and Object Manager utilities. You can use it to perform the following tasks:

■ Connect to and control a broker remotely

■ Create and manage physical destinations

■ Create and manage administered objects in a JNDI object store

However, you cannot use the Administration Console to perform such tasks as starting
up a broker, creating broker clusters, managing a JDBC database or a user repository,
installing a broker as a Windows service, or generating SSL certificates. For these, you
need the other command line utilities (Broker, Database Manager, User Manager,
Service Administrator, and Key Tool), which cannot operate remotely and must be run
on the same host as the broker they manage (see Figure 1–1).

Figure 1–1 Local and Remote Administration Utilities

Broker Host

Remote
Admin Host

Administration
Console

imqcmd

Broker

(Windows only)

imqobjmgr
imqbrokerd

imqusermgr

imqsvcadmin

imqkeytool

imqdbmgr

Administration Tools

Administrative Tasks and Tools 1-5

See Quick-Start Tutorial for a brief, hands-on introduction to the Administration
Console. More detailed information on its use is available through its own help facility.

JMX-Based Administration
To serve customers who need a standard programmatic means to monitor and access
the broker, Message Queue also supports the Java Management Extensions (JMX)
architecture, which allows a Java application to manage broker resources
programmatically.

■ Resources include everything that you can manipulate using the Command utility
(imqcmd) and the Message Queue Admin Console: the broker, connection services,
connections, destinations, durable subscribers, transactions, and so on.

■ Management includes the ability to dynamically configure and monitor resources,
and the ability to obtain notifications about state changes and error conditions.

JMX is the Java standard for building management applications. Message Queue is
based on the JMX 1.2 specification, which is part of JDK 1.5.

For information on the broker's JMX infrastructure and how to configure the broker to
support JMX client applications, see JMX Support.

To manage a Message Queue broker using the JMX architecture, see the Open Message
Queue Developer's Guide for JMX Clients.

Administration Tools

1-6 Open Message Queue 4.5.2 Administration Guide

2

Quick-Start Tutorial 2-1

2Quick-Start Tutorial

This quick-start tutorial provides a brief introduction to Message Queue
administration by guiding you through some basic administrative tasks using the
Message Queue Administration Console, a graphical interface for administering a
message broker and object store. The chapter consists of the following sections:

■ Starting the Administration Console

■ Administration Console Online Help

■ Working With Brokers

■ Working With Physical Destinations

■ Working With Object Stores

■ Working With Administered Objects

■ Running the Sample Application

The tutorial sets up the physical destinations and administered objects needed to run a
simple JMS-compliant application, HelloWorldMessageJNDI. The application is
available in the helloworld subdirectory of the example applications directory, IMQ_
HOME/examples. In the last part of the tutorial, you will run this application.

The tutorial is only a basic introduction; it is not a substitute for reading the
documentation. By following the steps described in the tutorial, you will learn how to

■ Start a Message Queue broker

■ Connect to a broker and use the Administration Console to manage it

■ Create physical destinations on the broker

■ Create an object store and use the Administration Console to connect to it

■ Add administered objects to the object store and view their properties

Some administrative tasks cannot be accomplished using the Administration Console.
You must use command line utilities to perform such tasks as the following:

Note: You must have the Message Queue product installed in
order to follow the tutorial.

Note: The instructions given in this tutorial are specific to the
Windows platform. Where necessary, supplemental notes are
added for users of other platforms.

Starting the Administration Console

2-2 Open Message Queue 4.5.2 Administration Guide

■ Start up a broker

■ Create a broker cluster

■ Configure certain physical destination properties

■ Manage a JDBC database for persistent storage

■ Manage a user repository

■ Install a broker as a Windows service

■ Generate SSL certificates

All of these tasks are covered in later chapters of this manual.

Starting the Administration Console
To start the Administration Console, enter the command:

IMQ_HOME/bin/imqadmin
You may need to wait a few seconds before the Administration Console window is
displayed (see Figure 2–1).

Figure 2–1 Administration Console Window

Take a few seconds to examine the Administration Console window. It has a menu bar
at the top, a tool bar just below it, a navigation pane to the left, a result pane to the
right (now displaying graphics identifying the Message Queue product), and a status
pane at the bottom.

Administration Console Online Help

Quick-Start Tutorial 2-3

Administration Console Online Help
The Administration Console provides a help facility containing complete information
about how to use the Console to perform administrative tasks. To use the help facility,
pull down the Help menu at the right end of the menu bar and choose Overview. The
Administration Console's Help window (Figure 2–2) will be displayed.

Figure 2–2 Administration Console Help Window

The Help window's navigation pane, on the left, organizes topics into three areas:
Message Queue Administration Console, Message Queue Object Store Management,
and Message Queue Broker Management. Within each area are files and folders. The
folders provide help for dialog boxes containing multiple tabs, the files for simple
dialog boxes or individual tabs. When you select an item in the navigation pane, the
result pane to the right shows the contents of that item. With the Overview item
chosen, the result pane displays a skeletal view of the Administration Console
window identifying each of the window's panes, as shown in the figure.

Your first task with the Administration Console will be to create a reference to a
broker. Before you start, however, check the Help window for information. Click the
Add Broker item in the Help window's navigation pane; the contents of the result pane
will change to show text explaining what it means to add a broker and describing the
use of each field in the Add Broker dialog box. Read through the help text, then close
the Help window.

Note: As you work with the Administration Console, you can use
the Refresh command on the View menu to update the visual
display of any element or group of elements, such as a list of
brokers or object stores.

Working With Brokers

2-4 Open Message Queue 4.5.2 Administration Guide

Working With Brokers
This section describes how to use the Administration Console to connect to and
manage message brokers.

Starting a Broker
You cannot start a broker using the Administration Console. Instead, enter the
command:

IMQ_HOME/bin/imqbrokerd
If you used the Windows Start menu, the command window will appear, indicating
that the broker is ready by displaying lines like the following:

Loading persistent data... Broker "imqbroker@stan:7676 ready.
Reactivate the Administration Console window. You are now ready to add the broker
to the Console and connect to it. You do not have to start the broker before adding a
reference to it in the Administration Console, but you must start it before you can
connect to it.

Adding a Broker to the Administration Console
Adding a broker creates a reference to that broker in the Administration Console. After
adding the broker, you can connect to it.

To Add a Broker to the Administration Console
1. Click on the Brokers item in the Administration Console window's navigation

pane and choose Add Broker from the Actions menu.

Alternatively, you can right-click on Brokers and choose Add Broker from the
pop-up context menu. In either case, the Add Broker dialog box (Figure 2–3) will
appear.

Figure 2–3 Add Broker Dialog Box

2. Enter a name for the broker in the Broker Label field.

This provides a label that identifies the broker in the Administration Console.

Note the default host name (localhost) and primary port (7676) specified in the
dialog box. These are the values you must specify later, when you configure the
connection factory that the client will use to create connections to this broker.

For this exercise, type the name MyBroker into the Broker Label field. Leave the
Password field blank; your password will be more secure if you specify it at
connection time.

Working With Brokers

Quick-Start Tutorial 2-5

3. Click OK to add the broker and dismiss the dialog box.

The new broker will appear under Brokers in the navigation pane, as shown in
Figure 2–4. The red X over the broker's icon indicates that it is not currently
connected to the Administration Console.

Figure 2–4 Broker Displayed in Administration Console Window

Once you have added a broker, you can use the Properties command on the
Actions menu (or the pop-up context menu) to display a Broker Properties dialog
box, similar to the Add Broker dialog shown in Adding a Broker to the
Administration Console, to view or modify any of its properties.

Connecting to a Broker
Now that you have added a broker to the Administration Console, you can proceed to
connect to it.

To Connect to a Broker
1. Click on the broker's name in the Administration Console window's navigation

pane and choose Connect to Broker from the Actions menu.

Alternatively, you can right-click on the broker's name and choose Connect to
Broker from the pop-up context menu. In either case, the Connect to Broker dialog
box (Figure 2–5) will appear.

Figure 2–5 Connect to Broker Dialog Box

2. Enter the user name and password with which to connect to the broker.

The dialog box initially displays the default user name, admin . In a real-world
environment, you should establish secure user names and passwords as soon as
possible (see User Authentication); for this exercise, simply use the default value.

Working With Brokers

2-6 Open Message Queue 4.5.2 Administration Guide

The password associated with the default user name is also admin; type it into the
Password field in the dialog box. This will connect you to the broker with
administrative privileges.

3. Click OK to connect to the broker and dismiss the dialog box.

Once you have connected to the broker, you can use the commands on the Actions
menu (or the context menu) to perform the following operations on a selected
broker:

■ Pause Broker temporarily suspends the operation of a running broker.

■ Resume Broker resumes the operation of a paused broker.

■ Restart Broker reinitializes and restarts a broker.

■ Shut Down Broker terminates the operation of a broker.

■ Query/Update Broker displays or modifies a broker's configuration
properties.

■ Disconnect from Broker terminates the connection between a broker and the
Administration Console.

Viewing Connection Services
A broker is distinguished by the connection services it provides and the physical
destinations it supports.

To View Available Connection Services
1. Select Services under the broker's name in the Administration Console window's

navigation pane.

A list of the available services will appear in the result pane (see Figure 2–6),
showing the name, port number, and current state of each service.

Figure 2–6 Viewing Connection Services

2. Select a service by clicking on its name in the result pane.

For this exercise, select the name jms.

3. Choose Properties from the Actions menu.

The Service Properties dialog box (Figure 2–7) will appear. You can use this dialog
box to assign the service a static port number and to change the minimum and
maximum number of threads allocated for it.

Working With Physical Destinations

Quick-Start Tutorial 2-7

Figure 2–7 Service Properties Dialog Box

For this exercise, do not change any of the connection service's properties.

4. Click OK to accept the new property values and dismiss the dialog box.

The Actions menu also contains commands for pausing and resuming a service. If
you select the admin service and pull down the Actions menu, however, you will
see that the Pause Service command is disabled. This is because the admin service
is the Administration Console's link to the broker: if you paused it, you would no
longer be able to access the broker.

Working With Physical Destinations
A physical destination is a location on a message broker where messages received from a
message producer are held for later delivery to one or more message consumers.
Destinations are of two kinds, depending on the messaging domain in use: queues
(point-to-point domain) and topics (publish/subscribe domain). See the Open Message
Queue Technical Overview for further discussion of messaging domains and the
destinations associated with them.

Creating a Physical Destination
By default, message brokers are configured to create new physical destinations
automatically whenever a message producer or consumer attempts to access a
nonexistent destination. Such auto-created destinations are convenient to use while
testing client code in a software development environment. In a production setting,
however, it is advisable to disable the automatic creation of destinations and instead
require all destinations to be created explicitly by an administrator. The following
procedure shows how to add such an admin-created destination to a broker.

To Add a Physical Destination to a Broker
1. Click on the Destinations item under the broker's name in the Administration

Console window's navigation pane and choose Add Broker Destination from the
Actions menu.

Alternatively, you can right-click on Destinations and choose Add Broker
Destination from the pop-up context menu. In either case, the Add Broker
Destination dialog box (Figure 2–8) will appear.

Working With Physical Destinations

2-8 Open Message Queue 4.5.2 Administration Guide

Figure 2–8 Add Broker Destination Dialog Box

2. Enter a name for the physical destination in the Destination Name field.

Note the name that you assign to the destination; you will need it later when you
create an administered object corresponding to this physical destination.

For this exercise, type in the name MyQueueDest.

3. Select the Queue or Topic radio button to specify the type of destination to create.

For this exercise, select Queue if it is not already selected.

4. Click OK to add the physical destination and dismiss the dialog box.

The new destination will appear in the result pane.

Viewing Physical Destination Properties
You can use the Properties command on the Administration Console's Actions menu
to view or modify the properties of a physical destination.

To View or Modify the Properties of a Physical Destination
1. Select Destinations under the broker's name in the Administration Console

window's navigation pane.

A list of the available physical destinations will appear in the result pane, showing
the name, type, and current state of each destination.

2. Select a physical destination by clicking on its name in the result pane.

3. Choose Properties from the Actions menu.

The Broker Destination Properties dialog box (Figure 2–9) will appear, showing
current status and configuration information about the selected physical
destination. You can use this dialog box to change various configuration

Working With Physical Destinations

Quick-Start Tutorial 2-9

properties, such as the maximum number of messages, producers, and consumers
that the destination can accommodate.

Figure 2–9 Broker Destination Properties Dialog Box

For this exercise, do not change any of the destination's properties.

For topic destinations, the Broker Destination Properties dialog box contains an
additional tab, Durable Subscriptions. Clicking on this tab displays the Durable
Subscriptions panel (Figure 2–10), listing information about all durable
subscriptions currently associated with the given topic.

Figure 2–10 Durable Subscriptions Panel

You can use the Durable Subscriptions panel's Purge and Delete buttons to

■ Purge all pending messages associated with a durable subscription

Working With Object Stores

2-10 Open Message Queue 4.5.2 Administration Guide

■ Remove a durable subscription from the topic

The Durable Subscriptions tab is disabled for queue destinations.

4. Click OK to accept the new property values and dismiss the dialog box.

Purging Messages From a Physical Destination
Purging messages from a physical destination removes all pending messages
associated with the destination, leaving the destination empty.

To Purge Messages From a Physical Destination
1. Select Destinations under the broker's name in the Administration Console

window's navigation pane.

A list of the available physical destinations will appear in the result pane, showing
the name, type, and current state of each destination.

2. Select a destination by clicking on its name in the result pane.

3. Choose Purge Messages from the Actions menu.

A confirmation dialog box will appear, asking you to confirm that you wish to
proceed with the operation.

4. Click Yes to confirm the operation and dismiss the confirmation dialog.

Deleting a Physical Destination
Deleting a destination purges all of its messages and then destroys the destination
itself, removing it permanently from the broker to which it belongs.

To Delete a Physical Destination
1. Select Destinations under the broker's name in the Administration Console

window's navigation pane.

A list of the available destinations will appear in the result pane, showing the
name, type, and current state of each destination.

2. Select a destination by clicking on its name in the result pane.

3. Choose Delete from the Edit menu.

A confirmation dialog box will appear, asking you to confirm that you wish to
proceed with the operation.

4. Click Yes to confirm the operation and dismiss the confirmation dialog.

For this exercise, do not delete the destination MyQueueDest that you created
earlier; instead, click No to dismiss the confirmation dialog without performing
the delete operation.

Working With Object Stores
An object store is used to store Message Queue administered objects, which encapsulate
implementation and configuration information specific to a particular Message Queue
provider. An object store can be either a Lightweight Directory Access Protocol
(LDAP) directory server or a directory in the local file system.

Although it is possible to instantiate and configure administered objects directly from
within a client application's code, it is generally preferable to have an administrator

Working With Object Stores

Quick-Start Tutorial 2-11

create and configure these objects and store them in an object store, where client
applications can access them using the Java Naming and Directory Interface (JNDI).
This allows the client code itself to remain provider-independent.

Adding an Object Store
Although the Administration Console allows you to manage an object store, you cannot
use it to create one; the LDAP server or file-system directory that will serve as the
object store must already exist ahead of time. You can then add this existing object
store to the Administration Console, creating a reference to it that you can use to
operate on it from within the Console.

To Add an Object Store to the Administration Console
1. Click on the Object Stores item in the Administration Console window's

navigation pane and choose Add Object Store from the Actions menu.

Alternatively, you can right-click on Object Stores and choose Add Object Store
from the pop-up context menu. In either case, the Add Object Store dialog box
(Figure 2–11) will appear.

Figure 2–11 Add Object Store Dialog Box

2. Enter a name for the object store in the Object Store Label field.

This provides a label that identifies the object store in the Administration Console.

For this exercise, type in the name MyObjectStore.

3. Enter the JNDI attribute values to be used for looking up administered objects:

a. Select the name of the attribute you wish to specify from the Name pull-down
menu.

b. Type the value of the attribute into the Value field.

Note: The sample application used in this chapter assumes that
the object store is held in a directory named Temp on the C drive. If
you do not already have a folder named Temp on your C drive,
create one before proceeding with the following exercise. (On
non-Windows platforms, you can use the /tmp directory, which
should already exist.)

Working With Object Stores

2-12 Open Message Queue 4.5.2 Administration Guide

c. Click the Add button to add the specified attribute value.

The property and its value will appear in the property summary pane.

Repeat steps Adding an Object Store to Adding an Object Store for as many
attributes as you need to set.

For this exercise, set the java.naming.factory.initial attribute to

com.sun.jndi.fscontext.RefFSContextFactory
and the java.naming.provider.url attribute to

file:///C:/Temp
(or file:///tmp on the Solaris or Linux platforms). These are the only
attributes you need to set for a file-system object store; see LDAP Server Object
Stores for information on the attribute values needed for an LDAP store.

4. Click OK to add the object store and dismiss the dialog box.

The new object store will appear under Object Stores in the navigation pane, as
shown in Figure 2–12. The red X over the object store's icon indicates that it is not
currently connected to the Administration Console.

Figure 2–12 Object Store Displayed in Administration Console Window

When you click on the object store in the navigation pane, its contents are listed in
the result pane. Since you have not yet added any administered objects to the
object store, the Count column shows 0 for both destinations and connection
factories.

Once you have added an object store, you can use the Properties command on the
Actions menu (or the pop-up context menu) to display an Object Store Properties
dialog box, similar to the Add Object Store dialog shown in Figure 2–11, to view or
modify any of its properties.

Connecting to an Object Store
Now that you have added an object store to the Administration Console, you must
connect to it in order to add administered objects to it.

To Connect to an Object Store
1. Click on the object store's name in the Administration Console window's

navigation pane and choose Connect to Object Store from the Actions menu.

Alternatively, you can right-click on the object store's name and choose Connect to
Object Store from the pop-up context menu. In either case, the red X will disappear

Working With Administered Objects

Quick-Start Tutorial 2-13

from the object store's icon, indicating that it is now connected to the
Administration Console.

Working With Administered Objects
Once you have connected an object store to the Administration Console, you can
proceed to add administered objects (connection factories and destinations) to it. This
section describes how.

Adding a Connection Factory
Connection factories are used by client applications to create connections to a broker. By
configuring a connection factory, you can control the properties of the connections it
creates.

To Add a Connection Factory to an Object Store
1. Make sure the object store is connected to the Administration Console (see

Connecting to an Object Store).

2. Click on the Connection Factories item under the object store's name in the
Administration Console window's navigation pane and choose Add Connection
Factory Object from the Actions menu.

Alternatively, you can right-click on Connection Factories and choose Add
Connection Factory Object from the pop-up context menu. In either case, the Add
Connection Factory Object dialog box (Figure 2–13) will appear.

Figure 2–13 Add Connection Factory Object Dialog Box

3. Enter a name for the connection factory in the Lookup Name field.

Note: The Administration Console displays only Message Queue
administered objects. If an object store contains a non-Message
Queue object with the same lookup name as an administered object
that you want to add, you will receive an error when you attempt
the add operation.

Working With Administered Objects

2-14 Open Message Queue 4.5.2 Administration Guide

This is the name that client applications will use when looking up the connection
factory with JNDI.

For this exercise, type in the name MyQueueConnectionFactory .

4. Choose the type of connection factory you wish to create from the Factory Type
pull-down menu.

For this exercise, choose QueueConnectionFactory.

5. Click the Connection Handling tab.

The Connection Handling panel will appear, as shown in Figure 2–13.

6. Fill in the Message Server Address List field with the address(es) of the broker(s)
to which this connection factory will create connections.

The address list may consist of a single broker or (in the case of a broker cluster)
multiple brokers. For each broker, it specifies information such as the broker's
connection service, host name, and port number. The exact nature and syntax of
the information to be specified varies, depending on the connection service to be
used; see Connection Handling for specifics.

For this exercise, there is no need to type anything into the Message Server
Address List field, since the sample application HelloWorldMessageJNDI expects
the connection factory to use the standard address list attributes to which it is
automatically configured by default (connection service jms , host name
localhost, and port number 7676).

7. Configure any other attributes of the connection factory as needed.

The Add Connection Factory Object dialog box contains a number of other panels
besides Connection Handling, which can be used to configure various attributes
for a connection factory.

For this exercise, do not change any of the other attribute settings. You may find it
instructive, however, to click through the other tabs to get an idea of the kinds of
configuration information that can be specified. Use the Help button to learn more
about the contents of these other configuration panels.

8. If appropriate, click the Read-Only checkbox.

This locks the connection factory object's configuration attributes to the values
they were given at creation time. A read-only administered object's attributes
cannot be overridden, whether programmatically from client code or
administratively from the command line.

For this exercise, do not check Read-Only.

9. Click OK to create the connection factory, add it to the object store, and dismiss the
dialog box.

The new connection factory will appear in the result pane.

Adding a Destination
A destination administered object represents a physical destination on a broker,
enabling clients to send messages to that physical destination independently of
provider-specific configurations and naming syntax. When a client sends a message
addressed via the administered object, the broker will deliver the message to the
corresponding physical destination, if it exists. If no such physical destination exists,
the broker will create one automatically if auto-creation is enabled, as described under

Working With Administered Objects

Quick-Start Tutorial 2-15

Creating a Physical Destination, and deliver the message to it; otherwise, it will
generate an error signaling that the message cannot be delivered.

The following procedure describes how to add a destination administered object to the
object store corresponding to an existing physical destination.

To Add a Destination to an Object Store
1. Make sure the object store is connected to the Administration Console (see

Connecting to an Object Store).

2. Click on the Destinations item under the object store's name in the Administration
Console window's navigation pane and choose Add Destination Object from the
Actions menu.

Alternatively, you can right-click on Destinations and choose Add Destination
Object from the pop-up context menu. In either case, the Add Destination Object
dialog box (Figure 2–14) will appear.

Figure 2–14 Add Destination Object Dialog Box

3. Enter a name for the destination administered object in the Lookup Name field.

This is the name that client applications will use when looking up the destination
with JNDI.

For this exercise, type in the name MyQueue.

4. Select the Queue or Topic radio button to specify the type of destination object to
create.

For this exercise, select Queue if it is not already selected.

5. Enter the name of the corresponding physical destination in the Destination Name
field.

This is the name you specified when you added the physical destination to the
broker (see Working With Physical Destinations).

For this exercise, type in the name MyQueueDest.

6. Optionally, enter a brief description of the destination in the Destination
Description field.

The contents of this field are intended strictly for human consumption and have
no effect on client operations.

For this exercise, you can either delete the contents of the Destination Description
field or type in some descriptive text such as

Example destination for MQ Admin Guide tutorial

Working With Administered Objects

2-16 Open Message Queue 4.5.2 Administration Guide

7. If appropriate, click the Read-Only checkbox.

This locks the destination object's configuration attributes to the values they were
given at creation time. A read-only administered object's attributes cannot be
overridden, whether programmatically from client code or administratively from
the command line.

For this exercise, do not check Read-Only.

8. Click OK to create the destination object, add it to the object store, and dismiss the
dialog box.

The new destination object will appear in the result pane, as shown in Figure 2–15.

Figure 2–15 Destination Object Displayed in Administration Console Window

Viewing Administered Object Properties
You can use the Properties command on the Administration Console's Actions menu
to view or modify the properties of an administered object.

To View or Modify the Properties of an Administered Object
1. Select Connection Factories or Destinations under the object store's name in the

Administration Console window's navigation pane.

A list of the available connection factory or destination administered objects will
appear in the result pane, showing the lookup name and type of each (as well as
the destination name in the case of destination administered objects).

2. Select an administered object by clicking on its name in the result pane.

3. Choose Properties from the Actions menu.

The Connection Factory Object Properties or Destination Object Properties dialog
box will appear, similar to the Add Connection Factory Object (Figure 2–13) or
Add Destination Object (Figure 2–14) dialog. You can use this dialog box to change
the selected object's configuration attributes. Note, however, that you cannot
change the object's lookup name; the only way to do this is the delete the object
and then add a new administered object with the desired lookup name.

4. Click OK to accept the new attribute values and dismiss the dialog box.

Deleting an Administered Object
Deleting an administered object removes it permanently from the object store to which
it belongs.

Running the Sample Application

Quick-Start Tutorial 2-17

To Delete an Administered Object
1. Select Connection Factories or Destinations under the object store's name in the

Administration Console window's navigation pane.

A list of the available connection factory or destination administered objects will
appear in the result pane, showing the lookup name and type of each (as well as
the destination name in the case of destination administered objects).

2. Select an administered object by clicking on its name in the result pane.

3. Choose Delete from the Edit menu.

A confirmation dialog box will appear, asking you to confirm that you wish to
proceed with the operation.

4. Click Yes to confirm the operation and dismiss the confirmation dialog.

For this exercise, do not delete the administered objects MyQueue or
MyQueueConnectionFactory that you created earlier; instead, click No to dismiss
the confirmation dialog without performing the delete operation.

Running the Sample Application
The sample application HelloWorldMessageJNDI is provided for use with this tutorial.
It uses the physical destination and administered objects that you created:

■ A queue physical destination named MyQueueDest

■ A queue connection factory administered object with JNDI lookup name
MyQueueConnectionFactory

■ A queue administered object with JNDI lookup name MyQueue

The code creates a simple queue sender and receiver, and sends and receives a Hello
World message.

Before running the application, open the source file HelloWorldMessageJNDI.java and
read through the code. The program is short and amply documented; you should have
little trouble understanding how it works.

To Run the Sample Application
1. Make the directory containing the HelloWorldmessageJNDI application your

current directory:

cd IMQ_HOME/examples/helloworld/helloworldmessagejndi
You should find the file HelloWorldMessageJNDI.class present. (If you make
changes to the application, you must recompile it using the procedure for
compiling a client application given in the Open Message Queue Developer's Guide
for Java Clients.)

2. Set the CLASSPATH variable to include the current directory containing the file
HelloWorldMessageJNDI.class, as well as the following .jar files that are
included in the Message Queue product:

■ jms.jar

■ imq.jar

■ jndi.jar

■ fscontext.jar

Running the Sample Application

2-18 Open Message Queue 4.5.2 Administration Guide

See the Open Message Queue Developer's Guide for Java Clients for information on
setting the CLASSPATH variable.

3. Run the HelloWorldMessageJNDI application by executing one of the following
commands (depending on the platform you're using):

■ On Solaris or Linux:

% java HelloWorldMessageJNDI file:///tmp
■ On Windows:

java HelloWorldMessageJNDI
If the application runs successfully, you should see the output shown in
Example 2–1.

Example 2–1 Output from Sample Application

java HelloWorldMessageJNDI
Using file:///C:/Temp for Context.PROVIDER_URL

Looking up Queue Connection Factory object with lookup name:
MyQueueConnectionFactory
Queue Connection Factory object found.
Looking up Queue object with lookup name: MyQueue
Queue object found.

Creating connection to broker.
Connection to broker created.

Publishing a message to Queue: MyQueueDest
Received the following message: Hello World

Note: The file jndi.jar is bundled with JDK 1.4. You need not
add this file to your CLASSPATH unless you are using an earlier
version of the JDK.

Part II
Part II Administrative Tasks

■ Chapter 3, "Starting Brokers and Clients"

■ Chapter 4, "Configuring a Broker"

■ Chapter 5, "Managing a Broker"

■ Chapter 6, "Configuring and Managing Connection Services"

■ Chapter 7, "Managing Message Delivery"

■ Chapter 8, "Configuring Persistence Services"

■ Chapter 9, "Configuring and Managing Security Services"

■ Chapter 10, "Configuring and Managing Broker Clusters"

■ Chapter 11, "Managing Administered Objects"

■ Chapter 12, "Configuring and Managing Bridge Services"

■ Chapter 13, "Monitoring Broker Operations"

■ Chapter 14, "Analyzing and Tuning a Message Service"

■ Chapter 15, "Troubleshooting"

3

Starting Brokers and Clients 3-1

3Starting Brokers and Clients

After installing Message Queue and performing some preparatory steps, you can
begin starting brokers and clients. A broker's configuration is governed by a set of
configuration files, which can be overridden by command line options passed to the
Broker utility (imqbrokerd); see Configuring a Broker for more information.

This chapter contains the following sections:

■ Preparing System Resources

■ Starting Brokers

■ Deleting a Broker Instance

■ Starting Clients

Preparing System Resources
Before starting a broker, there are two preliminary system-level tasks to perform:
synchronizing system clocks and (on the Solaris or Linux platform) setting the file
descriptor limit. The following sections describe these tasks.

Synchronizing System Clocks
Before starting any brokers or clients, it is important to synchronize the clocks on all
hosts that will interact with the Message Queue system. Synchronization is
particularly crucial if you are using message expiration (time-to-live). Time stamps
from clocks that are not synchronized could prevent message expiration from working
as expected and prevent the delivery of messages. Synchronization is also crucial for
broker clusters.

Configure your systems to run a time synchronization protocol, such as Simple
Network Time Protocol (SNTP). Time synchronization is generally supported by the
xntpd daemon on Solaris and Linux, and by the W32Time service on Windows. (See
your operating system documentation for information about configuring this service.)
After the broker is running, avoid setting the system clock backward.

Setting the File Descriptor Limit
On the Solaris and Linux platforms, the shell in which a client or broker is running
places a soft limit on the number of file descriptors that a process can use. In Message
Queue, each connection a client makes, or a broker accepts, uses one of these file
descriptors. Each physical destination that has persistent messages also uses a file
descriptor.

Starting Brokers

3-2 Open Message Queue 4.5.2 Administration Guide

As a result, the file descriptor limit constrains the number of connections a broker or
client can have. By default, the maximum is 256 connections on Solaris or 1024 on
Linux. (In practice, the connection limit is actually lower than this because of the use of
file descriptors for persistent data storage.) If you need more connections than this,
you must raise the file descriptor limit in each shell in which a client or broker will be
executing. For information on how to do this, see the man page for the ulimit
command.

Starting Brokers
You can start a broker either interactively, using the Message Queue command line
utilities or the Windows Start menu, or by arranging for it to start automatically at
system startup. The following sections describe how.

Starting Brokers Interactively
You can start a broker interactively from the command line, using the Broker utility
(imqbrokerd). (Alternatively, on Windows, you can start a broker from the Start menu.)
You cannot use the Administration Console (imqadmin) or the Command utility
(imqcmd) to start a broker; the broker must already be running before you can use these
tools.

On the Solaris and Linux platforms, a broker instance must always be started by the
same user who initially started it. Each broker instance has its own set of configuration
properties and file-based persistent data store. When the broker instance first starts,
Message Queue uses the user's file creation mode mask (umask) to set permissions on
directories containing the configuration information and persistent data for that broker
instance.

A broker instance has the instance name imqbroker by default. To start a broker from
the command line with this name and the default configuration, simply use the
command

imqbrokerd
This starts a broker instance named imqbroker on the local machine, with the Port
Mapper at the default port of 7676 (see Port Mapper).

To specify an instance name other than the default, use the-name option to the
imqbrokerd command. The following command starts a broker with the instance name
myBroker:

imqbrokerd -name myBroker
Other options are available on the imqbrokerd command line to control various
aspects of the broker's operation. See Broker Utility for complete information on the
syntax, subcommands, and options of the imqbrokerd command. For a quick
summary of this information, enter the following command:

imqbrokerd -help
For example, the following command uses the-tty option to send errors and warnings
to the command window (standard output):

imqbrokerd -name myBroker -tty
You can also use the -D option on the command line to override the values of
properties specified in the broker's instance configuration file (config.properties).
The instance configuration file is described under Modifying Configuration Files. The
following example sets a broker's imq.jms.max_threads property, raising the
maximum number of threads available to the jms connection service to 2000:

imqbrokerd -name myBroker -Dimq.jms.max_threads=2000

Starting Brokers

Starting Brokers and Clients 3-3

Starting Brokers Automatically
Instead of starting a broker explicitly from the command line, you can set it up to start
automatically at system startup. How you do this depends on the platform (Solaris,
Linux, or Windows) on which you are running the broker:

■ Automatic Broker Startup on the Solaris Platforms

■ Automatic Broker Startup on the Linux Platform

■ Automatic Broker Startup on Windows

Automatic Broker Startup on the Solaris Platforms
The method for enabling automatic startup on the Solaris 10 platforms is different
from that for Solaris 9. Both are described below.

Automatic Broker Startup on the Solaris 9 Platform On Solaris 9 operating system, scripts
that enable automatic startup are placed in the /etc/rc* directory tree during Message
Queue installation. To enable the use of these scripts, you must edit the configuration
file imqbrokerd.conf (located in the IMQ_HOME/etc/ directory) as follows:

■ To start the broker automatically at system startup, set the AUTOSTART property to
YES.

■ To have the broker restart automatically after an abnormal exit, set the RESTART
property to YES.

■ To set startup command line arguments for the broker, specify one or more values
for the ARGS property.

To disable automatic broker startup at system startup, edit the configuration file
/etc/imq/imqbrokerd.conf and set the AUTOSTART property to NO.

Automatic Broker Startup on the Solaris 10 Platform Rather than using an rc file to
implement automatic broker startup when a computer reboots, the following
procedure makes use of the Solaris 10 Service Management Facility (SMF).

For more information on using the Service Management Facility, please refer to Solaris
10 documentation.

To Implement Automatic Broker Startup on Solaris 10 OS 1.Copy and change permissions on
the mqbroker startup script.

cp /var/svc/manifest/application/sun/mq/mqbroker /lib/svc/method

chmod 555 /lib/svc/method/mqbroker

2. Import the mqbroker service into the SMF repository.

svccfg import /var/svc/manifest/application/sun/mq/mqbroker.xml

3. Verify that the import was successful by checking the state of the mqbroker service.

svcs mqbroker

Output resembles the following:

STATE STIME FMRI
disabled 16:22:50 svc:/application/sun/mq/mqbroker:default

The service is initially shown as disabled.

4. Eanable the mqbroker service.

Starting Brokers

3-4 Open Message Queue 4.5.2 Administration Guide

svcadm enable svc:/application/sun/mq/mqbroker:default

Enabling the mqbroker service will start the imqbrokerd process. A reboot will
subsequently restart the broker.

5. Configure the mqbroker service to pass any desired arguments to the imqbrokerd
command.

The options/broker_args property is used to pass arguments toimqbrokerd. For
example to add -loglevel DEBUGHIGH, do the following:

svccfg
svc:> select svc:/application/sun/mq/mqbroker
svc:/application/sun/mq/mqbroker> setprop options/broker_args="-loglevel
DEBUGHIGH"
svc:/application/sun/mq/mqbroker> exit

To Disable Automatic Broker Startup on Solaris 10 OS

1. Disable the mqbroker service.

svcadm disable svc:/application/sun/mq/mqbroker:default

A subsequent reboot will not restart the broker.

Automatic Broker Startup on the Linux Platform
On Linux systems, scripts that enable automatic startup are placed in the /etc/rc*
directory tree during Message Queue installation. To enable the use of these scripts,
you must edit the configuration file imqbrokerd.conf (located in the IMQ_HOME/etc/
directory) as follows:

■ To start the broker automatically at system startup, set the AUTOSTART property to
YES.

■ To have the broker restart automatically after an abnormal exit, set the RESTART
property to YES.

■ To set startup command line arguments for the broker, specify one or more values
for the ARGS property.

To disable automatic broker startup at system startup, edit the configuration file
/etc/opt/sun/mq/imqbrokerd.conf and set the AUTOSTART property to NO.

Automatic Broker Startup on Windows
To start a broker automatically at Windows system startup, you must define the broker
as a Windows service. The broker will then start at system startup time and run in the
background until system shutdown. Consequently, you will not need to use the
Message Queue Broker utility (imqbrokerd) unless you want to start an additional
broker.

A system can have no more than one broker running as a Windows service. The
Windows Task Manager lists such a broker as two executable processes:

■ The native Windows service wrapper, imqbrokersvc.exe

■ The Java runtime that is running the broker

You can install a broker as a service when you install Message Queue on a Windows
system. After installation, you can use the Service Administrator utility (imqsvcadmin)
to perform the following operations:

■ Add a broker as a Windows service

Starting Brokers

Starting Brokers and Clients 3-5

■ Determine the startup options for the broker service

■ Disable a broker from running as a Windows service

To pass startup options to the broker, use the -args option to the imqsvcadmin
command. This works the same way as the imqbrokerd command's -D option, as
described under Starting Brokers. Use the Command utility (imqcmd) to control broker
operations as usual.

See Service Administrator Utility for complete information on the syntax,
subcommands, and options of the imqsvcadmin command.

Reconfiguring the Broker Service The procedure for reconfiguring a broker installed as a
Windows service is as follows:

To Reconfigure a Broker Running as a Windows Service

1. Stop the service:

a. From the Settings submenu of the Windows Start menu, choose Control Panel.

b. Open the Administrative Tools control panel.

c. Run the Services tool by selecting its icon and choosing Open from the File
menu or the pop-up context menu, or simply by double-clicking the icon.

d. Under Services (Local), select the Message Queue Broker service and choose
Properties from the Action menu.

Alternatively, you can right-click on Message Queue Broker and choose
Properties from the pop-up context menu, or simply double-click on Message
Queue Broker. In either case, the Message Queue Broker Properties dialog box
will appear.

e. Under the General tab in the Properties dialog, click Stop to stop the broker
service.

2. Remove the service.

On the command line, enter the command

imqsvcadmin remove
3. Reinstall the service, specifying different broker startup options with the -args

option or different Java version arguments with the -vmargs option.

For example, to change the service's host name and port number to broker1 and
7878, you could use the command

imqsvcadmin install -args "-name broker1 -port 7878"

Using an Alternative Java Runtime You can use either the imqsvcadmin command's
-javahome or -jrehome option to specify the location of an alternative Java runtime.
(You can also specify these options in the Start Parameters field under the General tab
in the service's Properties dialog window.)

Note: The Start Parameters field treats the backslash character (\)
as an escape character, so you must type it twice when using it as a
path delimiter: for example,

-javahome c:\\j2sdk1.4.0

Deleting a Broker Instance

3-6 Open Message Queue 4.5.2 Administration Guide

Displaying Broker Service Startup Options To determine the startup options for the broker
service, use the imqsvcadmin query command, as shown in Example 3–1.

Example 3–1 Displaying Broker Service Startup Options

imqsvcadmin query

Service Message Queue Broker is installed.
Display Name: Message Queue Broker
Start Type: Automatic
Binary location: C:\Sun\MessageQueue\bin\imqbrokersvc.exe
JavaHome: c:\j2sdk1.4.0
Broker Args: -name broker1 -port 7878

Disabling a Broker From Running as a Windows Service To disable a broker from running as
a Windows service, use the command

imqcmd shutdown bkr
to shut down the broker, followed by

imqsvcadmin remove
to remove the service.

Alternatively, you can use the Windows Services tool, reached via the Administrative
Tools control panel, to stop and remove the broker service.

Restart your computer after disabling the broker service.

Troubleshooting Service Startup Problems If you get an error when you try to start a
broker as a Windows service, you can view error events that were logged:

To See Logged Service Error Events

1. Open the Windows Administrative Tools control panel.

2. Start the Event Viewer tool.

3. Select the Application event log.

4. Choose Refresh from the Action menu to display any error events.

Deleting a Broker Instance
To delete a broker instance, use the imqbrokerd command with the -remove option:

imqbrokerd [options…]-remove instance
For example, if the name of the broker is myBroker, the command would be

imqbrokerd -name myBroker -remove instance
The command deletes the entire instance directory for the specified broker.

See Broker Utility for complete information on the syntax, subcommands, and options
of the imqbrokerd command. For a quick summary of this information, enter the
command

imqbrokerd -help

Starting Clients
Before starting a client application, obtain information from the application developer
about how to set up the system. If you are starting Java client applications, you must

Starting Clients

Starting Brokers and Clients 3-7

set the CLASSPATH variable appropriately and make sure you have the correct .jar files
installed. The Open Message Queue Developer's Guide for Java Clients contains
information about generic steps for setting up the system, but your developer may
have additional information to provide.

To start a Java client application, use the following command line format:

java clientAppName
To start a C client application, use the format supplied by the application developer
(see "Building and Running C Clients" in Open Message Queue Developer's Guide for C
Clients).

The application's documentation should provide information on attribute values that
the application sets; you may want to override some of these from the command line.
You may also want to specify attributes on the command line for any Java client that
uses a Java Naming and Directory Interface (JNDI) lookup to find its connection
factory. If the lookup returns a connection factory that is older than the application, the
connection factory may lack support for more recent attributes. In such cases, Message
Queue sets those attributes to default values; if necessary, you can use the command
line to override these default values.

To specify attribute values from the command line for a Java application, use the
following syntax:

java [[-Dattribute=value] …]clientAppName
The value for attribute must be a connection factory administered object attribute, as
described in Administered Object Attribute Reference. If there is a space in the value,
put quotation marks around the

attribute=value
part of the command line.

The following example starts a client application named MyMQClient , connecting to a
broker on the host OtherHost at port 7677:

java -DimqAddressList=mq://OtherHost:7677/jms MyMQClient
The host name and port specified on the command line override any others set by the
application itself.

In some cases, you cannot use the command line to specify attribute values. An
administrator can set an administered object to allow read access only, or an
application developer can code the client application to do so. Communication with
the application developer is necessary to understand the best way to start the client
program.

Starting Clients

3-8 Open Message Queue 4.5.2 Administration Guide

4

Configuring a Broker 4-1

4Configuring a Broker

A broker's configuration is governed by a set of configuration files and by the options
passed to the imqbrokerd command at startup. This chapter describes the available
configuration properties and how to use them to configure a broker.

The chapter contains the following sections:

■ Broker Services

■ Setting Broker Configuration Properties

For full reference information about broker configuration properties, see Broker
Properties Reference.

Broker Services
Broker configuration properties are logically divided into categories that depend on
the services or broker components they affect:

■ Connection services manage the physical connections between a broker and its
clients that provide transport for incoming and outgoing messages. For a
discussion of properties associated with connection services, see Configuring
Connection Services.

■ Message delivery services route and deliver JMS payload messages, as well as control
messages used by the message service to support reliable delivery. For a
discussion of properties associated with message delivery services, including
physical destinations, see Managing Message Delivery.

■ Persistence services manage the writing and retrieval of data, such as messages and
state information, to and from persistent storage. For a discussion of properties
associated with persistence services, see Configuring Persistence Services.

■ Security services authenticate users connecting to the broker and authorize their
actions. For a discussion of properties associated with authentication and
authorization services, as well as encryption configuration, see Configuring and
Managing Security Services.

■ Clustering services support the grouping of brokers into a cluster to achieve
scalability and availability. For a discussion of properties associated with broker
clusters, see Configuring and Managing Broker Clusters.

■ Monitoring services generate metric and diagnostic information about the broker's
performance. For a discussion of properties associated with monitoring and
managing a broker, see Monitoring Broker Operations.

Setting Broker Configuration Properties

4-2 Open Message Queue 4.5.2 Administration Guide

Setting Broker Configuration Properties
You can specify a broker's configuration properties in either of two ways:

■ Edit the broker's configuration file.

■ Supply the property values directly from the command line.

The following sections describe these two methods of configuring a broker.

Modifying Configuration Files
Broker configuration files contain property settings for configuring a broker. Message
Queue maintains the following broker configuration files:

■ A default configuration file (IMQ_HOME/lib/props/broker/default.properties) that
is loaded on startup. This file is not editable, but you can read it to determine
default settings and find the exact names of properties you want to change.

■ An installation configuration file (IMQ_
HOME/lib/props/broker/install.properties) containing any properties
specified when Message Queue was installed. This file cannot be edited after
installation.

■ A separate instance configuration file (IMQ_
VARHOME/instances/instanceName/props/config.properties) for each individual
broker instance.

In addition, if you connect broker instances in a cluster, you may need to use a cluster
configuration file (cluster.properties) to specify configuration information for the
cluster; see Cluster Configuration Properties for more information.

Also, Message Queue makes use of en environment configuration file, imqenv.conf,
which is used to provide the locations of external files needed by Message Queue, such
as the default Java SE location and the locations of database drivers, JAAS login
modules, and so forth.

At startup, the broker merges property values from the various configuration files. As
shown in Figure 4–1, the files form a hierarchy in which values specified in the
instance configuration file override those in the installation configuration file, which in
turn override those in the default configuration file. At the top of the hierarchy, you
can manually override any property values specified in the configuration files by
using command line options to the imqbrokerd command.

Setting Broker Configuration Properties

Configuring a Broker 4-3

Figure 4–1 Broker Configuration Files

The first time you run a broker, an instance configuration file is created containing
configuration properties for that particular broker instance. The instance configuration
file is named config.properties and is located in a directory identified by the name
of the broker instance to which it belongs:

IMQ_VARHOME/instances/instanceName/props/config.properties
If the file does not yet exist, you must use the -name option when starting the broker
(see Broker Utility) to specify an instance name that Message Queue can use to create
the file.

The instance configuration file is maintained by the broker instance and is modified
when you make configuration changes using Message Queue administration utilities.
You can also edit an instance configuration file by hand. To do so, you must be the
owner of the instances/instanceName directory or log in as the root user to change the
directory's access privileges.

The broker reads its instance configuration file only at startup. To effect any changes to
the broker's configuration, you must shut down the broker and then restart it. Property
definitions in the config.properties file (or any configuration file) use the following
syntax:

propertyName=value [[,value1] …]

Note: The instances/instanceName directory and the instance
configuration file are owned by the user who initially started the
corresponding broker instance by using the imqbrokerd -name
brokerName option. The broker instance must always be restarted by
that same user.

Startup
Command

Overrides

Overrides

Overrides

imqbrokerd

-name MyBroker

-metrics 5

Instance
Configuration File

config.properties

Install
Configuration File

install.properties

Default
Configuration File

default.properties

Setting Broker Configuration Properties

4-4 Open Message Queue 4.5.2 Administration Guide

For example, the following entry specifies that the broker will hold up to 50,000
messages in memory and persistent storage before rejecting additional messages:

imq.system.max_count=50000
The following entry specifies that a new log file will be created once a day (every
86,400 seconds):

imq.log.file.rolloversecs=86400
See Broker Services and Broker Properties Reference for information on the available
broker configuration properties and their default values.

Setting Configuration Properties from the Command Line
You can enter broker configuration properties from the command line when you start
a broker, or afterward.

At startup time, you use the Broker utility (imqbrokerd) to start a broker instance.
Using the command's -D option, you can specify any broker configuration property
and its value; see Starting Brokers and Broker Utility for more information. If you start
the broker as a Windows service, using the Service Administrator utility
(imqsvcadmin), you use the -args option to specify startup configuration properties;
see Service Administrator Utility.

You can also change certain broker configuration properties while a broker is running.
To modify the configuration of a running broker, you use the Command utility's
imqcmd update bkr command; see Updating Broker Properties and Broker
Management.

5

Managing a Broker 5-1

5Managing a Broker

This chapter explains how to use the Message Queue Command utility (imqcmd) to
manage a broker. The chapter has the following sections:

■ Command Utility Preliminaries

■ Using the Command Utility

■ Managing Brokers

This chapter does not cover all topics related to managing a broker. Additional topics
are covered in the following separate chapters:

■ For information on configuring and managing connection services, see
Configuring and Managing Connection Services.

■ For information on managing message delivery services, including how to create,
display, update, and destroy physical destinations, see Managing Message
Delivery.

■ For information on configuring and managing persistence services, for both
flat-file and JDBC-based data stores, see Configuring Persistence Services.

■ For information about setting up security for the broker, such as user
authentication, access control, encryption, and password files, see Configuring and
Managing Security Services.

■ For information on configuring and managing clustering services, for both
conventional and enhanced broker clusters, see Configuring and Managing Broker
Clusters.

■ For information about monitoring a broker, see Monitoring Broker Operations.

Command Utility Preliminaries
Before using the Command utility to manage a broker, you must do the following:

■ Start the broker using the imqbrokerd command. You cannot use the Command
utility subcommands l until a broker is running.

■ Determine whether you want to set up a Message Queue administrative user or
use the default account. You must specify a user name and password to use all
Command utility subcommands (except to display command help and version
information).

When you install Message Queue, a default flat-file user repository is installed.
The repository is shipped with two default entries: an administrative user and a
guest user. If you are testing Message Queue, you can use the default user name
and password (admin/admin) to run the Command utility.

Using the Command Utility

5-2 Open Message Queue 4.5.2 Administration Guide

If you are setting up a production system, you must set up authentication and
authorization for administrative users. See Configuring and Managing Security
Services for information on setting up a file-based user repository or configuring
the use of an LDAP directory server. In a production environment, it is a good
security practice to use a nondefault user name and password.

■ If you want to use a secure connection to the broker, set up and enable the
ssladmin service on the target broker instance, For more information, see Message
Encryption.

Using the Command Utility
The Message Queue Command utility (imqcmd) enables you to manage the broker and
its services interactively from the command line. See Command Utility for general
reference information about the syntax, subcommands, and options of the imqcmd
command, and Broker Properties Reference for specific information on the
configuration properties used to specify broker behavior.

Specifying the User Name and Password
Because each imqcmd subcommand is authenticated against the user repository, it
requires a user name and password. The only exceptions are commands that use the -h
or -H option to display help, and those that use the -v option to display the product
version.

Use the -u option to specify an administrative user name. For example, the following
command displays information about the default broker:

imqcmd query bkr -u admin
If you omit the user name, the command will prompt you for it.

Specify the password using one of the following methods:

■ Create a password file and enter the password into that file as the value of the
imq.imqcmd.password property. On the command line, use the -passfile option
to provide the name of the password file.

■ Let the imqcmd command prompt you for the password.

Specifying the Broker Name and Port
Most imqcmd subcommands use the -b option to specify the host name and port
number of the broker to which the command applies:

-b hostName:portNumber
If no broker is specified, the command applies by default to a broker running on the
local host (localhost) at port number 7676. To issue a command to a broker that is

Note: For simplicity, the examples in this chapter use the default
user name admin as the argument to the -u option. In a real-life
production environment, you would use a custom user name.

Note: In previous versions of Message Queue, you could use the
-p option to specify a password on the imqcmd command line. As of
Message Queue 4.0, this option is deprecated and is no longer
supported; you must instead use one of the methods listed above.

Using the Command Utility

Managing a Broker 5-3

running on a remote host, listening on a non-default port, or both, you must use the -b
option to specify the host and port explicitly.

Literal IP addresses as host names: You can use a literal IPv4 or IPv6 address as a host
name. If you use a literal IPv6 address, its format must conform to RFC2732
(http://www.ietf.org/rfc/rfc2732.txt), Format for Literal IPv6 Addresses in
URL's.

Displaying the Product Version
To display the Message Queue product version, use the -v option. For example:

imqcmd -v
If you enter an imqcmd command line containing the -v option in addition to a
subcommand or other options, the Command utility processes only the -v option. All
other items on the command line are ignored.

Displaying Help
To display help on the imqcmd command, use the -h or -H option, and do not use a
subcommand. You cannot get help about specific subcommands.

For example, the following command displays help about imqcmd:

imqcmd -H
If you enter an imqcmd command line containing the -h or -H option in addition to a
subcommand or other options, the Command utility processes only the -h or -H
option. All other items on the command line are ignored.

Examples
The examples in this section illustrate how to use the imqcmd command.

The following example lists the properties of the broker running on host localhost at
port 7676, so the -b option is unnecessary:

imqcmd query bkr -u admin
The command uses the default administrative user name (admin) and omits the
password, so that the command will prompt for it.

The following example lists the properties of the broker running on the host myserver
at port 1564. The user name is aladdin:

imqcmd query bkr -b myserver:1564 -u aladdin
(For this command to work, the user repository would need to be updated to add the
user name aladdin to the admin group.)

The following example lists the properties of the broker running on localhost at port
7676. The initial timeout for the command is set to 20 seconds and the number of
retries after timeout is set to 7. The user's password is in a password file called
myPassfile, located in the current directory at the time the command is invoked.

imqcmd query bkr -u admin -passfile myPassfile -rtm 20 -rtr 7
For a secure connection to the broker, these examples could include the -secure
option. This option causes the Command utility to use the ssladmin service if that
service has been configured and started.

Managing Brokers

5-4 Open Message Queue 4.5.2 Administration Guide

Managing Brokers
This section describes how to use Command utility subcommands to perform the
following broker management tasks:

■ Shutting Down and Restarting a Broker

■ Quiescing a Broker

■ Pausing and Resuming a Broker

■ Updating Broker Properties

■ Viewing Broker Information

In addition to using the subcommands described in the following sections, imqcmd
allows you to set system properties using the -D option. This is useful for setting or
overriding connection factory properties or connection-related Java system properties.

For example, the following command changes the default value of
imqSSLIsHostTrusted:

imqcmd list svc -secure -DimqSSLIsHostTrusted=true

The following command specifies the password file and the password used for the SSL
trust store that is used by the imqcmd command:

imqcmd list svc -secure -DJavax.net.ssl.trustStore=/tmp/MyTruststore
 -Djavax.net.ssl.trustStorePassword=MyTrustword

Shutting Down and Restarting a Broker
The subcommand imqcmd shutdown bkr shuts down a broker:

imqcmd shutdown bkr [-b hostName:portNumber]
[-time nSeconds]
[-nofailover]
The broker stops accepting new connections and messages, completes delivery of
existing messages, and terminates the broker process.

The -time option, if present, specifies the interval, in seconds, to wait before shutting
down the broker. For example, the following command delays 90 seconds and then
shuts down the broker running on host wolfgang at port 1756:

imqcmd shutdown bkr -b wolfgang:1756 -time 90 -u admin
The broker will not block, but will return immediately from the delayed shutdown
request. During the shutdown interval, the broker will not accept any new jms
connections; admin connections will be accepted, and existing jms connections will
continue to operate. If the broker belongs to an enhanced broker cluster, it will not
attempt to take over for any other broker during the shutdown interval.

If the broker is part of an enhanced broker cluster (see "Enhanced Clusters" in Open
Message Queue Technical Overview), another broker in the cluster will ordinarily attempt
to take over its persistent data on shutdown; the -nofailover option to the imqcmd
shutdown bkr subcommand suppresses this behavior. Conversely, you can use the
imqcmd takeover bkr subcommand to force such a takeover manually (for instance, if
the takeover broker were to fail before completing the takeover process); see
Preventing or Forcing Broker Failover for more information.

Managing Brokers

Managing a Broker 5-5

To shut down and restart a broker, use the subcommand imqcmd restart bkr:

imqcmd restart bkr [-b hostName:portNumber]
This shuts down the broker and then restarts it using the same options that were
specified when it was first started. To choose different options, shut down the broker
with imqcmd shutdown bkr and then start it again with the Broker utility (imqbrokerd),
specifying the options you want.

Quiescing a Broker
The subcommand imqcmd quiesce bkr quiesces a broker, causing it to refuse any new
client connections while continuing to service old ones:

imqcmd quiesce bkr [-b hostName:portNumber]
If the broker is part of an enhanced broker cluster, this allows its operations to wind
down normally without triggering a takeover by another broker, for instance in
preparation for shutting it down administratively for upgrade or similar purposes. For
example, the following command quiesces the broker running on host hastings at
port 1066:

imqcmd quiesce bkr -b hastings:1066 -u admin
To reverse the process and return the broker to normal operation, use the imqcmd
unquiesce bkr subcommand:

imqcmd unquiesce bkr [-b hostName:portNumber]
For example, the following command unquiesces the broker that was quiesced in the
preceding example:

imqcmd unquiesce bkr -b hastings:1066 -u admin

Pausing and Resuming a Broker
The subcommand imqcmd pause bkr pauses a broker, suspending its connection service
threads and causing it to stop listening on the connection ports:

imqcmd pause bkr [-b hostName:portNumber]
For example, the following command pauses the broker running on host myhost at
port 1588:

imqcmd pause bkr -b myhost:1588 -u admin
Because its connection service threads are suspended, a paused broker is unable to
accept new connections, receive messages, or dispatch messages. The admin
connection service is not suspended, allowing you to continue performing
administrative tasks needed to regulate the flow of messages to the broker. Pausing a
broker also does not suspend the cluster connection service; however, since message
delivery within a cluster depends on the delivery functions performed by the different
brokers in the cluster, pausing a broker in a cluster may result in a slowing of some
message traffic.

You can also pause individual connection services and physical destinations. For more
information, see Pausing and Resuming a Connection Service and Pausing and
Resuming a Physical Destination.

Note: The imqcmd takeover bkr subcommand is intended only for
use in failed-takeover situations. You should use it only as a last
resort, and not as a general way of forcibly taking over a running
broker.

Managing Brokers

5-6 Open Message Queue 4.5.2 Administration Guide

The subcommand imqcmd resume bkr reactivates a broker's service threads, causing it
to resume listening on the ports:

imqcmd resume bkr [-b hostName:portNumber]
For example, the following command resumes the default broker (host localhost at
port 7676):

imqcmd resume bkr -u admin

Updating Broker Properties
The subcommand imqcmd update bkr can be used to change the values of a subset of
broker properties for the default broker (or for the broker at a specified host and port):

imqcmd update bkr [-b hostName:portNumber]
-o property1=value1 [[-o property2=value2] …]
For example, the following command turns off the auto-creation of queue destinations
for the default broker:

imqcmd update bkr -o imq.autocreate.queue=false -u admin
You can use imqcmd update bkr to update any of the following broker properties:

■ imq.autocreate.queue

■ imq.autocreate.topic

■ imq.autocreate.queue.maxNumActiveConsumers

■ imq.autocreate.queue.maxNumBackupConsumers

■ imq.cluster.url

■ imq.destination.DMQ.truncateBody

■ imq.destination.logDeadMsgs

■ imq.log.level

■ imq.log.file.rolloversecs

■ imq.log.file.rolloverbytes

■ imq.system.max_count

■ imq.system.max_size

■ imq.message.max_size

■ imq.portmapper.port

See Broker Properties Reference for detailed information about these properties.

Viewing Broker Information
To display information about a single broker, use the imqcmd query bkr subcommand:

imqcmd query bkr -b hostName:portNumber
This lists the current settings of the broker's properties, as shown in Example 5–1.

Example 5–1 Broker Information Listing

Querying the broker specified by:

Host Primary Port

Managing Brokers

Managing a Broker 5-7

localHost 7676

Version 4.5.2
Instance Name imqbroker
Broker ID mybroker
Primary Port 7676
Broker is Embedded false
Instance Configuration/Data Root Directory /var/imq

Current Number of Messages in System 0
Current Total Message Bytes in System 0

Current Number of Messages in Dead Message Queue 0
Current Total Message Bytes in Dead Message Queue 0
Log Dead Messages true
Truncate Message Body in Dead Message Queue false

Max Number of Messages in System unlimited (-1)
Max Total Message Bytes in System unlimited (-1)
Max Message Size 70m

Auto Create Queues true
Auto Create Topics true
Auto Created Queue Max Number of Active Consumers 1
Auto Created Queue Max Number of Backup Consumers 0

Cluster ID myClusterID
Cluster Is Highly Available true
Cluster Broker List (active)
Cluster Broker List (configured)
Cluster Master Broker
Cluster URL

Log Level INFO
Log Rollover Interval (seconds) 604800
Log Rollover Size (bytes) unlimited (-1)

The imqcmd metrics bkr subcommand displays detailed metric information about a
broker's operation:

imqcmd metrics bkr [-b hostName:portNumber]
[-m metricType]
[-int interval]
[-msp numSamples]
The -m option specifies the type of metric information to display:

■ ttl (default): Messages and packets flowing into and out of the broker

■ rts: Rate of flow of messages and packets into and out of the broker per second

■ cxn: Connections, virtual memory heap, and threads

The -int and -msp options specify, respectively, the interval (in seconds) at which to
display the metrics and the number of samples to display in the output. The default
values are 5 seconds and an unlimited number of samples.

For example, the following command displays the rate of message flow into and out of
the default broker (host localhost at port 7676) at 10-second intervals:

imqcmd metrics bkr -m rts -int 10 -u admin
Example 5–2 shows an example of the resulting output.

Managing Brokers

5-8 Open Message Queue 4.5.2 Administration Guide

Example 5–2 Broker Metrics Listing

--
 Msgs/sec Msg Bytes/sec Pkts/sec Pkt Bytes/sec
 In Out In Out In Out In Out
--
 0 0 27 56 0 0 38 66
 10 0 7365 56 10 10 7457 1132
 0 0 27 56 0 0 38 73
 0 10 27 7402 10 20 1400 8459
 0 0 27 56 0 0 38 73

For a more detailed description of the data gathered and reported by the broker, see
Brokerwide Metrics.

For brokers belonging to a broker cluster, the imqcmd list bkr subcommand displays
information about the configuration of the cluster; see Displaying a Cluster
Configuration for more information.

6

Configuring and Managing Connection Services 6-1

6Configuring and Managing Connection
Services

Message Queue offers various connection services using a variety of transport protocols
for connecting both application and administrative clients to a broker. This chapter
describes how to configure and manage these services and the connections they
support:

■ Configuring Connection Services

■ Managing Connection Services

■ Managing Connections

Configuring Connection Services
Broker configuration properties related to connection services are listed under
Connection Properties.

Figure 6–1 shows the connection services provided by the Message Queue broker.

Configuring Connection Services

6-2 Open Message Queue 4.5.2 Administration Guide

Figure 6–1 Message Queue Connection Services

These connection services are distinguished by two characteristics, as shown in
Table 6–1:

■ The service type specifies whether the service provides JMS message delivery
(NORMAL) or Message Queue administration services (ADMIN).

■ The protocol type specifies the underlying transport protocol.

By setting a broker's imq.service.activelist property, you can configure it to run
any or all of these connection services. The value of this property is a list of connection
services to be activated when the broker is started up; if the property is not specified
explicitly, the jms and admin services will be activated by default.

Table 6–1 Message Queue Connection Service Characteristics

Service Name Service Type Protocol Type

jms NORMAL TCP

ssljms NORMAL TLS (SSL-based security)

httpjms NORMAL HTTP

httpsjms NORMAL HTTPS (SSL-based security)

admin ADMIN TCP

ssladmin ADMIN TLS (SSL-based security)

Broker

Legend

Java
Client

Java
Client

Runtime

JNDI

Configuration
Files and

Logs

Persisted
Messages and
Broker State

User
Repository

Administered
Objects

ssljms
(TLS)

ssljms
(TLS)jms

(TCP)

httpjms
(HTTP)

httpsjms
(HTTPS)

admin
(TCP)

 ssladmin
(TLS)

(RMI)

(TCP)

jms
(TCP)

Web
Server

HTTP/
HTTPS
Tunnel
Servlet

Message Queue
Message Service

MQ/JMX
Runtime

JMX
Client

F
ire

w
al

l

Physical
Destinations

Admin

C
Client

C Client
Runtime

Configuring Connection Services

Configuring and Managing Connection Services 6-3

Each connection service also supports specific authentication and authorization
features; see Introduction to Security Services for more information.

Port Mapper
Each connection service is available at a particular port, specified by host name (or IP
address) and port number. You can explicitly specify a static port number for a service
or have the broker's Port Mapper assign one dynamically. The Port Mapper itself
resides at the broker's primary port, which is normally located at the standard port
number 7676. (If necessary, you can use the broker configuration property
imq.portmapper.port to override this with a different port number.) By default, each
connection service registers itself with the Port Mapper when it starts up. When a
client creates a connection to the broker, the Message Queue client runtime first
contacts the Port Mapper, requesting a port number for the desired connection service.

Alternatively, you can override the Port Mapper and explicitly assign a static port
number to a connection service, using the imq.serviceName.protocolType. port
configuration property (where serviceName and protocolType identify the specific
connection service, as shown in Table 6–1). (Only the jms, ssljms, admin, and ssladmin
connection services can be configured this way; the httpjms and httpsjms services use
different configuration properties, described in HTTP/HTTPS Support). Static ports
are generally used only in special situations, however, such as in making connections
through a firewall (see Connecting Through a Firewall), and are not recommended for
general use.

When multiple Port Mapper requests are received concurrently, they are stored in an
operating system backlog while awaiting action. The imq.portmapper.backlog
property specifies the maximum number of such backlogged requests. When this limit
is exceeded, any further requests will be rejected until the backlog is reduced.

Note: There is also a special cluster connection service, used
internally by the brokers within a broker cluster to exchange
information about the cluster's configuration and state. This service
is not intended for use by clients communicating with a broker. See
Configuring and Managing Broker Clusters for more information
about broker clusters.

Also there are two JMX connectors, jmxrmi and ssljmxrmi, that
support JMX-based administration. These JMX connectors are very
similar to the connection services in Table 6–1, above, and are used
by JMX clients to establish a connection to the broker's MBean
server. For more information, see JMX Connection Infrastructure.

Note: In cases where two or more hosts are available (such as
when more than one network interface card is installed in a
computer), you can use broker properties to specify which host the
connection services should bind to. The imq.hostname property
designates a single default host for all connection services; this can
then be overridden, if necessary, with imq.serviceName.
protocolType.hostname (for the jms, ssljms, admin, or ssladmin
service) or imq.portmapper.hostname (for the Port Mapper itself).

Managing Connection Services

6-4 Open Message Queue 4.5.2 Administration Guide

Thread Pool Management
Each connection service is multithreaded, supporting multiple connections. The
threads needed for these connections are maintained by the broker in a separate thread
pool for each service. As threads are needed by a connection, they are added to the
thread pool for the service supporting that connection.

The threading model you choose specifies whether threads are dedicated to a single
connection or shared by multiple connections:

■ In the dedicated model, each connection to the broker requires two threads: one for
incoming and one for outgoing messages. This limits the number of connections
that can be supported, but provides higher performance.

■ In the shared model, connections are processed by a shared thread when sending or
receiving messages. Because each connection does not require dedicated threads,
this model increases the number of possible connections, but at the cost of lower
performance because of the additional overhead needed for thread management.

The broker's imq.serviceName. threadpool_model property specifies which of the two
models to use for a given connection service. This property takes either of two string
values: dedicated or shared. If you don't set the property explicitly, dedicated is
assumed by default.

You can also set the broker properties imq.serviceName. min_threads and
imq.serviceName. max_threads to specify a minimum and maximum number of threads
in a service's thread pool. When the number of available threads exceeds the specified
minimum threshold, Message Queue will shut down threads as they become free until
the minimum is reached again, thereby saving on memory resources. Under heavy
loads, the number of threads might increase until the pool's maximum number is
reached; at this point, new connections are rejected until a thread becomes available.

The shared threading model uses distributor threads to assign threads to active
connections. The broker property imq.shared.connectionMonitor_limit specifies the
maximum number of connections that can be monitored by a single distributor thread.
The smaller the value of this property, the faster threads can be assigned to
connections. The imq.ping.interval property specifies the time interval, in seconds,
at which the broker will periodically test ("ping") a connection to verify that it is still
active, allowing connection failures to be detected preemptively before an attempted
message transmission fails.

Managing Connection Services
Message Queue brokers support connections from both application clients and
administrative clients. See Configuring Connection Services for a description of the
available connection services. The Command utility provides subcommands that you
can use for managing both connection services as a whole and individual services; to
apply a subcommand to a particular service, use the -n option to specify one of the
names listed in the "Service Name" column of Table 6–1. Subcommands are available
for the following connection service management tasks:

■ Pausing and Resuming a Connection Service

■ Updating Connection Service Properties

■ Viewing Connection Service Information

Pausing and Resuming a Connection Service
Pausing a connection service has the following effects:

Managing Connection Services

Configuring and Managing Connection Services 6-5

■ The broker stops accepting new client connections on the paused service. If a
Message Queue client attempts to open a new connection, it will get an exception.

■ All existing connections on the paused service are kept alive, but the broker
suspends all message processing on such connections until the service is resumed.
(For example, if a client attempts to send a message, the send method will block
until the service is resumed.)

■ The message delivery state of any messages already received by the broker is
maintained. (For example, transactions are not disrupted and message delivery
will resume when the service is resumed.)

The admin connection service can never be paused; to pause and resume any other
service, use the subcommands imqcmd pause svc and imqcmd resume svc. The syntax of
the imqcmd pause svc subcommand is as follows:

imqcmd pause svc -n serviceName
 [-b hostName:portNumber]
For example, the following command pauses the httpjms service running on the
default broker (host localhost at port 7676):

imqcmd pause svc -n httpjms -u admin
The imqcmd resume svc subcommand resumes operation of a connection service
following a pause:

imqcmd resume svc -n serviceName
 [-b hostName:portNumber]

Updating Connection Service Properties
You can use the imqcmd update svc subcommand to change the value of one or more of
the service properties listed in Table 6–2. See Connection Properties for a description of
these properties.

The imqcmd update svc subcommand has the following syntax:

imqcmd update svc -n serviceName
 [-b hostName:portNumber]
 -o property1=value1 [[-o property2=value2]…]
For example, the following command changes the minimum number of threads
assigned to the jms connection service on the default broker (host localhost at port
7676) to 20:

imqcmd update svc -o minThreads=20 -u admin

Viewing Connection Service Information
To list the connection services available on a broker, use the imqcmd list svc
subcommand:

Table 6–2 Connection Service Properties Updated by Command Utility

Property Description

port Port assigned to the service to be updated (does not apply to httpjms or
httpsjms)

A value of 0 means the port is dynamically allocated by the Port Mapper.

minThreads Minimum number of threads assigned to the service

maxThreads Maximum number of threads assigned to the service

Managing Connection Services

6-6 Open Message Queue 4.5.2 Administration Guide

imqcmd list svc [-b hostName:portNumber]
For example, the following command lists all services on the default broker (host
localhost at port 7676):

imqcmd list svc -u admin
Example 6–1 shows an example of the resulting output.

Example 6–1 Connection Services Listing

--
Service Name Port Number Service State
--
admin 41844 (dynamic) RUNNING
httpjms - UNKNOWN
httpsjms - UNKNOWN
jms 41843 (dynamic) RUNNING
ssladmin dynamic UNKNOWN
ssljms dynamic UNKNOWN

The imqcmd query svc subcommand displays information about a single connection
service:

imqcmd query svc -n serviceName
[-b hostName:portNumber]
For example, the following command displays information about the jms connection
service on the default broker (host localhost at port 7676):

imqcmd query svc -n jms -u admin
Example 6–2 shows an example of the resulting output.

Example 6–2 Connection Service Information Listing

Service Name jms
Service State RUNNING
Port Number 60920 (dynamic)

Current Number of Allocated Threads 0
Current Number of Connections 0

Min Number of Threads 10
Max Number of Threads 1000

To display metrics information about a connection service, use the imqcmd metrics svc
subcommand:

imqcmd metrics svc -n serviceName
 [-b hostName:portNumber]
[-m metricType]
[-int interval]
[-msp numSamples]
The -m option specifies the type of metric information to display:

■ ttl (default): Messages and packets flowing into and out of the broker by way of
the specified connection service

■ rts: Rate of flow of messages and packets into and out of the broker per second by
way of the specified connection service

Managing Connections

Configuring and Managing Connection Services 6-7

■ cxn: Connections, virtual memory heap, and threads

The -int and -msp options specify, respectively, the interval (in seconds) at which to
display the metrics and the number of samples to display in the output. The default
values are 5 seconds and an unlimited number of samples.

For example, the following command displays cumulative totals for messages and
packets handled by the default broker (host localhost at port 7676) by way of the jms
connection service:

imqcmd metrics svc -n jms -m ttl -u admin
Example 6–3 shows an example of the resulting output.

Example 6–3 Connection Service Metrics Listing

 Msgs Msg Bytes Pkts Pkt Bytes
In Out In Out In Out In Out

164 100 120704 73600 282 383 135967 102127
657 100 483552 73600 775 876 498815 149948

For a more detailed description of the use of the Command utility to report connection
service metrics, see Connection Service Metrics.

Managing Connections
The Command utility's list cxn and query cxn subcommands display information
about individual connections. The subcommand imqcmd list cxn lists all connections
for a specified connection service:

imqcmd list cxn [-svn serviceName]
[-b hostName:portNumber]
If no service name is specified, all connections are listed. For example, the following
command lists all connections on the default broker (host localhost at port 7676):

imqcmd list cxn -u admin
Example 6–4 shows an example of the resulting output.

Example 6–4 Broker Connections Listing

Listing all the connections on the broker specified by:

Host Primary Port

localhost 7676

Connection ID User Service Producers Consumers Host

1964412264455443200 guest jms 0 1 127.0.0.1
1964412264493829311 admin admin 1 1 127.0.0.1

Successfully listed connections.

To display detailed information about a single connection, obtain the connection
identifier from imqcmd list cxn and pass it to the imqcmd query cxn subcommand:

Managing Connections

6-8 Open Message Queue 4.5.2 Administration Guide

imqcmd query cxn -n connectionID
 [-b hostName:portNumber]
For example, the command

imqcmd query cxn -n 421085509902214374 -u admin
produces output like that shown in Example 6–5.

Example 6–5 Connection Information Listing

Connection ID 421085509902214374
User guest
Service jms
Producers 0
Consumers 1
Host 111.22.333.444
Port 60953
Client ID
Client Platform

The imqcmd destroy cxn subcommand destroys a connection:

imqcmd destroy cxn -n connectionID
 [-b hostName:portNumber]
For example, the command

imqcmd destroy cxn -n 421085509902214374 -u admin
destroys the connection shown in Example 6–5.

7

Managing Message Delivery 7-1

7Managing Message Delivery

A Message Queue message is routed to its consumer clients by way of a physical
destination on a message broker. The broker manages the memory and persistent
storage associated with the physical destination and configures its behavior. The
broker also manages memory at a system-wide level, to assure that sufficient resources
are available to support all destinations.

Message delivery also involves the maintenance of state information needed by the
broker to route messages to consumers and to track acknowledgements and
transactions.

This chapter provides information needed to manage message delivery, and includes
the following topics:

■ Configuring and Managing Physical Destinations

■ Managing Broker System-Wide Memory

■ Managing Durable Subscriptions

■ Managing Transactions

Configuring and Managing Physical Destinations
This section describes how to use the Message Queue Command utility (imqcmd) to
manage physical destinations. It includes discussion of a specialized physical
destination managed by the broker, the dead message queue, whose properties differ
somewhat from those of other destinations.

This section covers the following topics regarding the management of physical
destinations:

■ Command Utility Subcommands for Physical Destination Management

■ Creating and Destroying Physical Destinations

■ Pausing and Resuming a Physical Destination

Note: In a broker cluster, you create a physical destination on one
broker and the cluster propagates it to all the others. Because the
brokers cooperate to route messages across the cluster, client
applications can consume messages from destinations on any
broker in the cluster. However the persistence and
acknowledgment of a message is managed only by the broker to
which a message was originally produced.

Configuring and Managing Physical Destinations

7-2 Open Message Queue 4.5.2 Administration Guide

■ Purging a Physical Destination

■ Updating Physical Destination Properties

■ Viewing Physical Destination Information

■ Managing Physical Destination Disk Utilization

■ Using the Dead Message Queue

Command Utility Subcommands for Physical Destination Management
The Message Queue Command utility (imqcmd) enables you to manage physical
destinations interactively from the command line. See Command Line Reference for
general reference information about the syntax, subcommands, and options of the
imqcmd command, and Physical Destination Property Reference for specific
information on the configuration properties used to specify physical destination
behavior.

Table 7–1 lists the imqcmd subcommands for physical destination management. For full
reference information about these subcommands, see Table 16–7.

Creating and Destroying Physical Destinations
The subcommand imqcmd create dst creates a new physical destination:

imqcmd create dst -t destType -n destName
 [[-o property=value] …]
You supply the destination type (q for a queue or t for a topic) and the name of the
destination.

Note: For provider independence and portability, client
applications typically use destination administered objects to
interact with physical destinations. Managing Administered
Objects describes how to configure such administered objects for
use by client applications. For a general conceptual introduction to
physical destinations, see the Open Message Queue Technical
Overview.

Table 7–1 Physical Destination Subcommands for the Command Utility

Subcommand Description

create dst Create physical destination

destroy dst Destroy physical destination

pause dst Pause message delivery for physical destination

resume dst Resume message delivery for physical destination

purge dst Purge all messages from physical destination

compact dst Compact physical destination

update dst Set physical destination properties

list dst List physical destinations

query dst List physical destination property values

metrics dst Display physical destination metrics

Configuring and Managing Physical Destinations

Managing Message Delivery 7-3

Naming Destinations
Destination names must conform to the rules described below for queue and topic
destinations.

Supported Queue Destination Names Queue destination names must conform to the
following rules:

■ It must contain only alphabetic characters (A-Z, a-z), digit characters (0-9),
underscores (_), and dollar signs ($).

■ It must not contain spaces.

■ It must begin with an alphabetic character (A-Z, a-z), an underscore (_), or a dollar
sign ($).

■ It must not begin with the characters mq.

For example, the following command creates a queue destination named XQueue:

imqcmd create dst -t q -n XQueue

Supported Topic Destination Names Topic destination names must conform to the same
rules as queue destinations, as specified in Supported Queue Destination Names,
except that Message Queue also supports, in addition, topic destination names that
include wildcard characters, representing multiple destinations. These symbolic names
allow publishers to publish messages to multiple topics and subscribers to consume
messages from multiple topics. Using symbolic names, you can create destinations, as
needed, consistent with the wildcard naming scheme. Publishers and subscribers
automatically publish to and consume from any added destinations that match the
symbolic names. (Wildcard topic subscribers are more common than publishers.)

The format of a symbolic topic destination name consists of multiple segments, in
which wildcard characters (*, **, >) can represent one or more segments of the name.
For example, suppose you have a topic destination naming scheme as follows:

size.color.shape

where the topic name segments can have the following values:

■ size: large, medium, small, ...

■ color: red, green, blue, ...

■ shape: circle, triangle, square, ...

Message Queue supports the following wildcard characters:

■ * matches a single segment

■ ** matches one or more segments

■ > matches any number of successive segments

You can therefore indicate multiple topic destinations as follows:

large.*.circle would represent:

large.red.circle
large.green.circle
...

**.square would represent all names ending in .square, for example:

small.green.square
medium.blue.square
...

Configuring and Managing Physical Destinations

7-4 Open Message Queue 4.5.2 Administration Guide

small.> would represent all destination names starting with small., for example:

small.blue.circle
small.red.square
...

To use this multiple destination feature, you create topic destinations using a naming
scheme similar to that described above. For example, the following command creates a
topic destination named large.green.circle:

imqcmd create dst -t t -n large.green.circle
Client applications can then create wildcard publishers or wildcard consumers using
symbolic destination names, as shown in the following examples:

Example 7–1 Wildcard Publisher

...
String DEST_LOOKUP_NAME = "large.*.circle";
Topic t = (Destination) ctx.lookup(DEST_LOOKUP_NAME);
TopicPublisher myPublisher = mySession.createPublisher(t)
myPublisher.send(myMessage);

In this example, the broker will place a copy of the message in any destination that
matches the symbolic name large.*.circle

Example 7–2 Wildcard Subscriber

...
String DEST_LOOKUP_NAME = "**.square";
Topic t = (Destination) ctx.lookup(DEST_LOOKUP_NAME);
TopicSubscriber mySubscriber = mySession.createSubscriber(t);
Message m = mySubscriber.receive();

In this example, a subscriber will be created if there is at least one destination that
matches the symbolic name **.square and will receive messages from all destinations
that match that symbolic name. If there are no destinations matching the symbolic
name, the subscriber will not be registered with the broker until such a destination
exists.

If you create additional destinations that match a symbolic name, then wildcard
publishers created using that symbolic name will subsequently publish to that
destination and wildcard subscribers created using that symbolic name will
subsequently receive messages from that destination.

In addition, Message Queue administration tools, in addition to reporting the total
number of publishers (producers) and subscribers (consumers) for a topic destination,
will also report the number of publishers that are wildcard publishers (including their
corresponding symbolic destination names) and the number of subscribers that are
wildcard subscribers (including their symbolic destination names), if any. See Viewing
Physical Destination Information.

Setting Property Values
The imqcmd create dst command may also optionally include any property values
you wish to set for the destination, specified with the -o option. For example, the
following command creates a topic destination named hotTopic with a maximum
message length of 5000 bytes:

Configuring and Managing Physical Destinations

Managing Message Delivery 7-5

imqcmd create dst -t t -n hotTopic -o maxBytesPerMsg=5000
See Physical Destination Property Reference for reference information about the
physical destination properties that can be set with this option. (For auto-created
destinations, you set default property values in the broker's instance configuration file;
see Table 17–3 for information on these properties.)

Destroying Destinations
To destroy a physical destination, use the imqcmd destroy dst subcommand:

imqcmd destroy dest -t destType -n destName
This purges all messages at the specified destination and removes it from the broker;
the operation is not reversible.

For example, the following command destroys the queue destination named
curlyQueue:

imqcmd destroy dest -t q -n curlyQueue -u admin

Pausing and Resuming a Physical Destination
Pausing a physical destination temporarily suspends the delivery of messages from
producers to the destination, from the destination to consumers, or both. This can be
useful, for instance, to prevent destinations from being overwhelmed when messages
are being produced much faster than they are consumed. You must also pause a
physical destination before compacting it (see Managing Physical Destination Disk
Utilization).

To pause the delivery of messages to or from a physical destination, use the imqcmd
pause dst subcommand:

imqcmd pause dest [-t destType -n destName]
[-pst pauseType]
If you omit the destination type and name (-t and -n options), all physical
destinations will be paused. The pause type (-pst) specifies what type of message
delivery to pause:

PRODUCERS
Pause delivery from message producers to the destination

CONSUMERS
Pause delivery from the destination to message consumers

ALL
Pause all message delivery (both producers and consumers)

If no pause type is specified, all message delivery will be paused.

For example, the following command pauses delivery from message producers to the
queue destination curlyQueue:

imqcmd pause dst -t q -n curlyQueue -pst PRODUCERS -u admin
The following command pauses delivery to message consumers from the topic
destination hotTopic:

imqcmd pause dst -t t -n hotTopic -pst CONSUMERS -u admin
This command pauses all message delivery to and from all physical destinations:

imqcmd pause dst -u admin

Note: You cannot destroy the dead message queue.

Configuring and Managing Physical Destinations

7-6 Open Message Queue 4.5.2 Administration Guide

The imqcmd resume dst subcommand resumes delivery to a paused destination:

imqcmd resume dest [-t destType -n destName]
For example, the following command resumes message delivery to the queue
destination curlyQueue:

imqcmd resume dst -t q -n curlyQueue -u admin
If no destination type and name are specified, all destinations are resumed. This
command resumes delivery to all physical destinations:

imqcmd resume dst -u admin

Purging a Physical Destination
Purging a physical destination deletes all messages it is currently holding. You might
want to do this when a destination's accumulated messages are taking up too much of
the system's resources, such as when a queue is receiving messages but has no
registered consumers to which to deliver them, or when a topic's durable subscribers
remain inactive for long periods of time.

To purge a physical destination, use the imqcmd purge dst subcommand:

imqcmd purge dst -t destType -n destName
For example, the following command purges all accumulated messages from the topic
destination hotTopic:

imqcmd purge dst -t t -n hotTopic -u admin

Updating Physical Destination Properties
The subcommand imqcmd update dst changes the values of specified properties of a
physical destination:

imqcmd update dst -t destType -n destName
-o property1=value1 [[-o property2=value2] …]
The properties to be updated can include any of those listed in Table 18–1 (with the
exception of the isLocalOnly property, which cannot be changed once the destination
has been created). For example, the following command changes the maxBytesPerMsg
property of the queue destination curlyQueue to 1000 and the maxNumMsgs property to
2000:

Note: In a broker cluster, since each broker in the cluster has its
own instance of each physical destination, you must pause each
such instance individually.

Note: In a broker cluster, since each broker in the cluster has its
own instance of each physical destination, you must purge each
such instance individually.

Tip: When restarting a broker that has been shut down, you can
use the Broker utility's -reset messages option to clear out its stale
messages: for example,

imqbrokerd -reset messages -u admin

This saves you the trouble of purging physical destinations after
restarting the broker.

Configuring and Managing Physical Destinations

Managing Message Delivery 7-7

imqcmd update dst -t q -n curlyQueue -u admin
-o maxBytesPerMsg=1000
-o maxNumMsgs=2000

Viewing Physical Destination Information
To list the physical destinations on a broker, use the imqcmd list dst subcommand:

imqcmd list dst -b hostName:portNumber [-t destType][-tmp]
This lists all physical destinations on the broker identified by hostName and portNumber
of the type (queue or topic) specified by destType. If the -t option is omitted, both
queues and topics are listed. For example, the following command lists all physical
destinations on the broker running on host myHost at port number 4545:

imqcmd list dst -b myHost:4545

If you specify the -tmp option, temporary destinations are listed as well. These are
destinations created by clients, normally for the purpose of receiving replies to
messages sent to other clients.

The imqcmd query dst subcommand displays information about a single physical
destination:

imq query dst -t destType -n destName
For example, the following command displays information about the queue
destination curlyQueue:

imqcmd query dst -t q -n curlyQueue -u admin
Example 7–3 shows an example of the resulting output. You can use the imqcmd update
dst subcommand (see Updating Physical Destination Properties) to change the value
of any of the properties listed.

Example 7–3 Physical Destination Information Listing

Destination Name Destination Type

large.green.circle Topic

On the broker specified by:

Host Primary Port

localhost 7676

Destination Name large.green.circle
Destination Type Topic
Destination State RUNNING
Created Administratively true

Note: The type of a physical destination is not an updatable
property; you cannot use the imqcmd update dst subcommand to
change a queue to a topic or a topic to a queue.

Note: The list of queue destinations always includes the dead
message queue (mq.sys.dmq) in addition to any other queue
destinations currently existing on the broker.

Configuring and Managing Physical Destinations

7-8 Open Message Queue 4.5.2 Administration Guide

Current Number of Messages
 Actual 0
 Remote 0
 Held in Transaction 0
Current Message Bytes
 Actual 0
 Remote 0
 Held in Transaction 0
Current Number of Producers 0
Current Number of Producer Wildcards 0
Current Number of Consumers 1
Current Number of Consumer Wildcards 1
 large.*.circle (1)

Max Number of Messages unlimited (-1)
Max Total Message Bytes unlimited (-1)
Max Bytes per Message unlimited (-1)
Max Number of Producers 100

Limit Behavior REJECT_NEWEST
Consumer Flow Limit 1000
Is Local Destination false
Use Dead Message Queue true
XML schema validation enabled false
XML schema URI List -
Reload XML schema on failure false

For destinations in a broker cluster, it is often helpful to know how many messages in
a destination are local (produced to the local broker) and how many are remote
(produced to a remote broker). Hence, imqcmd query dst reports, in addition to the
number and total message bytes of messages in the destination, the number and total
bytes of messages that are sent to the destination from remote brokers in the cluster.

For topic destinations, imqcmd query dst reports the number of publishers that are
wildcard publishers (including their corresponding symbolic destination names) and
the number of subscribers that are wildcard subscribers (including their symbolic
destination names), if any.

To display metrics information about a physical destination, use the imqcmd metrics
dst subcommand:

imqcmd metrics dst -t destType -n destName
[-m metricType]
[-int interval]
[-msp numSamples]
The -m option specifies the type of metric information to display:

■ ttl (default): Messages and packets flowing into and out of the destination and
residing in memory

■ rts: Rate of flow of messages and packets into and out of the destination per
second, along with other rate information

■ con: Metrics related to message consumers

■ dsk: Disk usage

The -int and -msp options specify, respectively, the interval (in seconds) at which to
display the metrics and the number of samples to display in the output. The default
values are 5 seconds and an unlimited number of samples.

Configuring and Managing Physical Destinations

Managing Message Delivery 7-9

For example, the following command displays cumulative totals for messages and
packets handled by the queue destination curlyQueue:

imqcmd metrics dst -t q -n curlyQueue -m ttl -u admin
Example 7–4 shows an example of the resulting output.

Example 7–4 Physical Destination Metrics Listing

--
-
 Msgs Msg Bytes Msg Count Total Msg Bytes (k)
Largest
 In Out In Out Current Peak Avg Current Peak Avg Msg
(k)
--
-
3128 3066 1170102 1122340 128 409 29 46 145 10 < 1
4858 4225 1863159 1635458 144 201 33 53 181 42 < 1
2057 1763 820804 747200 84 377 16 71 122 79 < 1

For a more detailed description of the use of the Command utility to report physical
destination metrics, see Physical Destination Metrics.

Managing Physical Destination Disk Utilization
Because of the way message storage is structured in a file-based persistent data store
(see File-Based Persistence Properties), disk space can become fragmented over time,
resulting in inefficient utilization of the available resources. Message Queue's
Command utility (imqcmd) provides subcommands for monitoring disk utilization by
physical destinations and for reclaiming unused disk space when utilization drops.

To monitor a physical destination's disk utilization, use the imqcmd metrics dst
subcommand:

imqcmd metrics dst -m dsk -t destType -n destMame
This displays the total number of bytes of disk space reserved for the destination's use,
the number of bytes currently in use to hold active messages, and the percentage of
available space in use (the disk utilization ratio). For example, the following command
displays disk utilization information for the queue destination curlyQueue:

imqcmd metrics dst -m dsk -t q -n curlyQueue -u admin
Example 7–5 shows an example of the resulting output.

Example 7–5 Destination Disk Utilization Listing

Reserved Used Utilization Ratio

804096 675533 84
1793024 1636222 91
2544640 2243808 88

The disk utilization pattern depends on the characteristics of the messaging
application using a particular physical destination. Depending on the flow of
messages into and out of the destination and their relative size, the amount of disk
space reserved might grow over time. If messages are produced at a higher rate than

Configuring and Managing Physical Destinations

7-10 Open Message Queue 4.5.2 Administration Guide

they are consumed, free records should generally be reused and the utilization ratio
should be on the high side. By contrast, if the rate of message production is
comparable to or lower than the consumption rate, the utilization ratio will likely be
low.

As a rule, you want the reserved disk space to stabilize and the utilization ratio to
remain high. If the system reaches a steady state in which the amount of reserved disk
space remains more or less constant with utilization above 75%, there is generally no
need to reclaim unused disk space. If the reserved space stabilizes at a utilization rate
below 50%, you can use the imqcmd compact dst subcommand to reclaim the disk
space occupied by free records:

compact dst [-t destType -n destName]
This compacts the file-based data store for the designated physical destination. If no
destination type and name are specified, all physical destinations are compacted.

You must pause a destination (with the imqcmd pause subcommand) before
compacting it, and resume it (with imqcmd resume) afterward (see Pausing and
Resuming a Physical Destination):

imqcmd pause dst -t q -n curlyQueue -u admin
imqcmd compact dst -t q -n curlyQueue -u admin
imqcmd resume dst -t q -n curlyQueue -u admin

Using the Dead Message Queue
The dead message queue, mq.sys.dmq, is a system-created physical destination that
holds the dead messages of a broker's physical destinations. The dead message queue
is a tool for monitoring, tuning system efficiency, and troubleshooting. For a definition
of the term dead message and a more detailed introduction to the dead message
queue, see the Open Message Queue Technical Overview.

The broker automatically creates a dead message queue when it starts. The broker
places messages on the queue if it cannot process them or if their time-to-live has
expired. In addition, other physical destinations can use the dead message queue to
hold discarded messages. This can provide information that is useful for
troubleshooting the system.

Managing the Dead Message Queue
The physical destination configuration property useDMQ controls a destination's use of
the dead message queue. Physical destinations are configured to use the dead message
queue by default; to disable a destination from using it, set the destination's useDMQ
property to false:

imqcmd update dst -t q -n curlyQueue -o useDMQ=false
You can enable or disable the use of the dead message queue for all auto-created
physical destinations on a broker by setting the broker's
imq.autocreate.destination.useDMQ broker property:

imqcmd update bkr -o imq.autocreate.destination.useDMQ=false
You can manage the dead message queue with the Message Queue Command utility
(imqcmd) just as you manage other queues, but with some differences. For example,
because the dead message queue is system-created, you cannot create, pause, or

Tip: If a destination's reserved disk space continues to increase
over time, try reconfiguring its maxNumMsgs, maxBytesPerMsg,
maxTotalMsgBytes, and limitBehavior properties (see Physical
Destination Properties).

Managing Broker System-Wide Memory

Managing Message Delivery 7-11

destroy it. Also, as shown in Table 7–2, default values for the dead message queue's
configuration properties sometimes differ from those of ordinary queues.

Enabling Dead Message Logging
The broker configuration property logDeadMsgs controls the logging of events related
to the dead message queue. When dead message logging is enabled, the broker will
log the following events:

■ A message is moved to the dead message queue.

■ A message is discarded from the dead message queue (or from any physical
destination that does not use the dead message queue).

■ A physical destination reaches its limits.

Dead message logging is disabled by default. The following command enables it:

imqcmd update bkr -o imq.destination.logDeadMsgs=true

Managing Broker System-Wide Memory
Once clients are connected to the broker, the routing and delivery of messages can
proceed. In this phase, the broker is responsible for creating and managing different
types of physical destinations, ensuring a smooth flow of messages, and using
resources efficiently. You can use the broker configuration properties described under
Routing and Delivery Properties to manage these tasks in a way that suits your
application's needs.

Table 7–2 Dead Message Queue Treatment of Physical Destination Properties

Property Variant Treatment by Dead Message Queue

maxNumMsgs Default value is 1000, rather than -1 (unlimited) as for
ordinary queues.

maxTotalMsgBytes Default value is 10m (10 megabytes), rather than -1 (unlimited)
as for ordinary queues.

limitBehavior Default value is REMOVE_OLDEST, rather than REJECT_NEWEST as
for ordinary queues.

FLOW_CONTROL is not supported for the dead message queue.

maxNumProducers Does not apply to the dead message queue.

isLocalOnly Permanently set to false in broker clusters; the dead message
queue in a cluster is always a global physical destination.

localDeliveryPreferred Does not apply to the dead message queue.

Tip: By default, the dead message queue stores entire messages. If
you do not plan to restore dead messages, you can reduce the size
of the dead message queue by setting the broker's
imq.destination.DMQ.truncateBody property to true:

imqcmd update bkr -o imq.destination.DMQ.truncateBody=true

This will discard the body of all messages and retain only the
headers and property data.

Note: Dead message logging applies to all physical destinations
that use the dead message queue. You cannot enable or disable
logging for an individual physical destination.

Managing Broker System-Wide Memory

7-12 Open Message Queue 4.5.2 Administration Guide

The performance and stability of a broker depend on the system resources (such as
memory) available and how efficiently they are utilized. You can set configuration
properties to prevent the broker from becoming overwhelmed by incoming messages
or running out of memory. These properties function at three different levels to keep
the message service operating as resources become scarce:

■ Systemwide message limits apply collectively to all physical destinations on the
system. These include the maximum number of messages held by a broker
(imq.system.max_count) and the maximum total number of bytes occupied by
such messages (imq.system.max_size). If either of these limits is reached, the
broker will reject any new messages until the pending messages fall below the
limit. There is also a limit on the maximum size of an individual message
(imq.message.max_size) and a time interval at which expired messages are
removed (imq.message.expiration.interval).

■ Individual destination limits regulate the flow of messages to a specific physical
destination. The configuration properties controlling these limits are described in
Physical Destination Property Reference. They include limits on the number and
size of messages the destination will hold, the number of message producers and
consumers that can be created for it, and the number of messages that can be
batched together for delivery to the destination.

The destination can be configured to respond to memory limits by slowing down
the delivery of message by message producers, by rejecting new incoming
messages, or by throwing out the oldest or lowest-priority existing messages.
Messages deleted from the destination in this way may optionally be moved to the
dead message queue rather than discarded outright; the broker property
imq.destination.DMQ.truncateBody controls whether the entire message body is
saved in the dead message queue, or only the header and property data.

As a convenience during application development and testing, you can configure
a message broker to create new physical destinations automatically whenever a
message producer or consumer attempts to access a nonexistent destination. The
broker properties summarized in Table 17–3 parallel the ones just described, but
apply to such auto-created destinations instead of administratively created ones.

■ System memory thresholds define levels of memory usage at which the broker
takes increasingly serious action to prevent memory overload. Four such usage
levels are defined:

■ Green: Plenty of memory is available.

■ Yellow: Broker memory is beginning to run low.

■ Orange: The broker is low on memory.

■ Red: The broker is out of memory.

The memory utilization percentages defining these levels are specified by the
broker properties imq.green.threshold, imq.yellow.threshold ,
imq.orange.threshold, and imq.red.threshold , respectively; the default values
are 0% for green, 80% for yellow, 90% for orange, and 98% for red.

As memory usage advances from one level to the next, the broker responds
progressively, first by swapping messages out of active memory into persistent
storage and then by throttling back producers of nonpersistent messages,
eventually stopping the flow of messages into the broker. (Both of these measures
degrade broker performance.) The throttling back of message production is done
by limiting the size of each batch delivered to the number of messages specified by
the properties imq.resourceState .count, where resourceState is green , yellow,
orange, or red , respectively.

Managing Durable Subscriptions

Managing Message Delivery 7-13

The triggering of these system memory thresholds is a sign that systemwide and
destination message limits are set too high. Because the memory thresholds cannot
always catch potential memory overloads in time, you should not rely on them to
control memory usage, but rather reconfigure the system-wide and destination limits
to optimize memory resources.

Managing Durable Subscriptions
Message Queue clients subscribing to a topic destination can register as durable
subscribers. The corresponding durable subscription has a unique, persistent identity
and requires the broker to retain messages addressed to it even when its message
consumer (the durable subscriber) becomes inactive. Ordinarily, the broker may delete
a message held for a durable subscriber only when the message expires.

The Message Queue Command utility provides subcommands for managing a
broker's durable subscriptions in the following ways:

■ Listing durable subscriptions

■ Purging all messages for a durable subscription

■ Destroying a durable subscription

To list durable subscriptions for a specified physical destination, use the imqcmd list
dur subcommand:

imqcmd list dur -d topicName
For example, the following command lists all durable subscriptions to the topic
SPQuotes on the default broker (host localhost at port 7676):

imqcmd list dur -d SPQuotes
The resulting output lists the name of each durable subscription to the topic, the client
identifier to which it belongs, its current state (active or inactive), and the number of
messages currently queued to it. Example 7–6 shows an example.

Example 7–6 Durable Subscription Information Listing

Name Client ID Number of Durable Sub
 Messages State
--
myDurable myClientID 1 INACTIVE

The imqcmd purge dur subcommand purges all messages for a specified durable
subscriber and client identifier:

imqcmd purge dur -n subscriberName
 -c clientID
For example, the following command purges all messages for the durable subscription
listed in Example 7–6:

imqcmd purge dur -n myCurable -c myClientID
The imqcmd destroy dur subcommand destroys a durable subscription, specified by its
subscriber name and client identifier:

imqcmd destroy dur -n subscriberName
 -c clientID
For example, the following command destroys the durable subscription listed in
Example 7–6:

imqcmd destroy dur -n myCurable -c myClientID

Managing Transactions

7-14 Open Message Queue 4.5.2 Administration Guide

Managing Transactions
All transactions initiated by client applications are tracked by the broker. These can be
local Message Queue transactions or distributed transactions managed by a
distributed transaction manager.

Each transaction is identified by a unique 64-bit Message Queue transaction identifier.
Distributed transactions also have a distributed transaction identifier (XID), up to 128
bytes long, assigned by the distributed transaction manager. Message Queue
maintains the association between its own transaction identifiers and the
corresponding XIDs.

The imqcmd list txn subcommand lists the transactions being tracked by a broker:

imqcmd list txn
This lists all transactions on the broker, both local and distributed. For each
transaction, it shows the transaction ID, state, user name, number of messages and
acknowledgments, and creation time. Example 7–7 shows an example of the resulting
output.

Example 7–7 Broker Transactions Listing

Transaction ID State User name # Msgs/ Creation time
 # Acks

64248349708800 PREPARED guest 4/0 1/30/02 10:08:31 AM
64248371287808 PREPARED guest 0/4 1/30/02 10:09:55 AM

To display detailed information about a single transaction, obtain the transaction
identifier from imqcmd list txn and pass it to the imqcmd query txn subcommand:

imqcmd query txn -n transactionID
This displays the same information as imqcmd list txn, along with the client identifier,
connection identification, and distributed transaction identifier (XID). For example, the
command

imqcmd query txn -n 64248349708800
produces output like that shown in Example 7–8.

Example 7–8 Transaction Information Listing

Client ID
Connection guest@192.18.116.219:62209->jms:62195
Creation time 1/30/02 10:08:31 AM
Number of acknowledgments 0
Number of messages 4
State PREPARED
Transaction ID 64248349708800
User name guest
XID
6469706F6C7369646577696E6465723130313234313431313030373230

If a broker fails, it is possible that a distributed transaction could be left in the
PREPARED state without ever having been committed. Until such a transaction is
committed, its messages will not be delivered and its acknowledgments will not be
processed. Hence, as an administrator, you might need to monitor such transactions
and commit them or roll them back manually. For example, if the broker's

Managing Transactions

Managing Message Delivery 7-15

imq.transaction.autorollback property (see Table 17–2) is set to false, you must
manually commit or roll back non-distributed transactions and unrecoverable
distributed transactions found in the PREPARED state at broker startup, using the
Command utility's commit txn or rollback txn subcommand:

imqcmd commit txn -n transactionID
imqcmd rollback txn -n transactionID
For example, the following command commits the transaction listed in Example 7–8:

imqcmd commit txn -n64248349708800

Note: Only transactions in the PREPARED state can be committed
. However, transaction in the STARTED, FAILED, INCOMPLETE,
COMPLETE, and PREPARED states can be rolled back. You should do so
only if you know that the transaction has been left in this state by a
failure and is not in the process of being committed by the
distributed transaction manager.

Managing Transactions

7-16 Open Message Queue 4.5.2 Administration Guide

8

Configuring Persistence Services 8-1

8Configuring Persistence Services

For a broker to recover in case of failure, it needs to re-create the state of its message
delivery operations. To do this, the broker must save state information to a persistent
data store. When the broker restarts, it uses the saved data to re-create destinations and
durable subscriptions, recover persistent messages, roll back open transactions, and
rebuild its routing table for undelivered messages. It can then resume message
delivery.

A persistent data store is thus a key aspect of providing for reliable message delivery.
This chapter describes the two different persistence implementations supported by the
Message Queue broker and how to set each of them up:

■ Introduction to Persistence Services

■ File-Based Persistence

■ JDBC-Based Persistence

■ Data Store Formats

Introduction to Persistence Services
A broker's persistent data store holds information about physical destinations, durable
subscriptions, messages, transactions, and acknowledgments.

Message Queue supports both file-based and JDBC-based persistence modules, as
shown in the following figure. File-based persistence uses individual files to store
persistent data; JDBC-based persistence uses the Java Database Connectivity (JDBC)
interface to connect the broker to a JDBC-based data store. While file-based persistence
is generally faster than JDBC-based persistence, some users prefer the redundancy and
administrative control provided by a JDBC database. The broker configuration
property imq.persist.store (see Table 17–5) specifies which of the two persistence
modules (file or jdbc) to use.

File-Based Persistence

8-2 Open Message Queue 4.5.2 Administration Guide

Figure 8–1 Persistent Data Stores

Message Queue brokers are configured by default to use a file-based persistent store,
but you can reconfigure them to plug in any data store accessible through a
JDBC-compliant driver. The broker configuration property imq.persist.store (see
Table 17–5) specifies which of the two forms of persistence to use.

File-Based Persistence
By default, Message Queue uses a file-based data store, in which individual files store
persistent data (such as messages, destinations, durable subscriptions, transactions,
and routing information).

The file-based data store is located in a directory identified by the name of the broker
instance (instanceName) to which the data store belongs:

IMQ_VARHOME/instances/instanceName/fs370
Each destination on the broker has its own subdirectory holding messages delivered to
that destination.

File-Based Persistence Properties
Broker configuration properties related to file-based persistence are listed under
File-Based Persistence Properties. These properties let you configure various aspects of
how the file-based data store behaves.

All persistent data other than messages is stored in separate files: one file each for
destinations, durable subscriptions, and transaction state information. Most messages
are stored in a single file consisting of variable-size records. You can compact this file
to alleviate fragmentation as messages are added and removed (see Managing
Physical Destination Disk Utilization). In addition, messages above a certain threshold
size are stored in their own individual files rather than in the variable-sized record file.
You can configure this threshold size with the broker property
imq.persist.file.message.max_record_size.

The broker maintains a file pool for these individual message files: instead of being
deleted when it is no longer needed, a file is returned to the pool of free files in its
destination directory so that it can later be reused for another message. The broker
property imq.persist.file.destination.message.filepool.limit specifies the
maximum number of files in the pool. When the number of individual message files

Note: Because the data store can contain messages of a sensitive
or proprietary nature, you should secure the IMQ_
VARHOME/instances/instanceName/fs370 directory against
unauthorized access; see Securing a File-Based Data Store.

Broker

File-based
Data Store

Physical
Destinations

JDBC-based
Data Store

File-Based Persistence

Configuring Persistence Services 8-3

for a destination exceeds this limit, files will be deleted when no longer needed instead
of being returned to the pool.

When returning a file to the file pool, the broker can save time at the expense of
storage space by simply tagging the file as available for reuse without deleting its
previous contents. You can use the imq.persist.file.message.filepool.cleanratio
broker property to specify the percentage of files in each destination's file pool that
should be maintained in a "clean" (empty) state rather than simply marked for reuse.
The higher you set this value, the less space will be required for the file pool, but the
more overhead will be needed to empty the contents of files when they are returned to
the pool. If the broker's imq.persist.file.message.cleanup property is true, all files
in the pool will be emptied at broker shutdown, leaving them in a clean state; this
conserves storage space but slows down the shutdown process.

In writing data to the data store, the operating system has some leeway in whether to
write the data synchronously or "lazily" (asynchronously). Lazy storage can lead to
data loss in the event of a system crash, if the broker believes the data to have been
written to the data store when it has not. To ensure absolute reliability (at the expense
of performance), you can require that all data be written synchronously by setting the
broker property imq.persist.file.sync.enabled to true. In this case, the data is
guaranteed to be available when the system comes back up after a crash, and the
broker can reliably resume operation.

Configuring a File-Based Data Store
A file-based data store is automatically created when you create a broker instance.
However, you can configure the data store using the properties described in File-Based
Persistence Properties.

For example, by default, Message Queue performs asynchronous write operations to
disk. However, to attain the highest reliability, you can set the broker property
imq.persist.file.sync to write data synchronously instead. See Table 17–6.

When you start a broker instance, you can use the imqbrokerd command's -- reset
option to clear the file-based data store. For more information about this option and its
suboptions, see Broker Utility.

Securing a File-Based Data Store
The persistent data store can contain, among other information, message files that are
being temporarily stored. Since these messages may contain proprietary information,
it is important to secure the data store against unauthorized access. This section
describes how to secure data in a file-based data store.

A broker using file-based persistence writes persistent data to a flat-file data store:

IMQ_VARHOME/instances/instanceName/fs370
where instanceName is a name identifying the broker instance. This directory is created
when the broker instance is started for the first time. The procedure for securing this
directory depends on the operating system platform on which the broker is running:

■ On Solaris and Linux, the directory's permissions are determined by the file mode
creation mask (umask) of the user who started the broker instance. Hence,
permission to start a broker instance and to read its persistent files can be
restricted by setting the mask appropriately. Alternatively, an administrator
(superuser) can secure persistent data by setting the permissions on the instances
directory to 700.

JDBC-Based Persistence

8-4 Open Message Queue 4.5.2 Administration Guide

■ On Windows, the directory's permissions can be set using the mechanisms
provided by the Windows operating system. This generally involves opening a
Properties dialog for the directory.

Optimizing File-Based Transaction Persistence
Because many activities can occur during a transaction, persisting a transaction's state
over the complete life cycle of the transaction can adversely affect overall performance,
especially when the imq.persist.file.sync.enabled property is set to true to avoid
data loss in case of a system crash.

Message Queue provides a transaction logging mechanism that can improve
performance of transaction persistence. This transaction log offers tuning parameters
that can improve performance of file-based persistence for other objects, such as
message payloads.

To enable this transaction logging mechanism, set the
imq.persist.file.newTxnLogenabled broker property to true.

After enabling the transaction log, essential changes to the state of a JMS transaction
are written to the transaction log. When the transaction is committed, all details
regarding it are gathered and written to the persistent store. Additionally, the logging
mechanism periodically performs a "checkpoint" operation to ensure that the
persistent store and the transaction log are synchronized and that the log size remains
manageable.

As a further refinement, the operation of the logging mechanism is subject to the value
of the imq.persist.file.sync.enabled broker property:

■ When imq.persist.file.sync.enabled is true, write operations to the
transaction log are written synchronously to disk. Non-transacted message and
non-transacted message acknowledgements are also written synchronously to the
transaction log before being written asynchronously to the persistent store.

■ When imq.persist.file.sync.enabled is false, write operations to the
transaction log are written asynchronously to disk. Non-transacted message and
non-transacted message acknowledgements are not written to the transaction log.

The tuning parameters supported by the transaction logging mechanism are:

■ imq.persist.file.txnLog.groupCommit

■ imq.persist.file.txnLog.logNonTransactedMsgSend

■ imq.persist.file.txnLog.logNonTransactedMsgAck

Information about these parameters can be found in Table 17–7.

JDBC-Based Persistence
Instead of using a file-based data store, you can set up a broker to access any data store
accessible through a JDBC-compliant driver. This involves setting the appropriate
JDBC-related broker configuration properties and using the Database Manager utility
(imqdbmgr) to create the proper database schema. See Configuring a JDBC-Based Data
Store for specifics.

JDBC-Based Persistence Properties
The full set of properties for configuring a broker to use a JDBC database are listed in
Table 17–8. You can specify these properties either in the instance configuration file

JDBC-Based Persistence

Configuring Persistence Services 8-5

(config.properties) of each broker instance or by using the -D command line option
to the Broker utility (imqbrokerd) or the Database Manager utility (imqdbmgr).

In practice, however, JDBC properties are preconfigured by default, depending on the
database vendor being used for the data store. The property values are set in the
default.properties file, and only need to be explicitly set if you are overriding the
default values. In general, you only need to set the following properties:

■ imq.persist.store

This property specifies that a JDBC-based data store (as opposed to the default
file-based data store) is used to store persistent data.

■ imq.persist.jdbc.dbVendor

This property identifies the database vendor being used for the data store; all of
the remaining properties are qualified by this vendor name.

■ imq.persist.jdbcvendorName.user

This property specifies the user name to be used by the broker in accessing the
database.

■ imq.persist.jdbcvendorName.password

This property specifies the password for accessing the database, if required;
imq.persist.jdbc.vendorName.needpassword is a boolean flag specifying
whether a password is needed. For security reasons, the database access password
should be specified only in a password file referenced with the -passfile
command line option; if no such password file is specified, the imqbrokerd and
imqdbmgr commands will prompt for the password interactively.

■ imq.persist.jdbc.vendorName.property.propName

This set of properties represents any additional, vendor-specific properties that are
required.

■ imq.persist.jdbc.vendorName.tableoption

Specifies the vendor-specific options passed to the database when creating the
table schema.

Example 8–1 Broker Properties for MySQL Database

imq.persist.store=jdbc
imq.persist.jdbc.dbVendor=mysql
imq.persist.jdbc.mysql.user=userName
imq.persist.jdbc.mysql.password=password
imq.persist.jdbc.mysql.property.url=jdbc:mysql://hostName:port/dataBase

If you expect to have messages that are larger than 1 MB, configure MySQL's max_
allowed_packet variable accordingly when starting the database. For more
information see Appendix B of the MySQL 5.0 Reference Manual.

In addition, in an enhanced broker cluster, in which a JDBC database is shared by
multiple broker instances, each broker must be uniquely identified in the database
(unnecessary for an embedded database, which stores data for only one broker
instance). The configuration property imq.brokerid specifies a unique instance
identifier to be appended to the names of database tables for each broker. See
Enhanced Broker Cluster Properties.

After setting all of the broker's needed JDBC configuration properties, you must also
install your JDBC driver's .jar file in IMQ_HOME/lib/ext and then create the database
schema for the JDBC-based data store (see To Set Up a JDBC-Based Data Store).

JDBC-Based Persistence

8-6 Open Message Queue 4.5.2 Administration Guide

Configuring a JDBC-Based Data Store
To configure a broker to use a JDBC database, you set JDBC-related properties in the
broker's instance configuration file and create the appropriate database schema. The
Message Queue Database Manager utility (imqdbmgr) uses your JDBC driver and the
broker configuration properties to create the schema and manage the database. You
can also use the Database Manager to delete corrupted tables from the database or if
you want to use a different database as a data store. See Database Manager Utility for
more information.

To Set Up a JDBC-Based Data Store
1. Set JDBC-related properties in the broker's instance configuration file.

The relevant properties are discussed, with examples, in JDBC-Based Persistence
Properties and listed in full in Table 17–8. In particular, you must specify a
JDBC-based data store by setting the broker's imq.persist.store property to
jdbc.

2. Place a copy of, or a symbolic link to, your JDBC driver's .jar file in IMQ_
HOME/lib/ext, the Message Queue external resource files directory.

3. Check the message table schema for your database in IMQ_
HOME/lib/props/broker/default.properties.

In the default.properties file, locate the message table schema for your database
by searching for "imq.persist.jdbc.vendor.table.MQMSG". Read any commentary
notes about the schema and check that the maximum message size is sufficient; if
it is not, adjust the size of the MESSAGE column as needed.

4. Create the database schema needed for Message Queue persistence.

Use the imqdbmgr create all command (for an embedded database) or the
imqdbmgr create tbl command (for an external database); see Database Manager
Utility.

a. Change to the directory where the Database Manager utility resides:

cd IMQ_HOME/bin

b. Enter the imqdbmgr command:

imqdbmgr create all

To Display Information About a JDBC-Based Data Store
You can display information about a JDBC-based data store using the Database
Manager utility (imqdbmgr) as follows:

Note: If you use an embedded database, it is best to create it
under the following directory:

 .../instances/instanceName/dbstore/databaseName

If an embedded database is not protected by a user name and
password, it is probably protected by file system permissions. To
ensure that the database is readable and writable by the broker, the
user who runs the broker should be the same user who created the
embedded database using the imqdbmgr command.

Data Store Formats

Configuring Persistence Services 8-7

1. Change to the directory where the Database Manager utility resides:

cd IMQ_HOME/bin

2. Enter the imqdbmgr command:

imqdbmgr query

The output should resemble the following

dbmgr query

[04/Oct/2005:15:30:20 PDT] Using plugged-in persistent store:
 version=400
 brokerid=Mozart1756
 database connection url=jdbc:oracle:thin:@Xhome:1521:mqdb
 database user=scott
Running in standalone mode.
Database tables have already been created.

Securing a JDBC-Based Data Store
The persistent data store can contain, among other information, message files that are
being temporarily stored. Since these messages may contain proprietary information,
it is important to secure the data store against unauthorized access. This section
describes how to secure data in a JDBC-based data store.

A broker using JDBC-based persistence writes persistent data to a JDBC-compliant
database. For a database managed by a database server (such as Oracle), it is
recommended that you create a user name and password to access the Message Queue
database tables (tables whose names start with MQ). If the database does not allow
individual tables to be protected, create a dedicated database to be used only by
Message Queue brokers. See the documentation provided by your database vendor for
information on how to create user name/password access.

The user name and password required to open a database connection by a broker can
be provided as broker configuration properties. However it is more secure to provide
them as command line options when starting up the broker, using the imqbrokerd
command's -dbuserand -dbpassword options (see Broker Utility).

For an embedded database that is accessed directly by the broker by means of the
database's JDBC driver, security is usually provided by setting file permissions on the
directory where the persistent data will be stored, as described above under Securing a
File-Based Data Store To ensure that the database is readable and writable by both the
broker and the Database Manager utility, however, both should be run by the same
user.

Data Store Formats
Changes in the file formats for both file-based and JDBC-based persistent data stores
were introduced in Message Queue 3.7, with further JDBC changes in version 4.0 and
4.1. As a result of these changes, the persistent data store version numbers have been
updated to 370 for file-based data stores and 410 for JDBC-based stores. You can use
the imqdbmgr query command to determine the version number of your existing data
store.

On first startup, the Message Queue Broker utility (imqbrokerd) will check for the
presence of an older persistent data store and automatically migrate it to the latest
format:

Data Store Formats

8-8 Open Message Queue 4.5.2 Administration Guide

■ File-based data store versions 200 and 350 are migrated to the version 370 format.

■ JDBC-based data store versions 350, 370, and 400 are migrated to the version 410
format. (If you need to upgrade a version 200 data store, you will need to step
through an intermediate Message Queue 3.5 or 3.6 release.)

The upgrade leaves the older copy of the persistent data store intact, allowing you to
roll back the upgrade if necessary. To do so, you can uninstall the current version of
Message Queue and reinstall the earlier version you were previously running. The
older version's message brokers will locate and use the older copy of the data store.

Beginning in Message Queue 4.5, the imq.persist.file.newTxnLog property is true
by default. This setting can generate an error when starting a broker that is using an
older persistent data store. To resolve the error, set the property value to false and
start the broker, thus migrating the data store to the latest format. Then, you can stop
the broker, set the property value back to true, and start the broker without
encountering an error.

9

Configuring and Managing Security Services 9-1

9Configuring and Managing Security Services

This chapter describes Message Queue's facilities for security-related administration
tasks, such as configuring user authentication, defining access control, configuring a
Secure Socket Layer (SSL) connection service to encrypt client-broker communication,
and setting up a password file for administrator account passwords. In addition to
Message Queue's own built-in authentication mechanisms, you can also plug in a
preferred external service based on the Java Authentication and Authorization Service
(JAAS) API.

This chapter includes the following sections:

■ Introduction to Security Services

■ User Authentication

■ User Authorization

■ Message Encryption

■ Password Files

■ Connecting Through a Firewall

■ Audit Logging with the Solaris BSM Audit Log

Introduction to Security Services
Message Queue provides security services for user access control (authentication and
authorization) and for encryption:

■ Authentication ensures that only verified users can establish a connection to a
broker.

■ Authorization specifies which users or groups have the right to access resources
and to perform specific operations.

■ Encryption protects messages from being tampered with during delivery over a
connection.

As a Message Queue administrator, you are responsible for setting up the information
the broker needs to authenticate users and authorize their actions. The broker
properties pertaining to security services are listed under Security Properties. The
boolean property imq.accesscontrol.enabled acts as a master switch that controls
whether access control is applied on a brokerwide basis; for finer control, you can
override this setting for a particular connection service by setting the imq.serviceName
.accesscontrol.enabled property, where serviceName is the name of the connection
service, as shown in Table 6–1: for example, imq.httpjms.accesscontrol.enabled.

Introduction to Security Services

9-2 Open Message Queue 4.5.2 Administration Guide

The following figure shows the components used by the broker to provide
authentication and authorization services. These services depend on a user repository
containing information about the users of the messaging system: their names,
passwords, and group memberships. In addition, to authorize specific operations for a
user or group, the broker consults an access control file that specifies which operations a
user or group can perform. You can designate a single access control file for the broker
as a whole, using the configuration property imq.accesscontrol.file.filename, or
for a single connection service with imq.serviceName. accesscontrol.file.filename.

Figure 9–1 Security Support

As Figure 9–1 shows, you can store user data in a flat file user repository that is
provided with the Message Queue service, you can access an existing LDAP
repository, or you can plug in a Java Authentication and Authorization Service (JAAS)
module.

■ If you choose a flat-file repository, you must use the imqusermgr utility to manage
the repository. This option is easy to use and built-in.

■ If you want to use an existing LDAP server, you use the tools provided by the
LDAP vendor to populate and manage the user repository. You must also set
properties in the broker instance configuration file to enable the broker to query
the LDAP server for information about users and groups.

The LDAP option is better if scalability is important or if you need the repository
to be shared by different brokers. This might be the case if you are using broker
clusters.

■ If you want to plug-in an existing JAAS authentication service, you need to set the
corresponding properties in the broker instance configuration file.

The broker's imq.authentication.basic.user_repository property specifies which
type of repository to use. In general, an LDAP repository or JAAS authentication
service is preferable if scalability is important or if you need the repository to be
shared by different brokers (if you are using broker clusters, for instance). See User
Authentication for more information on setting up a flat-file user repository, LDAP
access, or JAAS authentication service.

Broker

Access Control
Properties File

Physical
Destinations

accesscontrol.properties

Flat File User
Repository

Authorization

Authentication
JAAS

Authentication
Service

LDAP
Server User
Repository

Introduction to Security Services

Configuring and Managing Security Services 9-3

Authentication
A client requesting a connection to a broker must supply a user name and password,
which the broker compares with those stored in the user repository. Passwords
transmitted from client to broker are encoded using either base-64 encoding (for
flat-file repositories) or message digest (MD5) hashing (for LDAP repositories). The
choice is controlled by the imq.authentication.type property for the broker as a
whole, or by imq.serviceName. authentication.type for a specific connection service.
The imq.authentication.client.response.timeout property sets a timeout interval
for authentication requests.

As described under Password Files, you can choose to put your passwords in a
password file instead of being prompted for them interactively. The boolean broker
property imq.passfile.enabled controls this option. If this property is true, the
imq.passfile.dirpath and imq.passfile.name properties give the directory path and
file name for the password file. The imq.imqcmd.password property (which can be
embedded in the password file) specifies the password for authenticating an
administrative user to use the Command utility (imqcmd) for managing brokers,
connection services, connections, physical destinations, durable subscriptions, and
transactions.

If you are using an LDAP-based user repository, there are a whole range of broker
properties available for configuring various aspects of the LDAP lookup. The address
(host name and port number) of the LDAP server itself is specified by imq.user_
repository.ldap.server. The imq.user_repository.ldap.principal property gives
the distinguished name for binding to the LDAP repository, while imq.user_
repository.ldap.password supplies the associated password. Other properties
specify the directory bases and optional JNDI filters for individual user and group
searches, the provider-specific attribute identifiers for user and group names, and so
forth; see Security Properties for details.

Authorization
Once authenticated, a user can be authorized to perform various Message
Queue-related activities. As a Message Queue administrator, you can define user
groups and assign individual users membership in them. The default access control
file explicitly refers to only one group, admin (see User Groups and Status). A user in
this group has connection permission for the admin connection service, which allows
the user to perform administrative functions such as creating destinations and
monitoring and controlling a broker. A user in any other group that you define cannot,
by default, get an admin service connection.

When a user attempts to perform an operation, the broker checks the user's name and
group membership (from the user repository) against those specified for access to that
operation (in the access control file). The access control file specifies permissions to
users or groups for the following operations:

■ Connecting to a broker

■ Accessing destinations: creating a consumer, a producer, or a queue browser for
any given destination or for all destinations

■ Auto-creating destinations

For information on configuring authorization, see User Authorization.

User Authentication

9-4 Open Message Queue 4.5.2 Administration Guide

Encryption
To encrypt messages sent between clients and broker, you need to use a connection
service based on the Secure Socket Layer (SSL) standard. SSL provides security at the
connection level by establishing an encrypted connection between an SSL-enabled
broker and client.

To use an SSL-based Message Queue connection service, you generate a public/private
key pair using the Message Queue Key Tool utility (imqkeytool). This utility embeds
the public key in a self-signed certificate and places it in a Message Queue key store.
The key store is itself password-protected; to unlock it, you must provide a key store
password at startup time, specified by the imq.keystore.password property. Once the
key store is unlocked, a broker can pass the certificate to any client requesting a
connection. The client then uses the certificate to set up an encrypted connection to the
broker.

For information on configuring encryption, see Message Encryption.

User Authentication
Users attempting to connect to a Message Queue message broker must provide a user
name and password for authentication. The broker will grant the connection only if
the name and password match those in a broker-specific user repository listing the
authorized users and their passwords. Each broker instance can have its own user
repository, which you as an administrator are responsible for maintaining. This section
tells how to create, populate, and manage the user repository.

Message Queue can support any of three types of authentication mechanism:

■ A flat-file repository that is shipped with Message Queue. This type of repository
is very easy to populate and manage, using the Message Queue User Manager
utility (imqusermgr). See Using a Flat-File User Repository.

■ A Lightweight Directory Access Protocol (LDAP) server. This could be a new or
existing LDAP directory server using the LDAP v2 or v3 protocol. You use the
tools provided by the LDAP vendor to populate and manage the user repository.
This type of repository is not as easy to use as the flat-file repository, but it is more
scalable and therefore better for production environments. See Using an LDAP
User Repository.

■ An external authentication mechanism plugged into Message Queue by means of
the Java Authentication and Authorization Service (JAAS) API. See Using
JAAS-Based Authentication.

Using a Flat-File User Repository
Message Queue provides a built-in flat-file user repository and a command line tool,
the User Manager utility (imqusermgr), for populating and managing it. Each broker
has its own flat-file user repository, created automatically when you start the broker.
By default, the user repository resides in a file named passwd, in a directory identified
by the name of the broker instance with which the repository is associated:

IMQ_VARHOME/instances/instanceName/etc/passwd
If you have changed these file name or directory defaults using the imq.user_
repository.file.filename or imq.user_repository.file.dirpath broker
properties, you must use the -D option to specify the non-default values when running
imqusermgr if you did not specify the values in the broker properties file. For example,
if imq.user_repository.file.dirpath is specified in a cluster configuration file, start
imqusermgr using the form:

User Authentication

Configuring and Managing Security Services 9-5

imqusermgr -Dimq.cluster.url=location-of-cluster-properties-file ...

As another example, if imq.user_repository.file.filename is specified on the
imqbrokerd command line to start the broker, start imqusermgr using the form:

imqusermgr -Dimq.user_repository.file.filename=filename-used-in-imqbrokerd-command
...

User Groups and Status
Each user in the repository can be assigned to a user group, which defines the default
access privileges granted to all of its members. You can then specify authorization
rules to further restrict these access privileges for specific users, as described in User
Authorization. A user's group is assigned when the user entry is first created, and
cannot be changed thereafter. The only way to reassign a user to a different group is to
delete the original user entry and add another entry specifying the new group.

The flat-file user repository provides three predefined groups:

admin
For broker administrators. By default, users in this group are granted the access
privileges needed to configure, administer, and manage message brokers.

user
For normal (non-administrative) client users. Newly created user entries are assigned
to this group unless otherwise specified. By default, users in this group can connect to
all Message Queue connection services of type NORMAL, produce messages to or
consume messages from all physical destinations, and browse messages in any queue.

anonymous
For Message Queue clients that do not wish to use a user name known to the broker
(for instance, because they do not know of a real user name to use). This group is
analogous to the anonymous account provided by most FTPservers. No more than one
user at a time can be assigned to this group. You should restrict the access privileges of
this group in comparison to the user group, or remove users from the group at
deployment time.

You cannot rename or delete these predefined groups or create new ones.

In addition to its group, each user entry in the repository has a user status: either
active or inactive . New user entries added to the repository are marked active by
default. Changing a user's status to inactive rescinds all of that user's access privileges,
making the user unable to open new broker connections. Such inactive entries are
retained in the user repository, however, and can be reactivated at a later time. If you
attempt to add a new user with the same name as an inactive user already in the
repository, the operation will fail; you must either delete the inactive user entry or give
the new user a different name.

To allow the broker to be used immediately after installation without further
intervention by the administrator, the flat-file user repository is created with two
initial entries, summarized in Table 9–1:

■ The admin entry (user name and password admin/admin) enables you to
administer the broker with Command utility (imqcmd) commands. Immediately on
installation, you should update this initial entry to change its password (see
Changing a User's Password).

■ The guest entry allows clients to connect to the broker using a default user name
and password (guest/guest).

User Authentication

9-6 Open Message Queue 4.5.2 Administration Guide

You can then proceed to add any additional user entries you need for individual users
of your message service.

Using the User Manager Utility
The Message Queue User Manager utility (imqusermgr) enables you to populate or
edit a flat-file user repository. SeeUser Manager Utility for general reference
information about the syntax, subcommands, and options of the imqusermgr
command.

User Manager Preliminaries Before using the User Manager, keep the following things in
mind:

■ The imqusermgr command must be run on the host where the broker is installed.

■ If a broker-specific user repository does not yet exist, you must start up the
corresponding broker instance to create it.

■ You must have appropriate permissions to write to the repository; in particular, on
Solaris and Linux platforms, you must be logged in as the root user or the user
who first created the broker instance.

Subcommands and General Options Table 9–2 lists the subcommands of the imqusermgr
command. For full reference information about these subcommands, see Table 16–15.

The general options listed in Table 9–3 apply to all subcommands of the imqusermgr
command.

Table 9–1 Initial Entries in Flat-File User Repository

User Name Password Group Status

admin admin admin Active

guest guest anonymous Active

Table 9–2 User Manager Subcommands

Subcommand Description

add Add user and password to repository

delete Delete user from repository

update Set user's password or active status (or both)

list Display user information

Table 9–3 General User Manager Options

Option Description

-D brokerProperty=value Specify a broker property value when starting imqusermgr.

-f Perform action without user confirmation

-s Silent mode (no output displayed)

-v Display version information1

1 Any other options specified on the command line are ignored.

-h Display usage help1

User Authentication

Configuring and Managing Security Services 9-7

Displaying the Product Version To display the Message Queue product version, use the -v
option. For example:

imqusermgr -v
If you enter an imqusermgr command line containing the -v option in addition to a
subcommand or other options, the User Manager utility processes only the -v option.
All other items on the command line are ignored.

Displaying Help To display help on the imqusermgr command, use the -h option, and do
not use a subcommand. You cannot get help about specific subcommands.

For example, the following command displays help about imqusermgr:

imqusermgr -h
If you enter an imqusermgr command line containing the -h option in addition to a
subcommand or other options, the Command utility processes only the -h option. All
other items on the command line are ignored.

Adding a User to the Repository The subcommand imqusermgr add adds an entry to the
user repository, consisting of a user name and password:

imqusermgr add [-i brokerName]
-u userName -p password
 [-g group]
The -u and -p options specify the user name and password, respectively, for the new
entry. These must conform to the following conventions:

■ All user names and passwords must be at least one character long. Their
maximum length is limited only by command shell restrictions on the maximum
number of characters that can be entered on a command line.

■ A user name cannot contain an asterisk (*), a comma (,), a colon (:), or a new-line
or carriage-return character.

■ If a user name or password contains a space, the entire name or password must be
enclosed in quotation marks (" ").

The optional -g option specifies the group (admin, user, or anonymous) to which the
new user belongs; if no group is specified, the user is assigned to the user group by
default. If the broker name (-i option) is omitted, the default broker imqbroker is
assumed.

For example, the following command creates a user entry on broker imqbroker for a
user named AliBaba, with password Sesame, in the admin group:

imqusermgr add -u AliBaba -p Sesame -g admin

Deleting a User From the Repository The subcommand imqusermgr delete deletes a user
entry from the repository:

imqusermgr delete [-i brokerName]
-u userName
The -u option specifies the user name of the entry to be deleted. If the broker name (-i
option) is omitted, the default broker imqbroker is assumed.

For example, the following command deletes the user named AliBaba from the user
repository on broker imqbroker:

imqusermgr delete -u AliBaba

Changing a User's Password You can use the subcommand imqusermgr update to change
a user's password:

User Authentication

9-8 Open Message Queue 4.5.2 Administration Guide

imqusermgr update [-i brokerName]
-u userName -p password
The -u identifies the user; -p specifies the new password. If the broker name (-i
option) is omitted, the default broker imqbroker is assumed.

For example, the following command changes the password for user AliBaba to
Shazam on broker imqbroker:

imqusermgr update -u AliBaba -p Shazam

Activating or Deactivating a User The imqusermgr update subcommand can also be used
to change a user's active status:

imqusermgr update [-i brokerName]
-u userName -a activeStatus
The -u identifies the user; -a is a boolean value specifying the user's new status as
active (true) or inactive (false). If the broker name (-i option) is omitted, the default
broker imqbroker is assumed.

For example, the following command sets user AliBaba's status to inactive on broker
imqbroker:

imqusermgr update -u AliBaba -a false
This renders AliBabe unable to open new broker connections.

You can combine the -p (password) and -a (active status) options in the same
imqusermgr update command. The options may appear in either order: for example,
both of the following commands activate the user entry for AliBaba and set the
password to plugh:

imqusermgr update -u AliBaba -p plugh -a true
imqusermgr update -u AliBaba -a true -p plugh

Viewing User Information The imqusermgr list command displays information about a
user in the user repository:

imqusermgr list [-i brokerName]
[-u userName]
The command

imqusermgr list -u AliBaba
displays information about user AliBabe, as shown in Example 9–1.

Note: For the sake of security, you should change the password of
the admin user from its initial default value (admin) to one that is
known only to you. The following command changes the default
administrator password for broker mybroker to veeblefetzer:

imqusermgr update -i mybroker -u admin -p veeblefetzer

You can quickly confirm that this change is in effect by running any
of the command line tools when the broker is running. For
example, the following command will prompt you for a password:

imqcmd list svc mybroker -u admin

Entering the new password (veeblefetzer) should work; the old
password should fail.

After changing the password, you should supply the new
password whenever you use any of the Message Queue
administration tools, including the Administration Console.

User Authentication

Configuring and Managing Security Services 9-9

Example 9–1 Viewing Information for a Single User

User repository for broker instance: imqbroker

User Name Group Active State

AliBaba admin true

If you omit the -u option

imqusermgr list
the command lists information about all users in the repository, as in Example 9–2.

Example 9–2 Viewing Information for All Users

User repository for broker instance: imqbroker

User Name Group Active State

admin admin true
guest anonymous true
AliBaba admin true
testuser1 user true
testuser2 user true
testuser3 user true
testuser4 user false
testuser5 user false

Using an LDAP User Repository
You configure a broker to use an LDAP directory server by setting the values for
certain configuration properties in the broker's instance configuration file
(config.properties). These properties enable the broker instance to query the LDAP
server for information about users and groups when a user attempts to connect to the
broker or perform messaging operations.

■ The imq.authentication.basic.user_repository property specifies the kind of
user authentication the broker is to use. By default, this property is set to file, for
a flat-file user repository. For LDAP authentication, set it to ldap instead:

imq.authentication.basic.user_repository =ldap
■ The imq.authentication.type property controls the type of encoding used when

passing a password between client and broker. By default, this property is set to
digest, denoting MD5 encoding, the form used by flat-file user repositories. For
LDAP authentication, set it to basic instead:

imq.authentication.type=basic
This denotes base-64 encoding, the form used by LDAP user repositories.

■ The following properties control various aspects of LDAP access. See Table 17–11
for more detailed information:

imq.user_repository.ldap.server
imq.user_repository.ldap.principal
imq.user_repository.ldap.password
imq.user_repository.ldap.propertyName
imq.user_repository.ldap.base

User Authentication

9-10 Open Message Queue 4.5.2 Administration Guide

imq.user_repository.ldap.uidattr
imq.user_repository.ldap.usrfilter
imq.user_repository.ldap.grpsearch
imq.user_repository.ldap.grpbase
imq.user_repository.ldap.gidattr
imq.user_repository.ldap.memattr
imq.user_repository.ldap.grpfilter
imq.user_repository.ldap.timeout
imq.user_repository.ldap.ssl.enabled

■ The imq.user_repository.ldap.userformat property, if set to a value of dn,
specifies that the login username for authentication be in DN username format (for
example: uid=mquser,ou=People,dc=red,dc=sun,dc=com). In this case, the broker
extracts the value of the imq.user.repository.lpdap.uidatr attribute from the
DN username, and uses this value as the user name in access control operations
(see User Authorization).

■ If you want the broker to use a secure, encrypted SSL (Secure Socket Layer)
connection for communicating with the LDAP server, set the broker's imq.user_
repository.ldap.ssl.enabled property to true

imq.user_repository.ldap.ssl.enabled =true
and the imq.user_repository.ldap.server property to the port used by the
LDAP server for SSL communication: for example,

imq.user_repository.ldap.server=myhost:7878
You will also need to activate SSL communication in the LDAP server.

In addition, you may need to edit the user and group names in the broker's access
control file to match those defined in the LDAP user repository; see User
Authorization for more information.

For example, to create administrative users, you use the access control file to specify
those users and groups in the LDAP directory that can create ADMIN connections.

Any user or group that can create an ADMIN connection can issue administrative
commands.

To Set Up an Administrative User
The following procedure makes use of a broker's access control file, which is described
in User Authorization.

1. Enable the use of the access control file by setting the broker property
imq.accesscontrol.enabled to true, which is the default value.

The imq.accesscontrol.enabled property enables use of the access control file.

2. Open the access control file, IMQ_
VARHOME/instances/instanceName/etc/accesscontrol.properties.

The file contains an entry such as the following:

service connection access control
##################################
connection.NORMAL.allow.user=*
connection.ADMIN.allow.group=admin

The entries listed are examples. Note that the admin group exists by default in the
file-based user repository but does not exist by default in the LDAP directory.

User Authentication

Configuring and Managing Security Services 9-11

3. To grant Message Queue administrator privileges to users, enter the user names as
follows:

connection.ADMIN.allow.user= userName[[,userName2] …]

The users must be defined in the LDAP directory.

4. To grant Message Queue administrator privileges to groups, enter the group
names as follows:

connection.ADMIN.allow.group= groupName[[,groupName2] …]

The groups must be defined in the LDAP directory.

Using JAAS-Based Authentication
The Java Authentication and Authorization Service (JAAS) API allows you to plug an
external authentication mechanism into Message Queue. This section describes the
information that the Message Queue message broker makes available to a
JAAS-compliant authentication service and explains how to configure the broker to
use such a service. The following sources provide further information on JAAS:

■ For complete information about the JAAS API , see the Java Authentication and
Authorization Service (JAAS) Reference Guide.

■ For information about writing a JAAS login module, see the Java Authentication and
Authorization Service (JAAS) LoginModule Developer's Guide.

JAAS is a core API in Java 2 Standard Edition (J2SE), and is therefore an integral part
of Message Queue's runtime environment. It defines an abstraction layer between an
application and an authentication mechanism, allowing the desired mechanism to be
plugged in with no change to application code. In the case of the Message Queue
service, the abstraction layer lies between the broker (application) and an
authentication provider. By setting a few broker properties, it is possible to plug in any
JAAS-compliant authentication service and to upgrade this service with no disruption
or change to broker code.

Elements of JAAS
Figure 9–2 shows the basic elements of JAAS: a JAAS client, a JAAS-compliant
authentication service, and a JAAS configuration file.

■ The JAAS client is an application wishing to perform authentication using a
JAAS-compliant authentication service. The JAAS client communicates with the
authentication service using one or more login modules and is responsible for
providing a callback handler that the login module can call to obtain the user
name, password, and other information needed for authentication.

■ The JAAS-compliant authentication service consists of one or more login modules
along with logic to perform the needed authentication. The login module
(LoginModule) may include the authentication logic itself, or it may use a private
protocol or API to communicate with an external security service that provides the
logic.

Note: You cannot use the Java Management Extensions (JMX) API
to change JAAS-related broker properties. However, once
JAAS-based authentication is configured, JMX client applications
(like other clients) can be authenticated using this mechanism.

User Authentication

9-12 Open Message Queue 4.5.2 Administration Guide

■ The JAAS configuration file is a text file that the JAAS client uses to locate the
login module(s) to be used.

Figure 9–2 JAAS Elements

JAAS and Message Queue
Figure 9–3 shows how JAAS is used by the Message Queue broker. It shows a more
complex implementation of the JAAS model shown in Figure 9–2.

Figure 9–3 How Message Queue Uses JAAS

The authentication service layer, consisting of one or more login modules (if needed)
and corresponding authentication logic, is separate from the broker. The login
modules run in the same Java virtual machine as the broker. The broker is represented

JAAS Client

LoginContext
CallbackHandler

JAAS
Configuration
File

External Security
Infrastructure

LoginModule

Authentication
Logic

Authentication
Service

LDAP
Server RDBMS Local

File System

Message Queue
Broker

LoginContext
CallbackHandler

(JAAS Client)

LoginModule1
LoginModule2

Authentication
Logic

(Authentication
Logic)

LoginModule3
(Authentication

Logic)

Message
Queue
Client

VM

User Authentication

Configuring and Managing Security Services 9-13

to the login module as a login context, and communicates with the login module by
means of a callback handler that is part of the broker runtime code.

The authentication service also supplies a JAAS configuration file containing entries
that reference the login modules. The configuration file specifies the order in which the
login modules (if more than one) are to be used and any conditions for their use. When
the broker starts up, it locates the configuration file by consulting either the Java
system property java.security.auth.login.config or the Java security properties
file. The broker then selects an entry in the JAAS configuration file according to the
value of the broker property imq.user_repository.jaas.name. That entry specifies
which login module(s) will be used for authentication. The classes for the login
modules are found in the Message Queue external resource files directory, IMQ_
HOMElib/ext.

The relation between the configuration file, the login module, and the broker is shown
in the following figure. Figure 9–4.

Figure 9–4 Setting Up JAAS Support

The fact that the broker uses a JAAS plug-in authentication service remains completely
transparent to the Message Queue client. The client continues to connect to the broker
as it did before, passing a user name and password. In turn, the broker uses a callback
handler to pass login information to the authentication service, and the service uses
the information to authenticate the user and return the results. If authentication
succeeds, the broker grants the connection; if it fails, the client runtime returns a JMS
security exception that the client must handle.

After the Message Queue client is authenticated, if there is further authorization to be
done, the broker proceeds as it normally would, consulting the access control file to
determine whether the authenticated client is authorized to perform the actions it
undertakes: accessing a destination, consuming a message, browsing a queue, and so
on.

Setting up JAAS-Compliant Authentication
Setting up JAAS-compliant authentication involves setting broker and system
properties to select this type of authentication, to specify the location of the

Broker

LoginModule1.java

MyEntry1{
com.some.module.LoginModule1 required
debug=true
com.some.module.LoginModule2 optional
debug=true }

MyJAASCFile.config

Entry point into the configuration file is
specified with the broker property
imq.user_repository.jaas.name=MyEntry1

LoginModule location is in Message
Queue external resource files directory.
LoginModule classes are dynamically
loaded by the broker.

Configuration file location
is specified with the Java
system property
java.security.auth.login.config
or in the Java security
properties file.

LoginModule communicates with the
broker using CallbackHandler.

CallbackHandler

User Authentication

9-14 Open Message Queue 4.5.2 Administration Guide

configuration file, and to specify the entries to the login modules that are going to be
used.

To set up JAAS support for Message Queue, you perform the following general steps.
(These steps assume you are creating your own authentication service.)

1. Create one or more login module classes that implement the authentication
service. The JAAS callback types that the broker supports are listed below.

javax.security.auth.callback.LanguageCallback
The broker uses this callback to pass the authentication service the locale in which
the broker is running. This value can be used for localization.

javax.security.auth.callback.NameCallback
The broker uses this callback to pass to the authentication service the user name
specified by the Message Queue client when the connection was requested.

javax.security.auth.callback.TextInputCallback
The broker uses this callback to pass the value of the following information to the
login module (authentication service) when requested through the
TextInputCallback.getPrompt() with the following strings:

■ imq.authentication.type: The broker authentication type in effect at runtime

■ imq.accesscontrol.type: The broker access control type in effect at runtime

■ imq.authentication.clientip: The client IP address (null if unavailable)

■ imq.servicename: The name of the connection service (jms, ssljms, admin, or
ssladmin) being used by the client

■ imq.servicetype: The type of the connection service (NORMAL or ADMIN) being
used by the client

javax.security.auth.callback.PasswordCallback
The broker uses this callback to pass to the authentication service the password
specified by the Message Queue client when the connection was requested.

javax.security.auth.callback.TextOutputCallback
The broker handles this callback to provide logging service to the authentication
service by logging the text output to the broker's log file. The callback's
MessageType ERROR, INFORMATION, WARNING are mapped to the broker logging
levels ERROR, INFO, WARNING respectively.

2. Create a JAAS configuration file with entries that reference the login module
classes created in Step 1 and specify the location of this file.

3. Note the name of the entry in the JAAS configuration file (that references the login
module implementation classes).

4. Archive the classes that implement the login modules to a jar file, and place the jar
file in the Message Queue lib/ext directory.

5. Set the broker configuration properties that relate to JAAS support. These are
described in Table 9–4.

6. Set the following system property (to specify the location of the JAAS
configuration file).

java.security.auth.login.config=JAAS_Config_File_Location

For example, you can specify the location when you start the broker.

imqbrokerd -Djava.security.auth.login.config=JAAS_Config_File_Location

User Authorization

Configuring and Managing Security Services 9-15

There are other ways to specify the location of the JAAS configuration file. For
additional information, see

http://download.oracle.com/javase/1.5.0/docs/guide/security/j
aas/tutorials/LoginConfigFile.html

The following table lists the broker properties that need to be set to set up JAAS
support.

User Authorization
An access control file contains rules that specify which users (or groups of users) are
authorized to perform certain operations on a message broker. These operations
include the following:

■ Creating a connection

■ Creating a message producer for a physical destination

■ Creating a message consumer for a physical destination

■ Browsing a queue destination

■ Auto-creating a physical destination

If access control is enabled (that is, if the broker's imq.accesscontrol.enabled
configuration property is set to true, the broker will consult its access control file
whenever a client attempts one of these operations, to verify whether the user
generating the request (or a group to which the user belongs) is authorized to perform
the operation. By editing this file, you can restrict access to these operations to
particular users and groups. Changes take effect immediately; there is no need to
restart the broker after editing the file.

Table 9–4 Broker Properties for JAAS Support

Property Description

imq.authentication.type Set to basic to indicate Base-64 password encoding.
This is the only permissible value for JAAS
authentication.

imq.authentication.basic.user_repository Set to jaas to specify JAAS authentication.

imq.user_repository.jaas.name Set to the name of the desired entry (in the JAAS
configuration file) that references the login modules
you want to use as the authentication mechanism.
This is the name you noted inStep 3.

imq.user_repository.jaas.userPrincipalClass This property, used by Message Queue access
control, specifies the java.security.Principal
implementation class in the login module(s) that the
broker uses to extract the Principal name to
represent the user entity in the Message Queue
access control file. If, it is not specified, the user
name passed from the Message Queue client when a
connection was requested is used instead.

imq.user_repository.jaas.groupPrincipalClass This property, used by Message Queue access
control, specifies the java.security.Principal
implementation class in the login module(s) that the
broker uses to extract the Principal name to
represent the group entity in the Message Queue
access control file. If, it is not specified, the group
rules, if any, in the Message Queue access control file
are ignored.

User Authorization

9-16 Open Message Queue 4.5.2 Administration Guide

Access Control File Syntax
Each broker has it own access control file, created automatically when the broker is
started. The file is named accesscontrol.properties and is located at IMQ_
VARHOME/instances/instanceName/etc.

The file is formatted as a Java properties file. It starts with a version property defining
the version of the file:

version=JMQFileAccessControlModel/100
This is followed by three sections specifying the access control for three categories of
operations:

■ Creating connections

■ Creating message producers or consumers, or browsing a queue destination

■ Auto-creating physical destinations

Each of these sections consists of a sequence of authorization rules specifying which
users or groups are authorized to perform which specific operations. These rules have
the following syntax:

resourceType.resourceVariant.operation.access.principalType=principals
Table 9–5 describes the various elements.

Example 9–3 Example 1

Rule: queue.q1.consume.allow.user=*

Description: allows all users to consume messages from the queue destination q1.

Table 9–5 Authorization Rule Elements

Element Description

resourceType Type of resource to which the rule applies:

■ connection: Connections

■ queue: Queue destinations

■ topic: Topic destinations

resourceVariant Specific resource (connection service type or destination) to which the rule
applies

An asterisk (*) may be used as a wild-card character to denote all resources of
a given type: for example, a rule beginning with queue.* applies to all queue
destinations.

operation Operation to which the rule applies

This syntax element is not used for resourceType=connection.

access Level of access authorized:

■ allow: Authorize user to perform operation

■ deny: Prohibit user from performing operation

principalType Type of principal (user or group) to which the rule applies:

■ user: Individual user

■ group: User group

principals List of principals (users or groups) to whom the rule applies, separated by
commas

An asterisk (*) may be used as a wild-card character to denote all users or all
groups: for example, a rule ending with user=* applies to all users.

User Authorization

Configuring and Managing Security Services 9-17

Example 9–4 Example 2

Rule: queue.*.consume.allow.user=Snoopy

Description: allows user Snoopy to consume messages from all queue destinations.

Example 9–5 Example 3

Rule: topic.t1.produce.deny.user=Snoopy

Description: prevents Snoopy from producing messages to the topic destination t1

Application of Authorization Rules
Authorization rules in the access control file are applied according to the following
principles:

■ Any operation not explicitly authorized through an authorization rule is implicitly
prohibited. For example, if the access control file contains no authorization rules,
all users are denied access to all operations.

■ Authorization rules for specific users override those applying generically to all
users. For example, the rules

queue.q1.produce.allow.user=*
queue.q1.produce.deny.user=Snoopy
authorize all users except Snoopy to send messages to queue destination q1.

■ Authorization rules for a specific user override those for any group to which the
user belongs. For example, if user Snoopy is a member of group user, the rules

queue.q1.consume.allow.group=user
queue.q1.consume.deny.user=Snoopy
authorize all members of user except Snoopy to receive messages from queue
destination q1.

■ Authorization rules applying generically to all users override those applying to all
groups. For example, the rules

topic.t1.produce.deny.group=*
topic.t1.produce.allow.user=*
authorize all users to publish messages to topic destination t1, overriding the rule
denying such access to all groups.

■ Authorization rules for specific resources override those applying generically to all
resources of a given type. For example, the rules

topic.*.consume.allow.user=Snoopy
topic.t1.consume.deny.user=Snoopy
authorize Snoopy to subscribe to all topic destinations except t1.

■ Authorization rules authorizing and denying access to the same resource and
operation for the same user or group cancel each other out, resulting in
authorization being denied. For example, the rules

queue.q1.browse.deny.user=Snoopy
queue.q1.browse.allow.user=Snoopy

Note: You can use Unicode escape (\\uXXXX) notation to specify
non-ASCII user, group, or destination names. If you have edited
and saved the access control file with these names in a non-ASCII
encoding, you can use the Java native2ascii tool to convert the file
to ASCII. See the Java Internationalization FAQ for more information.

User Authorization

9-18 Open Message Queue 4.5.2 Administration Guide

prevent Snoopy from browsing queue q1. The rules

topic.t1.consume.deny.group=user
topic.t1.consume.allow.group=user
prevent all members of group user from subscribing to topic t1.

■ When multiple authorization rules are specified for the same resource, operation,
and principal type, only the last rule applies. The rules

queue.q1.browse.allow.user=Snoopy,Linus
queue.q1.browse.allow.user=Snoopy
authorize user Snoopy, but not Linus, to browse queue destination q1.

Authorization Rules for Connection Services
Authorization rules with the resource type connection control access to the broker's
connection services. The rule's resourceVariant element specifies the service type of the
connection services to which the rule applies, as shown in Table 6–1; the only possible
values are NORMAL or ADMIN. There is no operation element.

The default access control file contains the rules

connection.NORMAL.allow.user=*
connection.ADMIN.allow.group=admin
giving all users access to NORMAL connection services (jms, ssljms, httpjms, and
httpsjms) and those in the admin group access to ADMIN connection services (admin and
ssladmin). You can then add additional authorization rules to restrict the connection
access privileges of specific users: for example, the rule

connection.NORMAL.deny.user=Snoopy
denies user Snoopy access privileges for connection services of type NORMAL.

If you are using a file-based user repository, the admin user group is created by the
User Manager utility. If access control is disabled (imq.accesscontrol.enabled =
false), all users in the admin group automatically have connection privileges for ADMIN
connection services. If access control is enabled, access to these services is controlled
by the authorization rules in the access control file.

If you are using an LDAP user repository, you must define your own user groups in
the LDAP directory, using the tools provided by your LDAP vendor. You can either
define a group named admin, which will then be governed by the default authorization
rule shown above, or edit the access control file to refer to one or more other groups
that you have defined in the LDAP directory. You must also explicitly enable access
control by setting the broker's imq.accesscontrol.enabled property to true.

Authorization Rules for Physical Destinations
Access to specific physical destinations on the broker is controlled by authorization
rules with a resource type of queue or topic, as the case may be. These rules regulate
access to the following operations:

■ Sending messages to a queue: produce operation

■ Receiving messages from a queue: consume operation

■ Publishing messages to a topic: produce operation

■ Subscribing to and consuming messages from a topic: consume operation

■ Browsing a queue: browse operation

By default, all users and groups are authorized to perform all of these operations on
any physical destination. You can change this by editing the default authorization

Message Encryption

Configuring and Managing Security Services 9-19

rules in the access control properties file or overriding them with more specific rules of
your own. For example, the rule

topic.Admissions.consume.deny.group=user
denies all members of the user group the ability to subscribe to the topic Admissions.

Authorization Rules for Auto-Created Physical Destinations
When a client creates a message producer or consumer for a physical destination that
does not already exist, the broker will auto-create the destination (provided that the
broker's imq.autocreate.queue or imq.autocreate.topic property is set to true).

The final section of the access control file controls the ability of users and groups to
auto-create destinations, and to access any auto-created destinations. This is governed
by authorization rules with a resourceType of queue or topic and an operation element
of create. the resourceVariant element is omitted, since these rules apply to all
auto-created queues or all auto-created topics, rather than any specific destination.

The default access control file contains the rules

queue.create.allow.user=*
topic.create.allow.user=*
authorizing all users to have physical destinations auto-created for them by the broker,
and to have access to any auto-created destinations. You can edit the file to restrict
such authorization for specific users. For example, the rule

topic.create.deny.user=Snoopy
denies user Snoopy the ability to auto-create topic destinations or to access any
auto-created topic destinations.

Message Encryption
This section explains how to set up a connection service based on the Secure Socket
Layer (SSL) standard, which enables delivery of encrypted messages over the
connection. Message Queue supports the following SSL-based connection services:

■ The ssljms service delivers secure, encrypted messages between a client and a
broker, using the TCP/IP transport protocol.

■ The httpsjms service delivers secure, encrypted messages between a client and a
broker, using an HTTPS tunnel servlet with the HTTP transport protocol.

■ The ssladmin service creates a secure, encrypted connection between the Message
Queue Command utility (imqcmd) and a broker, using the TCP/ IP transport
protocol. Encrypted connections are not supported for the Administration Console
(imqadmin).

■ The cluster connection service is used internally to provide secure, encrypted
communication between brokers in a cluster, using the TCP/IP transport protocol.

■ A JMX connector that supports secure, encrypted communication between a JMX
client and a broker's MBean server using the RMI transport protocol over TCP.

Note: The effect of such auto-creation rules must be congruent
with that of other physical destination access rules. For example, if
you change the destination authorization rule to prohibit any user
from sending a message to a queue, but enable the auto-creation of
queue destinations, the broker will create the physical destination if
it does not exist, but will not deliver a message to it.

Message Encryption

9-20 Open Message Queue 4.5.2 Administration Guide

The remainder of this section describes how to set up secure connections over TCP/IP,
using the ssljms, ssladmin, and cluster connection services. For information on
setting up secure connections over HTTP with the httpsjms service, see HTTP/HTTPS
Support.

Using Self-Signed Certificates
To use an SSL-based connection service over TCP /IP, you generate a public/private
key pair using the Key Tool utility (imqkeytool). This utility embeds the public key in
a self-signed certificate that is passed to any client requesting a connection to the
broker, and the client uses the certificate to set up an encrypted connection. This
section describes how to set up an SSL-based service using such self-signed
certificates.

For a stronger level of authentication, you can use signed certificates verified by a
certification authority. The use of signed certificates involves some additional steps
beyond those needed for self-signed certificates: you must first perform the procedures
described in this section and then perform the additional steps in Using Signed
Certificates.

Message Queue's support for SSL with self-signed certificates is oriented toward
securing on-the-wire data, on the assumption that the client is communicating with a
known and trusted server. Configuring SSL with self-signed certificates requires
configuration on both the broker and client:

■ Setting Up an SSL-Based Connection Service Using Self-Signed Certificates

■ Configuring and Running an SSL-Based Client Using Self-Signed Certificates

Setting Up an SSL-Based Connection Service Using Self-Signed Certificates
The following sequence of procedures are needed to set up an SSL-based connection
service for using self-signed certificates:

1. Generate a self-signed certificate.

Note: Starting with release 4.0, the default value for the client
connection factory property imqSSLIsHostTrusted is false. If your
application depends on the prior default value of true, you need to
reconfigure and to set the property explicitly to true. In particular,
old or new clients using self-signed certificates should set this
property to true; for example:

java -DimqConnectionType=TLS -DimqSSLIsHostTrusted=true MyApp

The administration tool imqcmd is also affected by this change. In
addition to using the -secure option to specify that it uses a
SSL-based admin connection service, the imqSSLIsHostTrusted
should be set to true when connecting to a broker configured with
a self-signed certificate. You can do this as follows:

imqcmd list svc -secure -DimqSSLIsHostTrusted=true

Alternatively, you can import the broker's self-signed certificate
into the client runtime trust store. Use the procedure in To Install a
Signed Certificate.

Message Encryption

Configuring and Managing Security Services 9-21

2. Enable the desired SSL-based connection services in the broker. These can include
the ssljms, ssladmin, or cluster connection services.

3. Start the broker.

To Generate a Self-Signed Certificate Run the Key Tool utility (imqkeytool) to generate a
self-signed certificate for the broker. (On Solaris and Linux operating systems, you
may need to run the utility as the root user in order to have permission to create the
keystore file.) The same certificate can be used for all SSL-based connection services
(ssljms, ssladmin, cluster connection services, and the ssljmxrmi connector).

1. Enter the following at the command prompt:

imqkeytool broker

The Key Tool utility prompts you for a key store password:

2. At the prompt type a keystore password.

The Keystore utility prompts you for identifying information from which to
construct an X.500 distinguished name. The following table shows the prompts
and the values to be provided for each. Values are case-insensitive and can include
spaces.

The Key Tool utility displays the information you entered for confirmation. For
example,

 Is CN=mqserver.sun.com, OU=purchasing, ON=Acme Widgets, Inc.,
 L=San Francisco, ST=California, C=US correct?

3. Accept the current values and proceed by typing yes.

To reenter values, accept the default or enter no. After you confirm, the utility
pauses while it generates a key pair.

The utility asks for a password to lock the key pair (key password).

4. Press return.

Prompt X.500 Attribute Description Example

What is your first
and last name?

commonName (CN) Fully qualified name
of server running the
broker

mqserver.sun.com

What is the name of
your organizational
unit?

organizationalUnit
(OU)

Name of department
or division

purchasing

What is the name of
your organization?

organizationName (ON) Name of larger
organization, such as
a company or
government entity

Acme Widgets, Inc.

What is the name of
your city or
locality?

localityName (L) Name of city or
locality

San Francisco

What is the name of
your state or
province?

stateName (ST) Full (unabbreviated)
name of state or
province

California

What is the
two-letter country
code for this unit?

country (C) Standard two-letter
country code

US

Message Encryption

9-22 Open Message Queue 4.5.2 Administration Guide

This will set the same password for both the key password and the keystore
password.

The Key Tool utility generates a self-signed certificate and places it in Message
Queue's keystore file. The keystore file is located in IMQ_HOME/etc by default.

The following are the configurable properties for the Message Queue keystore for
SSL-based connection services:

imq.keystore.file.dirpath
Path to directory containing keystore file

imq.keystore.file.name
Name of key store file

imq.keystore.password
Ke store password (to be used only in a password file)

In some circumstances, you may need to regenerate a key pair in order to solve
certain problems: for example, if you forget the key store password or if the
SSL-based service fails to initialize when you start a broker and you get the
exception:

java.security.UnrecoverableKeyException: Cannot recover key
(This exception may result if you provided a key password different from the
keystore password when you generated the self-signed certificate.)

To Regenerate a Key Pair

1. Remove the broker's keystore file.

The file is located in IMQ_HOME/etc by default.

2. Run imqkeytool again.

The command will generate a new key pair, as described above.

To Enable an SSL-Based Connection Service in the Broker To enable an SSL-based
connection service in the broker, you need to add the corresponding service or services
to the imq.service.activelist property.

1. Open the broker's instance configuration file:

IMQ_VARHOME/instances/instanceName/props/config.properties
2. Add an entry (if one does not already exist) for the imq.service.activelist

property and include the desired SSL-based service(s) in the list.

By default, the property includes the jms and admin connection services. Add the
SSL-based service or services you wish to activate (ssljms, ssladmin, or both):

imq.service.activelist=jms,admin,ssljms,ssladmin

Caution: Be sure to remember the password you specify. You
must provide this password when you start the broker, to allow the
broker to open the keystore file. You can store the keystore
password in a password file (see Password Files).

Message Encryption

Configuring and Managing Security Services 9-23

3. Save and close the instance configuration file.

To Start the Broker Start the broker, providing the key store password.

1. Start the broker, providing the keystore password.

Put the keystore password in a password file, as described in Password Files and
set the imq.passfile.enabled property to true. You can now do one of the
following:

■ Pass the location of the password file to the imqbrokerd command:

imqbrokerd -passfile /passfileDirectory/passfileName

■ Start the broker without the -passfile option, but specify the location of the
password file using the following two broker configuration properties:

imq.passfile.dirpath=/passfileDirectory

imq.passfile.name=/passfileName

2. If you are not using a password file, enter the keystore password at the prompt.

imqbrokerd

You are prompted for the keystore passwrd.

Configuring and Running an SSL-Based Client Using Self-Signed Certificates
The procedure for configuring a client to use an SSL-based connection service differs
depending on whether it is an application client (using the ssljms connection service)
or a Message Queue administrative client such as imqcmd (using the ssladmin
connection service.)

Application Clients For application clients, you must make sure the client has the
following .jar files specified in its CLASSPATH variable:

imq.jar
jms.jar
Once the CLASSPATH files are properly specified, one way to start the client and connect
to the broker's ssljms connection service is by entering a command like the following:

java -DimqConnectionType=TLS clientAppName
This tells the connection to use an SSL-based connection service.

Note: The SSL-based cluster connection service is enabled using
the imq.cluster.transport property rather than the
imq.service.activelist property (see Cluster Connection Service
Properties). To enable SSL for RMI-based JMX connectors, see
SSL-Based JMX Connections.

Note: When you start a broker or client with SSL, you may notice
a sharp increase in CPU usage for a few seconds. This is because
the JSSE (Java Secure Socket Extension) method
java.security.SecureRandom, which Message Queue uses to
generate random numbers, takes a significant amount of time to
create the initial random number seed. Once the seed is created, the
CPU usage level will drop to normal.

Message Encryption

9-24 Open Message Queue 4.5.2 Administration Guide

Administrative Clients For administrative clients, you can establish a secure connection
by including the -secure option when you invoke the imqcmd command: for example,

imqcmd list svc -b hostName:portNumber -u userName -secure
where userName is a valid ADMIN entry in the Message Queue user repository. The
command will prompt you for the password.

Listing the connection services is a way to verify that the ssladmin service is running
and that you can successfully make a secure administrative connection, as shown in
Example 9–6.

Example 9–6 Connection Services Listing

Listing all the services on the broker specified by:

Host Primary Port
localhost 7676

Service Name Port Number Service State
admin 33984 (dynamic) RUNNING
httpjms - UNKNOWN
httpsjms - UNKNOWN
jms 33983 (dynamic) RUNNING
ssladmin 35988 (dynamic) RUNNING
ssljms dynamic UNKNOWN

Successfully listed services.

Using Signed Certificates
Signed certificates provide a stronger level of server authentication than self-signed
certificates. You can implement signed certificates only between a client and broker,
and currently not between multiple brokers in a cluster. This requires the following
extra procedures in addition to the ones described in Using Self-Signed Certificates.
Using signed certificates requires configuration on both the broker and client:

■ Obtaining and Installing a Signed Certificate

■ Configuring the Client to Require Signed Certificates

Obtaining and Installing a Signed Certificate
The following procedures explain how to obtain and install a signed certificate.

To Obtain a Signed Certificate

1. Use the J2SE keytool command to generate a certificate signing request (CSR) for
the self-signed certificate you generated in the preceding section.

Information about the keytool command can be found at

■ http://download.oracle.com/javase/1.5.0/docs/tooldocs/solari
s/keytool.html

Here is an example:

keytool -certreq -keyalg RSA -alias imq -file certreq.csr
-keystore /etc/imq/keystore -storepass myStorePassword
This generates a CSR encapsulating the certificate in the specified file
(certreq.csr in the example).

2. Use the CSR to generate or request a signed certificate.

Message Encryption

Configuring and Managing Security Services 9-25

You can do this by either of the following methods:

■ Have the certificate signed by a well known certification authority (CA), such
as Thawte or Verisign. See your CA's documentation for more information on
how to do this.

■ Sign the certificate yourself, using an SSL signing software package.

The resulting signed certificate is a sequence of ASCII characters. If you
receive the signed certificate from a CA, it may arrive as an e-mail attachment
or in the text of a message.

3. Save the signed certificate in a file.

The instructions below use the example name broker.cer to represent the broker
certificate.

To Install a Signed Certificate

1. Check whether J2SE supports your certification authority by default.

The following command lists the root CAs in the system key store:

keytool -v -list -keystore $JAVA_HOME/lib/security/cacerts
If your CA is listed, skip the next step.

2. If your certification authority is not supported in J2SE, import the CA's root
certificate into the Message Queue key store.

Here is an example:

keytool -import -alias ca -file ca.cer -noprompt -trustcacerts
-keystore /etc/imq/keystore -storepass myStorePassword
where ca.cer is the file containing the root certificate obtained from the CA.

If you are using a CA test certificate, you probably need to import the test CA root
certificate. Your CA should have instructions on how to obtain a copy.

3. Import the signed certificate into the key store to replace the original self-signed
certificate.

Here is an example:

keytool -import -alias imq -file broker.cer -noprompt -trustcacerts
-keystore /etc/imq/keystore -storepass myStorePassword
where broker.cer is the file containing the signed certificate that you received
from the CA.

The Message Queue key store now contains a signed certificate to use for SSL
connections.

Configuring the Client to Require Signed Certificates
You must now configure the Message Queue client runtime to require signed
certificates, and ensure that it trusts the certification authority that signed the
certificate.

Note: By default, starting with release 4.0, the connection factory
object that the client will be using to establish broker connections
has its imqSSLIsHostTrusted attribute set to false, meaning that
the client runtime will attempt to validate all certificates. Validation
will fail if the signer of the certificate is not in the client's trust store.

Password Files

9-26 Open Message Queue 4.5.2 Administration Guide

To Configure the Client Runtime to Require Signed Certificates

1. Verify whether the signing authority is registered in the client's trust store.

To test whether the client will accept certificates signed by your certification
authority, try to establish an SSL connection, as described above under
Configuring and Running an SSL-Based Client Using Self-Signed Certificates. If
the CA is in the client's trust store, the connection will succeed and you can skip
the next step. If the connection fails with a certificate validation error, go on to the
next step.

2. Install the signing CA's root certificate in the client's trust store.

The client searches the key store files cacerts and jssecacerts by default, so no
further configuration is necessary if you install the certificate in either of those
files. The following example installs a test root certificate from the Verisign
certification authority from a file named testrootca.cer into the default system
certificate file, cacerts. The example assumes that J2SE is installed in the directory
$JAVA_HOME/usr/j2se:

keytool -import -keystore /usr/j2se/jre/lib/security/cacerts
-alias VerisignTestCA -file testrootca.cer -noprompt
-trustcacerts -storepass myStorePassword
An alternative (and recommended) option is to install the root certificate into the
alternative system certificate file, jssecacerts:

keytool -import -keystore /usr/j2se/jre/lib/security/jssecacerts
-alias VerisignTestCA -file testrootca.cer -noprompt
-trustcacerts -storepass myStorePassword
A third possibility is to install the root certificate into some other key store file and
configure the client to use that as its trust store. The following example installs
into the file /home/smith/.keystore:

keytool -import -keystore /home/smith/.keystore
-alias VerisignTestCA -file testrootca.cer -noprompt
-trustcacerts -storepass myStorePassword
Since the client does not search this key store by default, you must explicitly
provide its location to the client to use as a trust store. You do this by setting the
Java system property javax.net.ssl.trustStore once the client is running:

javax.net.ssl.trustStore=/home/smith/.keystore

Password Files
Several types of command require passwords. In Table 9–6, the first column lists the
commands that require passwords and the second column lists the reason that
passwords are needed.

Table 9–6 Commands That Use Passwords

Command Description Purpose of Password

imqbrokerd Start broker Access a JDBC-based persistent data store,
an SSL certificate key store, or an LDAP user
repository

imqcmd Manage broker Authenticate an administrative user who is
authorized to use the command

imqdbmgr Manage JDBC-based data store Access the data store

Connecting Through a Firewall

Configuring and Managing Security Services 9-27

You can specify these passwords in a password file and use the -passfile option to
specify the name of the file. This is the format for the -passfile option:

imqbrokerd -passfile filePath

Security Concerns
Typing a password interactively, in response to a prompt, is the most secure method of
specifying a password (provided that your monitor is not visible to other people). You
can also specify a password file on the command line. For non-interactive use of
commands, however, you must use a password file.

A password file is unencrypted, so you must set its permissions to protect it from
unauthorized access. Set the permissions so that they limit the users who can view the
file, but provide read access to the user who starts the broker.

Password File Contents
A password file is a simple text file containing a set of properties and values. Each
value is a password used by a command. Table 9–7 shows the types of passwords that
a password file can contain.

A sample password file, IMQ_HOME/etc/passfile.sample, is provided as part of your
Message Queue installation.

Connecting Through a Firewall
When a client application is separated from the broker by a firewall, special measures
are needed in order to establish a connection. One approach is to use the httpjms or
httpsjms connection service, which can "tunnel" through the firewall; see
HTTP/HTTPS Support for details. HTTP connections are slower than other connection
services, however; a faster alternative is to bypass the Message Queue Port Mapper
and explicitly assign a static port address to the desired connection service, and then
open that specific port in the firewall. This approach can be used to connect through a

Note: In previous versions of Message Queue, you could use the
-p, -password, -dbpassword, and -ldappassword options to specify
passwords on the command line. As of Message Queue 4.0, these
options are deprecated and are no longer supported; you must use
a password file instead.

Table 9–7 Passwords in a Password File

Password
Affected
Commands Description

imq.imqcmd.password imqcmd Administrator password for Message Queue
Command utility (authenticated for each
command)

imq.keystore.password imqbrokerd Key store password for SSL-based services

imq.persist.jdbc.password imqbrokerd
imqdbmgr

Password for opening a database connection, if
required

imq.user_repository.ldap.password imqbrokerd Password associated with the distinguished name
assigned to a broker for binding to a configured
LDAP user repository

Audit Logging with the Solaris BSM Audit Log

9-28 Open Message Queue 4.5.2 Administration Guide

firewall using the jms or ssljms connection service (or, in unusual cases, admin or
ssladmin).

To Enable Broker Connections Through a Firewall
1. Assign a static port address to the connection service you wish to use.

To bypass the Port Mapper and assign a static port number directly to a connection
service, set the broker configuration property imq.serviceName.protocolType.port,
where serviceName is the name of the connection service andprotocolType is its
protocol type (see Table 9–8). As with all broker configuration properties, you can
specify this property either in the broker's instance configuration file or from the
command line when starting the broker. For example, to assign port number 10234
to the jms connection service, either include the line

imq.jms.tcp.port=10234
in the configuration file or start the broker with the command

imqbrokerd -name brokerName -Dimq.jms.tcp.port=10234
where brokerName is the name of the broker to be started.

2. Configure the firewall to allow connections to the port number you assigned to the
connection service.

You must also allow connections through the firewall to Message Queue's Port
Mapper port (normally 7676, unless you have reassigned it to some other port). In
the example above, for instance, you would need to open the firewall for ports
10234 and 7676.

Audit Logging with the Solaris BSM Audit Log
Message Queue supports audit logging. When audit logging is enabled, Message
Queue generates a record for the following types of events:

■ Startup, shutdown, restart, and removal of a broker instance

■ User authentication and authorization

■ Reset of a persistent store

■ Creation, purge, and destruction of a physical destination

■ Administrative destruction of a durable subscriber

Message Queue supports logging audit records to the Message Queuebroker log file
and to the Solaris BSM audit log:

■ To log audit records to the Message Queue broker log file, set the
imq.audit.enabled broker property to true . All audit records in the broker log
contain the keyword AUDIT.

■ To log audit records to the Solaris BSM audit log, set the imq.audit.bsm.disabled
broker property to false .

Table 9–8 Broker Configuration Properties for Static Port Addresses

Connection Service Configuration Property

jms imq.jms.tcp.port

ssljms imq.ssljms.tls.port

admin imq.admin.tcp.port

ssladmin imq.ssladmin.tls.port

Audit Logging with the Solaris BSM Audit Log

Configuring and Managing Security Services 9-29

Note: To log audit records to the Solaris BSM audit log, you must
run the broker as root, and /usr/lib/audit/Audit.jar must be in
the broker classpath.

Audit Logging with the Solaris BSM Audit Log

9-30 Open Message Queue 4.5.2 Administration Guide

10

Configuring and Managing Broker Clusters 10-1

10Configuring and Managing Broker Clusters

Message Queue supports the use of broker clusters: groups of brokers working
together to loprovide message delivery services to clients. Clusters enable a message
service to scale its operations to meet an increasing volume of message traffic by
distributing client connections among multiple brokers.

In addition, clusters provide for message service availability. In the case of a
conventional cluster, if a broker fails, clients connected to that broker can reconnect to
another broker in the cluster and continue producing and consuming messages. In the
case of an enhanced cluster, if a broker fails, clients connected to that broker reconnect
to a failover broker that takes over the pending work of the failed broker, delivering
messages without interruption of service.

See "Broker Clusters" in Open Message Queue Technical Overview for a description of
conventional and enhanced broker clusters and how they operate.

This chapter describes how to configure and manage both conventional and enhanced
broker clusters:

■ Configuring Broker Clusters

■ Managing Broker Clusters

Configuring Broker Clusters
You create a broker cluster by specifying cluster configuration properties for each of its
member brokers. Except where noted in this chapter, cluster configuration properties
must be set to the same value for each broker in a cluster. This section introduces these
properties and the use of a cluster configuration file to specify them:

■ The Cluster Configuration File

■ Cluster Configuration Properties

■ Displaying a Cluster Configuration

The Cluster Configuration File
Like all broker properties, cluster configuration properties can be set individually for
each broker in a cluster, either in its instance configuration file (config.properties) or
by using the -D option on the command line when you start the broker. However,
except where noted in this chapter, each cluster configuration property must be set to
the same value for each broker in a cluster.

For example, to specify the transport protocol for the cluster connection service, you
can include the following property in the instance configuration file for each broker in
the cluster: imq.cluster.transport=ssl. If you need to change the value of this

Configuring Broker Clusters

10-2 Open Message Queue 4.5.2 Administration Guide

property, you must change its value in the instance configuration file for every broker
in the cluster.

For consistency and ease of maintenance, it is generally more convenient to collect all
of the common cluster configuration properties into a central cluster configuration file
that all of the individual brokers in a cluster reference. Using a cluster configuration
file prevents the settings from getting out of synch and ensures that all brokers in a
cluster use the same, consistent cluster configuration information.

When using a cluster configuration file, each broker's instance configuration file must
point to the location of the cluster configuration file by setting the imq.cluster.url
property. For example,

imq.cluster.url=file:/home/cluster.properties

Cluster Configuration Properties
This section reviews the most important cluster configuration properties, grouped into
the following categories:

■ Cluster Connection Service Properties

■ Conventional Broker Cluster Properties

■ Enhanced Broker Cluster Properties

A complete list of cluster configuration properties can be found in Table 17–14

Cluster Connection Service Properties
The following properties are used to configure the cluster connection service used for
internal communication between brokers in the cluster. These properties are used by
both conventional and enhanced clusters.

■ imq.cluster.transport specifies the transport protocol used by the cluster
connection service, such as tcp or ssl.

■ imq.cluster.port specifies the port number for the cluster connection service. You
might need to set this property, for instance, to specify a static port number for
connecting to the broker through a firewall.

■ imq.cluster.hostname specifies the host name or IP address for the cluster
connection service, used for internal communication between brokers in the
cluster. The default setting works fine, however, explicitly setting the property can
be useful if there is more than one network interface card installed in a computer.
If you set the value of this property to localhost, the value will be ignored and
the default will be used.

Conventional Broker Cluster Properties
In addition to the properties listed in Cluster Connection Service Properties, all
conventional clusters use the following properties:

Note: A cluster configuration file can also include broker
properties that are not used specifically for cluster configuration.
For example, you can place any broker property in the cluster
configuration file that has the same value for all brokers in a cluster.
For more information, see Connecting Brokers into a Conventional
Cluster

Configuring Broker Clusters

Configuring and Managing Broker Clusters 10-3

■ imq.cluster.brokerlist specifies a list of broker addresses defining the membership
of the cluster; all brokers in the cluster must have the same value for this property.

For example, to create a conventional cluster consisting of brokers at port 9876 on
host1, port 5000 on host2, and the default port (7676) on ctrlhost, use the
following value:

imq.cluster.brokerlist=host1:9876,host2:5000,ctrlhost

■ imq.cluster.nomasterbroker specifies whether the cluster is a conventional cluster
of peer brokers, which uses a shared JDBC data store for the cluster's configuration
change record. When true, the cluster is a conventional cluster of peer brokers.
When false (or omitted, as false is the default), the cluster is considered to be a
conventional cluster with master broker, even if no master broker is actually
specified. All brokers in a given cluster must have the same value for this property.

Each type of conventional cluster has additional properties to support its
configuration, as described in the following two sections.

Additional Properties for Conventional Clusters with Master Broker The following additional
properties are used to configure a conventional cluster with a master broker:

■ imq.cluster.masterbroker specifies which broker in a conventional cluster is the
master broker that maintains the configuration change record that tracks the
addition and deletion of destinations and durable subscribers. For example:

imq.cluster.masterbroker=host2:5000

While specifying a master broker using the imq.cluster.masterbroker is not
mandatory for a conventional cluster with master broker to function, it guarantees
that persistent information propagated across brokers (destinations and durable
subscriptions) is always synchronized. See "Conventional Clusters" in Open
Message Queue Technical Overview.

■ imq.cluster.dynamicChangeMasterBrokerEnabled specifies whether the master
broker can be changed to another broker in the cluster without stopping all the
broker in the cluster. All brokers in a given cluster must have the same value for
this property.

Additional Properties for Conventional Clusters of Peer Brokers The following additional
properties are used to configure a conventional cluster of peer brokers. All brokers in a
given cluster must have the same values for these properties.

■ imq.cluster.clusterid specifies the cluster identifier, which will be appended to the
name of the configuration change record's database table in the JDBC data store.
The value of this property must be the same for all brokers in a given cluster, but
must be unique for each cluster: no two clusters may have the same cluster
identifier.

■ imq.cluster.sharecc.persist.jdbc.dbVendor specifies the name of the database
vendor of the JDBC data store housing the configuration change record's table.

■ imq.cluster.sharecc.persist.jdbc.<vendorName>.user specifies the user name, if
required, for connecting to the database from vendor <vendorName>.

■ imq.cluster.sharecc.persist.jdbc.<vendorName>.needpassword specifies whether
a password is needed for connecting to the database from vendor <vendorName>.

■ imq.cluster.sharecc.persist.jdbc.<vendorName>.password specifies the
password, if required, for connecting to the database from vendor <vendorName>.
This value should be set only in password files, as described in Password Files.

Configuring Broker Clusters

10-4 Open Message Queue 4.5.2 Administration Guide

■ imq.cluster.sharecc.persist.jdbc.<vendorName>.driver specifies the Java class
name of the JDBC driver, if required, for connecting to the database from vendor
<vendorName>.

■ imq.cluster.sharecc.persist.jdbc.<vendorName>.opendburl specifies the URL for
connecting to an existing database from vendor <vendorName>. This applies when
a java.sql.Driver is used to connect to the database.

■ imq.cluster.sharecc.persist.jdbc.<vendorName>.createdburl optionally specifies
the URL for creating a new database from vendor <vendorName>. This applies only
to embedded databases, such as Java DB.

■ imq.cluster.sharecc.persist.jdbc.<vendorName>.closedburl optionally specifies
the URL for closing a connection to the database from vendor <vendorName>. This
applies only to some embedded databases, such as Java DB.

■ imq.cluster.sharecc.persist.jdbc.<vendorName>.tableoption optionally specifies
vendor-specific options to be passed to the database from vendor <vendorName>
when creating the table schema.

■ imq.cluster.sharecc.persist.jdbc.<vendorName>.property.<propName> specifies
a vendor-specific property <propName> for the database from vendor
<vendorName>.

Enhanced Broker Cluster Properties
Enhanced broker clusters, which share a JDBC-based data store, require more
configuration than do conventional broker clusters. In addition to the properties listed
in Cluster Connection Service Properties, the following categories of properties are
used to configure an enhanced cluster:

■ Enhanced Clusters: General Configuration Properties

■ Enhanced Clusters: JDBC Configuration Properties

■ Enhanced Clusters: Failure Detection Properties

Enhanced Clusters: General Configuration Properties

■ imq.cluster.ha is a boolean value that specifies if the cluster is an enhanced cluster
(true) or a conventional broker (false). The default value is false.

If set to true, mechanisms for failure detection and takeover of a failed broker are
enabled. Enhanced clusters are self-configuring: any broker configured to use the
cluster's shared data store is automatically registered as part of the cluster, without
further action on your part. If the conventional cluster property,
imq.cluster.brokerlist, is specified for a high-availability broker, the property
is ignored and a warning message is logged at broker startup.

■ imq.persist.store specifies the model for a broker's persistent data store. This
property must be set to the value jdbc for every broker in an enhanced cluster.

■ imq.cluster.clusterid specifies the cluster identifier, which will be appended to the
names of all database tables in the cluster's shared persistent store. The value of
this property must be the same for all brokers in a given cluster, but must be
unique for each cluster: no two running clusters may have the same cluster
identifier.

■ imq.brokerid is a broker identifier that must be unique for each broker in the
cluster. Hence, this property must be set in each broker's instance configuration
file rather than in a cluster configuration file.

Configuring Broker Clusters

Configuring and Managing Broker Clusters 10-5

Enhanced Clusters: JDBC Configuration Properties The persistent data store for an
enhanced cluster is maintained on a highly-available JDBC database.

The highly-availabile database may be MySQL Cluster Edition or Oracle Real
Application Clusters (RAC), or it may be an open-source or third-party product. As
described in JDBC-Based Persistence Properties, the imq.persist.jdbc.dbVendor
broker property specifies the name of the database vendor, and all of the remaining
JDBC-related properties are qualified with this vendor name.

The JDBC-related properties are discussed under JDBC-Based Persistence Properties
and summarized in Table 17–8. See the example configuration for MySQL in
Example 8–1.

Enhanced Clusters: Failure Detection Properties The following configuration properties
(listed in Table 17–14) specify the parameters for the exchange of heartbeat and status
information within an enhanced cluster:

■ imq.cluster.heartbeat.hostname specifies the host name (or IP address) for the
heartbeat connection service.

■ imq.cluster.heartbeat.port specifies the port number for the heartbeat connection
service.

■ imq.cluster.heartbeat.interval specifies the interval, in seconds, at which heartbeat
packets are transmitted.

■ imq.cluster.heartbeat.threshold specifies the number of missed heartbeat
intervals after which a broker is considered suspect of failure.

■ imq.cluster.monitor.interval specifies the interval, in seconds, at which to monitor
a suspect broker's state information to determine whether it has failed.

■ imq.cluster.monitor.threshold specifies the number of elapsed monitor intervals
after which a suspect broker is considered to have failed.

Smaller values for these heartbeat and monitoring intervals will result in quicker
reaction to broker failure, but at the cost of reduced performance and increased
likelihood of false suspicions and erroneous failure detection.

Displaying a Cluster Configuration
To display information about a cluster's configuration, use the Command utility's list
bkr subcommand:

imqcmd list bkr
This lists the current state of all brokers included in the cluster to which a given broker
belongs. The broker states are described in the following table:

Note: In setting JDBC-related properties for an enhanced cluster
when using MySQL Cluster Edition as a highly-available database,
you must specify the NDB Storage Engine rather than the InnoDB
Storage Engine set by Message Queue by default. To specify the
NDB Storage Engine, set the following broker property for all
brokers in the cluster:

imq.persist.jdbc.mysql.tableoption=ENGINE=NDBCLUSTER

Configuring Broker Clusters

10-6 Open Message Queue 4.5.2 Administration Guide

The results of the imqcmd list bkr command are shown in Example 10–1 (for a
conventional cluster) and Example 10–2 (for an enhanced cluster).

Example 10–1 Configuration Listing for a Conventional Cluster

Listing all the brokers in the cluster that the following broker is a member of:

Host Primary Port

localHost 7676

Cluster Is Highly Available False

Address State

whippet:7676 OPERATING
greyhound:7676 OPERATING

Example 10–2 Configuration Listing for an Enhanced Cluster

Listing all the brokers in the cluster that the following broker is a member of:

--
Host Primary Port Cluster Broker ID
--
localHost 7676 brokerA

Cluster ID myClusterID
Cluster Is Highly Available True

--

 ID of
broker Time since last
Broker ID Address State Msgs in store performing

Table 10–1 Broker States

Broker State Meaning

OPERATING Broker is operating

TAKEOVER_STARTED For enhanced clusters, broker has begun taking over persistent data
store from another broker

TAKEOVER_COMPLETE For enhanced clusters, broker has finished taking over persistent data
store from another broker

TAKEOVER_FAILED For enhanced clusters, attempted takeover has failed

QUIESCE_STARTED Broker has begun quiescing

QUIESCE_COMPLETE Broker has finished quiescing

SHUTDOWN_STARTED Broker has begun shutting down

BROKER_DOWN Broker is down

UNKNOWN Broker state unknown

Managing Broker Clusters

Configuring and Managing Broker Clusters 10-7

takeover status timestamp
--

brokerA localhost:7676 OPERATING 121
30 sec
brokerB greyhound:7676 TAKEOVER_STARTED 52 brokerA
3 hrs
brokerC jpgserv:7676 SHUTDOWN_STARTED 12346
10 sec
brokerD icdev:7676 TAKEOVER_COMPLETE 0 brokerA
2 min
brokerE mrperf:7676 *unknown 12
0 sec
brokerG iclab1:7676 QUIESCING 4
2 sec
brokerH iclab2:7676 QUIESCE_COMPLETE 8
5 sec

Managing Broker Clusters
The following sections describe how to perform various administrative management
tasks for conventional and enhanced clusters, respectively.

■ Managing Conventional Clusters

■ Managing Enhanced Clusters

■ Converting a Conventional Cluster to an Enhanced Cluster

Managing Conventional Clusters
The procedures in this section show how to perform the following tasks for a
conventional cluster:

■ Connecting Brokers into a Conventional Cluster

■ Adding Brokers to a Conventional Cluster

■ Removing Brokers From a Conventional Cluster

■ Changing the Master Broker in a Conventional Cluster with Master Broker

■ Managing a Conventional Cluster's Configuration Change Record

■ Converting Between Types of Conventional Clusters

Connecting Brokers into a Conventional Cluster
There are two general methods of connecting brokers into a conventional cluster: from
the command line (using the -cluster option) or by setting the
imq.cluster.brokerlist property in the cluster configuration file.

Whichever method you use, each broker that you start attempts to connect to the other
brokers in the cluster every five seconds until the connection succeeds.

For a cluster configured with master broker, the connection will succeed once the
master broker is started up (if one is configured). If a broker in the cluster starts before
the master broker, it will remain in a suspended state, rejecting client connections,
until the master broker starts; the suspended broker then will automatically become
fully functional. It is therefore a good idea to start the master broker first and then the
others, after the master broker has completed its startup.

Managing Broker Clusters

10-8 Open Message Queue 4.5.2 Administration Guide

When connecting brokers into a conventional cluster, you should be aware of the
following issues:

■ Mixed broker versions. A conventional cluster can contain brokers of different
versions if all brokers have a version at least as great as that of the master broker. If
the cluster is not configured to use a master broker, then all brokers must be of the
same version.

■ Matching broker property values. In addition to cluster configuration properties,
the following broker properties also must have the same value for all brokers in a
cluster:

■ imq.service.activelist

■ imq.autocreate.queue

■ imq.autocreate.topic

■ imq.autocreate.queue.maxNumActiveConsumers

■ imq.autocreate.queue.maxNumBackupConsumers

This restriction is particularly important when a cluster contains mixed broker
versions that might contain properties with different default values. For example,
If you are clustering a Message Queue version 4.1 or later broker together with
those from earlier versions than Message Queue 4.1, you must set the value of the
imq.autocreate.queue.maxNumActiveConsumers property, which has different
default values before and after version 4.1 (1 and -1, respectively), to be the same.
Otherwise the brokers will not be able to establish a cluster connection.

■ Multiple interface cards. On a multi-homed computer, in which there is more
than one network interface card, be sure to explicitly set the network interface to
be used by the broker for client connection services (imq.hostname) and for the
cluster connection service (imq.cluster.hostname). Setting the imq.hostname
value also effectively sets the value for other properties that use imq.hostname as
their default value, such as imq.portmapper.hostname, imq.cluster.hostname,
and so on. If imq.cluster.hostname is not set, then connections between brokers
might not succeed and as a result, the cluster will not be established.

■ Network loopback IP address. You must make sure that no broker in the cluster is
given an address that resolves to a loopback network (127.*.*.*) IP address. Any
broker configured with such an address will be unable to connect to other brokers
in the cluster.

In particular, some Linux installers automatically set the local host to a loopback
network address, most commonly 127.0.0.1. On such systems, you must do the
following: For each Linux system participating in the cluster, check the /etc/hosts
file as part of cluster setup. If the system uses a static IP address, edit the
/etc/hosts file to specify the correct address for the local host. If the address is
registered with Domain Name Service (DNS), edit the file /etc/nsswitch.conf so
that DNS lookup is performed before consulting the local hosts file.

To Connect Brokers Using a Cluster Configuration File The method best suited for
production systems is to use a cluster configuration file to specify the configuration of
the cluster:

1. If using a conventional cluster of peer brokers, configure the use of the shared
JDBC data store for the configuration change record:

■ Use the imqdbmgr create sharecc_tbl command to create the database table
for the configuration change record.

Managing Broker Clusters

Configuring and Managing Broker Clusters 10-9

■ Place a copy of, or a symbolic link to, your JDBC driver's .jar file in the
Message Queue external resource files directory, IMQ_HOME/lib/ext, on each
host where a broker will run.

2. Create a cluster configuration file that uses the imq.cluster.brokerlist property
to specify the list of brokers to be connected.

If you are using a master broker, identify it with the imq.cluster.masterbroker
property in the configuration file.

If you are using a cluster of peer brokers, set the imq.cluster.nomasterbroker
property to true, and set imq.cluster.sharecc.persist.jdbc.* properties as
appropriate in the configuration file.

3. For each broker in the cluster, set the imq.cluster.url property in the broker's
instance configuration file to point to the cluster configuration file.

4. Use the imqbrokerd command to start each broker.

If there is a master broker, start it first, then the others after it has completed its
startup.

To Connect Brokers from the Command Line Connecting brokers to a cluster from the
command line involves starting each broker with the imqbrokerd command using the
-cluster option to specify the complete list of brokers to be included in the cluster.

For example, the following command starts a broker as part of a cluster consisting of
the brokers running at the default port (7676) on host1, at port 5000 on host2, and at
port 9876 on the default host (localhost):

imqbrokerd -cluster host1,host2:5000,:9876

The value specified for the -cluster option must be the same for all brokers in the
cluster.

Before You Begin
Set any necessary broker properties, except imq.cluster.brokerlist, in each broker's
configuration file before performing the following procedure.

1. If using a conventional cluster of peer brokers:

a. Configure the use of the shared JDBC data store for the configuration change
record:

– Use the imqdbmgr create sharecc_tbl command to create the database
table for the configuration change record.

– Place a copy of, or a symbolic link to, your JDBC driver's .jar file in the
Message Queue external resource files directory, IMQ_HOME/lib/ext, on
each host where a broker will run.

b. Start each broker in the cluster with the imqbrokerd command, specifying in
the -cluster option the same complete list of brokers.

2. If using a conventional cluster with master broker:

a. Start the master broker with the imqbrokerd command, specifying in the
-cluster option the complete list of brokers.

b. Once the master broker is running, start each of the other brokers in the cluster
with the imqbrokerd command, specifying in the -cluster option the same
complete list of brokers as you used to start the master broker.

Managing Broker Clusters

10-10 Open Message Queue 4.5.2 Administration Guide

To Establish Secure Connections Between Brokers If you want secure, encrypted message
delivery between brokers in a cluster, configure the cluster connection service to use
an SSL-based transport protocol:

1. For each broker in the cluster, set up SSL-based connection services, as described
in Message Encryption.

2. Set each broker's imq.cluster.transport property to ssl, either in the cluster
configuration file or individually for each broker.

Adding Brokers to a Conventional Cluster
The procedure for adding a new broker to a conventional cluster depends on whether
the cluster uses a cluster configuration file.

To Add a New Broker to a Conventional Cluster Using a Cluster Configuration File

1. Add the new broker to the imq.cluster.brokerlist property in the cluster
configuration file.

2. Issue the following command to any broker in the cluster:

imqcmd reload cls
This forces each broker to reload the imq.cluster.brokerlist property. It is not
necessary to issue this command to every broker in the cluster; executing it for any
one broker will cause all of them to reload the cluster configuration.

3. (Optional) Set the value of the imq.cluster.url property in the new broker's
instance configuration file (config.properties) to point to the cluster
configuration file.

4. Start the new broker.

If you did not perform step 3, use the -D option on the imqbrokerd command line
to set the value of imq.cluster.url to the location of the cluster configuration file.

To Add a New Broker to a Conventional Cluster Without a Cluster Configuration File

1. (Optional) Set the values of the following properties in the new broker's instance
configuration file (config.properties) :

■ imq.cluster.brokerlist

■ imq.cluster.masterbroker (if necessary)

■ imq.cluster.transport (if you are using a secure cluster connection service)

When the newly added broker starts, it connects and exchanges data with all the
other brokers in the imq.cluster.brokerlist value.

2. Modify the imq.cluster.brokerlist property of other brokers in the cluster to
include the new broker.

This step is not strictly necessary to add a broker to a functioning cluster.
However, should any broker need to be restarted, its imq.cluster.brokerlist
value must include all other brokers in the cluster, including the newly added
broker.

3. Start the new broker.

If you did not perform step 1, use the -D option on the imqbrokerd command line
to set the property values listed there.

Managing Broker Clusters

Configuring and Managing Broker Clusters 10-11

Removing Brokers From a Conventional Cluster
The method you use to remove a broker from a conventional cluster depends on
whether you originally created the cluster using a cluster configuration file or by
means of command line options.

To Remove a Broker From a Conventional Cluster Using a Cluster Configuration File If you
originally created a cluster by specifying its member brokers with the
imq.cluster.brokerlist property in a central cluster configuration file, it isn't
necessary to stop the brokers in order to remove one of them. Instead, you can simply
edit the configuration file to exclude the broker you want to remove, force the
remaining cluster members to reload the cluster configuration, and reconfigure the
excluded broker so that it no longer points to the same cluster configuration file:

1. If you are permanently removing the broker from the cluster, prepare it for
removal:

a. Quiesce the broker by using the imqcmd quiesce bkr command.

b. Stop all producer clients connected to the broker.

c. Drain all messages by waiting for connected consumer clients to consume
existing messages.

Use the imqcmd query bkr command periodically to check the number of
messages in the broker.

d. Roll back or commit any prepared open transactions.

Use the imqcmd list txn command to view prepared open transactions, and
use the imqcmd rollback txn and imqcmd commit txn to roll back and
commit transactions.

2. Edit the cluster configuration file to remove the excluded broker from the list
specified for the imq.cluster.brokerlist property.

3. Issue the following command to each broker remaining in the cluster:

imqcmd reload cls
This forces the brokers to reload the cluster configuration.

4. Stop the broker you're removing from the cluster.

5. Edit that broker's instance configuration file (config.properties), removing or
specifying a different value for its imq.cluster.url property.

To Remove a Broker From a Conventional Cluster Using the Command Line If you used the
imqbrokerd command from the command line to connect the brokers into a cluster,
you must stop each of the brokers and then restart them, specifying the new set of
cluster members on the command line:

1. If you are permanently removing the broker from the cluster, prepare it for
removal:

a. Quiesce the broker by using the imqcmd quiesce bkr command.

Note: Before you remove from a conventional cluster the broker
instance serving as the cluster's master broker, first change the
master broker to another broker instance in the cluster, as described
in Changing the Master Broker in a Conventional Cluster with
Master Broker

Managing Broker Clusters

10-12 Open Message Queue 4.5.2 Administration Guide

b. Stop all producer clients connected to the broker.

c. Drain all messages by waiting for connected consumer clients to consume
existing messages.

Use the imqcmd query bkr command periodically to check the number of
messages in the broker.

d. Roll back or commit any prepared open transactions.

Use the imqcmd list txn command to view prepared open transactions, and
use the imqcmd rollback txn and imqcmd commit txn to roll back and
commit transactions.

2. Stop each broker in the cluster, using the imqcmd command.

3. Restart the brokers that will remain in the cluster, using the imqbrokerd
command's -cluster option to specify only those remaining brokers.

For example, suppose you originally created a cluster consisting of brokers A, B,
and C by starting each of the three with the command

imqbrokerd -cluster A,B,C
To remove broker A from the cluster, restart brokers B and C with the command

imqbrokerd -cluster B,C

Changing the Master Broker in a Conventional Cluster with Master Broker
Message Queue provides two ways to change the broker instance serving as the
master broker to a different broker instance in the cluster:

■ Dynamically while the cluster is running

■ Manually by stopping the cluster and migrating the configuration change record
from one broker to another

To change the master broker dynamically, you must first configure the brokers in the
cluster to support dynamic changing of the master broker.

To Configure a Cluster to Support Dynamic Changing of the Master Broker

1. In the properties file for each broker of the cluster, set the
imq.cluster.dynamicChangeMasterBrokerEnabled property to true.

If using a cluster configuration file, you can instead set the
imq.cluster.dynamicChangeMasterBrokerEnabled property to true in the cluster
configuration file.

2. In the properties file for each broker of the cluster, set the
imq.cluster.masterbroker property to the initial master broker.

When the imq.cluster.dynamicChangeMasterBrokerEnabled property is set to
true, the imq.cluster.masterbroker property cannot be specified on the
command line to start a broker. Therefore, it must be set in the brokers' properties
files, or in the cluster configuration file if one is being used.

To Change the Master Broker Dynamically While the Cluster Is Running To dynamically
change the broker instance serving as the master broker to a different broker instance
in the cluster, use the imqcmd changemaster cls command.

Follow this procedure, for example, before you remove from a cluster the broker
instance serving as the master broker.

Managing Broker Clusters

Configuring and Managing Broker Clusters 10-13

Before You Begin
To ensure a successful dynamic changing of the master broker, verify that all brokers
in the cluster are running before issuing the imqcmd changemaster cls command.

1. On the current master broker, run the imqcmd changemaster cls command, using
the -o to specify the new master broker:

imqcmd changemaster cls -o imq.cluster.masterbroker=newMaster

The value newMaster has the form hostName:portNumber, where hostName and
portNumber are the Port Mapper host name and port number, respectively, of the
new master broker's host.

The broker returns one of the following status values for the operation:

OK
The operation was successful. The new master broker is now the master broker for
the cluster, and the old master broker is now a normal broker in the cluster. If any
other brokers in the cluster were unreachable and so could not be notified of the
change, they must be restarted after manually updating their configurations to
refer to the new master broker.

BAD_REQUEST, NOT_ALLOWED, UNAVAILABLE or PRECONDITION_FAILED
The operation failed, and the cluster's configuration was unchanged. The old
master broker is still the master broker for the cluster.

Any other value
The operation failed. Use the imqcmd query bkr command on the old master
broker to discover which broker is the master broker:

■ If the master broker listed is the old master broker, the failure occurred before
the cluster's configuration change record was transferred to the new master
broker. In this case, retry the command.

■ If the master broker listed is the new master broker, the cluster's configuration
change record was transferred successfully to the new master broker, but some
other activity failed later in the operation. In this case, stop all brokers in the
cluster, manually update their configurations to refer to the new master
broker, and then restart them all.

To Change the Master Broker Manually

1. Stop all brokers in the cluster.

2. Save the configuration change record in the old master broker by using the
-backup option of the imqbrokerd command:

imqbrokerd -backup backupFile

3. Stop the old master broker after the configuration change record has been saved.

Caution: Do not use the imqcmd changemaster cls command to
dynamically change the master broker in a Message Queue cluster
managed by GlassFish Server as an Embedded or Local JMS host.
Instead, use the asadmin change-master-broker command as
described in "To Change the Master Broker in an Embedded or
Local Broker Cluster" in GlassFish Server Open Source Edition High
Availability Administration Guide.

Managing Broker Clusters

10-14 Open Message Queue 4.5.2 Administration Guide

4. Update the imq.cluster.masterbroker property to the new master broker in the
configurations for all brokers in the cluster.

Additionally, if necessary, update the imq.cluster.brokerlist property in the
configurations for all brokers in the cluster.

5. Start the new master broker, restoring the saved configuration change record by
using the -restore option:

imqbrokerd -restore backupFile

When using this command, specify as backupFile the file you saved in Step 1.

6. Start the other brokers in the cluster.

Managing a Conventional Cluster's Configuration Change Record
As noted earlier, a conventional cluster maintains a configuration change record to
keep track of any changes in the cluster's persistent state. This configuration change
record is maintained either by the master broker or in a shared JDBC data store,
depending on the type of the conventional cluster.

Because of the important information that the configuration change record contains, it
is important to back it up regularly so that it can be restored in case of failure.
Although restoring from a backup will lose any changes in the cluster's persistent state
that have occurred since the backup was made, frequent backups can minimize this
potential loss of information. The backup and restore operations also have the positive
effect of compressing and optimizing the change history contained in the
configuration change record, which can grow significantly over time.

To Back Up the Configuration Change Record in a Master Broker

1. Use the -backup option of the imqbrokerd command, specifying the name of the
backup file.

For example:

imqbrokerd -backup mybackuplog

To Back Up the Configuration Change Record in a Shared JDBC Data Store

1. Use the imqdbmgr backup sharecc_tbl command to back up the configuration
change record:

imqdbmgr backup sharecc_tbl -file fileName -Dimq.cluster.url=clusterConfigUrl

To Restore the Configuration Change Record to a Master Broker

1. Shut down all brokers in the cluster.

2. Restore the master broker's configuration change record from the backup file.

The command is

imqbrokerd -restore mybackuplog
3. If you assign a new name or port number to the master broker, update the

imq.cluster.brokerlist and imq.cluster.masterbroker properties accordingly
in the cluster configuration file.

4. Restart all brokers in the cluster.

To Restore the Configuration Change Record to a Shared JDBC Data Store

Managing Broker Clusters

Configuring and Managing Broker Clusters 10-15

1. Shut down all brokers in the cluster.

2. Use the imqdbmgr recreate sharecc_tbl command to delete the existing
configuration change record and then re-create the table:

imqdbmgr recreate sharecc_tbl -Dimq.cluster.url=clusterConfigUrl

3. Use the imqdbmgr restore sharecc_tbl command to restore the configuration
change record:

imqdbmgr restore sharecc_tbl -file fileName -Dimq.cluster.url=clusterConfigUrl

4. Start all the brokers in the cluster.

Converting Between Types of Conventional Clusters
To convert between types of conventional clusters, you change where the
configuration change record is maintained: in a master broker or in a shared JDBC data
store. The following topics provide instructions to convert between types:

■ To Convert from Using a Master Broker to Using a Shared JDBC Data Store

■ To Convert from Using a Shared JDBC Data Store to Using a Master Broker

To Convert from Using a Master Broker to Using a Shared JDBC Data Store

1. Shut down all brokers in the cluster.

2. Back up the configuration change record in the master broker as described in To
Back Up the Configuration Change Record in a Master Broker.

3. Shut down the master broker.

4. Edit the cluster configuration file, configuring the cluster as a conventional cluster
of peer brokers:

■ Set the imq.cluster.nomasterbroker property to true.

■ Set additional properties as described in Additional Properties for
Conventional Clusters of Peer Brokers.

5. Using the backup file saved in Step 2, restore the configuration change record to
the shared JDBC data store as described in To Restore the Configuration Change
Record to a Shared JDBC Data Store.

6. Start all the brokers in the cluster.

To Convert from Using a Shared JDBC Data Store to Using a Master Broker

1. Shut down all brokers in the cluster.

2. Back up the configuration change record in the shared JDBC data store as
described in To Back Up the Configuration Change Record in a Shared JDBC Data
Store.

3. Edit the cluster configuration file, configuring the cluster as a conventional cluster
with master broker:

■ Set the imq.cluster.nomasterbroker property to false.

■ Set additional properties as described in Additional Properties for
Conventional Clusters with Master Broker.

Managing Broker Clusters

10-16 Open Message Queue 4.5.2 Administration Guide

4. Using the backup file saved in Step 2, restore the configuration change record to
the master broker as described in To Restore the Configuration Change Record to a
Master Broker.

5. Start all the brokers in the cluster.

Managing Enhanced Clusters
This section presents step-by-step procedures for performing a variety of
administrative tasks for an enhanced cluster:

■ Connecting Brokers into an Enhanced Cluster

■ Adding and Removing Brokers in an Enhanced Cluster

■ Restarting a Failed Broker

■ Preventing or Forcing Broker Failover

■ Backing up a Shared Data Store

Connecting Brokers into an Enhanced Cluster
Because enhanced clusters are self-configuring, there is no need to explicitly specify
the list of brokers to be included in the cluster. Instead, all that is needed is to set each
broker's configuration properties appropriately and then start the broker; as long as its
properties are set properly, it will automatically be incorporated into the cluster.
Enhanced Broker Cluster Properties describes the required properties, which include
vendor-specific JDBC database properties.

The property values needed for brokers in an enhanced cluster can be set separately in
each broker's instance configuration file, or they can be specified in a cluster
configuration file that all the brokers reference. The procedures are as follows:

To Connect Brokers Using a Cluster Configuration File The method best suited for
production systems is to use a cluster configuration file to specify the configuration of
the cluster.

1. Create a cluster configuration file specifying the cluster's high-availability-related
configuration properties.

Enhanced Broker Cluster Properties shows the required property values.
However, do not include the imq.brokerid property in the cluster configuration
file; this must be specified separately for each individual broker in the cluster.

2. Specify any additional, vendor-specific JDBC configuration properties that might
be needed.

The vendor-specific properties required for MySQL are shown in Example 8–1.

3. For each broker in the cluster:

a. Start the broker at least once, using the imqbrokerd command.

Note: In addition to creating an enhanced cluster as described in
this section, you must also configure clients to successfully
reconnect to a failover broker in the event of broker or connection
failure. You do this by setting the imqReconnectAttempts
connection factory attribute to a value of -1.

Managing Broker Clusters

Configuring and Managing Broker Clusters 10-17

The first time a broker instance is run, an instance configuration file
(config.properties) is automatically created.

b. Shut down the broker.

Use the imqcmd shutdown bkr command.

c. Edit the instance configuration file to specify the location of the cluster
configuration file.

In the broker's instance configuration file, set the imq.cluster.url property to
point to the location of the cluster configuration file you created in step 1.

d. Specify the broker identifier.

Set the imq.brokerid property in the instance configuration file to the broker's
unique broker identifier. This value must be different for each broker.

4. Place a copy of, or a symbolic link to, your JDBC driver's .jar file in IMQ_
HOME/lib/ext, the Message Queue external resource files directory.

5. Create the database tables needed for Message Queue persistence.

Use the imqdbmgr create tbl command; see Database Manager Utility.

6. Restart each broker with the imqbrokerd command.

The brokers will automatically register themselves into the cluster on startup.

To Connect Brokers Using Instance Configuration Files

1. For each broker in the cluster:

a. Start the broker at least once, using the imqbrokerd command.

The first time a broker instance is run, an instance configuration file
(config.properties) is automatically created.

b. Shut down the broker.

Use the imqcmd shutdown bkr command.

c. Edit the instance configuration file to specify the broker's
high-availability-related configuration properties.

Enhanced Broker Cluster Properties shows the required property values. Be
sure to set the brokerid property uniquely for each broker.

d. Specify any additional, vendor-specific JDBC configuration properties that
might be needed.

The vendor-specific properties required for MySQL are shown in Example 8–1.

2. Place a copy of, or a symbolic link to, your JDBC driver's .jar file in IMQ_
HOME/lib/ext, the Message Queue external resource files directory.

3. Create the database tables needed for Message Queue persistence.

Use the imqdbmgr create tbl command; see Database Manager Utility.

4. Restart each broker with the imqbrokerd command.

The brokers will automatically register themselves into the cluster on startup.

Adding and Removing Brokers in an Enhanced Cluster
Because enhanced clusters are self-configuring, the procedures for adding and
removing brokers are simpler than for a conventional cluster.

Managing Broker Clusters

10-18 Open Message Queue 4.5.2 Administration Guide

To Add a New Broker to an Enhanced Cluster

1. Set the new broker's high-availability-related properties, as described in the
preceding section.

You can do this either by specifying the individual properties in the broker's
instance configuration file (config.properties) or, if there is a cluster
configuration file, by setting the broker's imq.cluster.url property to point to it.

2. Start the new broker with the imqbrokerd command.

The broker will automatically register itself into the cluster on startup.

To Remove a Broker from an Enhanced Cluster

1. Make sure the broker is not running.

If necessary, use the command

imqcmd shutdown bkr
to shut down the broker.

2. Remove the broker from the cluster with the command

imqdbmgr remove bkr
This command deletes all database tables for the corresponding broker.

Restarting a Failed Broker
After a broker has failed, you can restart it using the imqbrokerd command. Normally,
the broker will automatically be re-registered into the cluster on startup.

However, if the broker slated to take over the failed broker's persistent data failed as it
was taking over the persistent data, the running brokers in the cluster will not permit
the failed broker to rejoin the cluster for 60 seconds or twice the value of
imq.cluster.monitor.interval in seconds, whichever is greater.

Preventing or Forcing Broker Failover
Although the takeover of a failed broker's persistent data by a failover broker in an
enhanced cluster is normally automatic, there may be times when you want to prevent
such failover from occurring. To suppress automatic failover when shutting down a
broker, use the -nofailover option to the imqcmd shutdown bkr subcommand:

imqcmd shutdown bkr -nofailover -b hostName:portNumber
where hostName and portNumber are the host name and port number of the broker to
be shut down.

Conversely, you may sometimes need to force a broker failover to occur manually.
(This might be necessary, for instance, if a failover broker were to itself fail before
completing the takeover process.) In such cases, you can initiate a failover manually
from the command line: first shut down the broker to be taken over with the
-nofailover option, as shown above, then issue the command

imqcmd takeover bkr -n brokerID
where brokerID is the broker identifier of the broker to be taken over. If the specified
broker appears to be running, the Command utility will display a confirmation
message:

The broker associated with brokerIDlast accessed the database #seconds ago.
Do you want to take over for this broker?
You can suppress this message, and force the takeover to occur unconditionally, by
using the -f option to the imqcmd takeover bkr command:

Managing Broker Clusters

Configuring and Managing Broker Clusters 10-19

imqcmd takeover bkr -f -n brokerID

Backing up a Shared Data Store
For durability and reliability, it is a good idea to back up an enhanced cluster's shared
data store periodically to backup files. This creates a snapshot of the data store that
you can then use to restore the data in case of catastrophic failure. The command for
backing up the data store is

imqdbmgr backup -dir backupDir
where backupDir is the path to the directory in which to place the backup files. To
restore the data store from these files, use the command

imqdbmgr restore -dir backupDir
Before restoring the data store, you should shut down all brokers in the enhanced
cluster.

Converting a Conventional Cluster to an Enhanced Cluster
The best approach to converting a conventional broker cluster to an enhanced broker
cluster is to drain your messaging system of all persistent data before attempting the
conversion. This lets you create a new shared data store without worrying about loss
of data. However, if you are using individual JDBC-based data stores for your brokers,
a utility is available for converting a standalone datastore to a shared data store.

Cluster Conversion : File-Based Data Store
If the brokers in your conventional cluster are using file-based data stores, use the
following procedure to convert to an enhanced cluster.

1. Drain down your messaging system of all persistent data.

Stop all producer clients from producing messages, and wait for all messages in
the system to be consumed.

2. Shut down all client applications.

3. Shut down all brokers in the conventional cluster.

4. Reconfigure all brokers for an enhanced cluster.

See Enhanced Broker Cluster Properties. It is recommended that you use a cluster
configuration file to specify cluster configuration property values, such as the
imq.cluster.clusterid, imq.persist.store, and additional shared JDBC
database properties.

5. Start all brokers in the enhanced cluster.

See Connecting Brokers into an Enhanced Cluster.

6. Configure client applications to re-connect to failover brokers.

Client re-connection behavior is specified by connection handling attributes of the
connection factory administered objects (see the Connection Handling). In the case
of enhanced broker clusters, the imqAddressList, imqAddressListBehavior, and

Note: The imqcmd takeover bkr subcommand is intended only for
use in failed-takeover situations. You should use it only as a last
resort, and not as a general way of forcibly taking over a running
broker.

Managing Broker Clusters

10-20 Open Message Queue 4.5.2 Administration Guide

imqAddressListIterations attributes are ignored, however the
imqReconnectAttempts attribute should be set to a value of -1 (unlimited).

7. Start all client applications.

8. Resume messaging operations

Cluster Conversion: JDBC-Based Data Store
If the brokers in your conventional cluster are using JDBC-based data stores, use the
following procedure to convert to an enhanced cluster. The procedure assumes that
individual standalone broker data stores reside on the same JDBC database server.

1. Back up all persistent data in the standalone JDBC-based data store of each broker.

Use proprietary JDBC database tools.

2. Shut down all client applications.

3. Shut down all brokers in the conventional cluster.

4. Convert each standalone data store to a shared data store.

Use the Message Queue Database Manager utility (imqdbmgr) subcommand

imqdbmgr upgrade hastore
to convert an existing standalone JDBC database to a shared JDBC database.

5. Reconfigure all brokers for an enhanced cluster.

See Enhanced Broker Cluster Properties. It is recommended that you use a cluster
configuration file to specify cluster configuration property values, such as the
imq.cluster.clusterid, imq.persist.store, and additional shared JDBC
database properties.

6. Start all brokers in the enhanced cluster.

See Connecting Brokers into an Enhanced Cluster.

7. Configure client applications to re-connect to failover brokers.

Client re-connection behavior is specified by connection handling attributes of the
connection factory administered objects (see the Connection Handling). In the case
of enhanced broker clusters, the imqAddressList, imqAddressListBehavior, and
imqAddressListIterations attributes are ignored, however the
imqReconnectAttempts attribute should be set to a value of -1 (unlimited).

8. Start all client applications.

9. Resume messaging operations.

11

Managing Administered Objects 11-1

11Managing Administered Objects

Administered objects encapsulate provider-specific configuration and naming
information, enabling the development of client applications that are portable from
one JMS provider to another. A Message Queue administrator typically creates
administered objects for client applications to use in obtaining broker connections for
sending and receiving messages.

This chapter tells how to use the Object Manager utility (imqobjmgr) to create and
manage administered objects. It contains the following sections:

■ Object Stores

■ Administered Object Attributes

■ Using the Object Manager Utility

Object Stores
Administered objects are placed in a readily available object store where they can be
accessed by client applications by means of the Java Naming and Directory Interface
(JNDI). There are two types of object store you can use: a standard Lightweight
Directory Access Protocol (LDAP) directory server or a directory in the local file
system.

LDAP Server Object Stores
An LDAP server is the recommended object store for production messaging systems.
LDAP servers are designed for use in distributed systems and provide security
features that are useful in production environments.

LDAP implementations are available from a number of vendors. To manage an object
store on an LDAP server with Message Queue administration tools, you may first need
to configure the server to store Java objects and perform JNDI lookups; see the
documentation provided with your LDAP implementation for details.

To use an LDAP server as your object store, you must specify the attributes shown in
Table 11–1. These attributes fall into the following categories:

■ Initial context. The java.naming.factory.initial attribute specifies the initial
context for JNDI lookups on the server. The value of this attribute is fixed for a
given LDAP object store.

■ Location. The java.naming.provider.url attribute specifies the URL and
directory path for the LDAP server. You must verify that the specified directory
path exists.

Object Stores

11-2 Open Message Queue 4.5.2 Administration Guide

■ Security. The java.naming.security.principal,
java.naming.security.credentials, and
java.naming.security.authentication attributes govern the authentication of
callers attempting to access the object store. The exact format and values of these
attributes depend on the LDAP service provider; see the documentation provided
with your LDAP implementation for details and to determine whether security
information is required on all operations or only on those that change the stored
data.

File-System Object Stores
Message Queue also supports the use of a directory in the local file system as an object
store for administered objects. While this approach is not recommended for
production systems, it has the advantage of being very easy to use in development
environments. Note, however, that for a directory to be used as a centralized object
store for clients deployed across multiple computer nodes, all of those clients must
have access to the directory. In addition, any user with access to the directory can use
Message Queue administration tools to create and manage administered objects.

Table 11–1 LDAP Object Store Attributes

Attribute Description

java.naming.factory.initial Initial context for JNDI lookup

Example:

■ com.sun.jndi.ldap.LdapCtxFactory

java.naming.provider.url Server URL and directory path

Example:

■ ldap://myD.com:389/ou=mq1,o=App

where administered objects are stored in the directory /App/mq1.

java.naming.security.principal Identity of the principal for authenticating callers

The format of this attribute depends on the authentication
scheme: for example,

■ uid=homerSimpson,ou=People,o=mq

If this attribute is unspecified, the behavior is determined by the
LDAP service provider.

java.naming.security.credentials Credentials of the authentication principal

The value of this attribute depends on the authentication scheme:
for example, it might be a hashed password, a clear-text
password, a key, or a certificate.

If this property is unspecified, the behavior is determined by the
LDAP service provider.

java.naming.security.authentication Security level for authentication:

■ none: No security

■ simple: Simple security

■ strong: Strong security

For example, if you specify simple, you will be prompted for any
missing principal or credential values. This will allow you a more
secure way of providing identifying information.

If this property is unspecified, the behavior is determined by the
LDAP service provider.

Administered Object Attributes

Managing Administered Objects 11-3

To use a file-system directory as your object store, you must specify the attributes
shown in Table 11–2. These attributes have the same general meanings described
above for LDAP object stores; in particular, the java.naming.provider.url attribute
specifies the directory path of the directory holding the object store. This directory
must exist and have the proper access permissions for the user of Message Queue
administration tools as well as the users of the client applications that will access the
store.

Administered Object Attributes
Message Queue administered objects are of two basic kinds:

■ Connection factories are used by client applications to create connections to
brokers.

■ Destinations represent locations on a broker with which client applications can
exchange (send and retrieve) messages.

Each type of administered object has certain attributes that determine the object's
properties and behavior. This section describes how to use the Object Manager
command line utility (imqobjmgr) to set these attributes; you can also set them with the
GUI Administration Console, as described in Working With Administered Objects.

Connection Factory Attributes
Client applications use connection factory administered objects to create connections
with which to exchange messages with a broker. A connection factory's attributes
define the properties of all connections it creates. Once a connection has been created,
its properties cannot be changed; thus the only way to configure a connection's
properties is by setting the attributes of the connection factory used to create it.

Message Queue defines two classes of connection factory objects:

■ ConnectionFactory objects support normal messaging and nondistributed
transactions.

■ XAConnectionFactory objects support distributed transactions.

Both classes share the same configuration attributes, which you can use to optimize
resources, performance, and message throughput. These attributes are listed and
described in detail in Administered Object Attribute Reference and are discussed in
the following sections below:

■ Connection Handling

■ Client Identification

■ Reliability And Flow Control

Table 11–2 File-system Object Store Attributes

Attribute Description

java.naming.factory.initial Initial context for JNDI lookup

Example:

■ com.sun.jndi.fscontext.RefFSContextFactory

java.naming.provider.url Directory path

Example:

■ file:///C:/myapp/mqobjs

Administered Object Attributes

11-4 Open Message Queue 4.5.2 Administration Guide

■ Queue Browser and Server Sessions

■ Standard Message Properties

■ Message Header Overrides

Connection Handling
Connection handling attributes specify the broker address to which to connect and, if
required, how to detect connection failure and attempt reconnection. They are
summarized in Table 19–1.

Broker Address List The most important connection handling attribute is
imqAddressList, which specifies the broker or brokers to which to establish a
connection. The value of this attribute is a string containing a broker address or (in the
case of a broker cluster) multiple addresses separated by commas. Broker addresses
can use a variety of addressing schemes, depending on the connection service to be
used (see Configuring Connection Services) and the method of establishing a
connection:

■ mq uses the broker's Port Mapper to assign a port dynamically for either the jms or
ssljms connection service.

■ mqtcp bypasses the Port Mapper and connects directly to a specified port, using
the jms connection service.

■ mqssl makes a Secure Socket Layer (SSL) connection to a specified port, using the
ssljms connection service.

■ http makes a Hypertext Transport Protocol (HTTP) connection to a Message
Queue tunnel servlet at a specified URL, using the httpjms connection service.

■ https makes a Secure Hypertext Transport Protocol (HTTPS) connection to a
Message Queue tunnel servlet at a specified URL, using the httpsjms connection
service.

These addressing schemes are summarized in Table 19–2.

The general format for each broker address is

scheme:// address
where scheme is one of the addressing schemes listed above and address denotes the
broker address itself. The exact syntax for specifying the address varies depending on
the addressing scheme, as shown in the "Description" column of Table 19–2. Table 19–3
shows examples of the various address formats.

In a multiple-broker cluster environment, the address list can contain more than one
broker address. If the first connection attempt fails, the Message Queue client runtime
will attempt to connect to another address in the list, and so on until the list is
exhausted. Two additional connection factory attributes control the way this is done:

■ imqAddressListBehavior specifies the order in which to try the specified
addresses. If this attribute is set to the string PRIORITY, addresses will be tried in
the order in which they appear in the address list. If the attribute value is RANDOM,
the addresses will instead be tried in random order; this is useful, for instance,
when many Message Queue clients are sharing the same connection factory object,
to prevent them from all attempting to connect to the same broker address.

■ imqAddressListIterations specifies how many times to cycle through the list
before giving up and reporting failure. A value of -1 denotes an unlimited number
of iterations: the client runtime will keep trying until it succeeds in establishing a
connection or until the end of time, whichever occurs first.

Administered Object Attributes

Managing Administered Objects 11-5

Automatic Reconnection By setting certain connection factory attributes, you can
configure a client to reconnect automatically to a broker in the event of a failed
connection. For standalone brokers or those belonging to a conventional broker cluster
(see "Conventional Clusters" in Open Message Queue Technical Overview), you enable
this behavior by setting the connection factory's imqReconnectEnabled attribute to
true. The imqReconnectAttempts attribute controls the number of reconnection
attempts to a given broker address; imqReconnectInterval specifies the interval, in
milliseconds, to wait between attempts.

If the broker is part of a conventional cluster, the failed connection can be restored not
only on the original broker, but also on a different one in the cluster. If reconnection to
the original broker fails, the client runtime will try the other addresses in the
connection factory's broker address list (imqAddressList). The
imqAddressListBehavior and imqAddressListIterations attributes control the order
in which addresses are tried and the number of iterations through the list, as described
in the preceding section. Each address is tried repeatedly at intervals of
imqReconnectInterval milliseconds, up to the maximum number of attempts
specified by imqReconnectAttempts.

Note, however, that in a conventional cluster, such automatic reconnection only
provides connection failover and not data failover: persistent messages and other state
information held by a failed or disconnected broker can be lost when the client is
reconnected to a different broker instance. While attempting to reestablish a
connection, Message Queue does maintain objects (such as sessions, message
consumers, and message producers) provided by the client runtime. Temporary
destinations are also maintained for a time when a connection fails, because clients
might reconnect and access them again; after giving clients time to reconnect and use
these destinations, the broker will delete them. In circumstances where the client-side
state cannot be fully restored on the broker on reconnection (for instance, when using
transacted sessions, which exist only for the duration of a connection), automatic
reconnection will not take place and the connection's exception handler will be called
instead. It is then up to the client application to catch the exception, reconnect, and
restore state.

By contrast, in an enhanced cluster (see "Enhanced Clusters" in Open Message Queue
Technical Overview), another broker can take over a failed broker's persistent state and
proceed to deliver its pending messages without interruption of service. In this type of
cluster, automatic reconnection is always enabled. The connection factory's
imqReconnectEnabled, imqAddressList, and imqAddressListIterations attributes are
ignored. The client runtime is automatically redirected to the failover broker. Because
there might be a short time lag during which the failover broker takes over from the
failed broker, the imqReconnectAttempts connection factory attribute should be set to
a value of -1 (client runtime continues connect attempts until successful).

Automatic reconnection supports all client acknowledgment modes for message
consumption. Once a connection has been reestablished, the broker will redeliver all
unacknowledged messages it had previously delivered, marking them with a
Redeliver flag. Client applications can use this flag to determine whether a message
has already been consumed but not yet acknowledged. (In the case of nondurable

Note: Because enhanced clusters are self-configuring (see Cluster
Configuration Properties and Connecting Brokers into an Enhanced
Cluster), their membership can change over time as brokers enter
and leave the cluster. In this type of cluster, the value of each
member broker's imqAddressList attribute is updated dynamically
so that it always reflects the cluster's current membership.

Administered Object Attributes

11-6 Open Message Queue 4.5.2 Administration Guide

subscribers, however, the broker does not hold messages once their connections have
been closed. Thus any messages produced for such subscribers while the connection is
down cannot be delivered after reconnection and will be lost.) Message production is
blocked while automatic reconnection is in progress; message producers cannot send
messages to the broker until after the connection has been reestablished.

Periodic Testing (Pinging) of Connections The Message Queue client runtime can be
configured to periodically test, or "ping," a connection, allowing connection failures to
be detected preemptively before an attempted message transmission fails. Such testing
is particularly important for client applications that only consume messages and do
not produce them, since such applications cannot otherwise detect when a connection
has failed. Clients that produce messages only infrequently can also benefit from this
feature.

The connection factory attribute imqPingInterval specifies the frequency, in seconds,
with which to ping a connection. By default, this interval is set to 30 seconds; a value
of -1 disables the ping operation.

The response to an unsuccessful ping varies from one operating-system platform to
another. On some platforms, an exception is immediately thrown to the client
application's exception listener. (If the client does not have an exception listener, its
next attempt to use the connection will fail.) Other platforms may continue trying to
establish a connection to the broker, buffering successive pings until one succeeds or
the buffer overflows.

Client Identification
The connection factory attributes listed in Table 19–4 support client authentication and
the setting of client identifiers for durable subscribers.

Client Authentication All attempts to connect to a broker must be authenticated by user
name and password against a user repository maintained by the message service. The
connection factory attributes imqDefaultUsername and imqDefaultPassword specify a
default user name and password to be used if the client does not supply them
explicitly when creating a connection.

As a convenience for developers who do not wish to bother populating a user
repository during application development and testing, Message Queue provides a
guest user account with user name and password both equal to guest. This is also the
default value for the imqDefaultUsername and imqDefaultPassword attributes, so that
if they are not specified explicitly, clients can always obtain a connection under the
guest account. In a production environment, access to broker connections should be
restricted to users who are explicitly registered in the user repository.

Client Identifier The Java Message Service Specification requires that a connection provide
a unique client identifier whenever the broker must maintain a persistent state on
behalf of a client. Message Queue uses such client identifiers to keep track of durable
subscribers to a topic destination. When a durable subscriber becomes inactive, the
broker retains all incoming messages for the topic and delivers them when the
subscriber becomes active again. The broker identifies the subscriber by means of its
client identifier.

While it is possible for a client application to set its own client identifier
programmatically using the connection object's setClientID method, this makes it
difficult to coordinate client identifiers to ensure that each is unique. It is generally
better to have Message Queue automatically assign a unique identifier when creating a
connection on behalf of a client. This can be done by setting the connection factory's
imqConfiguredClientID attribute to a value of the form

Administered Object Attributes

Managing Administered Objects 11-7

${u}factoryID
The characters ${u} must be the first four characters of the attribute value. (Any
character other than u between the braces will cause an exception to be thrown on
connection creation; in any other position, these characters have no special meaning
and will be treated as plain text.) The value for factoryID is a character string uniquely
associated with this connection factory object.

When creating a connection for a particular client, Message Queue will construct a
client identifier by replacing the characters ${u} with ${u:userName}, where userName
is the user name authenticated for the connection. This ensures that connections
created by a given connection factory, although identical in all other respects, will each
have their own unique client identifier. For example, if the user name is Calvin and
the string specified for the connection factory's imqConfiguredClientID attribute is
${u}Hobbes, the client identifier assigned will be ${u:Calvin}Hobbes.

Even if you specify a client identifier with imqConfiguredClientID, client applications
can override this setting with the connection method setClientID. You can prevent
this by setting the connection factory's imqDisableSetClientID attribute to true. Note
that for an application that uses durable subscribers, the client identifier must be set
one way or the other: either administratively with imqConfiguredClientID or
programmatically with setClientID.

Reliability And Flow Control
Because "payload" messages sent and received by clients and control messages (such
as broker acknowledgments) used by Message Queue itself pass over the same
client-broker connection, excessive levels of payload traffic can interfere with the
delivery of control messages. To help alleviate this problem, the connection factory
attributes listed in Table 19–5 allow you to manage the relative flow of the two types of
message. These attributes fall into four categories:

■ Acknowledgment timeout specifies the maximum time (imqAckTimeout) to wait
for a broker acknowledgment before throwing an exception.

■ Connection flow metering limits the transmission of payload messages to batches
of a specified size (imqConnectionFlowCount), ensuring periodic opportunities to
deliver any accumulated control messages.

■ Connection flow control limits the number of payload messages
(imqConnectionFlowLimit) that can be held pending on a connection, waiting to
be consumed. When the limit is reached, delivery of payload messages to the
connection is suspended until the number of messages awaiting consumption falls
below the limit. Use of this feature is controlled by a boolean flag
(imqConnectionFlowLimitEnabled).

■ Consumer flow control limits the number of payload messages
(imqConsumerFlowLimit) that can be held pending for any single consumer,
waiting to be consumed. (This limit can also be specified as a property of a specific
queue destination, consumerFlowLimit.) When the limit is reached, delivery of

Note: This scheme will not work if two clients both attempt to
obtain connections using the default user name guest, since each
would have a client identifier with the same ${u} component. In
this case, only the first client to request a connection will get one;
the second client's connection attempt will fail, because Message
Queue cannot create two connections with the same client
identifier.

Administered Object Attributes

11-8 Open Message Queue 4.5.2 Administration Guide

payload messages to the consumer is suspended until the number of messages
awaiting consumption, as a percentage of imqConsumerFlowLimit, falls below the
limit specified by the imqConsumerFlowThreshold attribute. This helps improve
load balancing among multiple consumers by preventing any one consumer from
starving others on the same connection.

When the JMS resource adapter, jmsra, is used to consume messages in a GlassFish
Server cluster, this behavior is defined using different properties, as described in
About Shared Topic Subscriptions for Clustered Containers.

The use of any of these flow control techniques entails a trade-off between reliability
and throughput; see Client Runtime Message Flow Adjustments for further discussion.

Queue Browser and Server Sessions
Table 19–6 lists connection factory attributes affecting client queue browsing and
server sessions. The imqQueueBrowserMaxMessagesPerRetrieve attribute specifies the
maximum number of messages to retrieve at one time when browsing the contents of a
queue destination; imqQueueBrowserRetrieveTimeout gives the maximum waiting
time for retrieving them. (Note that imqQueueBrowserMaxMessagesPerRetrieve does
not affect the total number of messages browsed, only the way they are batched for
delivery to the client runtime: fewer but larger batches or more but smaller ones.
Changing the attribute's value may affect performance, but will not affect the total
amount of data retrieved; the client application will always receive all messages in the
queue.) The boolean attribute imqLoadMaxToServerSession governs the behavior of
connection consumers in an application server session: if the value of this attribute is
true, the client will load up to the maximum number of messages into a server
session; if false, it will load only a single message at a time.

Standard Message Properties
The Java Message Service Specification defines certain standard message properties,
which JMS providers (such as Message Queue) may optionally choose to support. By
convention, the names of all such standard properties begin with the letters JMSX. The
connection factory attributes listed in Table 19–7 control whether the Message Queue
client runtime sets certain of these standard properties. For produced messages, these
include the following:

JMSXUserID
Identity of the user sending the message

JMSXAppID
Identity of the application sending the message

JMSXProducerTXID
Transaction identifier of the transaction within which the message was produced

For consumed messages, they include

JMSXConsumerTXID
Transaction identifier of the transaction within which the message was consumed

JMSXRcvTimestamp
Time the message was delivered to the consumer

Message Header Overrides
You can use the connection factory attributes listed in Table 19–8 to override the values
set by a client for certain JMS message header fields. The settings you specify will be

Using the Object Manager Utility

Managing Administered Objects 11-9

used for all messages produced by connections obtained from that connection factory.
Header fields that you can override in this way are

JMSDeliveryMode
Delivery mode (persistent or nonpersistent)

JMSExpiration
Expiration time

JMSPriority
Priority level

There are two attributes for each of these fields: one boolean, to control whether the
field can be overridden, and another to specify its value. For instance, the attributes for
setting the priority level are imqOverrideJMSPriority and imqJMSPriority. There is
also an additional attribute, imqOverrideJMSHeadersToTemporaryDestinations, that
controls whether override values apply to temporary destinations.

Destination Attributes
The destination administered object that identifies a physical queue or topic
destination has only two attributes, listed in Table 19–9. The important one is
imqDestinationName, which gives the name of the physical destination that this
administered object represents; this is the name that was specified with the -n option
to the imqcmd create dst command that created the physical destination. (Note that
there is not necessarily a one-to-one relationship between destination administered
objects and the physical destinations they represent: a single physical destination can
be referenced by more than one administered object, or by none at all.) There is also an
optional descriptive string, imqDestinationDescription, which you can use to help
identify the destination object and distinguish it from others you may have created.

Using the Object Manager Utility
The Message Queue Object Manager utility (imqobjmgr) allows you to create and
manage administered objects. The imqobjmgr command provides the following
subcommands for performing various operations on administered objects:

add
Add an administered object to an object store

delete
Delete an administered object from an object store

list
List existing administered objects in an object store

query
Display information about an administered object

update
Modify the attributes of an administered object

Note: Because overriding message headers may interfere with the
needs of specific applications, these attributes should only be used
in consultation with an application's designers or users.

Using the Object Manager Utility

11-10 Open Message Queue 4.5.2 Administration Guide

See Object Manager Utility for reference information about the syntax, subcommands,
and options of the imqobjmgr command.

Most Object Manager operations require you to specify the following information as
options to the imqobjmgr command:

■ The JNDI lookup name (-l) of the administered object

This is the logical name by which client applications can look up the administered
object in the object store, using the Java Naming and Directory Interface.

■ The attributes of the JNDI object store (-j)

See Object Stores for information on the possible attributes and their values.

■ The type (-t) of the administered object

Possible types include the following:

q
Queue destination

t
Topic destination

cf
Connection factory

qf
Queue connection factory

tf
Topic connection factory

xcf
Connection factory for distributed transactions

xqf
Queue connection factory for distributed transactions

xtf
Topic connection factory for distributed transactions

■ The attributes (-o) of the administered object

See Administered Object Attributes for information on the possible attributes and
their values.

Connecting to a Secured LDAP Server (ldaps)
When using imqobjmgr utility to connect to a secured LDAP server that uses the ldaps
protocol, you might first have to install the LDAP server's certificate in the JDK
keystore. To perform this task, use the Java SE keytool utility; for example:

keytool -import -keystore IMQ_JAVAHOME/lib/security/jssecacerts -alias "ldaps
cert" -file certFile

where certFile is the certificate file from the LDAP server.

Then, when you run the imqobjmgr utility, make sure to specify the same Java
installation where the certificate was imported; for example:

imqobjmgr -javahome IMQ_JAVAHOME ...

Using the Object Manager Utility

Managing Administered Objects 11-11

Adding Administered Objects
The imqobjmgr command's add subcommand adds administered objects for connection
factories and topic or queue destinations to the object store. Administered objects
stored in an LDAP object store must have lookup names beginning with the prefix cn=;
lookup names in a file-system object store need not begin with any particular prefix,
but must not include the slash character (/).

Adding a Connection Factory
To enable client applications to create broker connections, add a connection factory
administered object for the type of connection to be created: a queue connection
factory or a topic connection factory, as the case may be. Example 11–1 shows a
command to add a queue connection factory (administered object type qf) to an LDAP
object store. The object has lookup name cn=myQCF and connects to a broker running
on host myHost at port number 7272, using the jms connection service.

Example 11–1 Adding a Connection Factory

imqobjmgr add
 -l "cn=myQCF"
 -j "java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory"
 -j "java.naming.provider.url=ldap://mydomain.com:389/o=imq"
 -j "java.naming.security.principal=uid=homerSimpson,ou=People,o=imq"
 -j "java.naming.security.credentials=doh"
 -j "java.naming.security.authentication=simple"
 -t qf
 -o "imqAddressList=mq://myHost:7272/jms"

Adding a Destination
When creating an administered object representing a destination, it is good practice to
create the physical destination first, before adding the administered object to the object
store. Use the Command utility (imqcmd) to create the physical destination, as
described in Creating and Destroying Physical Destinations.

The command shown in Example 11–2 adds an administered object to an LDAP object
store representing a topic destination with lookup name myTopic and physical
destination name physTopic. The command for adding a queue destination would be
similar, except that the administered object type (-t option) would be q (for "queue
destination") instead of t (for "topic destination").

Example 11–2 Adding a Destination to an LDAP Object Store

imqobjmgr add

Note: The Object Manager lists and displays only Message Queue
administered objects. If an object store contains a non-Message
Queue object with the same lookup name as an administered object
that you wish to add, you will receive an error when you attempt
the add operation.

Using the Object Manager Utility

11-12 Open Message Queue 4.5.2 Administration Guide

 -l "cn=myTopic"
 -j "java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory"
 -j "java.naming.provider.url=ldap://mydomain.com:389/o=imq"
 -j "java.naming.security.principal=uid=homerSimpson,ou=People,o=imq"
 -j "java.naming.security.credentials=doh"
 -j "java.naming.security.authentication=simple"
 -t t
 -o "imqDestinationName=physTopic"

Example 11–3 shows the same command, but with the administered object stored in a
Solaris file system instead of an LDAP server.

Example 11–3 Adding a Destination to a File-System Object Store

imqobjmgr add
 -l "cn=myTopic"
 -j "java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory"
 -j "java.naming.provider.url=file:///home/foo/imq_admin_objects"
 -t t
 -o "imqDestinationName=physTopic"

Deleting Administered Objects
To delete an administered object from the object store, use the imqobjmgr delete
subcommand, specifying the lookup name, type, and location of the object to be
deleted. The command shown in Example 11–4 deletes the object that was added in
Adding a Destination above.

Example 11–4 Deleting an Administered Object

imqobjmgr delete
 -l "cn=myTopic"
 -j "java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory"
 -j "java.naming.provider.url=ldap://mydomain.com:389/o=imq"
 -j "java.naming.security.principal=uid=homerSimpson,ou=People,o=imq"
 -j "java.naming.security.credentials=doh"
 -j "java.naming.security.authentication=simple"
 -t t

Listing Administered Objects
You can use the imqobjmgr list subcommand to get a list of all administered objects in
an object store or those of a specific type. Example 11–5 shows how to list all
administered objects on an LDAP server.

Example 11–5 Listing All Administered Objects

imqobjmgr list
 -j "java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory"
 -j "java.naming.provider.url=ldap://mydomain.com:389/o=imq"
 -j "java.naming.security.principal=uid=homerSimpson,ou=People,o=imq"
 -j "java.naming.security.credentials=doh"
 -j "java.naming.security.authentication=simple"

Using the Object Manager Utility

Managing Administered Objects 11-13

Example 11–6 lists all queue destinations (type q).

Example 11–6 Listing Administered Objects of a Specific Type

imqobjmgr list
 -j "java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory"
 -j "java.naming.provider.url=ldap://mydomain.com:389/o=imq"
 -j "java.naming.security.principal=uid=homerSimpson,ou=People,o=imq"
 -j "java.naming.security.credentials=doh"
 -j "java.naming.security.authentication=simple"
 -t q

Viewing Administered Object Information
The imqobjmgr query subcommand displays information about a specified
administered object, identified by its lookup name and the attributes of the object store
containing it. Example 11–7 displays information about an object whose lookup name
is cn=myTopic.

Example 11–7 Viewing Administered Object Information

imqobjmgr query
 -l "cn=myTopic"
 -j "java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory"
 -j "java.naming.provider.url=ldap://mydomain.com:389/o=imq"
 -j "java.naming.security.principal=uid=homerSimpson,ou=People,o=imq"
 -j "java.naming.security.credentials=doh"
 -j "java.naming.security.authentication=simple"

Modifying Administered Object Attributes
To modify the attributes of an administered object, use the imqobjmgr update
subcommand. You supply the object's lookup name and location, and use the -o
option to specify the new attribute values.

Example 11–8 changes the value of the imqReconnectAttempts attribute for the queue
connection factory that was added to the object store in Example 11–1.

Example 11–8 Modifying an Administered Object's Attributes

imqobjmgr update
 -l "cn=myQCF"
 -j "java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory"
 -j "java.naming.provider.url=ldap://mydomain.com:389/o=imq"
 -j "java.naming.security.principal=uid=homerSimpson,ou=People,o=imq"
 -j "java.naming.security.credentials=doh"
 -j "java.naming.security.authentication=simple"
 -t qf
 -o "imqReconnectAttempts=3"

Using the Object Manager Utility

11-14 Open Message Queue 4.5.2 Administration Guide

Using Command Files
The -i option to the imqobjmgr command allows you to specify the name of a
command file that uses Java property file syntax to represent all or part of the
subcommand clause. This feature is especially useful for specifying object store
attributes, which typically require a lot of typing and are likely to be the same across
multiple invocations of imqobjmgr. Using a command file can also allow you to avoid
exceeding the maximum number of characters allowed for the command line.

Example 11–9 shows the general syntax for an Object Manager command file. Note
that the version property is not a command line option: it refers to the version of the
command file itself (not that of the Message Queue product) and must be set to the
value 2.0.

Example 11–9 Object Manager Command File Syntax

version=2.0
cmdtype=[add | delete | list | query | update]
obj.lookupName=lookup name
objstore.attrs.objStoreAttrName1=value1
objstore.attrs.objStoreAttrName2=value2
 . . .
objstore.attrs.objStoreAttrNameN=valueN
obj.type=[q | t | cf | qf | tf | xcf | xqf | xtf | e]
obj.attrs.objAttrName1=value1
obj.attrs.objAttrName2=value2
 . . .
obj.attrs.objAttrNameN=valueN

As an example, consider the Object Manager command shown earlier in Example 11–1,
which adds a queue connection factory to an LDAP object store. This command can be
encapsulated in a command file as shown in Example 11–10. If the command file is
named MyCmdFile, you can then execute the command with the command line

imqobjmgr -i MyCmdFile

Example 11–10 Example Command File

version=2.0
cmdtype=add
obj.lookupName=cn=myQCF
objstore.attrs.java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory
objstore.attrs.java.naming.provider.url=ldap://mydomain.com:389/o=imq
objstore.attrs.java.naming.security.principal=uid=homerSimpson,ou=People,o=imq
objstore.attrs.java.naming.security.credentials=doh
objstore.attrs.java.naming.security.authentication=simple
obj.type=qf
obj.attrs.imqAddressList=mq://myHost:7272/jms

A command file can also be used to specify only part of the imqobjmgr subcommand
clause, with the remainder supplied directly on the command line. For example, the
command file shown in Example 11–11 specifies only the attribute values for an LDAP
object store.

Using the Object Manager Utility

Managing Administered Objects 11-15

Example 11–11 Partial Command File

version=2.0
objstore.attrs.java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory
objstore.attrs.java.naming.provider.url=ldap://mydomain.com:389/o=imq
objstore.attrs.java.naming.security.principal=uid=homerSimpson,ou=People,o=imq
objstore.attrs.java.naming.security.credentials=doh
objstore.attrs.java.naming.security.authentication=simple

You could then use this command file to specify the object store in an imqobjmgr
command while supplying the remaining options explicitly, as shown in
Example 11–12.

Example 11–12 Using a Partial Command File

imqobjmgr add
 -l "cn=myQCF"
 -i MyCmdFile
 -t qf
 -o "imqAddressList=mq://myHost:7272/jms"

Additional examples of command files can be found in the IMQ_
HOME/examples/imqobjmgr directory.

Using the Object Manager Utility

11-16 Open Message Queue 4.5.2 Administration Guide

12

Configuring and Managing Bridge Services 12-1

12Configuring and Managing Bridge Services

Message-Oriented Middleware (MOM) systems use a broad spectrum of technologies
and standards to provide messaging services. Often, these technologies and standards
are incompatible, leading to MOM systems that cannot communicate with each other
in a larger enterprise application context.

To alleviate this inability to communicate, Message Queue incorporates the Bridge
Service Manager, which supports individual bridge services of various types. Each
type of bridge service provides connectivity at the broker level to a MOM technology
or standard that would otherwise be unavailable in Message Queue.

This chapter provides information about the administrative components of the Bridge
Service Manager, and shows how to configure and manage the two types of bridge
services currently available:

■ The Bridge Service Manager

■ Configuring and Managing JMS Bridge Services

■ Configuring and Managing STOMP Bridge Services

The Bridge Service Manager
The Message Queue Bridge Service Manager is an application that runs in same JVM
as a broker to manage the bridges configured for the broker. Two administrative
components control operation of the Bridge Service Manager:

■ Bridge-related broker properties

■ The Bridge Manager utility (imqbridgermgr)

The following sections introduce these two components.

Bridge-Related Broker Properties
The operation of the Bridge Service Manager is in part controlled by several broker
properties. These broker properties, all of which begin with imq.bridge, are listed in
tables under Bridge Properties. Some of the properties apply to all bridges configured
for the broker, while others apply only to a specific bridge. The properties that apply to
a specific bridge all begin with imq.bridge.bridgeName, where bridgeName is:

■ The same as the type of the bridge for bridge services that support only one bridge
instance per broker, such as the STOMP bridge service

■ A name you specify for a bridge instance for bridge services that support multiple
bridge instances per broker, such as the JMS bridge service

The Bridge Service Manager

12-2 Open Message Queue 4.5.2 Administration Guide

Of all the bridge-related broker properties, the two most important are
imq.bridge.enabled and imq.bridge.activelist:

■ The imq.bridge.enabled property controls whether the Bridge Service Manager is
enabled on the broker.

■ The imq.bridge.activelist property contains a comma-separated list bridges (by
name) to be loaded when the broker starts.

To Enable the Bridge Service Manager
1. Set the imq.bridge.enabled broker property to true.

2. Set the imq.bridge.admin.user broker property to the user name of the admin
user.

3. Set the imq.bridge.admin.password broker property to the password of the admin
user.

Alternatively, you can specify the password using the -passfile option when you
use the imqbrokerd command to start the broker hosting the bridge service
manager.

4. Set the imq.bridge.activelist broker property to a comma-separated list of
bridges to instantiate at broker startup.

Bridge Manager Utility
The Bridge Manager utility (imqbridgemgr) is the interface to the bridge management
functions of the Bridge Service Manager. It provides commands to:

■ Stop and start bridges

■ Pause and resume bridges

■ List configured bridges

■ Manage type-dependent subcomponents of bridges, such as the links within a JMS
bridge service

The imqbridgemgr utility uses the same Command Line Syntax as the other Message
Queue utilities:

imqbridgemgr subcommand commandArgument [options]

For example, the following command lists all bridges of type JMS on the broker
localhost:7373:

imqbridgemgr list bridge -t jms -b localhost:7373

For the complete set of subcommands, command arguments, and options supported
by the imqbridgemgr utility, see Bridge Manager Utility.

Logging of Bridge Services
Each bridge managed by the Bridge Service Manager for a broker has its own log file
stored in the IMQ_VARHOME/instances/broker-name/bridges/bridge-name/ directory.

The JMS and STOMP bridge services use the Java logging facility, which can be
configured by the Java logging configuration file. The logging level for a bridge can be
controlled by setting the imq.bridge.bridge-name.level property in the Java logging
configuration file. Then, the Java system property java.util.logging.config.file
can be set to the Java logging configuration file when the broker is started; as in:

Configuring and Managing JMS Bridge Services

Configuring and Managing Bridge Services 12-3

imqbrokerd -Djava.util.logging.config.file=config-file

Configuring and Managing JMS Bridge Services
Because the JMS specification does not dictate the communication protocol between
brokers and clients, each JMS provider (including Message Queue) has defined and
uses its own propriety protocol. This situation has led to non-interoperability across
JMS providers.

The JMS bridge service in Message Queue 4.5.2 closes this gap by enabling a Message
Queue broker to map its destinations to destinations in external JMS providers. This
mapping effectively allows the Message Queue broker to communicate with clients of
the external JMS provider.

The JMS bridge service supports mapping destinations to external JMS providers that:

■ Are JMS 1.1 compliant

■ Support JNDI administrative objects

■ Use connection factories of type javax.jms.ConnectionFactory or
javax.jms.XAConnectionFactory

■ Support the XA interfaces as a resource manager for transacted mapping

As an administrative and management convenience, the JMS bridge service supports
the creation of any number of JMS bridges in a broker. Each JMS bridge in the broker is
identified by a unique name, has its own configuration, and is managed separately
from other JMS bridges in the broker.

The following subsections provide information about JMS bridges and how to
configure and manage them:

■ JMS Bridge Components

■ JMS Bridge Features

■ Message Processing Sequence Across a Link in a JMS Bridge

■ Configuring a JMS Bridge

■ Starting and Stopping JMS Bridges

■ Starting and Stopping Links in a JMS Bridge

JMS Bridge Components
A JMS bridge consists of two primary components:

■ One or more links, each of which maps between a destination in the Message
Queue broker and a destination in an external JMS provider or in another Message
Queue broker

■ A default Dead Message Queue (DMQ) where undeliverable messages are sent.
Additional, special-purpose DMQs can also be specified.

To provide destination mapping, each link consists of:

■ A source: the destination from which the JMS bridge receives messages. The
source consists of a connection factory for creating connections to a JMS provider
and a destination in that provider.

■ A target: the destination to which the JMS bridge forwards messages received
from the source. The target consists of a connection factory for creating

Configuring and Managing JMS Bridge Services

12-4 Open Message Queue 4.5.2 Administration Guide

connections to a JMS provider and a destination in that provider. Additionally, a
target can optionally specify a message transformer that alters messages from the
source before forwarding them to the target destination.

Links are unidirectional. Links that have an external JMS provider or another Message
Queue broker as their source are called inbound links, and links that have the Message
Queue broker as their source are called outbound links.

To configure these components, you specify several imq.bridge.bridgeName broker
properties, and you create an XML configuration file that specifies the links, sources,
targets, connection factories, destinations, and DMQs in the bridge. This XML
configuration file must conform to the JMS bridge DTD.

JMS Bridge Features
To provide flexible, high-performing message transfer between mapped destinations, a
JMS bridge offers these features:

■ Pooled, Shared, and Dedicated Connections

■ Transactional Message Transfer

■ JMS Bridges in High Availability (HA) Broker Clusters

■ Message Transformation During Message Delivery

■ JMSReplyTo Header Processing

■ Dead Message Queue (DMQ) Processing

Pooled, Shared, and Dedicated Connections
A JMS bridge uses the connection factories configured for link sources, link targets,
and DMQs to create connections to the Message Queue broker and the external JMS
provider. When making connections, the JMS bridge follows these rules to determine
whether to use a pooled connection, a shared connection, or a dedicated connection:

■ For link source connections, the JMS bridge always uses a dedicated connection.

■ For link target and DMQ connections, the JMS bridge uses:

■ A pooled connection if the link target's or DMQ's stay-connected attribute is
false and the connection factory has no JMS client identifier configured.

■ A dedicated connection if the link target's or DMQ's stay-connected attribute
is true or if the link target's or DMQ's clientid attribute is set

■ A shared connection in all other cases

Transactional Message Transfer
Each JMS bridge includes a built-in XA transaction coordinator that enables its links to
be configured as "transacted" such that message transfer from the source to the target
is done in a XA distributed transaction.

For a link to be configured as transacted, both the link source and link target must
specify connection factories of type javax.jms.XAConnectionFactory.

The built-in XA transaction coordinator logs transaction records using the same type
of store as the Message Queue broker in which the JMS bridge resides. For file-based
transaction logging, the transaction log for a JMS bridge is located at:

IMQ_VARHOME/instances/brokerInstance/bridges/bridgeName/txlog.bridgeNane

Configuring and Managing JMS Bridge Services

Configuring and Managing Bridge Services 12-5

For JDBC-based transaction logging, the built-in XA transaction coordinator uses the
same JDBC store as the Message Queue broker in which the JMS bridge resides.

Resource Manager Registration and The Built-In XA Transaction Coordinator When a JMS
bridge is started, it registers all its Resource Managers (RMs) with the built-in XA
transaction coordinator so that the coordinator can identify specific RMs during
recovery.

For connection factories, the JMS bridge only registers the factory as an RM if the
factory's multi-rm attribute value is false. A connection factory with a multi-rm
attribute value of true should have each of its RMs identified by a connection factory
whose multi-rmattribute value of false in order to participate in transactional
message transfer. Additionally, the JMS bridge uses a connection factory's ref-name
attribute value as part of its RM name when registering RMs with the built-in XA
transaction coordinator, so this attribute should not be changed between restarts of the
bridge if transaction recovery is desired between restarts.

JMS Bridges in High Availability (HA) Broker Clusters
Message Queue supports JMS bridges in HA broker clusters, but some special
constraints apply due to the inherent nature of HA broker clusters:

■ Each JMS bridge must have a name that is unique across all the JMS bridges in all
the brokers in the cluster.

■ Each JMS bridge must have the same bridge configuration across all the brokers in
the cluster.

■ The imq.bridge.enabled broker property must have the same value across all
brokers in the cluster.

■ Before broker startup, the imq.bridge.activelist broker property for each broker
lists only those JMS bridges that are to be owned by that broker.

To ensure that bridges in the cluster have the same configuration across all brokers in
the cluster, all bridge-related broker properties except for imq.bridge.activelist
should be specified in the centralized cluster properties file defined by the
imq.cluster.url broker property.

A table in the cluster's HA store is used to maintain a consistent record of JMS bridge
ownership by the brokers in the cluster.

During broker startup, the JMS bridge service compares the broker's
imq.bridge.activelist property value to this table's entries before starting any JMS
bridges, with the following consequences:

■ If a JMS bridge named in imq.bridge.activelist does not appear in the table, it
is added to the table and associated with the broker.

■ If a JMS bridge name in imq.bridge.activelist does appear in the table, and the
table entry already associates the bridge with a different broker, the bridge name is
removed from imq.bridge.activelist.

■ If an entry in the table associates a JMS bridge with the broker, and that bridge's
name is not in imq.bridge.activelist, the bridge name is added to
imq.bridge.activelist.

Message Transformation During Message Delivery
A link target or a DMQ can specify a message transformer to process the message
before it is delivered to the target destination or DMQ destination. This message
transformer must be a Java class that extends the Message Queue bridge

Configuring and Managing JMS Bridge Services

12-6 Open Message Queue 4.5.2 Administration Guide

com.sun.messaging.bridge.service.MessageTransformer abstract class and has
javax.jms.Message as its formal type parameters. To specify a message transformer,
set the message-transformer-class attribute of a link target or a DMQ to the fully
qualified class name of the Java class.

During message transfer processing, the JMS message to be transferred to a target,
plus any property subelements of the link's target element or the dmq element, are
passed to the message transformer's MessageTransformer.transform() method, and
the returned JMS message is sent to the target destination.

JMSReplyTo Header Processing
In a JMS message, the JMSReplyTo header value is provider dependent. Therefore,
unless both the source provider and target provider are Message Queue, the JMS
bridge sets an existing JMSReplyTo header to a null value before passing the message
to a link target or, if specified, the message transformer for the link target.

This default behavior can be overridden by setting the retain-replyto attribute of the
link's target element to true. Overriding the default behavior is useful when:

■ The message transformer for a link target handles processing of the JMSReplyTo
header.

■ Both the link source and link target have the same JMS provider, and clients of the
target provider instance need to send reply messages back across the JMS bridge to
the JMSReplyTo destination in the source provider instance. To successfully
implement this case:

■ The JMSReplyTo destination must exist (or be able to be auto-created) in the
target provider instance.

■ A JMS bridge link must be defined with its source set to the JMSReplyTo
destination in the target provider instance and its target set to the JMSReplyTo
destination in the source provider instance.

Dead Message Queue (DMQ) Processing
Each JMS bridge includes a built-in Dead Message Queue (DMQ) named
built-in-dmq. This DMQ is a designated Queue destination named
imq.bridge.jms.dmq in the broker hosting the JMS bridge. You can also configure
additional DMQs for the JMS bridge, in which case the DMQ can use any JMS
destination in any configured JMS provider.

When a DMQ uses Message Queue as the JMS provider, it can be configured such that
messages sent to it will automatically be transferred to the Message Queue broker's
DMQ. To do so, set physical destination properties of the JMS bridge's DMQ as
follows:

useDMQ=true
limitBehavior=REMOVE_OLDEST
maxNumMsgs=0

When a message is sent to the DMQ, the JMS bridge follows this sequence with the
built-in DMQ first:

Note: In a production environment, the built-in DMQ,
imq.bridge.jms.dmq, should be administratively created and have
its access controls set appropriately before starting a broker that
uses JMS bridge services.

Configuring and Managing JMS Bridge Services

Configuring and Managing Bridge Services 12-7

1. The bridge creates a new DMQ javax.jms.ObjectMessage object and sets the
properties listed in Table 12–1 to the ObjectMessage.

2. If the DMQ has defined a message transformer, the original message is passed to
the transformer's MessageTransformer.transform() method.

3. The body of the javax.jms.ObjectMessage is set to the transformed message (or
original message if no message transformer is defined). If this action fails (usually
because the message is not serializable), the body of the ObjectMessage is instead
set to the toString() value of the original message.

4. The javax.jms.ObjectMessage is sent (up to send-attempts times) to the DMQ's
destination with a timeToLive value based on the DMQ's
time-to-live-in-millis attribute and with the same JMSDeliveryMode and
JMSPriority as the original message.

5. If sending the message fails, the bridge repeats Steps 2 through 4 for each DMQ
defined in the bridge's XML configuration file in the order they appear in the file,
stopping when a send attempt succeeds, unless it is the built-in DMQ.

6. If the message can't be sent to any DMQ, a log message is generated, containing
the properties and headers of the original message and the properties set in Step 1.

Table 12–1 DMQ Message Propeties

Property Type Description

JMS_SUN_JMSBRIDGE_DMQ_BODY_TRUNCATED String If unable to set the original message or the
transformed message (if the DMQ has a message
transformer) to the body of the DMQ
ObjectMessage. In that case the message's
toString() is set to the body of the DMQ
ObjectMessage.

JMS_SUN_JMSBRIDGE_DMQ_EXCEPTION String The Exception.getMessage() if exception
occurred or detailed comments on the failure; null
if none.

JMS_SUN_JMSBRIDGE_DMQ_REASON String One of: MESSAGE_EXPIRED, SEND_FAILURE, ACK_
FAILURE, TRANSFORM_FAILURE, COMMIT_FAILURE.

JMS_SUN_JMSBRIDGE_DMQ_TIMESTAMP String The timestamp when the JMS bridge sends the
message to the DMQ.

JMS_SUN_JMSBRIDGE_SOURCE_CORRELATIONID String The original message's getJMSCorrelationID().

JMS_SUN_JMSBRIDGE_SOURCE_DESTINATION String The original message's source destination name.

JMS_SUN_JMSBRIDGE_SOURCE_JMSTYPE String The original message's getJMSType().

JMS_SUN_JMSBRIDGE_SOURCE_MESSAGEID String The orginal message's getJMSMessageID(), or null
if not available.

JMS_SUN_JMSBRIDGE_SOURCE_PROVIDER String The ConnectionMetaData.getJMSProviderName of
the connection the original message was received
on; if not available, the source connection factory's
getClass().getName().

JMS_SUN_JMSBRIDGE_SOURCE_TIMESTAMP Long The original message's getJMSTimestamp().

JMS_SUN_JMSBRIDGE_TARGET_DESTINATION String The name of the target destination where the
original message was intended to send to.

JMS_SUN_JMSBRIDGE_TARGET_PROVIDER String The ConnectionMetaData.getJMSProviderName of
the connection the original message was intended
to send on; if not available, the target connection
factory's getClass().getName().

Configuring and Managing JMS Bridge Services

12-8 Open Message Queue 4.5.2 Administration Guide

Message Processing Sequence Across a Link in a JMS Bridge
A JMS bridge link receives messages in the order sent by the link's source JMS
provider and transfer them in the same order to the link's target JMS provider. A link
follows this sequence to transfer each message:

1. The link receives a JMS message from its source.

2. The link checks the JMSExpiration header to determine whether the message has
expired. If it has, a log message is generated, the JMS message is sent to the DMQ,
and no further action is taken.

3. If the message has a JMSReplyTo header and the link target's retain-replyto
attribute is false, the JMSReplyTo header value is set to null.

4. If the link target has defined a message transformer, the transformer's
MessageTransformer.transform() method is called. If the call fails or if the
message transformer returns a null value, a log message is generated and then
processing continues as follows:

■ If the target's consume-no-transfer-on-transform-error XML attribute is
true, the untransformed message is sent to the DMQ, consumed from the
source, but not sent to the target.

■ If the target's consume-no-transfer-on-transform-error XML attribute is
false, the link is stopped and the message is neither consumed from the
source nor sent to the target.

5. If the message-transfer-tag-bridge-name attribute of the jmsbridge element is
true, the JMS_SUN_JMSBRIDGE_NAME property is added to the message and set to
the name of the bridge.

6. The message is sent to the link target's destination with a timeToLive value based
on the JMSExpiration header and current GMT time and with the same
JMSDeliveryMode and JMSPriority values as the original message. If sending to
the link target's destination fails and the link is not transacted, a log message is
generated, the JMS message is sent to the DMQ, and processing continues.

7. The source message is acknowledged using JMS CLIENT_ACKNOWLEDGE if the link is
not transacted. If the acknowledgement fails, a log message is generated and the
JMS message is sent to the DMQ.

8. If the message processing was successful, an INFO log message is generated. This
log message can be suppressed by setting to false the log-message-transfer
attribute of the jmsbridge element in the bridge's XML configuration file.

Message processing for messages across transacted links follows the same processing
sequence, except JTA interfaces are used to coordinate the source and target resource
managers to transfer the message in an XA distributed transaction. For transacted
links, failure to send the message to the link target's destination does not cause the JMS
message to be sent to the DMQ; instead, the transaction is rolled back. However, if the
attempt to commit the transaction fails, a log message is generated and the JMS
message is sent to the DMQ.

The quality of message transfer under failures depends on whether the link
transferring the message is transacted:

■ Transacted links: once-only-once

■ Non-transacted links: at-least-once

Configuring and Managing JMS Bridge Services

Configuring and Managing Bridge Services 12-9

Configuring a JMS Bridge
To configure a JMS bridge, you specify several imq.bridge.bridgeName broker
properties, where bridgeName is a name you choose for the JMS bridge. Additionally,
you create an XML configuration file that specifies the links, sources, targets,
connection factories, destinations, and DMQs in the bridge. The url of this
configuration file is provided as the value of the imq.bridge.bridgeName.xml property

Specifying the Broker Properties for a JMS Bridge
Table 12–2 lists the broker properties you can specify for a JMS bridge. In this table,
name is the name of the JMS bridge, which must be unique across all bridges in the
broker.

Creating the XML Configuration File for a JMS Bridge
As mentioned earlier, the XML configuration file for a JMS bridge specifies the
following components of the bridge:

■ Links

■ Sources

Table 12–2 Broker Properties for a JMS Bridge

Property Type
Default
Value Description

imq.bridge.name.type String None The bridge type of the bridge named name. For JMS
bridges, specify a value of JMS or jms.

imq.bridge.name.xmlurl String None The URL where the XML configuration file for the JMS
bridge name is stored.

Examples:

■ http://webserver/imq/jmsbridge1.config.xml

(for a file on a Web server)

■ file:/net/fileserver/imq/jmsbridge1.config.xml

(for a file on a shared drive)

imq.bridge.name.autostart Boolean true Should the JMS bridge name be automatically started
when the broker is started?

imq.bridge.name.logfile.limit Integer 0 The approximate maximum number of bytes the JMS
bridge name writes to any one log file.

A value of 0 (zero) indicates that there is no maximum
limit.

imq.bridge.name.logfile.count Integer 1 The number of log files the JMS bridge name cycles
through.

imq.bridge.tm.props

imq.bridge.name.tm.props

String None Each of these properties specifies a list of key-value
pairs for the built-in transaction coordinator for the
JMS bridge name.

The list consists of one or more key=value pairs
separated by commas.

When the imq.persist.store is file, the built-in
transaction coordinator supports these keys:
txlogSize, txlogSync, and txlogMmap.

If the same key appears in both properties, the value
specified in imq.bridge.name.tm.props takes
precedence.

Configuring and Managing JMS Bridge Services

12-10 Open Message Queue 4.5.2 Administration Guide

■ Targets

■ Connection factories

■ Destinations

■ DMQs

The configuration file must conform to the JMS bridge DTD, which is stored at:

IMQ_HOME/lib/dtd/sun_jmsbridge_Version.dtd

The basic structure of configuration file is:

<jmsbridge name=bridgeName otherAttributes>
 <link name=linkName otherAttributes>
 [<description>linkDescription</description>]
 <source connection-factory-ref=connFactoryRef destination-ref=destRef
otherAttributes>
 [<description>sourceDescription</description>
 </source>
 <target connection-factory-ref=connFactoryRef destination-ref=destRef
otherAttributes>
 [<description>targetDescription</description>]
 [<property name=propName value=propValue />] ...
 </target>
 </link>
 <dmq name=dmqName otherAttributes> /* use name="built-in-dmq" for the built-in
DMQ */
 [<description>dmqDescription</description>]
 [<property name=propName value=propValue />] ...
 </dmq>
 <connection-factory ref-name=connFactoryRef otherAttributes>
 [<description>connFactoryDescription</description>]
 [<property name=propName value=propValue />] ...
 </connection-factory>
 <destination ref-name=destRef otherAttributes>
 [<description>destDescription</description>]
 [<property name=propName value=propValue />] ...
 </destination> ...
</jmsbridge>

From this abbreviated structure for the bridge XML configuration file, note that source
and target are subelements of link, while connection-factory and destination are
peer elements to link, not subelements of source and target. Connection factories
and destinations are associated with sources and targets by matching
connection-factory ref-name and destination ref-name attributes values to source
and target connection-factory-ref and destination-ref attribute values,
respectively.

As a result of this association by name-matching instead of by subelement inclusion,
you can use the same connection factories and destinations across sources and targets
in multiple links, thus streamlining the configuration file and making it more
manageable.

The following subsections describe the attributes you can specify for the elements in
the JMS bridge XML configuration file.

jmsbridge Attributes Table 12–3 lists the attributes for the jmsbridge element in the
JMS Bridge XML configuration file.

Configuring and Managing JMS Bridge Services

Configuring and Managing Bridge Services 12-11

link Attributes Table 12–4 lists the attributes for the link element in the JMS Bridge
XML configuration file.

source Attributes Table 12–5 lists the attributes for the source element in the JMS
Bridge XML configuration file.

Table 12–3 jmsbridge Attributes

Attribute Type Description

name String Unique name for this JMS bridge.

Default value: no default

log-message-transfer1

1 First available in Message Queue 4.4.2

Boolean Should each successful message transfer generate an INFO
level log message?

Default value: true

message-transfer-tag-bridge-name Boolean Should the JMS_SUN_JMSBRIDGE_NAME property be defined
and set to the name of the bridge for each message before
transferring to the link target?

Default value: false

Table 12–4 link Attributes

Attribute Type Description

enabled Boolean If false, the link will not be started

Default value: true

name String Unique identifier for this link

Default value: no default

transacted Boolean If true, each message transfer from source to target will be done in a XA distributed
transaction. The connection factories specified by the source and target must be
javax.jms.XAConnectionFactory objects.

If false, CLIENT_ACKNOWLEDGE mode will be used on the source The connection factories
specified by the source and target must be javax.jms.ConnectionFactory objects.

Default value: true

Table 12–5 source Attributes

Attribute Type Description

clientid String A JMS client identifier for the message consumer connection

Default value: not set

connection-factory-ref String The ref-name attribute value of the connection-factory element to
associate with this source.

Default value: no default

Configuring and Managing JMS Bridge Services

12-12 Open Message Queue 4.5.2 Administration Guide

target Attributes Table 12–6 lists the attributes for the target element in the JMS
Bridge XML configuration file.

destination-ref String The ref-name attribute value of the destination element to associate with
this source.

Default value: no default

durable-sub String A JMS durable subscription name.

This attribute is ignored if the source's destination is not a
javax.jms.Topic object.

Default value: not set

selector String A JMS selector for the message consumer

Default value: not set

Table 12–6 target Attributes

Attribute Type Description

clientid String A JMS client identifier for the message producer
connection; if set, use a dedicated connection.

Default value: not set

connection-factory-ref String The ref-name attribute value of the
connection-factory element to associate with this
target.

Default value: no default

consume-no-transfer-on-transform-error Boolean Controls processing when the message
transformer's MessageTransformer.transform()
method returns a null value or throws
java.lang.Throwable:

■ If true, the message is sent to the DMQ and
consumed from the source but not sent to the
target.

■ If false, the link is stopped, and the message is
neither consumed from the source nor
transferred to the target.

Default value: false

destination-ref String The ref-name attribute value of the destination
element to associate with this target.

The value AS_SOURCE is also supported. This value
causes the target destination name and type to be
set to the source message's
javax.jms.Message.getJMSDestination(), unless
overridden by the message transformer's
MessageTransformer.branchTo().

Default value: no default

Table 12–5 (Cont.) source Attributes

Attribute Type Description

Configuring and Managing JMS Bridge Services

Configuring and Managing Bridge Services 12-13

dmq Attributes Table 12–7 lists the attributes for the dmq element in the JMS Bridge XML
configuration file.

message-transformer-class String A fully qualified class name that extends the
Message Queue bridge MessageTransformer class.
For more information, see Message Transformation
During Message Delivery. Place this class under the
IMQ_HOME/lib/ext directory.

Default value: not set

retain-replyto Boolean Should the value of the source message's
JMSReplyTo header (if specified) be retained? For
more information, see JMSReplyTo Header
Processing.

Default value: false

stay-connected Boolean If true, the message producer connection will stay
connected, and be dedicated.

Default value: true

Table 12–7 dmq Attributes

Attribute Type Description

client-id String JMS client identifier for the DMQ producer connection. If
set, the connection will be dedicated.

Default value: not set

connection-factory-ref1 String The ref-name attribute value of the connection-factory
element to associate with this DMQ. This connection factory
must be a javax.jms.ConnectionFactory object.

Default value: no default

destination-ref1 String The ref-name attribute value of the destination element to
associate with this DMQ.

Default value: no default

enabled1 Boolean Is this DMQ is enabled?

Default value: true

message-transformer-class String A fully qualified class name that extends the Message
Queue bridge MessageTransformer class. For more
information, see Message Transformation During Message
Delivery.

Default value: not set

name String The unique identifier of this DMQ.

Default value: no default

send-attempt-interval-in-seconds Integer How long to wait before attempting to resend an
undeliverable message to this DMQ.

Default value: 5

Table 12–6 (Cont.) target Attributes

Attribute Type Description

Configuring and Managing JMS Bridge Services

12-14 Open Message Queue 4.5.2 Administration Guide

connection-factory Attributes Table 12–8 lists the attributes for the
connection-factory element in the JMS Bridge XML configuration file.

send-attempts Integer The number of attempts to send (or resend) an
undeliverable message to this DMQ.

Default value: 3

stay-connected1 Boolean If true, the DMQ producer connection will stay connected
and be dedicated.

Default value: true

time-to-live-in-millis Integer Time-to-live in milliseconds for messages going to this
DMQ. The value 0 means forever.

Default value: 0
1 This attribute is ignored for the built-in DMQ, built-in-dmq

Table 12–8 connection-factory Attributes

Attribute Type Description

connect-attempt-interval-in-seconds Integer How long to wait before each connect attempt.

Default value: 5

connect-attempts Integer The number of attempts for connecting. The value -1
means retry forever

Default value: -1

idle-timeout-in-seconds Integer Close a connection if it is idle for more than this long.
The value 0 indicates no idle timeout. This attribute is
ignored for sources and for targets and DMQs that have
their stay-connected attribute set to true.

Default value: 1800

lookup-name String JNDI lookup name. If specified, the JNDI environment
properties must specified as property subelements of
this connection-factory element. The object returned
by the lookup must be either
javax.jms.ConnectionFactory or
javax.jms.XAConnectionFactory type

If not specified, a default connection factory to the
Message Queue broker hosting the bridge is created
with the properties in the property subelements.

Default value: not set

multi-rm Boolean Set to true if this connection factory will potentially
create XA connections to more than one XA resource
manager (that is, XAResource.isSame() is false among
them). Also, add separate connection-factory for each
such resource manager so that they will be registered
separately to the built-in XA transaction coordinator.

Default value: false

Table 12–7 (Cont.) dmq Attributes

Attribute Type Description

Configuring and Managing JMS Bridge Services

Configuring and Managing Bridge Services 12-15

destination Attributes Table 12–9 lists the attributes for the destination element in
the JMS Bridge XML configuration file.

Starting and Stopping JMS Bridges
JMS bridges can be started automatically when the broker hosting the bridge starts, or
manually using the imqbridgemgr utility. Similarly, JMS bridges are stopped
automatically when the broker hosting the bridge is shut down, or manually using the
imqbridgemgr utility.

When a JMS bridge is started, the JMS bridge manager performs these tasks:

1. Parse and validate the bridge's XML configuration file.

2. Initialize all links and DMQs that have their enabled attribute set to true.

3. If any enabled links have their transacted attribute set to true:

a. Initialize the built-in XA transaction coordinator.

b. Register resource managers (RMs) for all potential XA connection factories.

c. Perform XA recovery for available RMs.

4. Create connection pools and shared connections as needed.

5. Ensure that all DMQs are ready.

password String The password for the user specified in username.

Default value: not set

ref-name String Unique name for this connection factory.

Default value: no default

username String The user name to be used to create connections from
this connection factory. If this attribute is set, the
password attribute must also be set.

If not set, connections are created using the
no-argument createConnection() method of the
connection factory.

Default value: not set

Table 12–9 destination Attributes

Attribute Type Description

lookup-name String JNDI lookup name for the destination. If specified, the JNDI environment properties
must specified as property subelements of this destination element.

Default value: not set

name String The JMS destination name of this destination. This attribute is ignored if lookup-name
is specified.

Default value: not set

ref-name String Unique name for this destination.

Default value: no default

type queue or
topic

The JMS destination type of this destination. This attribute is ignored if lookup-name is
specified

Default value: queue

Table 12–8 (Cont.) connection-factory Attributes

Attribute Type Description

Configuring and Managing JMS Bridge Services

12-16 Open Message Queue 4.5.2 Administration Guide

6. Start all enabled links.

When a JMS bridge is stopped, the JMS bridge manager performs these tasks:

1. Stop all started and paused links.

2. Wait until all pooled connections are returned to their respective pools and until
all references to shared connections are returned.

3. Close all connection pools and shared connections. This effectively causes all
physical connections to JMS providers to close.

To Configure a JMS Bridge to Start at Broker Startup
Follow these steps to configure a JMS bridge so that it starts automatically when the
broker hosting it is started.

1. Confirm that the bridge service manager is enabled.

See To Enable the Bridge Service Manager for instructions.

2. Add the name of the bridge to the imq.bridge.activelist broker property.

3. Confirm that the imq.bridge.bridgeName.autostart broker property is set to
true.

To Start a JMS Bridge Manually
1. Enter the imqbridgemgr start bridge command, specifying the bridge name and

the broker.

For example, to start the bridge mq2external hosted by the broker running on
myhost:8886, enter this command:

imqbridgemgr start bridge -bn mq2external -b myhost:8886

To Stop a JMS Bridge Manually
1. Enter the imqbridgemgr stop bridge command, specifying the bridge name and

the broker.

For example, to stop the bridge mq2external hosted by the broker running on
myhost:8886, enter this command:

imqbridgemgr stop bridge -bn mq2external -b myhost:8886

Starting and Stopping Links in a JMS Bridge
Links in a JMS bridge are started automatically when the bridge starts. Similarly, links
are stopped automatically when the bridge is stopped. Additionally, once a JMS bridge
is started, any of its links can be paused, resumed, stopped or restarted manually
using the imqbridgemgr utility.

To Stop a Link Manually
1. Enter the imqbridgemgr stop link command, specifying the link name, the bridge

name, and the broker.

For example, to stop the link link1 in the bridge mq2external hosted by the
broker running on myhost:8886, enter this command:

imqbridgemgr stop link -ln link1 -bn mq2external -b myhost:8886

Configuring and Managing STOMP Bridge Services

Configuring and Managing Bridge Services 12-17

To Start a Link Manually
A link cannot be started manually unless it is enabled; that is, the enabled attribute of
its link element in the bridge's XML configuration file is set to true.

1. Enter the imqbridgemgr start link command, specifying the link name, the
bridge name, and the broker.

For example, to start the link link1 in the bridge mq2external hosted by the
broker running on myhost:8886, enter this command:

imqbridgemgr start link -ln link1 -bn mq2external -b myhost:8886

Configuring and Managing STOMP Bridge Services
The STOMP (Streaming Text Oriented Messaging Protocol) open source project at
http://docs.codehaus.org/display/STOMP/Home defines a simple wire
protocol that clients written in any language can use to communicate with any
messaging provider that supports the STOMP protocol.

Message Queue 4.5.2 provides support for the STOMP protocol through the STOMP
bridge service. This service enables a Message Queue broker to communicate with
STOMP clients.

The STOMP bridge service provides the features needed to fully integrate STOMP
messaging into the JMS messaging environment of Message Queue:

■ Registration with the Message Queue Port Mapper service so that STOMP clients
can discover the service dynamically

■ Support for TCP and SSL/TLS connections, including SSL/TLS connections
requiring client authentication

■ Automatic conversion of STOMP frame messages to and from JMS BytesMessage
and TextMessage types

■ Extensible message handling and transformation (by defining a custom message
transformer)

■ Support for the full STOMP protocol, including the STOMP JMS bindings

The following subsections provide information about the STOMP bridge and how to
configure and manage it:

■ Configuring the STOMP Bridge

■ Starting and Stopping the STOMP Bridge

■ Message Processing Sequence Across the STOMP Bridge

■ STOMP Protocol Features and the STOMP Bridge

Configuring the STOMP Bridge
To configure the STOMP bridge, you specify several imq.bridge.stomp broker
properties in the broker hosting the bridge. These properties, which control the various
features of the STOMP bridge, are listed in Table 12–10.

Configuring and Managing STOMP Bridge Services

12-18 Open Message Queue 4.5.2 Administration Guide

Starting and Stopping the STOMP Bridge
The STOMP bridge is started automatically when the broker hosting the bridge starts.
Similarly, the STOMP bridge is stopped automatically when the broker hosting it is
stopped. The STOMP bridge can be stopped and restarted manually using the
imqbridgemgr utility.

To Activate the STOMP Bridge
1. Confirm that the bridge service manager is enabled.

See To Enable the Bridge Service Manager for instructions.

Table 12–10 Broker Properties for the STOMP Bridge Service

Property Type
Default
Value Description

imq.bridge.stomp.hostname String None Host name or IP address for the STOMP
bridge service

If specified, overrides imq.hostname (see
Table 17–1) for the STOMP bridge service.

imq.bridge.stomp.tcp.enabled Boolean true Does the STOMP bridge accept TCP
connections?

imq.bridge.stomp.tcp.port Integer 7672 The port on which the STOMP bridge
listens for TCP connections, provided that
imq.bridge.stomp.tcp.enabled is true.

imq.bridge.stomp.tls.enabled Boolean false Does the STOMP bridge accept SSL/TLS
connections?

If true, a keystore must be created using
the imqkeytool utility before starting the
broker.

imq.bridge.stomp.tls.port Integer 7673 The port on which the STOMP bridge
listens for SSL/TLS connections, provided
that imq.bridge.stomp.tls.enabled is
true.

imq.bridge.stomp.tls.requireClientAuth Boolean false Do SSL/TLS connections require client
authentication?

imq.bridge.stomp.consumerFlowLimit Integer 1000 The maximum number of
unacknowledged messages that the
STOMP bridge will deliver on a
transacted STOMP subscription. The
STOMP client must then acknowledge the
messages and commit the transaction.

imq.bridge.stomp.messageTransformer String None The fully qualified class name of a class
that extends the Message Queue bridge
MessageTransformer abstract class (with
formal type parameters as
javax.jms.Message). Place this class
under the IMQ_HOME/lib/ext directory.

imq.bridge.stomp.logfile.limit Integer 0 The approximate maximum number of
bytes the STOMP bridge writes to any one
log file.

A value of 0 (zero) indicates that there is
no maximum limit.

imq.bridge.stomp.logfile.count Integer 1 The number of log files the STOMP
bridge cycles through.

Configuring and Managing STOMP Bridge Services

Configuring and Managing Bridge Services 12-19

2. Add the name stomp to the list of bridge names in the imq.bridge.activelist
broker property.

To Stop the STOMP Bridge Manually
1. Enter the imqbridgemgr stop bridge command, specifying the bridge type and the

broker.

For example, to stop the STOMP bridge hosted by the broker running on
myhost:8886, enter this command:

imqbridgemgr stop bridge -t STOMP -b myhost:8886

To Start the STOMP Bridge Manually
1. Enter the imqbridgemgr start bridge command, specifying the bridge type and

the broker.

For example, to start the STOMP bridge hosted by the broker running on
myhost:8886, enter this command:

imqbridgemgr start bridge -t STOMP -b myhost:8886

Message Processing Sequence Across the STOMP Bridge
The STOMP bridge processes messages differently depending on whether the message
is a STOMP frame message being received from a STOMP client or a JMS message
being sent to a STOMP client.

For STOMP frame messages received from a STOMP client, the STOMP bridge
performs these tasks:

1. Convert the STOMP frame message to a JMS BytesMessage if the content-length
header is present; otherwise, convert it to a JMS TextMessage using UTF-8 as the
message encoding.

2. If a custom message transformer is defined for the bridge, pass the JMS message to
the transformer's MessageTransformer.transform() method.

3. Send the message to its destination.

For JMS messages sent to a STOMP client, the STOMP bridge performs these tasks:

1. If a custom message transformer is defined for the bridge, pass the JMS message to
the transformer's MessageTransformer.transform() method.

2. If the transformed message (or original message when no custom transformer is
defined) is not a JMS TextMessage or JMS BytesMessage message, close the
STOMP connection and stop processing the message.

3. Convert the JMS message to a STOMP frame message, using UTF-8 encoding for
all headers and for the message body of a JMS TextMessage message.

4. Send the message to the STOMP client.

Message Transformation During Message Processing
The message transformation between STOMP frame messages and JMS messages that
the STOMP bridge automatically provides is sufficient in most applications. However,
if you need to perform special processing or to send JMS message types other than

Configuring and Managing STOMP Bridge Services

12-20 Open Message Queue 4.5.2 Administration Guide

BytesMessage or TextMessage to STOMP clients, you can define a custom message
transformer for the STOMP bridge.

This custom message transformer is a Java class that extends the Message Queue
Bridge MessageTransformer abstract class by implementing the class's transform()
method. Then, place the class file in the IMQ_HOME/lib/ext directory and set the
imq.bridge.stomp.messageTransformer broker property of the broker hosting the
STOMP bridge to the fully qualified class name of the class.

When implementing the transform() method, keep these points in mind:

■ The formal parameters T and S must be of type javax.jms.Message.

■ "The source and target arguments will be either "STOMP" and "SUN_MQ" or "SUN_MQ"
and "STOMP", respectively.

■ A source argument value of "STOMP" indicates that the message argument is from a
STOMP client SEND frame received by the STOMP bridge.

■ A source argument value of "SUN_MQ" indicates that the message argument is from a
Message Queue destination.

■ The readOnly argument will be false if the source argument is "STOMP" and true if
the source argument is "SUN_MQ".

■ If the source argument is "STOMP", the properties argument contains, as key/value
pairs, any arbitrary user headers that the STOMP bridge was unable to convert to
JMS message properties in the message argument. Otherwise, the properties
argument is null.

■ The charsetName argument should be ignored unless the source argument is
"STOMP" and the message argument is a JMS BytesMessage message. This
combination of argument values indicates that the message is from a STOMP
client and has already been converted to a BytesMessage message.

■ The returned message must be in write-only mode if the source argument is
"STOMP" and in read-only mode if the source argument is "SUN_MQ".

STOMP Protocol Features and the STOMP Bridge
The STOMP bridge supports the full STOMP protocol, including all additional STOMP
headers for the STOMP JMS bindings, as listed at
http://docs.codehaus.org/display/STOMP/Stomp+JMS.

The following table clarifies how the STOMP bridge handles certain command and
header combinations that might be otherwise be subject to multiple interpretations.

Configuring and Managing STOMP Bridge Services

Configuring and Managing Bridge Services 12-21

Table 12–11 STOMP Bridge Handling of Selected Command/Header Combinations

STOMP
Frame
Command STOMP Frame Header Handling by the STOMP Bridge

CONNECT login

passcode

The STOMP bridge requires these headers to be specified;
otherwise, it returns an ERROR frame.

SEND

SUBSCRIBE

UNSUBSCRIBE

MESSAGE

destination MQ STOMP bridge interprets prefixes in destination header
values as follows:

■ /queue/: the prefix is followed by the name of a Queue

■ /topic/: the prefix is followed by the name of a Topic

■ /temp-queue/: the prefix is followed by the name of a
TemporaryQueue

■ /temp-topic/: the prefix is followed by the name of a
TemporaryTopic

Note that the following two prefixes are reserved to be used only
for send reply messages to a MESSAGE frame's replyto
destination, and should only be used in the same CONNECT
session in which the MESSAGE is received.

■ /temp-queue/temporary_destination://queue/

■ /temp-topic/temporary_destination://topic/

SEND expires

priority

persistent

When these headers are not specified for SEND, the message will
be sent with the same default values as for a Message Queue
Java client.

SEND user specific headers On SEND, a user can specify additional headers beyond the ones
specified in the STOMP protocol and STOMP JMS Bindings.
These headers are transformed to String properties of the
converted JMS message. Therefore, the keys for these headers
must be valid JMS property names. If any are not, and a custom
message transformer is specified for STOMP bridge, the invalid
ones are passed in the properties argument to the transformer's
transform() method.

SUBSCRIBE selector Supported as described in the STOMP JMS Bindings on
SUBSCRIBE.

SUBSCRIBE id A STOMP client should always specify an id header for
SUBSCRIBE. If no "id" header is specified, the STOMP bridge
assigns it a default value of
/subscription-to/STOMP-destination-name.

All SUBSCRIBE id values must be unique in the scope of the
STOMP client connection to the STOMP bridge; otherwise, an
ERROR frame will be returned.

SUBSCRIBE transaction For a STOMP subscription to receive messages in a transaction,
the SUBSCRIBE frame must specify a transaction header with a
transaction identifier whose transaction state is started. If the
transaction does not exist, an ERROR frame is returned. After the
transaction completes (using either COMMIT or ABORT), message
delivery to the transacted subscription is paused until the next
transaction BEGIN.

ABORT transaction For transacted subscriptions, aborting a transaction will cause
the STOMP bridge to stop message delivery to all transacted
subscriptions in the CONNECT session. Then, upon the next BEGIN,
the STOMP bridge restarts the message delivery sequence to all
the transacted subscriptions in the CONNECT session, including all
unconsumed messages that had been previously delivered.

Configuring and Managing STOMP Bridge Services

12-22 Open Message Queue 4.5.2 Administration Guide

SUBSCRIBE ack For STOMP ack:auto (the default), a subscribed message is
considered acknowledged as soon as it is sent to the STOMP
client.

UNSUBSCRIBE durable-subscriber-name Unsubscribes a durable subscription, with these provisions:

■ destination and id headers, if specfied, are ignored.

■ An ERROR frame is returned if the connection (CONNECT) has
no client-id.

If an active subscriber with the durable name exists on the
connection, it is first closed, and then the durable subscriber is
unsubscribed.

BEGIN transaction Transactions are at STOMP CONNECT session level. Nested
transactions are not supported. On attempts to start a nested
transaction, an ERROR frame is returned.

The transaction identifier will also be used for SUBSCRIBE frame
to create a transacted subscription.

ACK subscription ACK should always specify a subscription header specifying the
subscription id that the message to be acked was delivered to.

If a subcriber id is not specified, the STOMP bridge default
subscription id prefix is used to find the first matching
subscription id with the prefix to ack the message.

If the subscription for the specified subscription id was not
created as transacted, and a transaction header is specified for
the ACK, an ERROR frame is returned;

ACK on a message ID, if found, will ACK all earlier messages
delivered to the subscription in addition to the message with the
given message ID.

Table 12–11 (Cont.) STOMP Bridge Handling of Selected Command/Header Combinations

STOMP
Frame
Command STOMP Frame Header Handling by the STOMP Bridge

Configuring and Managing STOMP Bridge Services

Configuring and Managing Bridge Services 12-23

ACK transaction For transacted subscription, an ACK for a message ID
automatically ACKs all ealier messages sent to the transacted
subscription in addition to the message with the given message
ID. For transacted subscription, a message is considered
consumed only when it is explicitly or implicitly ACKed in a
transaction and there is a subsequent successful COMMIT on that
transaction. If the transaction header is not specified but the
subscription header is specified and the subscription is a
transacted subscription, the message is ACKed in the current
transaction if there is a current transaction. If there is no current
transaction, an ERROR frame is returned.

MESSAGE

ERROR

content-length The STOMP bridge always sets the content-length header for
MESSAGE and ERROR frames sent to STOMP clients.

SEND

MESSAGE

reply-to The STOMP bridge permits SEND from different STOMP CONNECT
sessions as well as from the same CONNECT session to send reply
messages to a STOMP reply-to header of temporary
destination:

■ In the same CONNECT session, when SUBSCRIBE and SEND
reply, use the same temporary destination string that is used
in the SEND's reply-to header.

■ In a different CONNECT session, upon receiving a MESSAGE
with a reply-to header of a temporary destination, use the
same temporary destination string in the MESSAGE's
reply-to header to SEND a reply to the reply-to temporary
destination. This technique can also be used for sending the
reply message when in the same CONNECT session.

Table 12–11 (Cont.) STOMP Bridge Handling of Selected Command/Header Combinations

STOMP
Frame
Command STOMP Frame Header Handling by the STOMP Bridge

Configuring and Managing STOMP Bridge Services

12-24 Open Message Queue 4.5.2 Administration Guide

13

Monitoring Broker Operations 13-1

13Monitoring Broker Operations

This chapter describes the tools you can use to monitor a broker and how you can get
metrics data. The chapter has the following sections:

■ Monitoring Services

■ Introduction to Monitoring Tools

■ Configuring and Using Broker Logging

■ Using the Command Utility to Display Metrics Interactively

■ Using the JMX Administration API

■ Using the Java ES Monitoring Console

■ Using the Message-Based Monitoring API

Reference information on specific metrics is available in Metrics Information Reference

Monitoring Services
The broker includes components for monitoring and diagnosing application and
broker performance. These include the components and services shown in the
following figure:

■ Broker code that logs broker events.

■ A metrics generator that provides.

The metrics generator provides information about broker activity, such as message
flow in and out of the broker, the number of messages in broker memory and the
memory they consume, the number of open connections, and the number of
threads being used. The boolean broker property imq.metrics.enabled controls
whether such information is logged and the imq.metrics.interval property
specifies how often metrics information is generated.

■ A logger component that writes out information to a number of output channels.

■ A comprehensive set of Java Management Extensions (JMX) MBeans that expose
broker resources using the JMX API

■ Support for the Java ES Monitoring Framework

■ A metrics message producer that sends JMS messages containing metrics
information to topic destinations for consumption by JMS monitoring clients.

Broker properties for configuring the monitoring services are listed under Monitoring
Properties.

Introduction to Monitoring Tools

13-2 Open Message Queue 4.5.2 Administration Guide

Figure 13–1 Monitoring Services Support

Introduction to Monitoring Tools
There are five tools (or interfaces) for monitoring Message Queue information, as
described briefly below:

■ Log files provide a long-term record of metrics data, but cannot easily be parsed.

■ The Command Utility (imqcmd metrics) lets you interactively sample
information tailored to your needs, but does not provide historical information or
allow you to manipulate the data programmatically.

■ The Java Management Extensions (JMX) Administration API lets you perform
broker resource configuration and monitoring operations programmatically from
within a Java application. You can write your own JMX administration application
or use the standard Java Monitoring and Management Console (jconsole).

■ The Sun Java Enterprise System Monitoring Framework (JESMF) and
Monitoring Console offers a common, Web-based graphical interface shared with
other Java ES components, but can monitor only a subset of all Message Queue
entities and operations.

■ The Message-based Monitoring API lets you extract metrics information from
messages produced by the broker to metrics topic destinations. However, to use it,
you must write a Message Queue client application to capture, analyze, and
display the metrics data.

The following tabel compares the different tools.

Broker
Code

Metrics
Generator

Logger

ERROR
WARNING

INFO

Output Channels

Broker
Resources

Log File

Console

syslog (Solaris)

Metrics
Message
Producer

JMX
MBeans JMX Client Application

Java ES
Monitoring
Framework

Java ES Monitoring Console

Topic Destinations

Command Utility
(imqcmd metrics)

Introduction to Monitoring Tools

Monitoring Broker Operations 13-3

In addition to the differences shown in the table, each tool gathers a somewhat
different subset of the metrics information generated by the broker. For information on
which metrics data is gathered by each monitoring tool, see Metrics Information
Reference.

Table 13–1 Benefits and Limitations of Metrics Monitoring Tools

Metrics Monitoring Tool Benefits Limitations

Log files ■ Regular sampling

■ Creates a historical record

■ Local monitoring only

■ Data format difficult to read; no
parsing tools

■ Need to configure broker properties;
must shut down and restart broker to
take effect

■ Broker metrics only; no destination
or connection service metrics

■ No flexibility in selection of data

■ Same reporting interval for all
metrics data; cannot be changed on
the fly

■ Possible performance penalty if
interval set too short

Command Utility (imqcmd
metrics)

■ Remote monitoring

■ Convenient for spot-checking

■ Data presented in easy-to-read
tabular format

■ Easy to select specific data of interest

■ Reporting interval set in command
option; can be changed on the fly

■ Difficult to analyze data
programmatically

■ No single command gets all data

■ No historical record; difficult to see
historical trends

JMX Administration API ■ Remote monitoring

■ Data can be analyzed
programmatically and presented in
any format

■ Easy to select specific data of interest

■ Can use standard Java Monitoring
and Management Console (jconsole)

■ Might need to configure broker's JMX
support

Java ES Monitoring
Console

■ Web-based graphical interface

■ Data presented in easy-to-read
format

■ Common interface shared with other
JES components

■ No performance penalty; pulls data
from broker's existing data
monitoring infrastructure

■ Limited subset of data available

■ Data cannot be analyzed
programmatically

■ No historical record; difficult to see
historical trends

Message-based
Monitoring API

■ Remote monitoring

■ Data can be analyzed
programmatically and presented in
any format

■ Easy to select specific data of interest

■ Need to configure broker properties;
must shut down and restart broker to
take effect

■ Same reporting interval for all
metrics data; cannot be changed on
the fly

Configuring and Using Broker Logging

13-4 Open Message Queue 4.5.2 Administration Guide

Configuring and Using Broker Logging
The Message Queue Logger takes information generated by broker code, a debugger,
and a metrics generator and writes that information to a number of output channels: to
standard output (the console), to a log file, and, on Solaris platforms, to the syslog
daemon process. You can specify the type of information gathered by the Logger as
well as the type of information the Logger writes to each of the output channels. For
example, you can specify that you want metrics information written out to a log file.

This section describes the configuration and use of the Logger for monitoring broker
activity. It includes the following topics:

■ Logger Properties

■ Log Message Format

■ Default Logging Configuration

■ Changing the Logging Configuration

Logger Properties
The imq.log.file.dirpath and imq.log.file.filename broker properties identify
the log file to use and the imq.log.console.stream property specifies whether console
output is directed to stdout or stderr.

The imq.log.level property controls the categories of metric information that the
Logger gathers: ERROR, WARNING, or INFO. Each level includes those above it, so if you
specify, for example, WARNING as the logging level, error messages will be logged as
well.

There is also an imq.destination.logDeadMsgs property that specifies whether to log
entries when dead messages are discarded or moved to the dead message queue.

The imq.log.console.output and imq.log.file.output properties control which of
the specified categories the Logger writes to the console and the log file, respectively.
In this case, however, the categories do not include those above them; so if you want,
for instance, both errors and warnings written to the log file and informational
messages to the console, you must explicitly set imq.log.file.output to
ERROR|WARNING and imq.log.console.output to INFO.

On Solaris platforms another property, imq.log.syslog.output, specifies the
categories of metric information to be written to the syslog daemon.

In the case of a log file, you can specify the point at which the file is closed and output
is rolled over to a new file. Once the log file reaches a specified size
(imq.log.file.rolloverbytes) or age (imq.log.file.rolloversecs), it is saved and
a new log file created.

See Monitoring Properties for additional broker properties related to logging and
subsequent sections for details about how to configure the Logger and how to use it to
obtain performance information.

Log Message Format
A logged message consists of a time stamp, a message code, and the message itself.
The volume of information included varies with the logging level you have set. The
broker supports three logging levels: ERROR, WARNING , and INFO (see Table 13–2). Each
level includes those above it (for example, WARNING includes ERROR).

Configuring and Using Broker Logging

Monitoring Broker Operations 13-5

The default logging level is INFO, so messages at all three levels are logged by default.
The following is an example of an INFO message:

[13/Sep/2000:16:13:36 PDT] [B1004]: Starting the broker service
using tcp [25374,100] with min threads 50 and max threads of 500
You can change the time zone used in the time stamp by setting the broker
configuration property imq.log.timezone (see Table 17–13).

Default Logging Configuration
A broker is automatically configured to save log output to a set of rolling log files. The
log files are located in a directory identified by the instance name of the associated
broker:

IMQ_VARHOME/instances/instanceName/log

The log files are simple text files. The system maintains nine backup files named as
follows, from earliest to latest:

log.txt
log_1.txt
log_2.txt
…
log_9.txt
By default, the log files are rolled over once a week. You can change this rollover
interval, or the location or names of the log files, by setting appropriate configuration
properties:

■ To change the directory in which the log files are kept, set the property
imq.log.file.dirpath to the desired path.

■ To change the root name of the log files from log to something else, set the
imq.log.file.filename property.

■ To change the frequency with which the log files are rolled over, set the property
imq.log.file.rolloversecs.

See Table 17–13 for further information on these properties.

Changing the Logging Configuration
Log-related properties are described in Table 17–13.

Table 13–2 Logging Levels

Logging Level Description

ERROR Serious problems that could cause system failure

WARNING Conditions that should be heeded but will not cause system failure

INFO Metrics and other informational messages

Note: For a broker whose life cycle is controlled by GlassFish
Server, the log files are located in a subdirectory of the domain
directory for the domain for which the broker was started:

domain-root-dir/domainName/imq/instances/imqbroker/log

Configuring and Using Broker Logging

13-6 Open Message Queue 4.5.2 Administration Guide

To Change the Logger Configuration for a Broker
1. Set the logging level.

2. Set the output channel (file, console, or both) for one or more logging categories.

3. If you log output to a file, configure the rollover criteria for the file.

You complete these steps by setting Logger properties. You can do this in one of
two ways:

■ Change or add Logger properties in the config.properties file for a broker
before you start the broker.

■ Specify Logger command line options in the imqbrokerd command that starts
the broker. You can also use the broker option -D to change Logger properties
(or any broker property).

Options passed on the command line override properties specified in the broker
instance configuration files. The following imqbrokerd options affect logging:

-metrics interval
Logging interval for broker metrics, in seconds

-loglevel level
Logging level (ERROR, WARNING, INFO, or NONE)

-silent
Silent mode (no logging to console)

-tty
Log all messages to console

The following sections describe how you can change the default configuration in
order to do the following:

■ Change the output channel (the destination of log messages)

■ Change rollover criteria

Changing the Output Channel
By default, error and warning messages are displayed on the terminal as well as being
logged to a log file. (On Solaris, error messages are also written to the system's syslog
daemon.)

You can change the output channel for log messages in the following ways:

■ To have all log categories (for a given level) output displayed on the screen, use the
-tty option to the imqbrokerd command.

■ To prevent log output from being displayed on the screen, use the -silent option
to the imqbrokerd command.

■ Use the imq.log.file.output property to specify which categories of logging
information should be written to the log file. For example,

imq.log.file.output=ERROR

■ Use the imq.log.console.output property to specify which categories of logging
information should be written to the console. For example,

imq.log.console.output=INFO

Configuring and Using Broker Logging

Monitoring Broker Operations 13-7

■ On Solaris, use the imq.log.syslog.output property to specify which categories
of logging information should be written to Solaris syslog. For example,

imq.log.syslog.output=NONE

Changing Log File Rollover Criteria
There are two criteria for rolling over log files: time and size. The default is to use a
time criteria and roll over files every seven days.

■ To change the time interval, you need to change the property
imq.log.file.rolloversecs. For example, the following property definition
changes the time interval to ten days:

imq.log.file.rolloversecs=864000

■ To change the rollover criteria to depend on file size, you need to set the
imq.log.file.rolloverbytes property. For example, the following definition
directs the broker to rollover files after they reach a limit of 500,000 bytes

imq.log.file.rolloverbytes=500000

If you set both the time-related and the size-related rollover properties, the first limit
reached will trigger the rollover. As noted before, the broker maintains up to nine
rollover files.

You can set or change the log file rollover properties when a broker is running. To set
these properties, use the imqcmd update bkr command.

Sending Metrics Data to Log Files
This section describes the procedure for using broker log files to report metrics
information. For general information on configuring the Logger, see Configuring and
Using Broker Logging.

To Use Log Files to Report Metrics Information

1. Configure the broker's metrics generation capability:

a. Confirm imq.metrics.enabled=true

Generation of metrics for logging is turned on by default.

b. Set the metrics generation interval to a convenient number of seconds.

imq.metrics.interval=interval

This value can be set in the config.properties file or using the -metrics
interval command line option when starting up the broker.

2. Confirm that the Logger gathers metrics information:

imq.log.level=INFO

Note: Before changing Logger output channels, you must make
sure that logging is set at a level that supports the information you
are mapping to the output channel. For example, if you set the
logging level to ERROR and then set the imq.log.console.output
property to WARNING, no messages will be logged because you have
not enabled the logging of WARNING messages.

Using the Command Utility to Display Metrics Interactively

13-8 Open Message Queue 4.5.2 Administration Guide

This is the default value. This value can be set in the config.properties file or
using the -loglevel level command line option when starting up the broker.

3. Confirm that the Logger is set to write metrics information to the log file:

imq.log.file.output=INFO

This is the default value. It can be set in the config.properties file.

4. Start up the broker.

The following shows sample broker metrics output to the log file:

[21/Jul/2004:11:21:18 PDT]
Connections: 0 JVM Heap: 8323072 bytes (7226576 free) Threads: 0 (14-1010)
 In: 0 msgs (0bytes) 0 pkts (0 bytes)
 Out: 0 msgs (0bytes) 0 pkts (0 bytes)
 Rate In: 0 msgs/sec (0 bytes/sec) 0 pkts/sec (0 bytes/sec)
Rate Out: 0 msgs/sec (0 bytes/sec) 0 pkts/sec (0 bytes/sec)

For reference information about metrics data, see Metrics Information Reference.

Logging Dead Messages
You can monitor physical destinations by enabling dead message logging for a broker.
You can log dead messages whether or not you are using a dead message queue.

If you enable dead message logging, the broker logs the following types of events:

■ A physical destination exceeded its maximum size.

■ The broker removed a message from a physical destination, for a reason such as
the following:

– The destination size limit has been reached.

– The message time to live expired.

– The message is too large.

– An error occurred when the broker attempted to process the message.

If a dead message queue is in use, logging also includes the following types of events:

■ The broker moved a message to the dead message queue.

■ The broker removed a message from the dead message queue and discarded it.

The following is an example of the log format for dead messages:

[29/Mar/2006:15:35:39 PST] [B1147]: Message 8-129.145.180.87(e7:6b:dd:5d:98:aa)-
35251-1143675279400 from destination Q:q0 has been placed on the DMQ because
[B0053]: Message on destination Q:q0 Expired: expiration time 1143675279402,
arrival time 1143675279401, JMSTimestamp 1143675279400

Dead message logging is disabled by default. To enable it, set the broker attribute
imq.destination.logDeadMsgs.

Using the Command Utility to Display Metrics Interactively
A Message Queue broker can report metrics of the following types:

■ Java Virtual Machine (JVM) metrics. Information about the JVM heap size.

Using the Command Utility to Display Metrics Interactively

Monitoring Broker Operations 13-9

■ Brokerwide metrics. Information about messages stored in a broker, message
flows into and out of a broker, and memory use. Messages are tracked in terms of
numbers of messages and numbers of bytes.

■ Connection Service metrics. Information about connections and connection
thread resources, and information about message flows for a particular connection
service.

■ Destination metrics. Information about message flows into and out of a particular
physical destination, information about a physical destination's consumers, and
information about memory and disk space usage.

The imqcmd command can obtain metrics information for the broker as a whole, for
individual connection services, and for individual physical destinations. To obtain
metrics data, you generally use the metrics subcommand of imqcmd. Metrics data is
written at an interval you specify, or the number of times you specify, to the console
screen.

You can also use the query subcommand to view similar data that also includes
configuration information. See imqcmd query for more information.

imqcmd metrics
The syntax and options of imqcmd metrics are shown in Table 13–3 and Table 13–4,
respectively.

Table 13–3 imqcmd metrics Subcommand Syntax

Subcommand Syntax Metrics Data Provided

metrics bkr
 [-b hostName:portNumber]
 [-m metricType]
 [-int interval]
 [-msp numSamples]

Displays broker metrics for the default broker or a
broker at the specified host and port.

metrics svc -n serviceName
 [-b hostName:portNumber]
 [-m metricType]
 [-int interval]
 [-msp numSamples]

Displays metrics for the specified service on the
default broker or on a broker at the specified host
and port.

metrics dst -t destType -n destName
 [-b hostName:portNumber]
 [-m metricType]
 [-int interval]
 [-msp numSamples]

Displays metrics information for the physical
destination of the specified type and name.

Table 13–4 imqcmd metrics Subcommand Options

Subcommand Options Description

-b hostName:portNumber Specifies the hostname and port of the broker for which metrics
data is reported. The default is localhost:7676.

Literal IP addresses as host names: You can use a literal IPv4 or
IPv6 address as a host name. If you use a literal IPv6 address, its
format must conform to RFC2732
(http://www.ietf.org/rfc/rfc2732.txt), Format for Literal
IPv6 Addresses in URL's.

-int interval Specifies the interval (in seconds) at which to display the metrics.
The default is 5 seconds.

Using the Command Utility to Display Metrics Interactively

13-10 Open Message Queue 4.5.2 Administration Guide

To Use the metrics Subcommand
1. Start the broker for which metrics information is desired.

See Starting Brokers.

2. Issue the appropriate imqcmd metrics subcommand and options as shown in
Table 13–3 and Table 13–4.

Metrics Outputs: imqcmd metrics
This section contains examples of output for the imqcmd metrics subcommand. The
examples show brokerwide, connection service, and physical destination metrics.

Brokerwide Metrics
To get the rate of message and packet flow into and out of the broker at 10 second
intervals, use the metrics bkr subcommand:

imqcmd metrics bkr -m rts -int 10 -u admin

This command produces output similar to the following (see data descriptions in
Table 21–2):

--
 Msgs/sec Msg Bytes/sec Pkts/sec Pkt Bytes/sec
 In Out In Out In Out In Out
--
 0 0 27 56 0 0 38 66
 10 0 7365 56 10 10 7457 1132
 0 0 27 56 0 0 38 73
 0 10 27 7402 10 20 1400 8459
 0 0 27 56 0 0 38 73

-m metricType Specifies the type of metric to display:

ttl Displays metrics on messages and packets flowing into and
out of the broker, service, or destination (default metric type).

rts Displays metrics on rate of flow of messages and packets into
and out of the broker, connection service, or destination (per
second).

cxn Displays connections, virtual memory heap, and threads
(brokers and connection services only).

con Displays consumer-related metrics (destinations only).

dsk Displays disk usage metrics (destinations only).

-msp numSamples Specifies the number of samples displayed in the output. The
default is an unlimited number (infinite).

-n destName Specifies the name of the physical destination (if any) for which
metrics data is reported. There is no default.

-n serviceName Specifies the connection service (if any) for which metrics data is
reported. There is no default.

-t destType Specifies the type (queue or topic) of the physical destination (if
any) for which metrics data is reported. There is no default.

Table 13–4 (Cont.) imqcmd metrics Subcommand Options

Subcommand Options Description

Using the Command Utility to Display Metrics Interactively

Monitoring Broker Operations 13-11

Connection Service Metrics
To get cumulative totals for messages and packets handled by the jms connection
service, use the metrics svc subcommand:

imqcmd metrics svc -n jms -m ttl -u admin

This command produces output similar to the following (see data descriptions in
Table 21–3):

 Msgs Msg Bytes Pkts Pkt Bytes
In Out In Out In Out In Out

164 100 120704 73600 282 383 135967 102127
657 100 483552 73600 775 876 498815 149948

Physical Destination Metrics
To get metrics information about a physical destination, use the metrics dst
subcommand:

imqcmd metrics dst -t q -n XQueue -m ttl -u admin

This command produces output similar to the following (see data descriptions in
Table 21–4):

 Msgs Msg Bytes Msg Count Total Msg Bytes (k) Largest
In Out In Out Current Peak Avg Current Peak Avg Msg (k)

200 200 147200 147200 0 200 0 0 143 71 0
300 200 220800 147200 100 200 10 71 143 64 0
300 300 220800 220800 0 200 0 0 143 59 0

To get information about a physical destination's consumers, use the following
metrics dst subcommand:

imqcmd metrics dst -t q -n SimpleQueue -m con -u admin

This command produces output similar to the following (see data descriptions in
Table 21–4):

--
 Active Consumers Backup Consumers Msg Count
Current Peak Avg Current Peak Avg Current Peak Avg
--
 1 1 0 0 0 0 944 1000 525

imqcmd query
The syntax and options of imqcmd query are shown in Table 13–5 along with a
description of the metrics data provided by the command.

Table 13–5 imqcmd query Subcommand Syntax

Subcommand Syntax Metrics Data Provided

query bkr
 [-b hostName:portNumber]

Information on the current number of messages and
message bytes stored in broker memory and
persistent store (see Viewing Broker Information).

Using the JMX Administration API

13-12 Open Message Queue 4.5.2 Administration Guide

Using the JMX Administration API
The broker implements a comprehensive set of Java Management Extensions (JMX)
MBeans that represent the broker's manageable resources. Using the JMX API, you can
access these MBeans to perform broker configuration and monitoring operations
programmatically from within a Java application.

In this way, the MBeans provide a Java application access to data values representing
static or dynamic properties of a broker, connection, destination, or other resource. The
application can also receive notifications of state changes or other significant events
affecting the resource.

JMX-based administration provides dynamic, fine grained, programmatic access to the
broker. You can use this kind of administration in a number of ways.

■ You can include JMX code in your JMS client application to monitor application
performance and, based on the results, to reconfigure the Message Queue
resources you use to improve performance.

■ You can write JMX client applications that monitor the broker to identify use
patterns and performance problems, and you can use the JMX API to reconfigure
the broker to optimize performance.

■ You can write a JMX client application to automate regular maintenance tasks.

■ You can write a JMX client application that constitutes your own version of the
Command utility (imqcmd), and you can use it instead of imqcmd.

■ You can use the standard Java Monitoring and Management Console (jconsole)
that can provide access to the broker's MBeans.

For information on JMX infrastructure and configuring the broker's JMX support, see
JMX Support. To manage a Message Queue broker using the JMX architecture, see the
Open Message Queue Developer's Guide for JMX Clients.

Using the Java ES Monitoring Console
Message Queue supports the Sun Java System Monitoring Framework (JESMF), which
allows Java Enterprise System (Java ES) components to be monitored using a common
graphical interface, the Sun Java System Monitoring Console. Administrators can use
the Monitoring Console to view performance statistics, create rules for automatic

query svc -n serviceName
 [-b hostName:portNumber]

Information on the current number of allocated
threads and number of connections for a specified
connection service (see Viewing Connection Service
Information).

query dst -t destType -n destName
 [-b hostName:portNumber]

Information on the current number of producers,
active and backup consumers, and messages and
message bytes stored in memory and persistent store
for a specified destination (see Viewing Physical
Destination Information).

Note: Because of the limited metrics data provided by imqcmd
query , this tool is not represented in the tables presented in Metrics
Information Reference.

Table 13–5 (Cont.) imqcmd query Subcommand Syntax

Subcommand Syntax Metrics Data Provided

Using the Message-Based Monitoring API

Monitoring Broker Operations 13-13

monitoring, and acknowledge alarms. If you are running Message Queue along with
other Java ES components, you may find it more convenient to use a single interface to
manage all of them.

The Java ES Monitoring Framework defines a common data model, the Common
Monitoring Model (CMM), to be used by all Java ES component products. This model
enables a centralized and uniform view of all Java ES components. Message Queue
exposes the following objects through the Common Monitoring Model:

■ The installed product

■ The broker instance name

■ The broker Port Mapper

■ Each connection service

■ Each physical destination

■ The persistent data store

■ The user repository

Each of these objects is mapped to a CMM object whose attributes can be monitored
using the Java ES Monitoring Console. The reference tables in JES Monitoring
Framework Reference identify those attributes that are available for JESMF
monitoring. For detailed information about the mapping of Message Queue objects to
CMM objects, see the Sun Java Enterprise System Monitoring Guide.

To enable JESMF monitoring, you must do the following:

1. Enable and configure the Monitoring Framework for all of your monitored
components, as described in the Sun Java Enterprise System Monitoring Guide.

2. Install the Monitoring Console on a separate host, start the master agent, and then
start the Web server, as described in the Sun Java Enterprise System Monitoring
Guide.

Using the Java ES Monitoring Framework will not affect broker performance, because
all the work of gathering metrics is done by the Monitoring Framework, which pulls
data from the broker's existing data monitoring infrastructure.

For information on metric information provided by the Java ES Monitoring
Framework, see JES Monitoring Framework Reference.

Using the Message-Based Monitoring API
Message Queue provides a Metrics Message Producer, which receives information
from the Metrics Generator at regular intervals and writes the information into metrics
messages,. The Metrics Message Producer then sends these messages to one of a
number of metric topic destinations, depending on the type of metric information
contained in the messages.

You can access this metrics information by writing a client application that subscribes
to the metrics topic destinations, consumes the messages in these destinations, and
processes the metrics information contained in the messages. This allows you to create
custom monitoring tools to support messaging applications. For details of the metric
quantities reported in each type of metrics message, see "Using the Metrics Monitoring
API" in Open Message Queue Developer's Guide for Java Clients.

There are five metrics topic destinations, whose names are shown in Table 13–6, along
with the type of metrics messages delivered to each destination.

Using the Message-Based Monitoring API

13-14 Open Message Queue 4.5.2 Administration Guide

The broker properties imq.metrics.topic.enabled and imq.metrics.topic.interval
control, respectively, whether messages are sent to metric topic destinations and how
often. The imq.metrics.topic.timetolive and imq.metrics.topic.persist
properties specify the lifetime of such messages and whether they are persistent.

Besides the information contained in the body of a metrics message, the header of each
message includes properties that provide the following additional information:

■ The message type

■ The address (host name and port number) of the broker that sent the message

■ The time the metric sample was taken

These properties are useful to client applications that process metrics messages of
different types or from different brokers.

Setting Up Message-Based Monitoring
This section describes the procedure for using the message-based monitoring
capability to gather metrics information. The procedure includes both client
development and administration tasks.

To Set Up Message-based Monitoring
1. Write a metrics monitoring client.

See the Open Message Queue Developer's Guide for Java Clients for instructions on
programming clients that subscribe to metrics topic destinations, consume metrics
messages, and extract the metrics data from these messages.

2. Configure the broker's Metrics Message Producer by setting broker property
values in the config.properties file:

a. Enable metrics message production.

Set imq.metrics.topic.enabled=true

The default value is true.

b. Set the interval (in seconds) at which metrics messages are generated.

Set imq.metrics.topic.interval=interval .

The default is 60 seconds.

c. Specify whether you want metrics messages to be persistent (that is, whether
they will survive a broker failure).

Set imq.metrics.topic.persist .

The default is false.

Table 13–6 Metrics Topic Destinations

Topic Name Description

mq.metrics.broker Broker metrics

mq.metrics.jvm Java Virtual Machine metrics

mq.metrics.destination_list List of destinations and their types

mq.metrics.destination.queue.queueName Destination metrics for queue queueName

mq.metrics.destination.topic.topicName Destination metrics for topic topicName

Using the Message-Based Monitoring API

Monitoring Broker Operations 13-15

d. Specify how long you want metrics messages to remain in their respective
destinations before being deleted.

Set imq.metrics.topic.timetolive .

The default value is 300 seconds.

3. Set any access control you desire on metrics topic destinations.

See the discussion in Security and Access Considerations below.

4. Start up your metrics monitoring client.

When consumers subscribe to a metrics topic, the metrics topic destination will
automatically be created. Once a metrics topic has been created, the broker's
metrics message producer will begin sending metrics messages to the metrics
topic.

Security and Access Considerations
There are two reasons to restrict access to metrics topic destinations:

■ Metrics data might include sensitive information about a broker and its resources.

■ Excessive numbers of subscriptions to metrics topic destinations might increase
broker overhead and negatively affect performance.

Because of these considerations, it is advisable to restrict access to metrics topic
destinations.

Monitoring clients are subject to the same authentication and authorization control as
any other client. Only users maintained in the Message Queue user repository are
allowed to connect to the broker.

You can provide additional protections by restricting access to specific metrics topic
destinations through an access control file, as described in User Authorization.

For example, the following entries in an accesscontrol.properties file will deny
access to the mq.metrics.broker metrics topic to everyone except user1 and user 2.

topic.mq.metrics.broker.consume.deny.user=*
topic.mq.metrics.broker.consume.allow.user=user1,user2

The following entries will only allow users user3 to monitor topic t1.

topic.mq.metrics.destination.topic.t1.consume.deny.user=*
topic.mq.metrics.destination.topic.t1.consume.allow.user=user3

Depending on the sensitivity of metrics data, you can also connect your metrics
monitoring client to a broker using an encrypted connection. For information on using
encrypted connections, see Message Encryption.

Metrics Outputs: Metrics Messages
The metrics data outputs you get using the message-based monitoring API is a
function of the metrics monitoring client you write. You are limited only by the data
provided by the metrics generator in the broker. For a complete list of this data, see
Metrics Information Reference.

Using the Message-Based Monitoring API

13-16 Open Message Queue 4.5.2 Administration Guide

14

Analyzing and Tuning a Message Service 14-1

14Analyzing and Tuning a Message Service

This chapter covers a number of topics about how to analyze and tune a Message
Queue service to optimize the performance of your messaging applications. It includes
the following topics:

■ About Performance

■ Factors Affecting Performance

■ Adjusting Configuration To Improve Performance

About Performance
This section provides some background information on performance tuning.

The Performance Tuning Process
The performance you get out of a messaging application depends on the interaction
between the application and the Message Queue service. Hence, maximizing
performance requires the combined efforts of both the application developer and the
administrator.

The process of optimizing performance begins with application design and continues
on through tuning the message service after the application has been deployed. The
performance tuning process includes the following stages:

■ Defining performance requirements for the application

■ Designing the application taking into account factors that affect performance
(especially tradeoffs between reliability and performance)

■ Establishing baseline performance measures

■ Tuning or reconfiguring the message service to optimize performance

The process outlined above is often iterative. During deployment of the application, a
Message Queue administrator evaluates the suitability of the message service for the
application's general performance requirements. If the benchmark testing meets these
requirements, the administrator can tune the system as described in this chapter.
However, if benchmark testing does not meet performance requirements, a redesign of
the application might be necessary or the deployment architecture might need to be
modified.

Aspects of Performance
In general, performance is a measure of the speed and efficiency with which a message
service delivers messages from producer to consumer. However, there are several

About Performance

14-2 Open Message Queue 4.5.2 Administration Guide

different aspects of performance that might be important to you, depending on your
needs.

Connection Load
The number of message producers, or message consumers, or the number of
concurrent connections a system can support.

Message throughput
The number of messages or message bytes that can be pumped through a messaging
system per second.

Latency
The time it takes a particular message to be delivered from message producer to
message consumer.

Stability
The overall availability of the message service or how gracefully it degrades in cases of
heavy load or failure.

Efficiency
The efficiency of message delivery; a measure of message throughput in relation to the
computing resources employed.

These different aspects of performance are generally interrelated. If message
throughput is high, that means messages are less likely to be backlogged in the broker,
and as a result, latency should be low (a single message can be delivered very quickly).
However, latency can depend on many factors: the speed of communication links,
broker processing speed, and client processing speed, to name a few.

In any case, the aspects of performance that are most important to you generally
depends on the requirements of a particular application.

Benchmarks
Benchmarking is the process of creating a test suite for your messaging application
and of measuring message throughput or other aspects of performance for this test
suite.

For example, you could create a test suite by which some number of producing clients,
using some number of connections, sessions, and message producers, send persistent
or nonpersistent messages of a standard size to some number of queues or topics (all
depending on your messaging application design) at some specified rate. Similarly, the
test suite includes some number of consuming clients, using some number of
connections, sessions, and message consumers (of a particular type) that consume the
messages in the test suite's physical destinations using a particular acknowledgment
mode.

Using your standard test suite you can measure the time it takes between production
and consumption of messages or the average message throughput rate, and you can
monitor the system to observe connection thread usage, message storage data,
message flow data, and other relevant metrics. You can then ramp up the rate of
message production, or the number of message producers, or other variables, until
performance is negatively affected. The maximum throughput you can achieve is a
benchmark for your message service configuration.

Using this benchmark, you can modify some of the characteristics of your test suite. By
carefully controlling all the factors that might have an effect on performance (see
Application Design Factors Affecting Performance), you can note how changing some
of these factors affects the benchmark. For example, you can increase the number of

About Performance

Analyzing and Tuning a Message Service 14-3

connections or the size of messages five-fold or ten-fold, and note the effect on
performance.

Conversely, you can keep application-based factors constant and change your broker
configuration in some controlled way (for example, change connection properties,
thread pool properties, JVM memory limits, limit behaviors, file-based versus
JDBC-based persistence, and so forth) and note how these changes affect performance.

This benchmarking of your application provides information that can be valuable
when you want to increase the performance of a deployed application by tuning your
message service. A benchmark allows the effect of a change or a set of changes to be
more accurately predicted.

As a general rule, benchmarks should be run in a controlled test environment and for a
long enough period of time for your message service to stabilize. (Performance is
negatively affected at startup by the just-in-time compilation that turns Java code into
machine code.)

Baseline Use Patterns
Once a messaging application is deployed and running, it is important to establish
baseline use patterns. You want to know when peak demand occurs and you want to
be able to quantify that demand. For example, demand normally fluctuates by number
of end users, activity levels, time of day, or all of these.

To establish baseline use patterns you need to monitor your message service over an
extended period of time, looking at data such as the following:

■ Number of connections

■ Number of messages stored in the broker (or in particular physical destinations)

■ Message flows into and out of a broker (or particular physical destinations)

■ Numbers of active consumers

You can also use average and peak values provided in metrics data.

It is important to check these baseline metrics against design expectations. By doing
so, you are checking that client code is behaving properly: for example, that
connections are not being left open or that consumed messages are not being left
unacknowledged. These coding errors consume broker resources and could
significantly affect performance.

The base-line use patterns help you determine how to tune your system for optimal
performance. For example:

■ If one physical destination is used significantly more than others, you might want
to set higher message memory limits on that physical destination than on others,
or to adjust limit behaviors accordingly.

■ If the number of connections needed is significantly greater than allowed by the
maximum thread pool size, you might want to increase the thread pool size or
adopt a shared thread model.

■ If peak message flows are substantially greater than average flows, that might
influence the limit behaviors you employ when memory runs low.

In general, the more you know about use patterns, the better you are able to tune your
system to those patterns and to plan for future needs.

Factors Affecting Performance

14-4 Open Message Queue 4.5.2 Administration Guide

Factors Affecting Performance
Message latency and message throughput, two of the main performance indicators,
generally depend on the time it takes a typical message to complete various steps in
the message delivery process. These steps are shown below for the case of a persistent,
reliably delivered message. The steps are described following the illustration.

Figure 14–1 Message Delivery Through a Message Queue Service

Message Delivery Steps
1. The message is delivered from producing client to broker.

2. The broker reads in the message.

3. The message is placed in persistent storage (for reliability).

4. The broker confirms receipt of the message (for reliability).

5. The broker determines the routing for the message.

6. The broker writes out the message.

7. The message is delivered from broker to consuming client.

8. The consuming client acknowledges receipt of the message (for reliability).

9. The broker processes client acknowledgment (for reliability).

10. The broker confirms that client acknowledgment has been processed.

Since these steps are sequential, any one of them can be a potential bottleneck in the
delivery of messages from producing clients to consuming clients. Most of the steps

Consuming
Client

Client
Runtime

Producing
Client

Client
Runtime

Broker

MyQDest

1

10

2

3

4

5

79

Data
Store

8

Payload messages

Control messages

6

Factors Affecting Performance

Analyzing and Tuning a Message Service 14-5

depend on physical characteristics of the messaging system: network bandwidth,
computer processing speeds, message service architecture, and so forth. Some,
however, also depend on characteristics of the messaging application and the level of
reliability it requires.

The following subsections discuss the effect of both application design factors and
messaging system factors on performance. While application design and messaging
system factors closely interact in the delivery of messages, each category is considered
separately.

Application Design Factors Affecting Performance
Application design decisions can have a significant effect on overall messaging
performance.

The most important factors affecting performance are those that affect the reliability of
message delivery. Among these are the following:

■ Delivery Mode (Persistent/Nonpersistent Messages)

■ Use of Transactions

■ Acknowledgment Mode

■ Durable and Nondurable Subscriptions

Other application design factors affecting performance are the following:

■ Use of Selectors (Message Filtering)

■ Message Size

■ Message Body Type

The sections that follow describe the effect of each of these factors on messaging
performance. As a general rule, there is a tradeoff between performance and reliability:
factors that increase reliability tend to decrease performance.

Table 14–1 shows how the various application design factors generally affect
messaging performance. The table shows two scenarios—one high-reliability,
low-performance, and one high-performance, low-reliability—and the choices of
application design factors that characterize each. Between these extremes, there are
many choices and tradeoffs that affect both reliability and performance.

Table 14–1 Comparison of High-Reliability and High-Performance Scenarios

Application Design Factor
High-Reliability,
Low-Performance Scenario

High-Performance,
Low-Reliability Scenario

Delivery mode Persistent messages Nonpersistent messages

Use of transactions Transacted sessions No transactions

Acknowledgment mode AUTO_ACKNOWLEDGE or CLIENT_
ACKNOWLEDGE

DUPS_OK_ACKNOWLEDGE

Durable/nondurable subscriptions Durable subscriptions Nondurable subscriptions

Use of selectors Message filtering No message filtering

Message size Large number of small messages Small number of large messages

Message body type Complex body types Simple body types

Factors Affecting Performance

14-6 Open Message Queue 4.5.2 Administration Guide

Delivery Mode (Persistent/Nonpersistent Messages)
Persistent messages guarantee message delivery in case of broker failure. The broker
stores the message in a persistent store until all intended consumers acknowledge they
have consumed the message.

Broker processing of persistent messages is slower than for nonpersistent messages for
the following reasons:

■ A broker must reliably store a persistent message so that it will not be lost should
the broker fail.

■ The broker must confirm receipt of each persistent message it receives. Delivery to
the broker is guaranteed once the method producing the message returns without
an exception.

■ Depending on the client acknowledgment mode, the broker might need to confirm
a consuming client's acknowledgment of a persistent message.

For both queues and topics with durable subscribers, performance was approximately
40% faster for nonpersistent messages. We obtained these results using 10k-sized
messages and AUTO_ACKNOWLEDGE mode.

Use of Transactions
A transaction is a guarantee that all messages produced in a transacted session and all
messages consumed in a transacted session will be either processed or not processed
(rolled back) as a unit.

Message Queue supports both local and distributed transactions.

A message produced or acknowledged in a transacted session is slower than in a
nontransacted session for the following reasons:

■ Additional information must be stored with each produced message.

■ In some situations, messages in a transaction are stored when normally they
would not be (for example, a persistent message delivered to a topic destination
with no subscriptions would normally be deleted, however, at the time the
transaction is begun, information about subscriptions is not available).

■ Information on the consumption and acknowledgment of messages within a
transaction must be stored and processed when the transaction is committed.

Acknowledgment Mode
One mechanism for ensuring the reliability of JMS message delivery is for a client to
acknowledge consumption of messages delivered to it by the Message Queue broker.

If a session is closed without the client acknowledging the message or if the broker
fails before the acknowledgment is processed, the broker redelivers that message,
setting a JMSRedelivered flag.

Note: To improve performance, Message Queue message brokers
are configured by default to use a memory-mapped file to store
transaction data. On file systems that do not support
memory-mapped files, you can disable this behavior by setting the
broker property
imq.persist.file.transaction.memorymappedfile.enabled to
false.

Factors Affecting Performance

Analyzing and Tuning a Message Service 14-7

For a nontransacted session, the client can choose one of three acknowledgment
modes, each of which has its own performance characteristics:

■ AUTO_ACKNOWLEDGE. The system automatically acknowledges a message once the
consumer has processed it. This mode guarantees at most one redelivered message
after a provider failure.

■ CLIENT_ACKNOWLEDGE. The application controls the point at which messages are
acknowledged. All messages processed in that session since the previous
acknowledgment are acknowledged. If the broker fails while processing a set of
acknowledgments, one or more messages in that group might be redelivered.

■ DUPS_OK_ACKNOWLEDGE. This mode instructs the system to acknowledge messages
in a lazy manner. Multiple messages can be redelivered after a provider failure.

(Using CLIENT_ACKNOWLEDGE mode is similar to using transactions, except there is no
guarantee that all acknowledgments will be processed together if a provider fails
during processing.)

Acknowledgment mode affects performance for the following reasons:

■ Extra control messages between broker and client are required in AUTO_
ACKNOWLEDGE and CLIENT_ACKNOWLEDGE modes. The additional control messages
add additional processing overhead and can interfere with JMS payload messages,
causing processing delays.

■ In AUTO_ACKNOWLEDGE and CLIENT_ACKNOWLEDGE modes, the client must wait until
the broker confirms that it has processed the client's acknowledgment before the
client can consume additional messages. (This broker confirmation guarantees that
the broker will not inadvertently redeliver these messages.)

■ The Message Queue persistent store must be updated with the acknowledgment
information for all persistent messages received by consumers, thereby decreasing
performance.

Durable and Nondurable Subscriptions
Subscribers to a topic destination fall into two categories, those with durable and
nondurable subscriptions.

Durable subscriptions provide increased reliability but slower throughput, for the
following reasons:

■ The Message Queue message service must persistently store the list of messages
assigned to each durable subscription so that should a broker fail, the list is
available after recovery.

■ Persistent messages for durable subscriptions are stored persistently, so that
should a broker fail, the messages can still be delivered after recovery, when the
corresponding consumer becomes active. By contrast, persistent messages for
nondurable subscriptions are not stored persistently (should a broker fail, the
corresponding consumer connection is lost and the message would never be
delivered).

We compared performance for durable and nondurable subscribers in two cases:
persistent and nonpersistent 10k-sized messages. Both cases use AUTO_ACKNOWLEDGE
acknowledgment mode. We found an effect on performance only in the case of
persistent messages which slowed durables by about 30%

Factors Affecting Performance

14-8 Open Message Queue 4.5.2 Administration Guide

Use of Selectors (Message Filtering)
Application developers often want to target sets of messages to particular consumers.
They can do so either by targeting each set of messages to a unique physical
destination or by using a single physical destination and registering one or more
selectors for each consumer.

A selector is a string requesting that only messages with property values that match
the string are delivered to a particular consumer. For example, the selector
NumberOfOrders>1 delivers only the messages with a NumberOfOrders property value
of 2 or more.

Creating consumers with selectors lowers performance (as compared to using multiple
physical destinations) because additional processing is required to handle each
message. When a selector is used, it must be parsed so that it can be matched against
future messages. Additionally, the message properties of each message must be
retrieved and compared against the selector as each message is routed. However,
using selectors provides more flexibility in a messaging application.

Message Size
Message size affects performance because more data must be passed from producing
client to broker and from broker to consuming client, and because for persistent
messages a larger message must be stored.

However, by batching smaller messages into a single message, the routing and
processing of individual messages can be minimized, providing an overall
performance gain. In this case, information about the state of individual messages is
lost.

In our tests, which compared throughput in kilobytes per second for 1k, 10k, and
100k-sized messages to a queue destination and AUTO_ACKNOWLEDGE acknowledgment
mode, we found that nonpersistent messaging was about 50% faster for 1k messages,
about 20% faster for 10k messages, and about 5% faster for 100k messages. The size of
the message affected performance significantly for both persistent and nonpersistent
messages. 100k messages are about 10 times faster than 10k, and 10k are about 5 times
faster than 1k.

Message Body Type
JMS supports five message body types, shown below roughly in the order of
complexity:

■ BytesMessage contains a set of bytes in a format determined by the application.

■ TextMessage is a simple Java string.

■ StreamMessage contains a stream of Java primitive values.

■ MapMessage contains a set of name-value pairs.

■ ObjectMessage contains a Java serialized object.

While, in general, the message type is dictated by the needs of an application, the more
complicated types (MapMessage and ObjectMessage) carry a performance cost: the
expense of serializing and deserializing the data. The performance cost depends on
how simple or how complicated the data is.

Message Service Factors Affecting Performance
The performance of a messaging application is affected not only by application design,
but also by the message service performing the routing and delivery of messages.

Factors Affecting Performance

Analyzing and Tuning a Message Service 14-9

The following sections discuss various message service factors that can affect
performance. Understanding the effect of these factors is key to sizing a message
service and diagnosing and resolving performance bottlenecks that might arise in a
deployed application.

The most important factors affecting performance in a Message Queue service are the
following:

■ Hardware

■ Operating System

■ Java Virtual Machine (JVM)

■ Connections

■ Broker Limits and Behaviors

■ Message Service Architecture

■ Data Store Performance

■ Client Runtime Configuration

The sections below describe the effect of each of these factors on messaging
performance.

Hardware
For both the Message Queue broker and client applications, CPU processing speed and
available memory are primary determinants of message service performance. Many
software limitations can be eliminated by increasing processing power, while adding
memory can increase both processing speed and capacity. However, it is generally
expensive to overcome bottlenecks simply by upgrading your hardware.

Operating System
Because of the efficiencies of different operating systems, performance can vary, even
assuming the same hardware platform. For example, the thread model employed by
the operating system can have an important effect on the number of concurrent
connections a broker can support. In general, all hardware being equal, Solaris is
generally faster than Linux, which is generally faster than Windows.

Java Virtual Machine (JVM)
The broker is a Java process that runs in and is supported by the host JVM. As a result,
JVM processing is an important determinant of how fast and efficiently a broker can
route and deliver messages.

In particular, the JVM's management of memory resources can be critical. Sufficient
memory has to be allocated to the JVM to accommodate increasing memory loads. In
addition, the JVM periodically reclaims unused memory, and this memory reclamation
can delay message processing. The larger the JVM memory heap, the longer the
potential delay that might be experienced during memory reclamation.

Connections
The number and speed of connections between client and broker can affect the number
of messages that a message service can handle as well as the speed of message
delivery.

Factors Affecting Performance

14-10 Open Message Queue 4.5.2 Administration Guide

Broker Connection Limits All access to the broker is by way of connections. Any limit on
the number of concurrent connections can affect the number of producing or
consuming clients that can concurrently use the broker.

The number of connections to a broker is generally limited by the number of threads
available. Message Queue can be configured to support either a dedicated thread
model or a shared thread model (see Thread Pool Management).

The dedicated thread model is very fast because each connection has dedicated
threads, however the number of connections is limited by the number of threads
available (one input thread and one output thread for each connection). The shared
thread model places no limit on the number of connections, however there is
significant overhead and throughput delays in sharing threads among a number of
connections, especially when those connections are busy.

Transport Protocols Message Queue software allows clients to communicate with the
broker using various low-level transport protocols. Message Queue supports the
connection services (and corresponding protocols) described in Configuring
Connection Services.

The choice of protocols is based on application requirements (encrypted, accessible
through a firewall), but the choice affects overall performance.

Figure 14–2 Transport Protocol Speeds

Our tests compared throughput for TCP and SSL for two cases: a high-reliability
scenario (1k persistent messages sent to topic destinations with durable subscriptions
and using AUTO_ACKNOWLEDGE acknowledgment mode) and a high-performance
scenario (1k nonpersistent messages sent to topic destinations without durable
subscriptions and using DUPS_OK_ACKNOWLEDGE acknowledgment mode).

In general we found that protocol has less effect in the high-reliability case. This is
probably because the persistence overhead required in the high-reliability case is a
more important factor in limiting throughput than the protocol speed. Additionally:

■ TCP provides the fastest method to communicate with the broker.

■ SSL is 50 to 70 percent slower than TCP when it comes to sending and receiving
messages (50 percent for persistent messages, closer to 70 percent for nonpersistent
messages). Additionally, establishing the initial connection is slower with SSL (it
might take several seconds) because the client and broker (or Web Server in the
case of HTTPS) need to establish a private key to be used when encrypting the
data for transmission. The performance drop is caused by the additional
processing required to encrypt and decrypt each low-level TCP packet.

■ HTTP is slower than either the TCP or SSL. It uses a servlet that runs on a Web
server as a proxy between the client and the broker. Performance overhead is
involved in encapsulating packets in HTTP requests and in the requirement that
messages go through two hops--client to servlet, servlet to broker--to reach the
broker.

■ HTTPS is slower than HTTP because of the additional overhead required to
encrypt the packet between client and servlet and between servlet and broker.

HTTPS

SLOW

HTTP SSL TCP

FAST

Factors Affecting Performance

Analyzing and Tuning a Message Service 14-11

Message Service Architecture
A Message Queue message service can be implemented as a single broker or as a
cluster consisting of multiple interconnected broker instances.

As the number of clients connected to a broker increases, and as the number of
messages being delivered increases, a broker will eventually exceed resource
limitations such as file descriptor, thread, and memory limits. One way to
accommodate increasing loads is to add more broker instances to a Message Queue
message service, distributing client connections and message routing and delivery
across multiple brokers.

In general, this scaling works best if clients are evenly distributed across the cluster,
especially message producing clients. Because of the overhead involved in delivering
messages between the brokers in a cluster, clusters with limited numbers of
connections or limited message delivery rates, might exhibit lower performance than a
single broker.

You might also use a broker cluster to optimize network bandwidth. For example, you
might want to use slower, long distance network links between a set of remote brokers
within a cluster, while using higher speed links for connecting clients to their
respective broker instances.

For more information on clusters, see Configuring and Managing Broker Clusters

Broker Limits and Behaviors
The message throughput that a broker might be required to handle is a function of the
use patterns of the messaging applications the broker supports. However, the broker is
limited in resources: memory, CPU cycles, and so forth. As a result, it would be
possible for a broker to become overwhelmed to the point where it becomes
unresponsive or unstable.

The Message Queue message broker has mechanisms built in for managing memory
resources and preventing the broker from running out of memory. These mechanisms
include configurable limits on the number of messages or message bytes that can be
held by a broker or its individual physical destinations, and a set of behaviors that can
be instituted when physical destination limits are reached.

With careful monitoring and tuning, these configurable mechanisms can be used to
balance the inflow and outflow of messages so that system overload cannot occur.
While these mechanisms consume overhead and can limit message throughput, they
nevertheless maintain operational integrity.

Data Store Performance
Message Queue supports both file-based and JDBC-based persistence modules.
File-based persistence uses individual files to store persistent data. JDBC-based
persistence uses a Java Database Connectivity (JDBC) interface and requires a
JDBC-compliant data store. File-based persistence is generally faster than JDBC-based;
however, some users prefer the redundancy and administrative control provided by a
JDBC-compliant store.

In the case of file-based persistence, you can maximize reliability by specifying that
persistence operations synchronize the in-memory state with the data store. This helps
eliminate data loss due to system crashes, but at the expense of performance.

Client Runtime Configuration
The Message Queue client runtime provides client applications with an interface to the
Message Queue message service. It supports all the operations needed for clients to

Adjusting Configuration To Improve Performance

14-12 Open Message Queue 4.5.2 Administration Guide

send messages to physical destinations and to receive messages from such
destinations. The client runtime is configurable (by setting connection factory attribute
values), allowing you to control aspects of its behavior, such as connection flow
metering, consumer flow limits, and connection flow limits, that can improve
performance and message throughput. See Client Runtime Message Flow Adjustments
for more information on these features and the attributes used to configure them.

Adjusting Configuration To Improve Performance
The following sections explain how configuration adjustments can affect performance.

System Adjustments
The following sections describe adjustments you can make to the operating system,
JVM, communication protocols, and persistent data store.

Solaris Tuning: CPU Utilization, Paging/Swapping/Disk I/O
See your system documentation for tuning your operating system.

Java Virtual Machine Adjustments
By default, the broker uses a JVM heap size of 192MB. This is often too small for
significant message loads and should be increased.

When the broker gets close to exhausting the JVM heap space used by Java objects, it
uses various techniques such as flow control and message swapping to free memory.
Under extreme circumstances it even closes client connections in order to free the
memory and reduce the message inflow. Hence it is desirable to set the maximum JVM
heap space high enough to avoid such circumstances.

However, if the maximum Java heap space is set too high, in relation to system
physical memory, the broker can continue to grow the Java heap space until the entire
system runs out of memory. This can result in diminished performance, unpredictable
broker crashes, and/or affect the behavior of other applications and services running
on the system. In general, you need to allow enough physical memory for the
operating system and other applications to run on the machine.

In general it is a good idea to evaluate the normal and peak system memory footprints,
and configure the Java heap size so that it is large enough to provide good
performance, but not so large as to risk system memory problems.

To change the minimum and maximum heap size for the broker, use the -vmargs
command line option when starting the broker. For example:

/usr/bin/imqbrokerd -vmargs "-Xms256m -Xmx1024m"

This command will set the starting Java heap size to 256MB and the maximum Java
heap size to 1GB.

■ On Solaris or Linux, if starting the broker via /etc/rc* (that is, /etc/init.d/imq),
specify broker command line arguments in the file /etc/imq/imqbrokerd.conf
(Solaris) or /etc/opt/sun/mq/imqbrokerd.conf (Linux). See the comments in that
file for more information.

■ On Windows, if starting the broker as a Window's service, specify JVM arguments
using the -vmargs option to the imqsvcadmin install command. See Service
Administrator Utility.

Adjusting Configuration To Improve Performance

Analyzing and Tuning a Message Service 14-13

In any case, verify settings by checking the broker's log file or using the imqcmd
metrics bkr -m cxn command.

Tuning Transport Protocols
Once a protocol that meets application needs has been chosen, additional tuning
(based on the selected protocol) might improve performance.

A protocol's performance can be modified using the following three broker properties:

■ imq.protocol.protocolType.nodelay

■ imq.protocol.protocolType.inbufsz

■ imq.protocol.protocolType.outbufsz

For TCP and SSL protocols, these properties affect the speed of message delivery
between client and broker. For HTTP and HTTPS protocols, these properties affect the
speed of message delivery between the Message Queue tunnel servlet (running on a
Web server) and the broker. For HTTP/ HTTPS protocols there are additional
properties that can affect performance (see HTTP/HTTPS Tuning).

The protocol tuning properties are described in the following sections.

nodelay The nodelay property affects Nagle's algorithm (the value of the TCP_NODELAY
socket-level option on TCP/IP) for the given protocol. Nagle's algorithm is used to
improve TCP performance on systems using slow connections such as wide-area
networks (WANs).

When the algorithm is used, TCP tries to prevent several small chunks of data from
being sent to the remote system (by bundling the data in larger packets). If the data
written to the socket does not fill the required buffer size, the protocol delays sending
the packet until either the buffer is filled or a specific delay time has elapsed. Once the
buffer is full or the timeout has occurred, the packet is sent.

For most messaging applications, performance is best if there is no delay in the
sending of packets (Nagle's algorithm is not enabled). This is because most
interactions between client and broker are request/response interactions: the client
sends a packet of data to the broker and waits for a response. For example, typical
interactions include:

■ Creating a connection

■ Creating a producer or consumer

■ Sending a persistent message (the broker confirms receipt of the message)

■ Sending a client acknowledgment in an AUTO_ACKNOWLEDGE or CLIENT_
ACKNOWLEDGE session (the broker confirms processing of the acknowledgment)

For these interactions, most packets are smaller than the buffer size. This means that if
Nagle's algorithm is used, the broker delays several milliseconds before sending a
response to the consumer.

However, Nagle's algorithm may improve performance in situations where
connections are slow and broker responses are not required. This would be the case
where a client sends a nonpersistent message or where a client acknowledgment is not
confirmed by the broker (DUPS_OK_ACKNOWLEDGE session).

inbufsz/outbufsz The inbufsz property sets the size of the buffer on the input stream
reading data coming in from a socket. Similarly, outbufsz sets the buffer size of the
output stream used by the broker to write data to the socket.

Adjusting Configuration To Improve Performance

14-14 Open Message Queue 4.5.2 Administration Guide

In general, both parameters should be set to values that are slightly larger than the
average packet being received or sent. A good rule of thumb is to set these property
values to the size of the average packet plus 1 kilobyte (rounded to the nearest
kilobyte). For example, if the broker is receiving packets with a body size of 1 kilobyte,
the overall size of the packet (message body plus header plus properties) is about 1200
bytes; an inbufsz of 2 kilobytes (2048 bytes) gives reasonable performance. Increasing
inbufsz or outbufsz greater than that size may improve performance slightly, but
increases the memory needed for each connection.

HTTP/HTTPS Tuning In addition to the general properties discussed in the previous two
sections, HTTP/HTTPS performance is limited by how fast a client can make HTTP
requests to the Web server hosting the Message Queue tunnel servlet.

A Web server might need to be optimized to handle multiple requests on a single
socket. With JDK version 1.4 and later, HTTP connections to a Web server are kept
alive (the socket to the Web server remains open) to minimize resources used by the
Web server when it processes multiple HTTP requests. If the performance of a client
application using JDK version 1.4 is slower than the same application running with an
earlier JDK release, you might need to tune the Web server keep-alive configuration
parameters to improve performance.

In addition to such Web server tuning, you can also adjust how often a client polls the
Web server. HTTP is a request-based protocol. This means that clients using an
HTTP-based protocol periodically need to check the Web server to see if messages are
waiting. The imq.httpjms.http.pullPeriod broker property (and the corresponding
imq.httpsjms.https.pullPeriod property) specifies how often the Message Queue
client runtime polls the Web server.

If the pullPeriod value is -1 (the default value), the client runtime polls the server as
soon as the previous request returns, maximizing the performance of the individual
client. As a result, each client connection monopolizes a request thread in the Web
server, possibly straining Web server resources.

If the pullPeriod value is a positive number, the client runtime periodically sends
requests to the Web server to see if there is pending data. In this case, the client does
not monopolize a request thread in the Web server. Hence, if large numbers of clients
are using the Web server, you might conserve Web server resources by setting the
pullPeriod to a positive value.

Tuning the File-based Persistent Store
For information on tuning the file-based persistent store, see Configuring a File-Based
Data Store.

Broker Memory Management Adjustments
You can improve performance and increase broker stability under load by properly
managing broker memory. Memory management can be configured on a
destination-by-destination basis or on a system-wide level (for all destinations,
collectively).

Using Physical Destination Limits
To configure physical destination limits, see the properties described in Physical
Destination Properties.

Adjusting Configuration To Improve Performance

Analyzing and Tuning a Message Service 14-15

Using System-Wide Limits
If message producers tend to overrun message consumers, messages can accumulate
in the broker. The broker contains a mechanism for throttling back producers and
swapping messages out of active memory under low memory conditions, but it is wise
to set a hard limit on the total number of messages (and message bytes) that the broker
can hold.

Control these limits by setting the imq.system.max_count and the imq.system.max_
size broker properties.

For example:

imq.system.max_count=5000

The defined value above means that the broker will only hold up to 5000 undelivered
and/or unacknowledged messages. If additional messages are sent, they are rejected
by the broker. If a message is persistent then the clinet runtime will throw an exception
when the producer tries to send the message. If the message is non-persistent, the
broker silently drops the message.

When an exception is thrown in sending a message, the client should process the
exception by pausing for a moment and retrying the send again. (Note that the
exception will never be due to the broker's failure to receive a message; the exception
is thrown by the client runtime before the message is sent to the broker.)

Client Runtime Message Flow Adjustments
This section discusses client runtimeflow control behaviors that affect performance.
These behaviors are configured as attributes of connection factory administered
objects. For information on setting connection factory attributes, see Managing
Administered Objects.

Message Flow Metering
Messages sent and received by clients (payload messages), as well as Message Queue
control messages, pass over the same client-broker connection. Delays in the delivery
of control messages, such as broker acknowledgments, can result if control messages
are held up by the delivery of payload messages. To prevent this type of congestion,
Message Queue meters the flow of payload messages across a connection.

Payload messages are batched (as specified with the connection factory attribute
imqConnectionFlowCount) so that only a set number are delivered. After the batch has
been delivered, delivery of payload messages is suspended and only pending control
messages are delivered. This cycle repeats, as additional batches of payload messages
are delivered followed by pending control messages.

The value of imqConnectionFlowCount should be kept low if the client is doing
operations that require many responses from the broker: for example, if the client is
using CLIENT_ACKNOWLEDGE or AUTO_ACKNOWLEDGE mode, persistent messages,
transactions, or queue browsers, or is adding or removing consumers. If, on the other
hand, the client has only simple consumers on a connection using DUPS_OK_
ACKNOWLEDGE mode, you can increase imqConnectionFlowCount without compromising
performance.

Message Flow Limits
There is a limit to the number of payload messages that the Message Queue client
runtime can handle before encountering local resource limitations, such as memory.
When this limit is approached, performance suffers. Hence, Message Queue lets you

Adjusting Configuration To Improve Performance

14-16 Open Message Queue 4.5.2 Administration Guide

limit the number of messages per consumer (or messages per connection) that can be
delivered over a connection and buffered in the client runtime, waiting to be
consumed.

Consumer Flow Limits When the number of payload messages delivered to the client
runtime exceeds the value of imqConsumerFlowLimit for any consumer, message
delivery for that consumer stops. It is resumed only when the number of unconsumed
messages for that consumer drops below the value set with
imqConsumerFlowThreshold.

The following example illustrates the use of these limits: consider the default settings
for topic consumers:

imqConsumerFlowLimit=1000
imqConsumerFlowThreshold=50

When the consumer is created, the broker delivers an initial batch of 1000 messages
(providing they exist) to this consumer without pausing. After sending 1000 messages,
the broker stops delivery until the client runtime asks for more messages. The client
runtime holds these messages until the application processes them. The client runtime
then allows the application to consume at least 50% (imqConsumerFlowThreshold) of
the message buffer capacity (i.e. 500 messages) before asking the broker to send the
next batch.

In the same situation, if the threshold were 10%, the client runtime would wait for the
application to consume at least 900 messages before asking for the next batch.

The next batch size is calculated as follows:

imqConsumerFlowLimit - (current number of pending msgs in buffer)

So if imqConsumerFlowThreshold is 50%, the next batch size can fluctuate between 500
and 1000, depending on how fast the application can process the messages.

If the imqConsumerFlowThreshold is set too high (close to 100%), the broker will tend
to send smaller batches, which can lower message throughput. If the value is set too
low (close to 0%), the client may be able to finish processing the remaining buffered
messages before the broker delivers the next set, again degrading message throughput.
Generally speaking, unless you have specific performance or reliability concerns, you
will not need to change the default value of imqConsumerFlowThreshold attribute.

The consumer-based flow controls (in particular, imqConsumerFlowLimit) are the best
way to manage memory in the client runtime. Generally, depending on the client
application, you know the number of consumers you need to support on any
connection, the size of the messages, and the total amount of memory that is available
to the client runtime.

Note: Setting the imqConsumerFlowLimitPrefetch property to
false disables the prefetching and buffering specified by
imqConsumerFlowLimit and imqConsumerFlowThreshold, in which
case messages are delivered to consumers one at a time and a new
message is not sent to a consumer until it consumes the message it
has. This delivery constraint, which can degrade message
throughput, is for use when business logic demands that each
consumer have only one message at a time.

Adjusting Configuration To Improve Performance

Analyzing and Tuning a Message Service 14-17

When the JMS resource adapter, jmsra, is used to consume messages in a GlassFish
Server cluster, this behavior is defined using different properties, as described in
About Shared Topic Subscriptions for Clustered Containers.

Connection Flow Limits In the case of some client applications, however, the number of
consumers may be indeterminate, depending on choices made by end users. In those
cases, you can still manage memory using connection-level flow limits.

Connection-level flow controls limit the total number of messages buffered for all
consumers on a connection. If this number exceeds the value of
imqConnectionFlowLimit, delivery of messages through the connection stops until
that total drops below the connection limit. (The imqConnectionFlowLimit attribute is
enabled only if you set imqConnectionFlowLimitEnabled to true.)

The number of messages queued up in a session is a function of the number of
message consumers using the session and the message load for each consumer. If a
client is exhibiting delays in producing or consuming messages, you can normally
improve performance by redesigning the application to distribute message producers
and consumers among a larger number of sessions or to distribute sessions among a
larger number of connections.

Adjusting Multiple-Consumer Queue Delivery
The efficiency with which multiple queue consumers process messages in a queue
destination depends on a number of factors. To achieve optimal message throughput
there must be a sufficient number of consumers to keep up with the rate of message
production for the queue, and the messages in the queue must be routed and then
delivered to the active consumers in such a way as to maximize their rate of
consumption.

The message delivery mechanism for multiple-consumer queues is that messages are
delivered to consumers in batches as each consumer is ready to receive a new batch.
The readiness of a consumer to receive a batch of messages depends upon
configurable client runtime properties, such as imqConsumerFlowLimit and
imqConsumerFlowThreshold, as described in Message Flow Limits. As new consumers
are added to a queue, they are sent a batch of messages to consume, and receive
subsequent batches as they become ready.

If messages are accumulating in the queue, it is possible that there is an insufficient
number of consumers to handle the message load. It is also possible that messages are
being delivered to consumers in batch sizes that cause messages to be backing up on
the consumers. For example, if the batch size (consumerFlowLimit) is too large, one
consumer might receive all the messages in a queue while other consumers receive
none. If consumers are very fast, this might not be a problem. However, if consumers
are relatively slow, you want messages to be distributed to them evenly, and therefore
you want the batch size to be small. Although smaller batch sizes require more
overhead to deliver messages to consumers, for slow consumers there is generally a
net performance gain in using small batch sizes. The value of consumerFlowLimit can
be set on a destination as well as on the client runtime: the smaller value overrides the
larger one.

Note: The message delivery mechanism for multiple-consumer
queues described above can result in messages being consumed in
an order different from the order in which they are produced.

Adjusting Configuration To Improve Performance

14-18 Open Message Queue 4.5.2 Administration Guide

15

Troubleshooting 15-1

15Troubleshooting

This chapter explains how to understand and resolve the following problems:

■ A Client Cannot Establish a Connection

■ Connection Throughput Is Too Slow

■ A Client Cannot Create a Message Producer

■ Message Production Is Delayed or Slowed

■ Messages Are Backlogged

■ Broker Throughput Is Sporadic

■ Messages Are Not Reaching Consumers

■ Dead Message Queue Contains Messages

When problems occur, it is useful to check the version number of the installed Message
Queue software. Use the version number to ensure that you are using documentation
whose version matches the software version. You also need the version number to
report a problem to Oracle. To check the version number, issue the following
command:

imqcmd -v

A Client Cannot Establish a Connection
Symptoms:

■ Client cannot make a new connection.

■ Client cannot auto-reconnect on failed connection.

Possible causes:

■ Client applications are not closing connections, causing the number of connections
to exceed resource limitations.

■ Broker is not running or there is a network connectivity problem.

■ Connection service is inactive or paused.

■ Too few threads available for the number of connections required.

■ Too few file descriptors for the number of connections required on the Solaris or
Linux platform.

■ TCP backlog limits the number of simultaneous new connection requests that can
be established.

A Client Cannot Establish a Connection

15-2 Open Message Queue 4.5.2 Administration Guide

■ Operating system limits the number of concurrent connections..

■ Authentication or authorization of the user is failing.

Client applications are not closing connections, causing the number of
connections to exceed resource limitations.
To confirm this cause of the problem: List all connections to a broker:

imqcmd list cxn

The output will list all connections and the host from which each connection has been
made, revealing an unusual number of open connections for specific clients.

To resolve the problem: Rewrite the offending clients to close unused connections.

Broker is not running or there is a network connectivity problem.
To confirm this cause of the problem:

■ Telnet to the broker's primary port (for example, the default of 7676) and verify
that the broker responds with Port Mapper output.

■ Verify that the broker process is running on the host.

To resolve the problem:

■ Start up the broker.

■ Fix the network connectivity problem.

Connection service is inactive or paused.
To confirm this cause of the problem: Check the status of all connection services:

imqcmd list svc

If the status of a connection service is shown as unknown or paused, clients will not be
able to establish a connection using that service.

To resolve the problem:

■ If the status of a connection service is shown as unknown , it is missing from the
active service list (imq.service.active). In the case of SSL-based services, the
service might also be improperly configured, causing the broker to make the
following entry in the broker log:

ERROR [B3009]: Unable to start service ssljms:[B4001]: Unable to open
protocol tls for ssljms service...

followed by an explanation of the underlying cause of the exception.

To properly configure SSL services, see Message Encryption.

■ If the status of a connection service is shown as paused, resume the service (see
Pausing and Resuming a Connection Service).

Too few threads available for the number of connections required.
To confirm this cause of the problem: Check for the following entry in the broker log:

WARNING [B3004]: No threads are available to process a new connection on
service ...Closing the new connection.

Also check the number of connections on the connection service and the number of
threads currently in use, using one of the following formats:

imqcmd query svc -n serviceNameimqcmd metrics svc -n serviceName-m cxn

A Client Cannot Establish a Connection

Troubleshooting 15-3

Each connection requires two threads: one for incoming messages and one for
outgoing messages (see Thread Pool Management).

To resolve the problem:

■ If you are using a dedicated thread pool model (imq.serviceName.threadpool_
model=dedicated), the maximum number of connections is half the maximum
number of threads in the thread pool. Therefore, to increase the number of
connections, increase the size of the thread pool (imq.serviceName.max_threads) or
switch to the shared thread pool model.

■ If you are using a shared thread pool model (imq.serviceName.threadpool_
model=shared), the maximum number of connections is half the product of the
connection monitor limit (imq.serviceName.connectionMonitor_limit) and the
maximum number of threads (imq.serviceName.max_threads). Therefore, to
increase the number of connections, increase the size of the thread pool or increase
the connection monitor limit.

■ Ultimately, the number of supportable connections (or the throughput on
connections) will reach input/output limits. In such cases, use a multiple-broker
cluster to distribute connections among the broker instances within the cluster.

Too few file descriptors for the number of connections required on the Solaris or
Linux platform.
For more information about this issue, see Setting the File Descriptor Limit.

To confirm this cause of the problem: Check for an entry in the broker log similar to
the following:

Too many open files

To resolve the problem: Increase the file descriptor limit, as described in the man page
for the ulimit command.

TCP backlog limits the number of simultaneous new connection requests that
can be established.
The TCP backlog places a limit on the number of simultaneous connection requests
that can be stored in the system backlog (imq.portmapper.backlog) before the Port
Mapper rejects additional requests. (On the Windows platform there is a hard-coded
backlog limit of 5 for Windows desktops and 200 for Windows servers.)

The rejection of requests because of backlog limits is usually a transient phenomenon,
due to an unusually high number of simultaneous connection requests.

To confirm this cause of the problem: Examine the broker log. First, check to see
whether the broker is accepting some connections during the same time period that it
is rejecting others. Next, check for messages that explain rejected connections. If you
find such messages, the TCP backlog is probably not the problem, because the broker
does not log connection rejections due to the TCP backlog. If some successful
connections are logged, and no connection rejections are logged, the TCP backlog is
probably the problem.

To resolve the problem:

■ Program the client to retry the attempted connection after a short interval of time
(this normally works because of the transient nature of this problem).

■ Increase the value of imq.portmapper.backlog.

■ Check that clients are not closing and then opening connections too often.

Connection Throughput Is Too Slow

15-4 Open Message Queue 4.5.2 Administration Guide

Operating system limits the number of concurrent connections.
The Windows operating system license places limits on the number of concurrent
remote connections that are supported.

To confirm this cause of the problem: Check that there are plenty of threads available
for connections (using imqcmd query svc) and check the terms of your Windows license
agreement. If you can make connections from a local client, but not from a remote
client, operating system limitations might be the cause of the problem.

To resolve the problem:

■ Upgrade the Windows license to allow more connections.

■ Distribute connections among a number of broker instances by setting up a
multiple-broker cluster.

Authentication or authorization of the user is failing.
The authentication may be failing for any of the following reasons:

■ Incorrect password

■ No entry for user in user repository

■ User does not have access permission for connection service

To confirm this cause of the problem: Check entries in the broker log for the
Forbidden error message. This will indicate an authentication error, but will not
indicate the reason for it.

■ If you are using a file-based user repository, enter the following command:

imqusermgr list -i instanceName-u userName

If the output shows a user, the wrong password was probably submitted. If the
output shows the following error, there is no entry for the user in the user
repository:

Error [B3048]: User does not exist in the password file

■ If you are using an LDAP server user repository, use the appropriate tools to check
whether there is an entry for the user.

■ Check the access control file to see whether there are restrictions on access to the
connection service.

To resolve the problem:

■ If the wrong password was used, provide the correct password.

■ If there is no entry for the user in the user repository, add one (see Adding a User
to the Repository).

■ If the user does not have access permission for the connection service, edit the
access control file to grant such permission (see Authorization Rules for
Connection Services).

Connection Throughput Is Too Slow
Symptoms:

■ Message throughput does not meet expectations.

■ Message input/output rates are not limited by an insufficient number of
supported connections (as described in A Client Cannot Establish a Connection).

Connection Throughput Is Too Slow

Troubleshooting 15-5

Possible causes:

■ Network connection or WAN is too slow.

■ Connection service protocol is inherently slow compared to TCP.

■ Connection service protocol is not optimally tuned.

■ Messages are so large that they consume too much bandwidth.

■ What appears to be slow connection throughput is actually a bottleneck in some
other step of the message delivery process.

Network connection or WAN is too slow.
To confirm this cause of the problem:

■ Ping the network, to see how long it takes for the ping to return, and consult a
network administrator.

■ Send and receive messages using local clients and compare the delivery time with
that of remote clients (which use a network link).

To resolve the problem: Upgrade the network link.

Connection service protocol is inherently slow compared to TCP.
For example, SSL-based or HTTP-based protocols are slower than TCP (see Transport
Protocols).

To confirm this cause of the problem: If you are using SSL-based or HTTP-based
protocols, try using TCP and compare the delivery times.

To resolve the problem: Application requirements usually dictate the protocols being
used, so there is little you can do other than attempt to tune the protocol as described
in Tuning Transport Protocols.

Connection service protocol is not optimally tuned.
To confirm this cause of the problem: Try tuning the protocol to see whether it makes
a difference.

To resolve the problem: Try tuning the protocol, as described in Tuning Transport
Protocols.

Messages are so large that they consume too much bandwidth.
To confirm this cause of the problem: Try running your benchmark with
smaller-sized messages.

To resolve the problem:

■ Have application developers modify the application to use the message
compression feature, which is described in the Open Message Queue Developer's
Guide for Java Clients.

■ Use messages as notifications of data to be sent, but move the data using another
protocol.

What appears to be slow connection throughput is actually a bottleneck in some
other step of the message delivery process.
To confirm this cause of the problem: If what appears to be slow connection
throughput cannot be explained by any of the causes above, see Factors Affecting
Performance for other possible bottlenecks and check for symptoms associated with
the following problems:

A Client Cannot Create a Message Producer

15-6 Open Message Queue 4.5.2 Administration Guide

■ Message Production Is Delayed or Slowed

■ Messages Are Backlogged

■ Broker Throughput Is Sporadic

To resolve the problem: Follow the problem resolution guidelines provided in the
troubleshooting sections listed above.

A Client Cannot Create a Message Producer
Symptom:

■ A message producer cannot be created for a physical destination; the client
receives an exception.

Possible causes:

■ A physical destination has been configured to allow only a limited number of
producers.

■ The user is not authorized to create a message producer due to settings in the
access control file.

A physical destination has been configured to allow only a limited number of
producers.
One of the ways of avoiding the accumulation of messages on a physical destination is
to limit the number of producers (maxNumProducers) that it supports.

To confirm this cause of the problem: Check the physical destination:

imqcmd query dst

(see Viewing Physical Destination Information). The output will show the current
number of producers and the value of maxNumProducers. If the two values are the
same, the number of producers has reached its configured limit. When a new producer
is rejected by the broker, the broker returns the exception

ResourceAllocationException [C4088]: A JMS destination limit was reached

and makes the following entry in the broker log:

[B4183]: Producer can not be added to destination

To resolve the problem: Increase the value of the maxNumProducers property (see
Updating Physical Destination Properties).

The user is not authorized to create a message producer due to settings in the
access control file.
To confirm this cause of the problem: When a new producer is rejected by the broker,
the broker returns the exception

JMSSecurityException [C4076]: Client does not have permission to create
producer on destination

and makes the following entries in the broker log:

[B2041]: Producer on destination denied[B4051]: Forbidden guest.

To resolve the problem: Change the access control properties to allow the user to
produce messages (see Authorization Rules for Physical Destinations).

Message Production Is Delayed or Slowed

Troubleshooting 15-7

Message Production Is Delayed or Slowed
Symptoms:

■ When sending persistent messages, the send method does not return and the client
blocks.

■ When sending a persistent message, the client receives an exception.

■ A producing client slows down.

Possible causes:

■ The broker is backlogged and has responded by slowing message producers.

■ The broker cannot save a persistent message to the data store.

■ Broker acknowledgment timeout is too short.

■ A producing client is encountering JVM limitations.

The broker is backlogged and has responded by slowing message producers.
A backlogged broker accumulates messages in broker memory. When the number of
messages or message bytes in physical destination memory reaches configured limits,
the broker attempts to conserve memory resources in accordance with the specified
limit behavior. The following limit behaviors slow down message producers:

■ FLOW_CONTROL: The broker does not immediately acknowledge receipt of persistent
messages (thereby blocking a producing client).

■ REJECT_NEWEST: The broker rejects new persistent messages.

Similarly, when the number of messages or message bytes in brokerwide memory (for
all physical destinations) reaches configured limits, the broker will attempt to conserve
memory resources by rejecting the newest messages. Also, when system memory
limits are reached because physical destination or brokerwide limits have not been set
properly, the broker takes increasingly serious action to prevent memory overload.
These actions include throttling back message producers.

To confirm this cause of the problem: When a message is rejected by the broker
because of configured message limits, the broker returns the exception

JMSException [C4036]: A server error occurred

and makes the following entry in the broker log:

[B2011]: Storing of JMS message from IMQconn failed

This message is followed by another indicating the limit that has been reached:

[B4120]: Cannot store message on destination destNamebecause capacity of
maxNumMsgswould be exceeded.

if the exceeded message limit is on a physical destination, or

[B4024]: The maximum number of messages currrently in the system has been
exceeded, rejecting message.

if the limit is brokerwide.

More generally, you can check for message limit conditions before the rejections occur
as follows:

■ Query physical destinations and the broker and inspect their configured message
limit settings.

Message Production Is Delayed or Slowed

15-8 Open Message Queue 4.5.2 Administration Guide

■ Monitor the number of messages or message bytes currently in a physical
destination or in the broker as a whole, using the appropriate imqcmd commands.
See Metrics Information Reference for information about metrics you can monitor
and the commands you use to obtain them.

To resolve the problem:

■ Modify the message limits on a physical destination (or brokerwide), being careful
not to exceed memory resources.

In general, you should manage memory at the individual destination level, so that
brokerwide message limits are never reached. For more information, see Broker
Memory Management Adjustments.

■ Change the limit behaviors on a destination so as not to slow message production
when message limits are reached, but rather to discard messages in memory.

For example, you can specify the REMOVE_OLDEST and REMOVE_LOW_PRIORITY limit
behaviors, which delete messages that accumulate in memory (see Table 18–1).

The broker cannot save a persistent message to the data store.
If the broker cannot access a data store or write a persistent message to it, the
producing client is blocked. This condition can also occur if destination or brokerwide
message limits are reached, as described above.

To confirm this cause of the problem: If the broker is unable to write to the data store,
it makes one of the following entries in the broker log:

[B2011]: Storing of JMS message from connectionIDfailed[B4004]: Failed to
persist message messageID

To resolve the problem:

■ In the case of file-based persistence, try increasing the disk space of the file-based
data store.

■ In the case of a JDBC-compliant data store, check that JDBC-based persistence is
properly configured (seeConfiguring a JDBC-Based Data Store). If so, consult your
database administrator to troubleshoot other database problems.

Broker acknowledgment timeout is too short.
Because of slow connections or a lethargic broker (caused by high CPU utilization or
scarce memory resources), a broker may require more time to acknowledge receipt of a
persistent message than allowed by the value of the connection factory's
imqAckTimeout attribute.

To confirm this cause of the problem: If the imqAckTimeout value is exceeded, the
broker returns the exception

JMSException [C4000]: Packet acknowledge failed

To resolve the problem: Change the value of the imqAckTimeout connection factory
attribute (see Reliability And Flow Control).

A producing client is encountering JVM limitations.
To confirm this cause of the problem:

■ Find out whether the client application receives an out-of-memory error.

■ Check the free memory available in the JVM heap, using runtime methods such as
freeMemory, maxMemory, and totalMemory.

Messages Are Backlogged

Troubleshooting 15-9

To resolve the problem: Adjust the JVM (see Java Virtual Machine Adjustments).

Messages Are Backlogged
Symptoms:

■ Message production is delayed or produced messages are rejected by the broker.

■ Messages take an unusually long time to reach consumers.

■ The number of messages or message bytes in the broker (or in specific
destinations) increases steadily over time.

To see whether messages are accumulating, check how the number of messages or
message bytes in the broker changes over time and compare to configured limits. First
check the configured limits:

imqcmd query bkr

Then check for message accumulation in each destination:

imqcmd list dst

To see whether messages have exceeded configured destination or brokerwide limits,
check the broker log for the entry

[B2011]: Storing of JMS message from …failed.

This entry will be followed by another identifying the limit that has been exceeded.

Possible causes:

■ There are inactive durable subscriptions on a topic destination.

■ Too few consumers are available to consume messages in a multiple-consumer
queue.

■ Message consumers are processing too slowly to keep up with message producers.

■ Client acknowledgment processing is slowing down message consumption.

■ The broker cannot keep up with produced messages.

■ Client code defects; consumers are not acknowledging messages.

There are inactive durable subscriptions on a topic destination.
If a durable subscription is inactive, messages are stored in a destination until the
corresponding consumer becomes active and can consume the messages.

To confirm this cause of the problem: Check the state of durable subscriptions on
each topic destination:

imqcmd list dur -d destName

To resolve the problem:

■ Purge all messages for the offending durable subscriptions (see Managing Durable
Subscriptions).

Note: The imqcmd metrics bkr subcommand does not display this
information.

Messages Are Backlogged

15-10 Open Message Queue 4.5.2 Administration Guide

■ Specify message limit and limit behavior attributes for the topic (see Table 18–1).
For example, you can specify the REMOVE_OLDEST and REMOVE_LOW_PRIORITY limit
behaviors, which delete messages that accumulate in memory.

■ Purge all messages from the corresponding destinations (see Purging a Physical
Destination).

■ Limit the time messages can remain in memory by rewriting the producing client
to set a time-to-live value on each message. You can override any such settings for
all producers sharing a connection by setting the imqOverrideJMSExpiration and
imqJMSExpiration connection factory attributes (see Message Header Overrides).

Too few consumers are available to consume messages in a multiple-consumer
queue.
If there are too few active consumers to which messages can be delivered, a queue
destination can become backlogged as messages accumulate. This condition can occur
for any of the following reasons:

■ Too few active consumers exist for the destination.

■ Consuming clients have failed to establish connections.

■ No active consumers use a selector that matches messages in the queue.

To confirm this cause of the problem: To help determine the reason for unavailable
consumers, check the number of active consumers on a destination:

imqcmd metrics dst -n destName-t q -m con

To resolve the problem: Depending on the reason for unavailable consumers,

■ Create more active consumers for the queue by starting up additional consuming
clients.

■ Adjust the imq.consumerFlowLimit broker property to optimize queue delivery to
multiple consumers (see Adjusting Multiple-Consumer Queue Delivery).

■ Specify message limit and limit behavior attributes for the queue (see Table 18–1).
For example, you can specify the REMOVE_OLDEST and REMOVE_LOW_PRIOROTY limit
behaviors, which delete messages that accumulate in memory.

■ Purge all messages from the corresponding destinations (see Purging a Physical
Destination).

■ Limit the time messages can remain in memory by rewriting the producing client
to set a time-to-live value on each message. You can override any such setting for
all producers sharing a connection by setting the imqOverrideJMSExpiration and
imqJMSExpiration connection factory attributes (see Message Header Overrides).

Message consumers are processing too slowly to keep up with message
producers.
In this case, topic subscribers or queue receivers are consuming messages more slowly
than the producers are sending messages. One or more destinations are getting
backlogged with messages because of this imbalance.

To confirm this cause of the problem: Check for the rate of flow of messages into and
out of the broker:

imqcmd metrics bkr -m rts

Then check flow rates for each of the individual destinations:

imqcmd metrics bkr -t destType-n destName-m rts

Messages Are Backlogged

Troubleshooting 15-11

To resolve the problem:

■ Optimize consuming client code.

■ For queue destinations, increase the number of active consumers (see Adjusting
Multiple-Consumer Queue Delivery).

Client acknowledgment processing is slowing down message consumption.
Two factors affect the processing of client acknowledgments:

■ Significant broker resources can be consumed in processing client
acknowledgments. As a result, message consumption may be slowed in those
acknowledgment modes in which consuming clients block until the broker
confirms client acknowledgments.

■ JMS payload messages and Message Queue control messages (such as client
acknowledgments) share the same connection. As a result, control messages can be
held up by JMS payload messages, slowing message consumption.

To confirm this cause of the problem:

■ Check the flow of messages relative to the flow of packets. If the number of
packets per second is out of proportion to the number of messages, client
acknowledgments may be a problem.

■ Check to see whether the client has received the following exception:

JMSException [C4000]: Packet acknowledge failed

To resolve the problem:

■ Modify the acknowledgment mode used by clients: for example, switch to DUPS_
OK_ACKNOWLEDGE or CLIENT_ACKNOWLEDGE.

■ If using CLIENT_ACKNOWLEDGE or transacted sessions, group a larger number of
messages into a single acknowledgment.

■ Adjust consumer and connection flow control parameters (see Client Runtime
Message Flow Adjustments).

The broker cannot keep up with produced messages.
In this case, messages are flowing into the broker faster than the broker can route and
dispatch them to consumers. The sluggishness of the broker can be due to limitations
in any or all of the following:

■ CPU

■ Network socket read/write operations

■ Disk read/write operations

■ Memory paging

■ Persistent store

■ JVM memory limits

To confirm this cause of the problem: Check that none of the other possible causes of
this problem are responsible.

To resolve the problem:

■ Upgrade the speed of your computer or data store.

■ Use a broker cluster to distribute the load among multiple broker instances.

Broker Throughput Is Sporadic

15-12 Open Message Queue 4.5.2 Administration Guide

Client code defects; consumers are not acknowledging messages.
Messages are held in a destination until they have been acknowledged by all
consumers to which they have been sent. If a client is not acknowledging consumed
messages, the messages accumulate in the destination without being deleted.

For example, client code might have the following defects:

■ Consumers using the CLIENT_ACKNOWLEDGE acknowledgment mode or transacted
session may not be calling Session.acknowledge or Session.commit regularly.

■ Consumers using the AUTO_ACKNOWLEDGE acknowledgment mode may be hanging
for some reason.

To confirm this cause of the problem: First check all other possible causes listed in
this section. Next, list the destination with the following command:

imqcmd list dst

Notice whether the number of messages listed under the UnAcked header is the same
as the number of messages in the destination. Messages under this header were sent to
consumers but not acknowledged. If this number is the same as the total number of
messages, then the broker has sent all the messages and is waiting for
acknowledgment.

To resolve the problem: Request the help of application developers in debugging this
problem.

Broker Throughput Is Sporadic
Symptom:

■ Message throughput sporadically drops and then resumes normal performance.

Possible causes:

■ The broker is very low on memory resources.

■ JVM memory reclamation (garbage collection) is taking place.

■ The JVM is using the just-in-time compiler to speed up performance.

The broker is very low on memory resources.
Because destination and broker limits were not properly set, the broker takes
increasingly serious action to prevent memory overload; this can cause the broker to
become sluggish until the message backlog is cleared.

To confirm this cause of the problem: Check the broker log for a low memory
condition

[B1089]: In low memory condition, broker is attempting to free up
resources

followed by an entry describing the new memory state and the amount of total
memory being used. Also check the free memory available in the JVM heap:

imqcmd metrics bkr -m cxn

Free memory is low when the value of total JVM memory is close to the maximum
JVM memory value.

To resolve the problem:

■ Adjust the JVM (see Java Virtual Machine Adjustments).

Messages Are Not Reaching Consumers

Troubleshooting 15-13

■ Increase system swap space.

JVM memory reclamation (garbage collection) is taking place.
Memory reclamation periodically sweeps through the system to free up memory.
When this occurs, all threads are blocked. The larger the amount of memory to be
freed up and the larger the JVM heap size, the longer the delay due to memory
reclamation.

To confirm this cause of the problem: Monitor CPU usage on your computer. CPU
usage drops when memory reclamation is taking place.

Also start your broker using the following command line options:

-vmargs-verbose:gc

Standard output indicates the time when memory reclamation takes place.

To resolve the problem: In computers with multiple CPUs, set the memory
reclamation to take place in parallel:

-XX:+UseParallelGC=true

The JVM is using the just-in-time compiler to speed up performance.
To confirm this cause of the problem: Check that none of the other possible causes of
this problem are responsible.

To resolve the problem: Let the system run for awhile; performance should improve.

Messages Are Not Reaching Consumers
Symptom:

■ Messages sent by producers are not received by consumers.

Possible causes:

■ Limit behaviors are causing messages to be deleted on the broker.

■ Message timeout value is expiring.

■ The broker clock and producer clock are not synchronized.

■ Consuming client failed to start message delivery on a connection.

Limit behaviors are causing messages to be deleted on the broker.
When the number of messages or message bytes in destination memory reach
configured limits, the broker attempts to conserve memory resources. Three of the
configurable behaviors adopted by the broker when these limits are reached will cause
messages to be lost:

■ REMOVE_OLDEST: Delete the oldest messages.

■ REMOVE_LOW_PRIORITY: Delete the lowest-priority messages according to age.

■ REJECT_NEWEST: Reject new persistent messages.

To confirm this cause of the problem: Use the QBrowser demo application to inspect
the contents of the dead message queue (see To Inspect the Dead Message Queue).

Check whether the JMS_SUN_DMQ_UNDELIVERED_REASON property of messages in the
queue has the value REMOVE_OLDEST or REMOVE_LOW_PRIORITY.

To resolve the problem: Increase the destination limits. For example:

Dead Message Queue Contains Messages

15-14 Open Message Queue 4.5.2 Administration Guide

imqcmd update dst -n MyDest-o maxNumMsgs=1000

Message timeout value is expiring.
The broker deletes messages whose timeout value has expired. If a destination gets
sufficiently backlogged with messages, messages whose time-to-live value is too short
might be deleted.

To confirm this cause of the problem: Use the QBrowser demo application to inspect
the contents of the dead message queue (see To Inspect the Dead Message Queue).

Check whether the JMS_SUN_DMQ_UNDELIVERED_REASON property of messages in the
queue has the value EXPIRED.

To resolve the problem: Contact the application developers and have them increase
the time-to-live value.

The broker clock and producer clock are not synchronized.
If clocks are not synchronized, broker calculations of message lifetimes can be wrong,
causing messages to exceed their expiration times and be deleted.

To confirm this cause of the problem: Use the QBrowser demo application to inspect
the contents of the dead message queue (see To Inspect the Dead Message Queue).

Check whether the JMS_SUN_DMQ_UNDELIVERED_REASON property of messages in the
queue has the value EXPIRED.

In the broker log file, look for any of the following messages: B2102, B2103, B2104.
These messages all report that possible clock skew was detected.

To resolve the problem: Check that you are running a time synchronization program,
as described in Preparing System Resources.

Consuming client failed to start message delivery on a connection.
Messages cannot be delivered until client code establishes a connection and starts
message delivery on the connection.

To confirm this cause of the problem: Check that client code establishes a connection
and starts message delivery.

To resolve the problem: Rewrite the client code to establish a connection and start
message delivery.

Dead Message Queue Contains Messages
Symptom:

■ When you list destinations, you see that the dead message queue contains
messages. For example, issue a command like the following:

imqcmd list dst

After you supply a user name and password, output like the following appears:

Listing all the destinations on the broker specified by:

Host Primary Port

localhost 7676
--
 Name Type State Producers Consumers Msgs
 Total Count UnAck Avg Size

Dead Message Queue Contains Messages

Troubleshooting 15-15

--- ----------------------
MyDest Queue RUNNING 0 0 5 0 1177.0
mq.sys.dmq Queue RUNNING 0 0 35 0 1422.0
Successfully listed destinations.

In this example, the dead message queue, mq.sys.dmq, contains 35 messages.

Possible causes:

■ The number of messages, or their sizes, exceed destination limits..

■ The broker clock and producer clock are not synchronized..

■ An unexpected broker error has occurred..

■ Consumers are not consuming messages before they time out..

There are a number of possible reasons for messages to time out:

■ There are too many producers for the number of consumers..

■ Producers are faster than consumers..

■ A consumer is too slow..

■ Clients are not committing transactions..

■ Consumers are failing to acknowledge messages..

■ Durable subscribers are inactive..

The number of messages, or their sizes, exceed destination limits.
To confirm this cause of the problem: Use the QBrowser demo application to inspect
the contents of the dead message queue (see To Inspect the Dead Message Queue).

Check the values for the following message properties:

■ JMS_SUN_DMQ_UNDELIVERED_REASON

■ JMS_SUN_DMQ_UNDELIVERED_COMMENT

■ JMS_SUN_DMQ_UNDELIVERED_TIMESTAMP

Under JMS Headers, scroll down to the value for JMSDestination to determine the
destination whose messages are becoming dead.

To resolve the problem: Increase the destination limits. For example:

imqcmd update dst -n MyDest -o maxNumMsgs=1000

The broker clock and producer clock are not synchronized.
If clocks are not synchronized, broker calculations of message lifetimes can be wrong,
causing messages to exceed their expiration times and be deleted.

To confirm this cause of the problem: Use the QBrowser demo application to inspect
the contents of the dead message queue (see To Inspect the Dead Message Queue).

Check whether the JMS_SUN_DMQ_UNDELIVERED_REASON property of messages in the
queue has the value EXPIRED.

In the broker log file, look for any of the following messages: B2102, B2103, B2104.
These messages all report that possible clock skew was detected.

To resolve the problem: Check that you are running a time synchronization program,
as described in Preparing System Resources.

Dead Message Queue Contains Messages

15-16 Open Message Queue 4.5.2 Administration Guide

An unexpected broker error has occurred.
To confirm this cause of the problem: Use the QBrowser demo application to inspect
the contents of the dead message queue (see To Inspect the Dead Message Queue).

Check whether the JMS_SUN_DMQ_UNDELIVERED_REASON property of messages in the
queue has the value ERROR.

To resolve the problem:

■ Examine the broker log file to find the associated error.

■ Contact Oracle Technical Support to report the broker problem.

Consumers are not consuming messages before they time out.
To confirm this cause of the problem: Use the QBrowser demo application to inspect
the contents of the dead message queue (see To Inspect the Dead Message Queue).

Check whether the JMS_SUN_DMQ_UNDELIVERED_REASON property of messages in the
queue has the value EXPIRED.

Check to see if there any consumers on the destination and the value for the Current
Number of Active Consumers. For example:

imqcmd query dst -t q -n MyDest

If there are active consumers, then there might be any number of possible reasons why
messages are timing out before being consumed. One is that the message timeout is
too short for the speed at which the consumer executes. In that case, request that
application developers increase message time-to-live values. Otherwise, investigate
the following possible causes for messages to time out before being consumed:

There are too many producers for the number of consumers.
To confirm this cause of the problem: Use the QBrowser demo application to inspect
the contents of the dead message queue (see To Inspect the Dead Message Queue).

Check whether the JMS_SUN_DMQ_UNDELIVERED_REASON property of messages in the
queue has the value REMOVE_OLDEST or REMOVE_LOW_PRIORITY. If so, use the imqcmd
query dst command to check the number of producers and consumers on the
destination. If the number of producers exceeds the number of consumers, the
production rate might be overwhelming the consumption rate.

To resolve the problem: Add more consumer clients or set the destination's limit
behavior to FLOW_CONTROL (which uses consumption rate to control production rate),
using a command such as the following:

imqcmd update dst -n myDst -t q -o limitBehavior=FLOW_CONTROL

Producers are faster than consumers.
To confirm this cause of the problem: To determine whether slow consumers are
causing producers to slow down, set the destination's limit behavior to FLOW_CONTROL
(which uses consumption rate to control production rate), using a command such as
the following:

imqcmd update dst -n myDst -t q -o limitBehavior=FLOW_CONTROL

Use metrics to examine the destination's input and output, using a command such as
the following:

imqcmd metrics dst -n myDst -t q -m rts

In the metrics output, examine the following values:

Dead Message Queue Contains Messages

Troubleshooting 15-17

■ Msgs/sec Out: Shows how many messages per second the broker is removing. The
broker removes messages when all consumers acknowledge receiving them, so the
metric reflects consumption rate.

■ Msgs/sec In: Shows how many messages per second the broker is receiving from
producers. The metric reflects production rate.

Because flow control aligns production to consumption, note whether production
slows or stops. If so, there is a discrepancy between the processing speeds of producers
and consumers. You can also check the number of unacknowledged (UnAcked)
messages sent, by using the imqcmd list dst command. If the number of
unacknowledged messages is less than the size of the destination, the destination has
additional capacity and is being held back by client flow control.

To resolve the problem: If production rate is consistently faster than consumption
rate, consider using flow control regularly, to keep the system aligned. In addition,
consider and attempt to resolve each of the following possible causes, which are
subsequently described in more detail:

■ A consumer is too slow..

■ Clients are not committing transactions..

■ Consumers are failing to acknowledge messages..

■ Durable subscribers are inactive..

■ An unexpected broker error has occurred..

A consumer is too slow.
To confirm this cause of the problem: Use imqcmd metrics to determine the rate of
production and consumption, as described above under Producers are faster than
consumers..

To resolve the problem:

■ Set the destinations' limit behavior to FLOW_CONTROL, using a command such as the
following:

imqcmd update dst -n myDst -t q -o limitBehaviort=FLOW_CONTROL

Use of flow control slows production to the rate of consumption and prevents the
accumulation of messages in the destination. Producer applications hold messages
until the destination can process them, with less risk of expiration.

■ Find out from application developers whether producers send messages at a
steady rate or in periodic bursts. If an application sends bursts of messages,
increase destination limits as described in the next item.

■ Increase destination limits based on number of messages or bytes, or both. To
change the number of messages on a destination, enter a command with the
following format:

imqcmd update dst -n destName-t {q|t} -o maxNumMsgs=number

To change the size of a destination, enter a command with the following format:

imqcmd update dst -n destName-t {q|t} -o maxTotalMsgBytes=number

Be aware that raising limits increases the amount of memory that the broker uses.
If limits are too high, the broker could run out of memory and become unable to
process messages.

Dead Message Queue Contains Messages

15-18 Open Message Queue 4.5.2 Administration Guide

■ Consider whether you can accept loss of messages during periods of high
production load.

Clients are not committing transactions.
To confirm this cause of the problem: Check with application developers to find out
whether the application uses transactions. If so, list the active transactions as follows:

imqcmd list txn

Here is an example of the command output:

--
Transaction ID State User name # Msgs/# Acks Creation time
--
6800151593984248832 STARTED guest 3/2 7/19/04 11:03:08 AM

Note the numbers of messages and number of acknowledgments. If the number of
messages is high, producers may be sending individual messages but failing to
commit transactions. Until the broker receives a commit, it cannot route and deliver
the messages for that transaction. If the number of acknowledgments is high,
consumers may be sending acknowledgments for individual messages but failing to
commit transactions. Until the broker receives a commit, it cannot remove the
acknowledgments for that transaction.

To resolve the problem: Contact application developers to fix the coding error.

Consumers are failing to acknowledge messages.
To confirm this cause of the problem: Contact application developers to determine
whether the application uses system-based acknowledgment (AUTO_ACKNOWLEDGE or
DUPES_ONLY) or client-based acknowledgment (CLIENT_ACKNOWLEDGE). If the application
uses system-based acknowledgment , skip this section; if it uses client-based
acknowledgment), first decrease the number of messages stored on the client, using a
command like the following:

imqcmd update dst -n myDst -t q -o consumerFlowLimit=1

Next, you will determine whether the broker is buffering messages because a
consumer is slow, or whether the consumer processes messages quickly but does not
acknowledge them. List the destination, using the following command:

imqcmd list dst

After you supply a user name and password, output like the following appears:

Listing all the destinations on the broker specified by:

Host Primary Port

localhost 7676
--
 Name Type State Producers Consumers Msgs
 Total Count UnAck Avg Size
-- -----------------------
MyDest Queue RUNNING 0 0 5 200 1177.0
mq.sys.dmq Queue RUNNING 0 0 35 0 1422.0
Successfully listed destinations.

The UnAck number represents messages that the broker has sent and for which it is
waiting for acknowledgment. If this number is high or increasing, you know that the
broker is sending messages, so it is not waiting for a slow consumer. You also know
that the consumer is not acknowledging the messages.

Dead Message Queue Contains Messages

Troubleshooting 15-19

To resolve the problem: Contact application developers to fix the coding error.

Durable subscribers are inactive.
To confirm this cause of the problem: Look at the topic's durable subscribers, using
the following command format:

imqcmd list dur -d topicName

To resolve the problem:

■ Purge the durable subscribers using the imqcmd purge dur command.

■ Restart the consumer applications.

To Inspect the Dead Message Queue
A number of troubleshooting procedures involve an inspection of the dead message
queue (mq.sys.dmq). The following procedure explains how to carry out such an
inspection by using the QBrowser demo application.

1. Locate the QBrowser demo application in IMQ_
HOME/examples/applications/qbrowser.

2. Run the QBrowser application:

java QBrowser

The QBrowser main window appears.

3. Select the queue name mq.sys.dmq and click Browse.

A list like the following appears:

4. Double-click any message to display details about that message:

The display should resemble the following:

Dead Message Queue Contains Messages

15-20 Open Message Queue 4.5.2 Administration Guide

You can inspect the Message Properties pane to determine the reason why the
message was placed in the dead message queue.

Part III
Part III Reference

■ Chapter 16, "Command Line Reference"

■ Chapter 17, "Broker Properties Reference"

■ Chapter 18, "Physical Destination Property Reference"

■ Chapter 19, "Administered Object Attribute Reference"

■ Chapter 20, "JMS Resource Adapter Property Reference"

■ Chapter 21, "Metrics Information Reference"

■ Chapter 22, "JES Monitoring Framework Reference"

16

Command Line Reference 16-1

16Command Line Reference

This chapter provides reference information on the use of the Message Queue
command line administration utilities. It consists of the following sections:

■ Command Line Syntax

■ Broker Utility

■ Command Utility

■ Object Manager Utility

■ Database Manager Utility

■ User Manager Utility

■ Bridge Manager Utility

■ Service Administrator Utility

■ Key Tool Utility

Command Line Syntax
Message Queue command line utilities are shell commands. The name of the utility is
a command and its subcommands or options are arguments passed to that command.
There is no need for separate commands to start or quit the utility.

All the command line utilities share the following command syntax:

utilityName [subcommand] [commandArgument] [-optionName [optionArgument]]...

where utilityName is one of the following:

■ imqbrokerd (Broker utility)

■ imqcmd (Command utility)

■ imqobjmgr (Object Manager utility)

■ imqdbmgr (Database Manager utility)

■ imqusermgr (User Manager utility)

■ imqbridgemgr (Bridge Manager utility)

■ imqsvcadmin (Service Administrator utility)

■ imqkeytool (Key Tool utility)

Subcommands and command-level arguments, if any, must precede all options and
their arguments; the options themselves may appear in any order. All subcommands,

Broker Utility

16-2 Open Message Queue 4.5.2 Administration Guide

command arguments, options, and option arguments are separated with spaces. If the
value of an option argument contains a space, the entire value must be enclosed in
quotation marks. (It is generally safest to enclose any attribute-value pair in quotation
marks.)

The following command, which starts the default broker, is an example of a command
line with no subcommand clause:

imqbrokerd

Here is a fuller example:

imqcmddestroy dst-t q-n myQueue-u admin-f-s

This command destroys a queue destination (destination type q) named myQueue.
Authentication is performed on the user name admin; the command will prompt for a
password. The command will be performed without prompting for confirmation (-f
option) and in silent mode, without displaying any output (-s option).

Broker Utility
The Broker utility (imqbrokerd) starts a broker. Command line options override values
in the broker configuration files, but only for the current broker session.

Table 16–1 shows the options to the imqbrokerd command and the configuration
properties, if any, overridden by each option.

Table 16–1 Broker Utility Options

Option Description

-name instanceName Instance name of broker

Multiple broker instances running on the same host must have different
instance names.

Default value: imqbroker

Properties overridden: imq.instancename

-port portNumber Port number for broker's Port Mapper

Message Queue clients use this port number to connect to the broker. Multiple
broker instances running on the same host must have different Port Mapper
port numbers.

Default value: 7676

Properties overridden: imq.portmapper.port

-cluster broker1 [,broker2]... Connect brokers into cluster1

The specified brokers are merged with the list in the imq.cluster.brokerlist
property. Each broker argument has one of the forms

■ hostName:portNumber

■ hostName

■ :portNumber

If hostName is omitted, the default value is localhost; if portNumber is
omitted, the default value is 7676.

Literal IP addresses as host names: You can use a literal IPv4 or IPv6 address
as a host name. If you use a literal IPv6 address, its format must conform to
RFC2732 (http://www.ietf.org/rfc/rfc2732.txt), Format for Literal
IPv6 Addresses in URL's.

Properties overridden: imq.cluster.brokerlist

Broker Utility

Command Line Reference 16-3

-Dproperty=value Set configuration property

See Broker Properties Reference for information about broker configuration
properties.

Caution: Be careful to check the spelling and formatting of properties set with
this option. Incorrect values will be ignored without notification or warning.

Properties overridden: Corresponding property in instance configuration file

-reset props Reset configuration properties

Replaces the broker's existing instance configuration file config.properties
with an empty file; all properties assume their default values.

Properties overridden: None

-reset store Reset persistent data store

Clears all persistent data from the data store (including persistent messages,
durable subscriptions, and transaction information), allowing you to start the
broker instance with a clean slate. To prevent the persistent store from being
reset on subsequent restarts, restart the broker instance without the -reset
option.

To clear only persistent messages or durable subscriptions, use -reset
messages or -reset durables instead.

Properties overridden: None

-reset messages Clear persistent messages from data store

Properties overridden: None

-reset durables Clear durable subscriptions from data store

Properties overridden: None

-reset takeover-then-exit Clear any takeover locks and then exit.

If a broker fails before completing the takeover of another broker's store, the
failed broker retains a takeover lock even though it is not running. Use -reset
takeover-then-exit to cause the failed broker to initiate startup, release the
takeover lock, and then exit without actually starting up.

Properties overridden: None

-backup fileName Back up configuration change record to file1

See Managing a Conventional Cluster's Configuration Change Record for
more information.

Properties overridden: None

-restore fileName Restore configuration change record from backup file1

The backup file must have been previously created using the -backup option.

See Managing a Conventional Cluster's Configuration Change Record for
more information.

Properties overridden: None

-remove instance Remove broker instance2

Deletes the instance configuration file, log files, persistent store, and other
files and directories associated with the instance.

Properties overridden: None

-dbuser userName User name for JDBC-based persistent data store

Properties overridden: imq.persist.jdbc.user

Table 16–1 (Cont.) Broker Utility Options

Option Description

Broker Utility

16-4 Open Message Queue 4.5.2 Administration Guide

-passfile filePath Location of password file

Sets the broker's imq.passfile.enabled property to true,
imq.passfile.dirpath to the path containing the password file, and
imq.passfile.name to the file name itself.

See Password Files for more information.

Properties overridden:
imq.passfile.enabledimq.passfile.dirpathimq.passfile.name

-shared Use shared thread pool model to implement jms connection service

Execution threads will be shared among connections to increase the number
of connections supported.

Sets the broker's imq.jms.threadpool_model property to shared.

Properties overridden: imq.jms.threadpool_model

-javahome path Location of alternative Java runtime

Default behavior: Use runtime installed on system or bundled with Message
Queue.

Properties overridden: None

-vmargs arg1 [arg2] ... Pass arguments to Java virtual machine

Arguments are separated with spaces. To pass more than one argument, or an
argument containing a space, enclose the argument list in quotation marks.

VM arguments can be passed only from the command line; there is no
associated configuration property in the instance configuration file.

Properties overridden: None

-startRmiRegistry Start RMI registry at broker startup

Properties overridden: imq.jmx.rmiregistry.start

-useRmiRegistry Use external RMI registry

Properties overridden: imq.jmx.rmiregistry.use

-rmiRegistryPort Port number of RMI registry

Properties overridden: imq.jmx.rmiregistry.port

-upgrade-store-nobackup Automatically remove old data store on upgrade to Message Queue 3.5 or 3.5
SPx from an incompatible version2

Properties overridden: None

-force Perform action without user confirmation

This option applies only to the -remove instance and
-upgrade-store-nobackup options, which normally require confirmation.

Properties overridden: None

-loglevel level Logging level: NONE, ERROR, WARNING or INFO.

Default value: INFO

Properties overridden: imq.broker.log.level

-metrics interval Logging interval for broker metrics, in seconds

Properties overridden: imq.metrics.interval

Table 16–1 (Cont.) Broker Utility Options

Option Description

Command Utility

Command Line Reference 16-5

Command Utility
The Command utility (imqcmd) is used for managing brokers, connection services,
connections, physical destinations, durable subscriptions, and transactions.

All imqcmd commands must include a subcommand (except those using the -v or -h
option to display product version information or usage help, respectively). The
possible subcommands are listed in Table 16–2 and described in detail in the
corresponding sections below. In addition, each imqcmd subcommand supports the
general options shown in General Command Utility Options.

-tty Log all messages to console

Sets the broker's imq.log.console.output property to ALL.

If not specified, only error and warning messages will be logged.

Properties overridden: imq.log.console.output

-s | -silent Silent mode (no logging to console)

Sets the broker's imq.log.console.output property to NONE.

Properties overridden: imq.log.console.output

-version Display version information3

Properties overridden: None

-h | -help Display usage help3

Properties overridden: None
1 Applies only to broker clusters
2 Requires user confirmation unless -force is also specified
3 Any other options specified on the command line are ignored.

Note: The -u userName option (and corresponding password) is
required except when using the -v or -h option. Also if a
subcommand accepts a broker address (-b option) and no host
name or port number is specified, the values localhost and 7676
are assumed by default.

Table 16–2 Command Utility Subcommands

Command Description

Broker Management

shutdown bkr Shut down broker

restart bkr Restart broker

pause bkr Pause broker

quiesce bkr Quiesce broker

unquiesce bkr Unquiesce broker

resume bkr Resume broker

takeover bkr Initiate broker takeover

update bkr Set broker properties

Table 16–1 (Cont.) Broker Utility Options

Option Description

Command Utility

16-6 Open Message Queue 4.5.2 Administration Guide

query bkr List broker property values

list bkr List brokers in cluster

metrics bkr Display broker metrics

reload cls Reload cluster configuration

changemaster cls Change the master broker in a conventional cluster with master broker

Connection Service
Management

pause svc Pause connection service

resume svc Resume connection service

update svc Set connection service properties

list svc List connection services available on broker

query svc List connection service property values

metrics svc Display connection service metrics

Connection
Management

list cxn List connections on broker

query cxn Display connection information

destroy cxn Destroy connection

Physical Destination
Management

create dst Create physical destination

destroy dst Destroy physical destination

pause dst Pause message delivery for physical destination

resume dst Resume message delivery for physical destination

purge dst Purge all messages from physical destination

compact dst Compact physical destination

update dst Set physical destination properties

list dst List physical destinations

query dst List physical destination property values

metrics dst Display physical destination metrics

Durable Subscription
Management

destroy dur Destroy durable subscription

purge dur Purge all messages for durable subscription

list dur List durable subscriptions for topics

Transaction
Management

commit txn Commit transaction

rollback txn Roll back transaction

Table 16–2 (Cont.) Command Utility Subcommands

Command Description

Command Utility

Command Line Reference 16-7

General Command Utility Options
The additional options listed in Table 16–3 can be applied to any subcommand of the
imqcmd command.

list txn List transactions being tracked by broker

query txn Display transaction information

list dur List durable subscriptions for topic

JMX Management

list jmx List JMX service URLs of JMX connectors

Table 16–3 General Command Utility Options

Option Description

-secure Use secure connection to broker with ssladmin connection service

-u userName User name for authentication

If this option is omitted, the Command utility will prompt for it interactively.

-passfile path Location of password file

See Password Files for more information.

-D Set connection-related system property that affects how imqcmd creates a connection to
the broker. Not used to set broker configuration properties.

Usually overrides connection factory attributes for imqcmd client runtime. For example,
the option in the following command changes the default value of imqSSLIsTrusted:

imqcmd list svc -secure -DimqSSLIsTrusted=true

-rtm timeoutInterval Initial timeout interval, in seconds

This is the initial length of time that the Command utility will wait for a reply from the
broker before retrying a request. Each subsequent retry will use a timeout interval that is
a multiple of this initial interval.

Default value: 10.

-rtr numRetries Number of retries to attempt after a broker request times out

Default value: 5.

-javahome path Location of alternative Java runtime

Default behavior: Use runtime installed on system or bundled with Message Queue.

-f Perform action without user confirmation

-s Silent mode (no output displayed)

-v Display version information1,2

1 Any other options specified on the command line are ignored.
2 User name and password not needed

-h Display usage help1,2

-H Display expanded usage help, including attribute list and examples1,2

Table 16–2 (Cont.) Command Utility Subcommands

Command Description

Command Utility

16-8 Open Message Queue 4.5.2 Administration Guide

Broker Management
The Command utility cannot be used to start a broker; use the Broker utility
(imqbrokerd) instead. Once the broker is started, you can use the imqcmd
subcommands listed in Table 16–4 to manage and control it.

Table 16–4 Command Utility Subcommands for Broker Management

Syntax Description

shutdown bkr [-b hostName:portNumber]
 [-time nSeconds]
 [-nofailover]

Shut down broker

The -time option specifies the interval, in seconds, to wait before
shutting down the broker. (The broker will not block, but will return
immediately from the delayed shutdown request.) During the
shutdown interval, the broker will not accept any new jms
connections; admin connections will be accepted, and existing jms
connections will continue to operate. A broker belonging to an
enhanced cluster will not attempt to take over for any other broker
during the shutdown interval.

The -nofailover option indicates that no other broker is to take
over the persistent data of the one being shut down. 1

restart bkr [-b hostName:portNumber] Restart broker

Shuts down the broker and then restarts it using the same options
specified when it was originally started.

pause bkr [-b hostName:portNumber] Pause broker

See Pausing and Resuming a Broker for more information.

quiesce bkr [-b hostName:portNumber] Quiesce broker

The broker will stop accepting new connections; existing
connections will continue to operate.

unquiesce bkr [-b hostName:portNumber] Unquiesce broker

The broker will resume accepting new connections, returning to
normal operation.

resume bkr [-b hostName:portNumber] Resume broker

takeover bkr
 -n brokerID
 [-f]

Initiate broker takeover 1

Before taking over a broker, you should first shut it down manually
using the shutdown bkr subcommand with the -nofailover option.
If the specified broker appears to be still running, takeover bkr will
display a confirmation message (Do you want to take over for
this broker?). The -f option suppresses this message and initiates
the takeover unconditionally.

Note: The takeover bkr subcommand is intended only for use in
failed-takeover situations. You should use it only as a last resort, and
not as a general way of forcibly taking over a running broker.

update bkr [-b hostName:portNumber]
 -o property1=value1
 [-o property2=value2]...

Set broker properties

See Broker Properties Reference for information on broker
properties.

query bkr
 -b hostName:portNumber

List broker property values

For brokers belonging to a cluster, also lists cluster properties such
as broker list, master broker (for conventional clusters), and cluster
identifier (for enhanced clusters).

list bkr List brokers in cluster

Command Utility

Command Line Reference 16-9

Connection Service Management
Table 16–5 lists the imqcmd subcommands for managing connection services.

metrics bkr [-b hostName:portNumber]
 [-m metricType]
 [-int interval]
 [-msp numSamples]

Display broker metrics

The -m option specifies the type of metrics to display:

■ ttl: Messages and packets flowing into and out of the broker

■ rts: Rate of flow of messages and packets into and out of the
broker per second

■ cxn: Connections, virtual memory heap, and threads

Default value: ttl.

The -int option specifies the interval, in seconds, at which to
display metrics. Default value: 5.

The -msp option specifies the number of samples to display. Default
value: Unlimited (infinite).

reload cls Reload cluster configuration1

Forces all persistent information to be brought up to date.

changemaster cls
 -o imq.cluster.masterbroker=newMaster

Change the master broker in a conventional cluster with master
broker.

This command must be run on the current master broker.

The value newMaster has the form hostName:portNumber, where
hostName and portNumber are is its Port Mapper host name and port
number, respectively.

Literal IP addresses as host names: You can use a literal IPv4 or
IPv6 address as a host name. If you use a literal IPv6 address, its
format must conform to RFC2732
(http://www.ietf.org/rfc/rfc2732.txt), Format for Literal
IPv6 Addresses in URL's.

1 Applies only to broker clusters

Table 16–5 Command Utility Subcommands for Connection Service Management

Syntax Description

pause svc -n serviceName
 [-bhostName:portNumber]

Pause connection service

The admin connection service cannot be paused.

resume svc -n serviceName
 [-b hostName:portNumber]

Resume connection service

update svc -n serviceName
 [-b hostName:portNumber]
 -o property1=value1
 [-o property2=value2]...

Set connection service properties

See Connection Properties for information on connection service properties.

Table 16–4 (Cont.) Command Utility Subcommands for Broker Management

Syntax Description

Command Utility

16-10 Open Message Queue 4.5.2 Administration Guide

Connection Management
Table 16–6 lists the imqcmd subcommands for managing connections.

Physical Destination Management
Table 16–7 lists the imqcmd subcommands for managing physical destinations. In all
cases, the -t (destination type) option can take either of two values:

■ q: Queue destination

■ t: Topic destination

list svc
 [-b hostName:portNumber]

List connection services available on broker

query svc -n serviceName
 [-bhostName:portNumber]

List connection service property values

metrics svc -n serviceName
 [-bhostName:portNumber]
 [-mmetricType]
 [-intinterval]
 [-mspnumSamples]

Display connection service metrics

The -m option specifies the type of metrics to display:

■ ttl: Messages and packets flowing into and out of the broker by way of the
specified connection service

■ rts: Rate of flow of messages and packets into and out of the broker per
second by way of the specified connection service

■ cxn: Connections, virtual memory heap, and threads

Default value: ttl.

The -int option specifies the interval, in seconds, at which to display metrics.
Default value: 5.

The -msp option specifies the number of samples to display. Default value:
Unlimited (infinite).

Table 16–6 Command Utility Subcommands for Connection Service Management

Syntax Description

list cxn [-svn serviceName]
 [-b hostName:portNumber]

List connections on broker

Lists all connections on the broker to the specified connection service. If no
connection service is specified, all connections are listed.

query cxn -n connectionID
 [-b hostName:portNumber]

Display connection information

destroy cxn -n connectionID
 [-b hostName:portNumber]

Destroy connection

Table 16–5 (Cont.) Command Utility Subcommands for Connection Service Management

Syntax Description

Command Utility

Command Line Reference 16-11

Table 16–7 Command Utility Subcommands for Physical Destination Management

Syntax Description

create dst -t destType -n destName
 [-o property=value]...

Create physical destination1

The destination name destName may contain only alphanumeric
characters (no spaces) and must begin with an alphabetic character
or the underscore (_) or dollar sign ($) character. It may not begin
with the characters mq.

destroy dst -t destType -n destName Destroy physical destination1

This operation cannot be applied to a system-created destination,
such as a dead message queue.

pause dst [-t destType -n destName]
 [-pst pauseType]

Pause message delivery for physical destination

Pauses message delivery for the physical destination specified by the
-t and -n options. If these options are not specified, all destinations
are paused.

The -pst option specifies the type of message delivery to be paused:

■ PRODUCERS: Pause delivery from message producers

■ CONSUMERS: Pause delivery to message consumers

■ ALL: Pause all message delivery

Default value: ALL

resume dst [-t destType -n destName] Resume message delivery for physical destination

Resumes message delivery for the physical destination specified by
the -t and -n options. If these options are not specified, all
destinations are resumed.

purge dst -t destType -n destName Purge all messages from physical destination

compact dst [-t destType -n destName] Compact physical destination

Compacts the file-based persistent data store for the physical
destination specified by the -t and -n options. If these options are
not specified, all destinations are compacted.

A destination must be paused before it can be compacted.

update dst -t destType -n destName
 -o property1=value1
 [-o property2=value2]...

Set physical destination properties

See Physical Destination Property Reference for information on
physical destination properties.

Command Utility

16-12 Open Message Queue 4.5.2 Administration Guide

Durable Subscription Management
Table 16–8 lists the imqcmd subcommands for managing durable subscriptions.

Transaction Management
Table 16–9 lists the imqcmd subcommands for managing local (non-distributed)
Message Queue transactions. Distributed transactions are managed by a distributed
transaction manager rather than imqcmd.

list dst [-tdestType]
 [-tmp]

List physical destinations

Lists all physical destinations of the type specified by the -t option.
If no destination type is specified, both queue and topic destinations
are listed. If the -tmp option is specified, temporary destinations are
listed as well.

query dst -t destType -n destName List physical destination property values

metrics dst -t destType -n destName
 [-m metricType]
 [-int interval]
 [-msp numSamples]

Display physical destination metrics

The -m option specifies the type of metrics to display:

■ ttl: Messages and packets flowing into and out of the
destination and residing in memory

■ rts: Rate of flow of messages and packets into and out of the
destination per second, along with other rate information

■ con: Metrics related to message consumers

■ dsk: Disk usage

Default value: ttl.

The -int option specifies the interval, in seconds, at which to display
metrics. Default value: 5.

The -msp option specifies the number of samples to display. Default
value: Unlimited (infinite).

1 Cannot be performed in a broker cluster whose master broker is temporarily unavailable

Table 16–8 Command Utility Subcommands for Durable Subscription Management

Syntax Description

destroy dur -n subscriberName -c clientID Destroy durable subscription1

1 Cannot be performed in a conventional broker cluster whose master broker is temporarily unavailable

purge dur -n subscriberName -c clientID Purge all messages for durable subscription

list dur [-d topicName] List durable subscriptions for the specified topic. If -d option is
omitted then the command lists all durable subscriptions for all
topics.

Table 16–9 Command Utility Subcommands for Transaction Management

Syntax Description

commit txn -n transactionID Commit transaction

rollback txn -n transactionID Roll back transaction

list txn List transactions being tracked by broker

query txn -n transactionID Display transaction information

Table 16–7 (Cont.) Command Utility Subcommands for Physical Destination Management

Syntax Description

Object Manager Utility

Command Line Reference 16-13

JMX Management
The imqcmd subcommand shown in Table 16–10 is used for administrative support of
Java applications using the Java Management Extensions (JMX) application
programming interface to configure and monitor Message Queue resources. See JMX
Support for further information on the broker's JMX support.

Object Manager Utility
The Object Manager utility (imqobjmgr) creates and manages Message Queue
administered objects. Table 16–11 lists the available subcommands.

Table 16–12 lists the options to the imqobjmgr command.

Table 16–10 Command Utility Subcommand for JMX Management

Syntax Description

list jmx List JMX service URLs of JMX connectors

Table 16–11 Object Manager Subcommands

Subcommand Description

add Add administered object to object store

delete Delete administered object from object store

list List administered objects in object store

query Display administered object information

update Modify administered object

Table 16–12 Object Manager Options

Option Description

-l lookupName JNDI lookup name of administered object

-j attribute=value Attributes of JNDI object store (see Object Stores)

-t objectType Type of administered object:

■ q: Queue destination

■ t: Topic destination

■ cf: Connection factory

■ qf: Queue connection factory

■ tf: Topic connection factory

■ xcf: Connection factory for distributed transactions

■ xqf: Queue connection factory for distributed transactions

■ xtf: Topic connection factory for distributed transactions

-o attribute=value Attributes of administered object (see Administered Object Attributes
and Administered Object Attribute Reference)

-r readOnlyState Is administered object read-only?

If true, client cannot modify object's attributes.

Default value: false.

-i fileName Name of command file containing all or part of subcommand clause

Database Manager Utility

16-14 Open Message Queue 4.5.2 Administration Guide

Database Manager Utility
The Database Manager utility (imqdbmgr) sets up the database schema for a
JDBC-based data store. You can also use it to delete Message Queue database tables
that have become corrupted, change the database, display information about the
database, convert a standalone database for use in an enhanced broker cluster, or back
up and restore a highly-available database. Table 16–13 lists the imqdbmgr
subcommands.

-pre Preview results without performing command

This option is useful for checking the values of default attributes.

-javahome path Location of alternative Java runtime

Default behavior: Use runtime installed on system or bundled with
Message Queue.

-f Perform action without user confirmation

-s Silent mode (no output displayed)

-v Display version information1

-h Display usage help1

-H Display expanded usage help, including attribute list and examples1

1 Any other options specified on the command line are ignored.

Note: When using a cluster configuration file to simplify
management of the properties for a cluster of brokers, make sure to
run imqdbmgr with the -D option to specify the location of the
cluster configuration file; for example:

imqdbmgr
-Dimq.cluster.url=location-of-cluster-configuration-file ...

Table 16–12 (Cont.) Object Manager Options

Option Description

Database Manager Utility

Command Line Reference 16-15

Table 16–13 Database Manager Subcommands

Subcommand Description

create all Create new database and persistent data store schema

Used on embedded database systems. The broker property
imq.persist.jdbc.vendorName.createdburl must be specified.

create tbl Create persistent data store schema for existing database

Used on external database systems.

For brokers belonging to an enhanced broker cluster (imq.cluster.ha =
true), the schema created is for the cluster's shared data store, in
accordance with the database vendor identified by the broker's
imq.persist.jdbc.dbVendor property. If imq.cluster.ha = false, the
schema is for the individual broker's standalone data store. Since the two
types of data store can coexist in the same database, they are distinguished
by appending a suffix to all table names:

■ C clusterID: Shared data store

■ S brokerID: Standalone data store

delete tbl Delete Message Queue database tables from current data store

delete oldtbl Delete Message Queue database tables from earlier-version data store

Used after the data store has been automatically migrated to the current
version of Message Queue.

recreate tbl Re-create persistent store schema

Deletes all existing Message Queue database tables from the current
persistent store and then re-creates the schema.

query Display information about the data store

upgrade hastore Upgrade standalone data store to shared data store

backup Back up JDBC-based data store to backup files

restore Restore JDBC-based data store from backup files

remove bkr Remove broker from shared data store

The broker must not be running.

remove jmsbridge Remove JMS bridge from the shared data store

The broker hosting the JMS bridge must not be running.

reset lck Reset data store lock

Resets the lock so that the database can be used by other processes.

Subcommands for a Cluster's Shared
Configuration Change Table

create sharecc_tbl Create the shared database table for the cluster configuration change
record

delete sharecc_tbl Delete the shared database table for the cluster configuration change
record

recreate sharecc_tbl Re-create the shared database table for the cluster configuration change
record.

Deletes existing shared database table and then re-creates it.

backup sharecc_tbl-file filePath Back up the shared database table for the cluster configuration change
record to a backup file

restore sharecc_tbl-file filePath Restore the shared database table for the cluster configuration change
record from a backup file. The table must already exist.

User Manager Utility

16-16 Open Message Queue 4.5.2 Administration Guide

Table 16–14 lists the options to the imqdbmgr command.

User Manager Utility
The User Manager utility (imqusermgr) is used for populating or editing a flat-file user
repository. The utility must be run on the same host where the broker is installed; if a
broker-specific user repository does not yet exist, you must first start up the
corresponding broker instance in order to create it. You will also need the appropriate
permissions to write to the repository: on the Solaris or Linux platforms, this means
you must be either the root user or the user who originally created the broker instance.

Table 16–15 lists the subcommands available with the imqusermgr command. In all
cases, the -i option specifies the instance name of the broker to whose user repository
the command applies; if not specified, the default name imqbroker is assumed.

Table 16–14 Database Manager Options

Option Description

-b instanceName Instance name of broker

-Dproperty=value Set broker configuration property

See Persistence Properties for information about persistence-related broker configuration
properties.

Caution: Be careful to check the spelling and formatting of properties set with this option.
Incorrect values will be ignored without notification or warning.

-u userName User name for authentication against the database

-passfile filePath Location of password file

See Password Files for more information.

-n brokerID (Used with the remove bkr subcommand) Broker identifier of broker to be removed from
shared data store

-n bridgeName (Used with the remove jmsbridge subcommand) Bridge name of the JMS bridge to be
removed from shared data store

-dir dirPath Backup directory for backing up or restoring JDBC-based data store

-v Display version information1

1 Any other options specified on the command line are ignored.

-h Display usage help1

Table 16–15 User Manager Subcommands

Syntax Description

add [-i instanceName]
 -u userName -p password
 [-g group]

Add user and password to repository

The optional -g option specifies a group to which to assign
this user:

■ admin

■ user

■ anonymous

delete [-i instanceName]
 -u userName

Delete user from repository

Bridge Manager Utility

Command Line Reference 16-17

In addition, the options listed in Table 16–16 can be applied to any subcommand of the
imqusermgr command.

Bridge Manager Utility
The Bridge Manager utility (imqbridgemgr) is used to manage the bridges configured
for a broker, including the links within bridge types that support links. The basic
syntax of imqbridgemgr is:

imqbridgemgr subcommand commandArgument [options]
imqbridgemgr -h | -help
imqbridgemgr -H | -Help
imqbridgemgr -v | -version

Table 16–17 lists the imqbridgemgr subcommands for general bridge management,
Table 16–18 lists the imqbridgemgr subcommands for link management, which are
applicable only to bridge types that support links, and Table 16–19 lists the
imqbridgemgr options.

update [-i instanceName]
 -u userName -p password

update [-i instanceName]
 -u userName -a activeStatus

update [-i instanceName]
 -u userName -p password
 -a activeStatus

Set user's password or active status (or both)

The -a option takes a boolean value specifying whether to
make the user active (true) or inactive (false). An inactive
status means that the user entry remains in the user
repository, but the user will not be authenticated, even if
using the correct password.

Default value: true.

list [-i instanceName]
 [-u userName]

Display user information

If no user name is specified, all users in the repository are
listed.

Table 16–16 General User Manager Options

Option Description

-DbrokerProperty=value Specify a broker property value when starting imqusermgr.

-f Perform action without user confirmation

-s Silent mode (no output displayed)

-v Display version information1

1 Any other options specified on the command line are ignored.

-h Display usage help1

Table 16–17 Bridge Manager Subcommands for Bridge Management

Subcommand Description

list bridge Lists the bridges specified by the command options provided. For each
bridge, the bridge name, type and state are displayed.

Table 16–15 (Cont.) User Manager Subcommands

Syntax Description

Bridge Manager Utility

16-18 Open Message Queue 4.5.2 Administration Guide

Table 16–19 lists the options to the imqbridgemgr command.

pause bridge Pauses the bridges specified by the command options provided if the bridge
type supports this subcommand.

Attempting to pause a bridge that is stopped generates an error, and
attempting to pause a bridge that is already paused has no effect.

resume bridge Resumes the bridges specified by the command options provided if the
bridge type supports this subcommand.

Attempting to resume a bridge that is stopped generates an error, and
attempting to resume a bridge that is already started has no effect.

start bridge Starts the bridges specified by the command options provided.

Attempting to start a bridge that is paused causes the bridge to resume, and
attempting to start a bridge that is already started has no effect.

stop bridge Stops the bridges specified by the command options provided.

Attempting to stop a bridge that is paused causes the bridge to stop, and
attempting to stop a bridge that is already stopped has no effect.

Table 16–18 Bridge Manager Subcommands for Link Management

Subcommand Description

list link Lists the links specified by the command options provided. For each link, the
link name, state, source, target, and transaction status are displayed.

pause link Pauses the link specified by the command options provided.

Attempting to pause a link that is stopped, in the process of stopping, or has
never been started generates an error. Attempting to pause a link that is
already paused or in the process of pausing has no effect.

resume link Resumes the link specified by the command options provided.

Attempting to resume a link that is stopped, in the process of stopping, or
has never been started generates an error. Attempting to resume a link that is
already started or in the process of starting has no effect.

start link Starts the link specified by the command options provided.

Attempting to start a link that is paused causes the link to resume.
Attempting to start a link that is in the process of pausing causes the link to
complete pausing and then to resume. Attempting to start a link that is
already started or in the process of starting has no effect.

stop link Stops the link specified by the command options provided.

Attempting to stop a link that has never been started generates an error.
Attempting to stop a link that is in the process of starting causes the link to
complete starting and then to stop. Attempting to stop a link that is paused
causes the link to stop. Attempting to stop a link that is in the process of
pausing causes the link to complete pausing and then to stop. Attempting to
stop a link that is already stopped or in the process of stopping has no effect.

Table 16–17 (Cont.) Bridge Manager Subcommands for Bridge Management

Subcommand Description

Service Administrator Utility

Command Line Reference 16-19

Service Administrator Utility
The Service Administrator utility (imqsvcadmin) installs a broker as a Windows
service. Table 16–20 lists the available subcommands.

Table 16–21 lists the options to the imqsvcadmin command.

Table 16–19 Bridge Manager Options

Option Description

-b hostName:portNumber The broker housing the bridge.

Literal IP addresses as host names: You can use a literal IPv4 or
IPv6 address as a host name. If you use a literal IPv6 address, its
format must conform to RFC2732
(http://www.ietf.org/rfc/rfc2732.txt), Format for
Literal IPv6 Addresses in URL's.

Default value: localhost:7676

-bn bridgeName The name of the bridge.

-f Perform the action without user confirmation

-javahome path Location of an alternative Java runtime.

Default behavior: Use the runtime installed with Message Queue.

-ln linkName The name of the link.

-passfile path Location of password file

-rtm timeoutInterval Initial timeout interval, in seconds

This is the initial length of time that the Command utility will
wait for a reply from the broker before retrying a request. Each
subsequent retry will use a timeout interval that is a multiple of
this initial interval.

Default value: 10

-rtr numRetries Number of retries to attempt after a broker request times out

Default value: 5

-s Silent mode (no output displayed)

-secure Use secure connection to broker with ssladmin connection service

-t bridgeType The type of the bridge: JMS or STOMP

-u userName User name for authentication

Table 16–20 Service Administrator Subcommands

Subcommand Description

install Install service

remove Remove service

query Display startup options

Startup options can include whether the service is started manually or
automatically, its location, the location of the Java runtime, and the values of
arguments passed to the broker on startup (see Table 16–21).

Key Tool Utility

16-20 Open Message Queue 4.5.2 Administration Guide

Any information you specify using the -javahome, -vmargs, and -args options is
stored in the Windows registry under the keys JREHome, JVMArgs, and ServiceArgs in
the path

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\iMQ_Broker\Parameters

Key Tool Utility
The Key Tool utility (imqkeytool) generates a self-signed certificate for the broker,
which can be used for the ssljms, ssladmin, or cluster connection service. The syntax
is

imqkeytool -broker

On UNIX systems, you might need to run the utility from the root user account.

Table 16–21 Service Administrator Options

Option Description

-javahome path Location of alternative Java runtime

Default behavior: Use runtime installed on system or bundled with
Message Queue.

-jrehome path Location of alternative Java Runtime Environment (JRE)

-vmargs arg1 [arg2]… Additional arguments to pass to Java Virtual Machine (JVM) running
broker service1

Example:

imqsvcadmin install vmargs "-Xms16m -Xmx128m"

1 These arguments can also be specified in the Start Parameters field under the General tab in the service's
Properties window (reached by way of the Services tool in the Windows Administrative Tools control
panel).

-args arg1 [arg2]… Additional command line arguments to pass to broker service1

Example:

imqsvcadmin install args "passfile d:\\imqpassfile"

See Broker Utility for information about broker command line
arguments.

-h Display usage help2

2 Any other options specified on the command line are ignored.

17

Broker Properties Reference 17-1

17Broker Properties Reference

This chapter provides reference information about configuration properties for a
message broker. It consists of the following sections:

■ Connection Properties

■ Routing and Delivery Properties

■ Persistence Properties

■ Security Properties

■ Monitoring Properties

■ Cluster Configuration Properties

■ Bridge Properties

■ JMX Properties

■ Alphabetical List of Broker Properties

Connection Properties
Table 17–1 lists the broker properties related to connection services.

Connection Properties

17-2 Open Message Queue 4.5.2 Administration Guide

Table 17–1 Broker Connection Properties

Property Type
Default
Value Description

imq.brokerid String None Broker identifier

For brokers using a shared JDBC-based data
store, this string is appended to the names of all
database tables to identify each table with a
particular broker.

Must be a unique alphanumeric string of no
more than n - 13 characters, where n is the
maximum table name length allowed by the
database.

This property is unnecessary for an embedded
database or a standalone database which stores
data for only one broker instance.

Note: For enhanced broker clusters
(imq.cluster.ha = true), database table names
also use the imq.cluster.clusterid property
(see Table 17–14).

imq.service.activelist1 String jms,admin List of connection services to be activated at
broker startup, separated by commas

See Table 6–1 under Configuring Connection
Services for the names of the available
connection services.

imq.hostname String All available
IP addresses

Default host name or IP address for all
connection services

imq.portmapper.hostname String None Host name or IP address of Port Mapper

If specified, overrides imq.hostname. This might
be necessary, for instance, if the broker's host
computer has more than one network interface
card installed.

imq.portmapper.port2 Integer 7676 Port number of Port Mapper

Note: If multiple broker instances are running on
the same host, each must be assigned a unique
Port Mapper port.

imq.serviceName.protocolType.hostname3 String None Host name or IP address for connection service

If specified, overrides imq.hostname for the
designated connection service. This might be
necessary, for instance, if the broker's host
computer has more than one network interface
card installed.

imq.serviceName.protocolType.port3 Integer 0 Port number for connection service

A value of 0 specifies that the port number
should be allocated dynamically by the Port
Mapper. You might need to set a different value,
for instance, to specify a static port number for
connecting to the broker through a firewall.

imq.portmapper.backlog Integer 50 Maximum number of pending Port Mapper
requests in operating system backlog

Routing and Delivery Properties

Broker Properties Reference 17-3

Routing and Delivery Properties
This section includes the following tables:

imq.serviceName.threadpool_model4 String dedicated Threading model for thread pool management:

■ dedicated: Two dedicated threads per
connection, one for incoming and one for
outgoing messages

■ shared: Connections processed by shared
thread when sending or receiving messages

The dedicated model limits the number of
connections that can be supported, but provides
higher performance; the shared model increases
the number of possible connections, but at the
cost of lower performance because of the
additional overhead needed for thread
management.

imq.serviceName.min_threads Integer jms:
10ssljms:
10httpjms:
10 httpsjms:
10 admin:
4ssladmin: 4

Minimum number of threads maintained in
connection service's thread pool

When the number of available threads exceeds
this threshold, threads will be shut down as they
become free until the minimum is reached.

The default value varies by connection service, as
shown.

imq.serviceName.max_threads Integer jms:
1000ssljms:
500httpjms:
500httpsjms
: 500admin:
10ssladmin:
10

Number of threads beyond which no new
threads are added to the thread pool for use by
the named connection service

Must be greater than 0 and greater than the value
of imq.serviceName.min_threads.

The default value varies by connection service, as
shown.

imq.shared.connectionMonitor_limit5 Integer Solaris:
512Linux:
512Window
s: 64

Maximum number of connections monitored by
a distributor thread

The system allocates enough distributor threads
to monitor all connections. The smaller the value
of this property, the faster threads can be
assigned to active connections. A value of -1
denotes an unlimited number of connections per
thread.

The default value varies by operating-system
platform, as shown.

imq.ping.interval Integer 120 Interval, in seconds, at which to test connection
between client and broker

A value of 0 or -1 disables periodic testing of the
connection.

1 Must have the same value for all brokers in an enhanced cluster.
2 Can be used with imqcmd update bkr command
3 jms, ssljms, admin, and ssladmin services only; see HTTP/HTTPS Support for information on configuring the httpjms and

httpsjms services
4 jms and admin services only
5 Shared threading model only

Table 17–1 (Cont.) Broker Connection Properties

Property Type
Default
Value Description

Routing and Delivery Properties

17-4 Open Message Queue 4.5.2 Administration Guide

■ Table 17–2 lists the broker properties related to routing and delivery services

■ Table 17–3 lists the broker properties that configure the automatic creation of
destinations

■ Table 17–4 lists the broker properties that configure the administrative creation of
destinations

Table 17–2 Broker Routing and Delivery Properties

Property Type
Default
Value Description

imq.system.max_count1 Integer -1 Maximum number of messages held by broker

A value of -1 denotes an unlimited message count.

imq.system.max_size1 String -1 Maximum total size of messages held by broker

The value may be expressed in bytes, kilobytes, or
megabytes, using the following suffixes:

■ b: Bytes

■ k: Kilobytes (1024 bytes)

■ m: Megabytes (1024 × 1024 = 1,048,576 bytes)

An unsuffixed value is expressed in bytes; a value of
-1 denotes an unlimited message capacity.

Examples:

■ 1600: 1600 bytes

■ 1600b: 1600 bytes

■ 16k: 16 kilobytes (= 16,384 bytes)

■ 16m: 16 megabytes (= 16,777,216 bytes)

■ -1: No limit

imq.message.max_size1 String 70m Maximum size of a single message body

The syntax is the same as for imq.system.max_size
(see above).

imq.message.expiration.interval Integer 60 Interval, in seconds, at which expired messages are
removed

imq.resourceState.threshold Integer green:
0yellow:
80orange:
90red: 98

Percent utilization at which memory resource state
is triggered (where resourceState is green, yellow,
orange, or red)

imq.resourceState.count Integer green:
5000yell
ow:
500orang
e: 50red:
0

Maximum number of incoming messages allowed in
a batch before checking whether memory resource
state threshold has been reached (where resourceState
is green, yellow, orange , or red)

This limit throttles back message producers as
system memory becomes increasingly scarce.

imq.destination.DMQ.truncateBody1 Boolean false Remove message body before storing in dead
message queue?

If true, only the message header and property data
will be saved.

Routing and Delivery Properties

Broker Properties Reference 17-5

This table lists properties that configure the automatic creation of destinations.

imq.transaction.autorollback Boolean false Automatically roll back distributed transactions left
in prepared state at broker startup?

If false, transactions must be manually committed
or rolled back using the Command utility (imqcmd).

imq.transaction.producer.maxNumMs
gs

Integer 1000 The maximum number of messages that a producer
can process in a single transaction. It is
recommended that the value be less than 5000 to
prevent the exhausting of resources.

imq.transaction.consumer.maxNumMs
gs

Integer 100 The maximum number of messages that a consumer
can process in a single transaction. It is
recommended that the value be less than 1000 to
prevent the exhausting of resources.

1 Can be used with imqcmd update bkr command

Table 17–3 Broker Properties for Auto-Created Destinations

Property Type
Default
Value Description

imq.autocreate.queue1,2 Boolean true Allow auto-creation of queue
destinations?

imq.autocreate.topic3 Boolean true Allow auto-creation of topic
destinations?

imq.autocreate.reaptime Integer 120 seconds The delay, in seconds. before which
auto-created destinations are removed
from the system when they no longer
have consumers nor contain messages, .
A smaller value means that memory
reclamation takes place more often.

imq.autocreate.destination.maxNumMsgs Integer 100000 Maximum number of unconsumed
messages

A value of -1 denotes an unlimited
number of messages.

Note: When flow control is in effect
(imq.autocreate.destination.limitBe
havior = FLOW_CONTROL), it is possible for
the specified message limit to be
exceeded because the broker cannot react
quickly enough to stop the flow of
incoming messages. In such cases, the
value specified for
imq.autocreate.destination.maxNumMs
gs serves as merely a hint for the broker
rather than a strictly enforced limit.
However, if the number of unconsumed
messages would exceed
imq.system.max_count, the broker
generates a
ResourceAllocationException
indicating that the destination is full and
rejecting new messages.

Table 17–2 (Cont.) Broker Routing and Delivery Properties

Property Type
Default
Value Description

Routing and Delivery Properties

17-6 Open Message Queue 4.5.2 Administration Guide

imq.autocreate.destination.maxBytesPerMsg String 10k Maximum size, in bytes, of any single
message

The value may be expressed in bytes,
kilobytes, or megabytes, using the
following suffixes:

■ b: Bytes

■ k: Kilobytes (1024 bytes)

■ m: Megabytes (1024 × 1024 =
1,048,576 bytes)

An unsuffixed value is expressed in
bytes; a value of -1 denotes an unlimited
message size.

Examples:

■ 1600: 1600 bytes

■ 1600b: 1600 bytes

■ 16k: 16 kilobytes (= 16,384 bytes)

■ 16m: 16 megabytes (= 16,777,216
bytes)

■ -1: No limit

imq.autocreate.destination.maxTotalMsgByt
es

String 10m Maximum total memory, in bytes, for
unconsumed messages

The syntax is the same as for
imq.autocreate.destination.maxBytes
PerMsg (see above).

imq.autocreate.destination.limitBehavior String REJECT_
NEWEST

Broker behavior when memory-limit
threshold reached:

■ FLOW_CONTROL: Slow down
producers

■ REMOVE_OLDEST: Throw out oldest
messages

■ REMOVE_LOW_PRIORITY: Throw out
lowest-priority messages according
to age; no notification to producing
client

■ REJECT_NEWEST: Reject newest
messages; notify producing client
with an exception only if message is
persistent

When FLOW_CONTROL is specified, it is still
possible for the number of messages to
exceed imq.system.max_count. In this
situation, the broker generates a
ResourceAllocationException
indicating that the destination is full and
rejecting new messages.

If the value is REMOVE_OLDEST or REMOVE_
LOW_PRIORITY and the
imq.autocreate.destination.useDMQ
property is true, excess messages are
moved to the dead message queue.

Table 17–3 (Cont.) Broker Properties for Auto-Created Destinations

Property Type
Default
Value Description

Routing and Delivery Properties

Broker Properties Reference 17-7

imq.autocreate.destination.maxNumProducer
s

Integer 100 Maximum number of message producers
for destination

When this limit is reached, no new
producers can be created. A value of -1
denotes an unlimited number of
producers.

imq.autocreate.queue.maxNumActiveConsumer
s2

Integer -1 Maximum number of active message
consumers in load-balanced delivery
from queue destination

A value of -1 denotes an unlimited
number of consumers.

imq.autocreate.queue.maxNumBackupConsumer
s2

Integer 0 Maximum number of backup message
consumers in load-balanced delivery
from queue destination

A value of -1 denotes an unlimited
number of consumers.

imq.autocreate.queue.consumerFlowLimit2 Integer 1000 Maximum number of messages
delivered to queue consumer in a single
batch

In load-balanced queue delivery, this is
the initial number of queued messages
routed to active consumers before load
balancing begins. A destination
consumer can override this limit by
specifying a lower value on a
connection.

A value of 0 or -1 denotes an unlimited
number of messages.

imq.autocreate.topic.consumerFlowLimit3 Integer 1000 Maximum number of messages
delivered to topic consumer in a single
batch

A value of 0 or -1 denotes an unlimited
number of messages.

Not used when the JMS resource
adapter, jmsra, is used to consume
messages in a GlassFish Server cluster.

imq.autocreate.topic.sharedConsumerFlowLi
mit3

Integer 5 Maximum number of messages
delivered to topic consumer in a single
batch when the JMS resource adapter,
jmsra, is used to consume messages in a
GlassFish Server cluster

A value of 0 or -1 denotes an unlimited
number of messages.

imq.autocreate.destination.isLocalOnly Boolean false Local delivery only?

This property applies only to
destinations in broker clusters, and
cannot be changed once the destination
has been created. If true, the destination
is not replicated on other brokers and is
limited to delivering messages only to
local consumers (those connected to the
broker on which the destination is
created).

Table 17–3 (Cont.) Broker Properties for Auto-Created Destinations

Property Type
Default
Value Description

Routing and Delivery Properties

17-8 Open Message Queue 4.5.2 Administration Guide

This table lists properties that apply to all administratively created destinations. They
cannot be configured on individual administratively created destinations.

imq.autocreate.queue.localDeliveryPreferr
ed2

Boolean false Local delivery preferred?

This property applies only to
load-balanced queue delivery in broker
clusters. If true, messages will be
delivered to remote consumers only if
there are no consumers on the local
broker; the destination must not be
restricted to local-only delivery
(imq.autocreate.destination.isLocal
Only must be false).

imq.autocreate.destination.useDMQ Boolean true Send dead messages to dead message
queue?

If false, dead messages will simply be
discarded.

validateXMLSchemaEnabled Boolean false XML schema validation is enabled?

If set to false or not set, then XML
schema validation is not enabled for the
destination.

XMLSchemaURIList String null Space separated list of XML schema
document (XSD) URI strings

The URIs point to the location of one or
more XSDs to use for XML schema
validation, if enabled.

Use double quotes around this value if
multiple URIs are specified.

Example:

"http://foo/flap.xsd
http://test.com/test.xsd"

If this property is not set or null and
XML validation is enabled, XML
validation is performed using a DTD
specified in the XML document.

reloadXMLSchemaOnFailure Boolean false Reload XML schema on failure enabled?

If set to false or not set, then the schema
is not reloaded if validation fails.

1 Can be used with imqcmd update bkr command
2 Queue destinations only
3 Topic destinations only

Table 17–3 (Cont.) Broker Properties for Auto-Created Destinations

Property Type
Default
Value Description

Persistence Properties

Broker Properties Reference 17-9

Persistence Properties
Message Queue supports both file-based and JDBC-based persistence modules. The
broker property imq.persist.store (Table 17–5) specifies which module to use. The
following sections describe the broker configuration properties for the two modules.

File-Based Persistence Properties
Table 17–6 lists the broker properties related to file-based persistence.

Table 17–4 Broker Properties for Admin-Created Destinations

Property Type
Default
Value Description

imq.admincreate.topic.sharedConsumerFlowL
imit

Integer 5 Maximum number of messages delivered
to topic consumer in a single batch when
the JMS resource adapter, jmsra, is used
to consume messages in a GlassFish
Server cluster

A value of 0 or -1 denotes an unlimited
number of messages.

Table 17–5 Global Broker Persistence Property

Property Type Default Value Description

imq.persist.store String file Module used for persistent data storage:

■ file: File-based persistence

■ jdbc: JDBC-based persistence

Must be set to jdbc for enhanced broker
clusters (imq.cluster.ha = true).

Persistence Properties

17-10 Open Message Queue 4.5.2 Administration Guide

Table 17–6 Broker Properties for File-Based Persistence

Property Type

Defaul
t
Value Description

imq.persist.file.message.max_record_size String 1m Maximum-size message to add to
message storage file

Any message exceeding this size will
be stored in a separate file of its own.

The value may be expressed in bytes,
kilobytes, or megabytes, using the
following suffixes:

■ b: Bytes

■ k: Kilobytes (1024 bytes)

■ m: Megabytes (1024 × 1024 =
1,048,576 bytes)

An unsuffixed value is expressed in
bytes.

Examples:

■ 1600: 1600 bytes

■ 1600b: 1600 bytes

■ 16k: 16 kilobytes (= 16,384 bytes)

■ 16m: 16 megabytes (= 16,777,216
bytes)

imq.persist.file.destination.message.filepool.li
mit

Integer 100 Maximum number of free files
available for reuse in destination file
pool

Free files in excess of this limit will be
deleted. The broker will create and
delete additional files in excess of the
limit as needed.

The higher the limit, the faster the
broker can process persistent data.

imq.persist.file.message.filepool.cleanratio Integer 0 Percentage of files in free file pools to
be maintained in a clean (empty) state

The higher this value, the less disk
space is required for the file pool, but
the more overhead is needed to clean
files during operation.

Persistence Properties

Broker Properties Reference 17-11

File-Based Persistence Properties for Transaction Logging
Table 17–7 lists the file-based persistence properties for the transaction logging
mechanism.

imq.persist.file.message.cleanup Boolea
n

false Clean up files in free file pools on
shutdown?

Setting this property to true saves disk
space for the file store, but slows
broker shutdown.

imq.persist.file.sync.enabled Boolea
n

false Synchronize in-memory state with
physical storage device?

Setting this property to true eliminates
data loss due to system crashes, but at
a cost in performance.

Note: If running Oracle Solaris Cluster
and its Data Service for Message
Queue, set this property to true for
brokers on all cluster nodes.

imq.persist.file.transaction.memorymappedfile.en
abled

Boolea
n

true Use memory-mapped file to store
transaction data?

Setting this property to true improves
performance at the cost of increased
memory usage. Set to false for file
systems that do not support
memory-mapped files.

Table 17–6 (Cont.) Broker Properties for File-Based Persistence

Property Type

Defaul
t
Value Description

Persistence Properties

17-12 Open Message Queue 4.5.2 Administration Guide

Table 17–7 Broker Properties for File-Based Persistence Using the Transaction Logging Mechanism

Property Type

Defaul
t
Value Description

imq.persist.file.newTxnLog.enabled Boolean false Enables the transaction logging
mechanism. For information about
this mechanism, see Optimizing
File-Based Transaction Persistence.

Persistence Properties

Broker Properties Reference 17-13

imq.persist.file.txnLog.groupCommit Boolean false This property is applicable only if
imq.persist.file.newTxnLog.enabl
ed is true.

Can improve performance if
imq.persist.file.sync.enabled is
true and the number of concurrent
transactions being processed is high:

■ If true, write operations to the
transaction log are not handled
by individual connection threads;
instead, writes from connection
threads are added to a
transaction queue. The
connection threads then wait
until they are notified that the
transactions have been logged. A
separate thread periodically
drains the transaction queue and
writes it to the transaction log.
When possible, this thread
groups together multiple active
transactions and writes them to
the transaction log in a single
operation. After the write
completes, waiting client threads
are notified.

■ If false, write operations to the
transaction log are handled by
individual connection threads.
Only one thread at a time is able
to write to the log.

imq.persist.file.txnLog.logNonTransactedMsgSend Boolean false This property is applicable only if
imq.persist.file.newTxnLog.enabl
ed is true.

Overrides the behavior for persisting
non-transacted messages (as defined
by the
imq.persist.file.sync.enabled
property):

■ If true, non-transacted messages
are written to the transaction log
before they are written to the
persistent store.

■ If false, non-transacted
messages are written directly to
the persistent store.

Table 17–7 (Cont.) Broker Properties for File-Based Persistence Using the Transaction Logging

Property Type

Defaul
t
Value Description

Persistence Properties

17-14 Open Message Queue 4.5.2 Administration Guide

JDBC-Based Persistence Properties
Table 17–8 lists the broker properties related to JDBC-based persistence. The first of
these properties, imq.persist.jdbc.dbVendor, identifies the database vendor being
used for the broker's persistent data store; all of the remaining properties are qualified
by this vendor name.

imq.persist.file.txnLog.logNonTransactedMsgAck Boolean false This property is applicable only if
imq.persist.file.newTxnLog.enabl
ed is true.

Overrides the behavior for persisting
non-transacted message
acknowledgements (as defined by the
imq.persist.file.sync.enabled
property):

■ If true, acknowledgements of
non-transacted messages are
written to the transaction log
before they are written to the
persistent store.

■ If false, acknowledgements of
non-transacted messages are
written directly to the persistent
store.

Table 17–8 Broker Properties for JDBC-Based Persistence

Property Type

Defaul
t
Value Description

imq.persist.jdbc.dbVendor String None Name of database vendor for persistent
data store:

■ derby: Java DB (Oracle Corporation)

■ oracle: Oracle (Oracle Corporation)

■ mysql: MySQL (Oracle Corporation)

■ postgresql: postgreSQL

imq.persist.jdbc.connection.reaptime Integer 300 The interval in seconds between attempts to
close unnecessary database connections.

imq.persist.jdbc.max_connections Integer 5 The maximum number of connections that
should be opened to the database. The
Message Queue database connection pool
manager uses this value as a guide when
creating new connections to the database.

imq.persist.jdbc.min_connections Integer 5 The number of connections that are opened
to the database when the Message Queue
database connection pool is initialized, and
the minimum number of connections that
are to be kept open when unnecessary
connections are closed.

Table 17–7 (Cont.) Broker Properties for File-Based Persistence Using the Transaction Logging

Property Type

Defaul
t
Value Description

Persistence Properties

Broker Properties Reference 17-15

imq.persist.jdbc.connection.timeoutIdle Boolean true Should the Message Queue database
connection pool manager considers the age
of a connection in the pool?

When true, the pool manager operates as
follows:

■ When closing unnecessary database
connections at each
imq.persist.jdbc.connection.reapt
ime interval, the pool manager destroys
any connections in the pool that have
been idle for a period longer than
imq.persist.jdbc.connection.reapt
ime seconds, and attempts to replace
them with new connections.

■ When getting a connection from the
pool, the pool manager destroys the
connection if it has been idle for a
period longer than
imq.persist.jdbc.connection.reapt
ime seconds and replaces it with a new
connection.

imq.persist.jdbc.connection.validateOnGet Boolean true
for
broker
s in
enhanc
ed
cluster
s;
otherw
ise,
false

Should the Message Queue database
connection pool manager perform extra
validation when it gets a connection from
the pool?

Normally, the pool manager validates a
connection it gets from the pool by checking
whether the connection is closed and, if
possible, by checking whether a connection
error has occurred on the connection.

When this property is set to true, the pool
manager performs these additional
validation checks:

■ For JDBC 4 connections, check whether
the connection is valid.

■ Make the validation query specified by
imq.persist.jdbc.connection.valid
ationQuery on the connection.

Regardless of the value of this property,
Message Queue relies on the underlying
JDBC driver to return a good connection
when it needs to create a new connection
through the driver. Therefore, you should
set imq.persist.jdbc.vendorName.driver
to a vendor JDBC driver that performs
connection retries when creating a new
connection to the database server; for
example, a ConnectionPoolDataSource.

imq.persist.jdbc.connection.validationQuery String per
vendor

The validation query for the Message
Queue database connection pool manager
to use when
imq.persist.jdbc.connection.validateO
nGet is set to true.

Table 17–8 (Cont.) Broker Properties for JDBC-Based Persistence

Property Type

Defaul
t
Value Description

Security Properties

17-16 Open Message Queue 4.5.2 Administration Guide

Security Properties
Table 17–9 lists broker properties related to security services: authentication,
authorization, and encryption. Table 17–10 lists broker properties related specifically to
file-based authentication, Table 17–11 lists broker properties related specifically to
LDAP-based authentication, and Table 17–12 lists broker properties related specifically
to JAAS-based authentication.

imq.persist.jdbc.connection.limit Integer 5 The maximum number of connections that
can be opened to the database.

This property is deprecated and may
become unsupported in a future release of
Message Queue.

imq.persist.jdbc.vendorName.driver String per
vendor

Java class name of JDBC driver, if needed,
for connecting to database from vendor
vendorName

imq.persist.jdbc.vendorName.opendburl String None URL for connecting to existing database
from vendor vendorName

Applicable when driver is used to connect
to database.

imq.persist.jdbc.vendorName.createdburl1 String None URL for creating new database from vendor
vendorName

Applies for embedded database, such as
Java DB.

imq.persist.jdbc.vendorName.closedburl1 String None URL for closing connection to database
from vendor vendorName

Applies for some embedded databases,
such as Java DB.

imq.persist.jdbc.vendorName.user1 String None User name, if required, for connecting to
database from vendor vendorName

For security reasons, the value can instead
be specified using command line options
imqbrokerd dbuser and imqdbmgr u.

imq.persist.jdbc.vendorName.needpassword1 Boolean false Does database from vendor vendorName
require a password for broker access?

If true, the imqbrokerd and imqdbmgr
commands will prompt for a password,
unless you use the -passfile option to
specify a password file containing it.

imq.persist.jdbc.vendorName.password1,2 String None Password, if required, for connecting to
database from vendor vendorName

imq.persist.jdbc.vendorName.property.propNa
me1

String None Vendor-specific property propName for
database from vendor vendorName

imq.persist.jdbc.vendorName.tableoption1 String None Vendor-specific options passed to the
database when creating the table schema.

1 Optional
2 Should be used only in password files

Table 17–8 (Cont.) Broker Properties for JDBC-Based Persistence

Property Type

Defaul
t
Value Description

Security Properties

Broker Properties Reference 17-17

Table 17–9 Broker Security Properties

Property Type Default Value Description

imq.authentication.basic.user_repository String file Type of user authentication:

■ file: File-based

■ ldap: Lightweight
Directory Access
Protocol

■ jaas: Java
Authentication and
Authorization Service

imq.authentication.type String digest Password encoding method:

■ digest: MD5 (for
file-based
authentication)

■ basic: Base-64 (for
LDAP or JAAS
authentication)

imq.serviceName.authentication.type String None Password encoding method
for connection service
serviceName:

■ digest: MD5 (for
file-based
authentication)

■ basic: Base-64 (for
LDAP or JAAS
authentication)

If specified, overrides
imq.authentication.type
for the designated connection
service.

imq.authentication.client.response.timeou
t

Integer 180 Interval, in seconds, to wait
for client response to
authentication requests

imq.accesscontrol.enabled Boolean true Use access control?

If true, the system will check
the access control file to
verify that an authenticated
user is authorized to use a
connection service or to
perform specific operations
with respect to specific
destinations.

imq.accesscontrol.type String file Specifies the access control
type

Security Properties

17-18 Open Message Queue 4.5.2 Administration Guide

imq.serviceName.accesscontrol.enabled Boolean None Use access control for
connection service?

If specified, overrides
imq.accesscontrol.enabled
for the designated connection
service.

If true, the system will check
the access control file to
verify that an authenticated
user is authorized to use the
designated connection
service or to perform specific
operations with respect to
specific destinations.

imq.accesscontrol.file.dirpath String IMQ_
VARHOME/instances/
instanceName/etc

Path to the access control
directory

imq.accesscontrol.file.filename String accesscontrol.propert
ies

Name of access control file

The file name specifies a path
relative to
imq.accesscontrol.file.di
rpath.

imq.serviceName.accesscontrol.file.filenam
e

String None Name of access control file
for connection service

If specified, overrides
imq.accesscontrol.file.fi
lename for the designated
connection service.

The file name specifies a path
relative to
imq.accesscontrol.file.di
rpath.

imq.accesscontrol.file.url String Not set The location, as a URL, of the
access control file.

If the URL uses LDAP
protocol (ldap://), the access
control file must be returned
as a single string that uses
dollar sign ($) as the
separator between the lines
of the access control file.

imq.serviceName.accesscontrol.file.url String None The location, as a URL, of the
access control file for the
connection service.

If specified, overrides
imq.accesscontrol.file.ur
l for the designated
connection service.

If the URL uses LDAP
protocol (ldap://), the access
control file must be returned
as a single string that uses
dollar sign ($) as the
separator between the lines
of the access control file.

Table 17–9 (Cont.) Broker Security Properties

Property Type Default Value Description

Security Properties

Broker Properties Reference 17-19

Table 17–10 lists broker properties related to user authentication when using a flat-file
user repository.

Table 17–11 lists broker properties related to LDAP-based user authentication.

imq.keystore.file.dirpath String IMW_HOME/etc Path to directory containing
key store file

imq.keystore.file.name String keystore Name of key store file

imq.keystore.password1 String None Password for key store file

imq.passfile.enabled Boolean false Obtain passwords from
password file?

imq.passfile.dirpath String IMQ_HOME/etc Path to directory containing
password file

imq.passfile.name String passfile Name of password file

imq.imqcmd.password1 String None Password for administrative
user

The Command utility
(imqcmd) uses this password
to authenticate the user
before executing a command.

imq.audit.enabled Boolean false Is audit logging to broker log
file enabled?

imq.audit.bsm.disabled Boolean true Is audit logging to the Solaris
BSM audit log disabled?

1 To be used only in password files

Table 17–10 Broker Security Properties for Flat-File Authentication

Property Type Default Value Description

imq.user_repository.file.dirpath String IMQ_
VARHOME/instances/
instanceName/etc/

Path to the directory
containing the flat-file user
repository

imq.user_repository.file.filename String passwd Name of the flat-file user
repository file in the directory
specified by imq.user_
repository.file.dirpath

Table 17–9 (Cont.) Broker Security Properties

Property Type Default Value Description

Security Properties

17-20 Open Message Queue 4.5.2 Administration Guide

Table 17–11 Broker Security Properties for LDAP Authentication

Property Type Default Value Description

imq.user_repository.ldap.server String None Host name and port number
for LDAP server

The value is of the form

■ hostName:port

where hostName is the fully
qualified DNS name of the
host running the LDAP
server and port is the port
number used by the server.

To specify a list of failover
servers, use the following
syntax:

■ host1:port1

■ ldap://host2: port2

■ ldap://host3 :port3

■ …

Entries in the list are
separated by spaces. Note
that each failover server
address is prefixed with
ldap://. Use this format
even if you use SSL and have
set the property imq.user_
repository.ldap.ssl.enabl
ed to true. You need not
specify ldaps in the address.

imq.user_repository.ldap.principal String None Distinguished name for
binding to LDAP user
repository

Not needed if the LDAP
server allows anonymous
searches.

imq.user_repository.ldap.password1 String None Password for binding to
LDAP user repository

Not needed if the LDAP
server allows anonymous
searches.

imq.user_repository.ldap.propertyName

imq.user_repository.ldap.base String None Directory base for LDAP user
entries

imq.user_repository.ldap.uidattr String None Provider-specific attribute
identifier for LDAP user
name

Security Properties

Broker Properties Reference 17-21

Table 17–12 lists broker properties related to JAAS-based user authentication.

imq.user_repository.ldap.usrformat String None When set to a value of dn,
specifies that DN username
format is used for
authentication (for example:
uid=mquser, ou=People,
dc=red, dc=sun, dc=com).

Also, the broker extracts the
value of the
imq.user.repository.lpdap
.uidatr attribute from the
DN username, and uses this
value as the user name in
access control operations.

If not set, then normal
username format is used.

imq.user_repository.ldap.usrfilter2 String None JNDI filter for LDAP user
searches

imq.user_repository.ldap.grpsearch Boolean false Enable LDAP group
searches?

Note: Message Queue does
not support nested groups.

imq.user_repository.ldap.grpbase String None Directory base for LDAP
group entries

imq.user_repository.ldap.gidattr String None Provider-specific attribute
identifier for LDAP group
name

imq.user_repository.ldap.memattr String None Provider-specific attribute
identifier for user names in
LDAP group

imq.user_repository.ldap.grpfilter2 String None JNDI filter for LDAP group
searches

imq.user_repository.ldap.timeout Integer 280 Time limit for LDAP
searches, in seconds

imq.user_repository.ldap.ssl.enabled Boolean false Use SSL when
communicating with LDAP
server?

imq.user_
repository.ldap.ssl.socketfactory

String com.sun.messaging.jmq
.
jmsserver.auth.ldap.
TrustSSLSocketFactory

The fully qualified class
name of the socket factory to
use to make SSL connections
to the LDAP server.

When this property is not set
and imq.user_
repository.ldap.ssl.enabl
ed is set to true, the default
socket factory designated by
the LDAP naming service is
used.

1 Should be used only in password files
2 Optional

Table 17–11 (Cont.) Broker Security Properties for LDAP Authentication

Property Type Default Value Description

Monitoring Properties

17-22 Open Message Queue 4.5.2 Administration Guide

Monitoring Properties
Table 17–13 lists the broker properties related to monitoring services.

Table 17–12 Broker Security Properties for JAAS Authentication

Property Type Default Value Description

imq.user_repository.jaas.name String None Set to the name of the desired
entry (in the JAAS
configuration file) that
references the login modules
you want to use as the
authentication service.

imq.user_
repository.jaas.userPrincipalClass

String None This property, used by
Message Queue access
control, specifies the
java.security.Principal
implementation class in the
login module(s) that the
broker uses to extract the
Principal name to represent
the user entity in the Message
Queue access control file. If, it
is not specified, the user name
passed from the Message
Queue client when a
connection was requested is
used instead.

imq.user_
repository.jaas.groupPrincipalClass

String None This property, used by
Message Queue access
control, specifies the
java.security.Principal
implementation class in the
login module(s) that the
broker uses to extract the
Principal name to represent
the group entity in the
Message Queue access control
file. If, it is not specified, the
user name passed from the
Message Queue client when a
connection was requested is
used instead.

Monitoring Properties

Broker Properties Reference 17-23

Table 17–13 Broker Monitoring Properties

Property Type Default Value Description

imq.log.level1 String INFO Logging level

Specifies the categories of
logging information that can be
written to an output channel.
Possible values, from high to
low:

■ ERROR

■ WARNING

■ INFO

Each level includes those above
it (for example, WARNING
includes ERROR).

imq.destination.logDeadMsgs1 Boolean false Log information about dead
messages?

If true, the following events
will be logged:

■ A destination is full,
having reached its
maximum size or message
count.

■ The broker discards a
message for a reason other
than an administrative
command or delivery
acknowledgment.

■ The broker moves a
message to the dead
message queue.

imq.log.console.stream String ERR Destination for console output:

■ OUT: stdout

■ ERR: stderr

imq.log.console.output String ERROR|WARNING Categories of logging
information to write to console:

■ NONE

■ ERROR

■ WARNING

■ INFO

■ ALL

The ERROR, WARNING, and INFO
categories do not include those
above them, so each must be
specified explicitly if desired.
Any combination of categories
can be specified, separated by
vertical bars (|).

imq.log.file.dirpath String IMQ_VARHOME/instances/
instanceName/log

Path to directory containing log
file

imq.log.file.filename String log.txt Name of log file

Monitoring Properties

17-24 Open Message Queue 4.5.2 Administration Guide

imq.log.file.output String ALL Categories of logging
information to write to log file:

■ NONE

■ ERROR

■ WARNING

■ INFO

■ ALL

The ERROR, WARNING, and INFO
categories do not include those
above them, so each must be
specified explicitly if desired.
Any combination of categories
can be specified, separated by
vertical bars (|).

imq.log.file.rolloverbytes1 Integer -1 File length, in bytes, at which
output rolls over to a new log
file

A value of -1 denotes an
unlimited number of bytes (no
rollover based on file length).

imq.log.file.rolloversecs1 Integer 604800 (one week) Age of file, in seconds, at which
output rolls over to a new log
file

A value of -1 denotes an
unlimited number of seconds
(no rollover based on file age).

imq.log.syslog.output2 String ERROR Categories of logging
information to write to
syslogd(1M):

■ NONE

■ ERROR

■ WARNING

■ INFO

■ ALL

The ERROR, WARNING, and INFO
categories do not include those
above them, so each must be
specified explicitly if desired.
Any combination of categories
can be specified, separated by
vertical bars (|).

Table 17–13 (Cont.) Broker Monitoring Properties

Property Type Default Value Description

Monitoring Properties

Broker Properties Reference 17-25

imq.log.syslog.facility2 String LOG_DAEMON syslog facility for logging
messages

Possible values mirror those
listed on the syslog(3C) man
page. Appropriate values for
use with Message Queue
include:

■ LOG_USER

■ LOG_DAEMON

■ LOG_LOCAL0

■ LOG_LOCAL1

■ LOG_LOCAL2

■ LOG_LOCAL3

■ LOG_LOCAL4

■ LOG_LOCAL5

■ LOG_LOCAL6

■ LOG_LOCAL7

imq.log.syslog.identity2 String imqbrokerd_
${imq.instanceName}

Identity string to be prefixed to
all messages logged to syslog

imq.log.syslog.logpid2 Boolean true Log broker process ID with
message?

imq.log.syslog.logconsole2 Boolean false Write messages to system
console if they cannot be sent
to syslog?

imq.log.timezone String Local time zone Time zone for log time stamps

Possible values are the same as
those used by the method
java.util.TimeZone.getTimeZ
one.

Examples:

■ GMT

■ GMT-8:00

■ America/LosAngeles

■ Europe/Rome

■ Asia/Tokyo

imq.metrics.enabled Boolean true Enable writing of metrics
information to Logger?

Does not affect the production
of metrics messages (controlled
by
imq.metrics.topic.enabled).

Table 17–13 (Cont.) Broker Monitoring Properties

Property Type Default Value Description

Cluster Configuration Properties

17-26 Open Message Queue 4.5.2 Administration Guide

Cluster Configuration Properties
Table 17–14 lists the configuration properties related to broker clusters.

imq.metrics.interval Integer -1 Time interval, in seconds, at
which to write metrics
information to Logger

Does not affect the time
interval for production of
metrics messages (controlled
by
imq.metrics.topic.interval).

A value of -1 denotes an
indefinite interval (never write
metrics information to Logger).

imq.metrics.topic.enabled Boolean true Enable production of metrics
messages to metric topic
destinations?

If false, an attempt to
subscribe to a metric topic
destination will throw a
client-side exception.

imq.metrics.topic.interval Integer 60 Time interval, in seconds, at
which to produce metrics
messages to metric topic
destinations

imq.metrics.topic.persist Boolean false Are metrics messages sent to
metric topic destinations
persistent?

imq.metrics.topic.timetolive Integer 300 Lifetime, in seconds, of metrics
messages sent to metric topic
destinations

imq.primaryowner.name3 String System property user.name
(user who started the broker)

Name of primary system
owner

imq.primaryowner.contact3 String System property user.name
(user who started the broker)

Contact information for
primary system owner

imq.broker.adminDefinedRoles.cou
nt3

Integer None Number of defined roles

imq.broker.adminDefinedRoles.nam
eN3

String Broker instance name Name of defined role N (where
N ranges from 0 to .count-1)

Example:

...name0=Stocks JMS Server

...name1=JMS provider for
appserver

1 Can be used with imqcmd update bkr command
2 Solaris platform only
3 Used by JES Monitoring Framework

Table 17–13 (Cont.) Broker Monitoring Properties

Property Type Default Value Description

Cluster Configuration Properties

Broker Properties Reference 17-27

Table 17–14 Broker Properties for Cluster Configuration

Property Type
Default
Value Description

imq.cluster.url1,2 String None URL of cluster configuration file, if any

Examples:

■ http://webserver/imq/cluster.properties

■ (for a file on a Web server)

■ file:/net/mfsserver/imq/cluster.properties

■ (for a file on a shared drive)

imq.cluster.hostname3 String None Host name or IP address for cluster connection
service

If specified, overrides imq.hostname (see Table 17–1)
for the cluster connection service. This might be
necessary, for instance, if the broker's host computer
has more than one interface card installed.

imq.cluster.port3 Integer 0 Port number for cluster connection service

A value of 0 specifies that the port number should be
allocated dynamically by the Port Mapper. You might
need to set a different value, for instance, to specify a
static port number for connecting to the broker
through a firewall.

imq.cluster.transport1 String tcp Network transport protocol for cluster connection
service

For secure, encrypted message delivery between
brokers, set this property to ssl.

imq.cluster.ha Boolean false Is broker part of an enhanced (high-availability)
cluster?

Additional Properties for
Conventional Clusters

imq.cluster.brokerlist1 ,4 String None List of broker addresses belonging to cluster

The list consists of one or more addresses, separated
by commas. Each address specifies the Port Mapper
host name and Port Mapper port number of a broker
in the cluster, in the form hostName:portNumber.

Example:

■ host1:3000,host2:8000,ctrlhost

Literal IP addresses as host names: You can use a
literal IPv4 or IPv6 address as a host name. If you use
a literal IPv6 address, its format must conform to
RFC2732
(http://www.ietf.org/rfc/rfc2732.txt),
Format for Literal IPv6 Addresses in URL's.

Note: If set, this property is ignored (and a warning
logged) for high-availability clusters; all brokers
configured to use the cluster's shared persistent store
are automatically recognized as members of the
cluster.

Cluster Configuration Properties

17-28 Open Message Queue 4.5.2 Administration Guide

imq.cluster.nomasterbroker1,4 Boolean false Specifies whether a conventional cluster uses a shared
JDBC database store for the cluster configuration
change record instead of using a master broker.

Set to true for a conventional cluster of peer brokers,
which uses a shared JDBC store for the cluster's
configuration change record.

When set to true, the imq.cluster.clusterid must
be set, and the
imq.cluster.sharecc.persist.jdbc.* properties
must be configured for accessing the shared JDBC
store.

imq.cluster.masterbroker1,4 String None Port Mapper host name and Port Mapper port
number of host on which cluster's master broker (if
any) is running.

The value has the form hostName:portNumber, where
hostName is the Port Mapper host name of the master
broker's host and portNumber is its Port Mapper port
number.

Example:

■ ctrlhost:7676

Literal IP addresses as host names: You can use a
literal IPv4 or IPv6 address as a host name. If you use
a literal IPv6 address, its format must conform to
RFC2732
(http://www.ietf.org/rfc/rfc2732.txt),
Format for Literal IPv6 Addresses in URL's.

Note: enhanced clusters cannot have a master broker.
If this property is set for a broker belonging to an
enhanced cluster, the broker will log a warning
message and ignore the property.

imq.cluster.dynamicChangeMasterBr
okerEnabled1,4

Boolean false Can the master broker for the cluster be changed
dynamically; that is, without stopping all the brokers
in the cluster?

If set to true, you can use the imqcmd changemaster
command to change the master broker without
stopping the brokers in the cluster.

If set to true, the imq.cluster.masterbroker
property cannot be specified on the imqbrokerd
command line.

imq.cluster.sharecc.persist.jdbc.
dbVendor1,4

String None Name of database vendor for shared JDBC data store
housing the cluster configuration change record:

■ db2: DB2

■ derby: Java DB (Oracle Corporation)

■ oracle: Oracle (Oracle Corporation)

■ mysql: MySQL (Oracle Corporation)

■ postgresql: postgreSQL

imq.cluster.sharecc.persist.jdbc.
vendorName.driver1 ,4

String per
Vendor

Java class name of the JDBC driver, if needed, for
connecting to database from vendor vendorName for
shared JDBC data store housing the cluster
configuration change record

Table 17–14 (Cont.) Broker Properties for Cluster Configuration

Property Type
Default
Value Description

Cluster Configuration Properties

Broker Properties Reference 17-29

imq.cluster.sharecc.persist.jdbc.
vendorName.opendburl1,4

String None URL for connecting to existing database from vendor
vendorName for shared JDBC data store housing the
cluster configuration change record

Applicable when a java.sql.Driver is used to
connect to database.

imq.cluster.sharecc.persist.jdbc.
vendorName.createdburl1,4

String None URL for creating new database from vendor
vendorName for shared JDBC data store housing the
cluster configuration change record

Applicable for embedded databases, such as Java DB.

imq.cluster.sharecc.persist.jdbc.
vendorName.closedburl1,4

String None URL for closing connection to database from vendor
vendorName for shared JDBC data store housing the
cluster configuration change record

Applicable for some embedded databases, such as
Java DB.

imq.cluster.sharecc.persist.jdbc.
vendorName.tableoption1,4

String None,
except
for
MySQL

Vendor-specific options passed to database from
vendor vendorName for shared JDBC data store
housing the cluster configuration change record when
creating the table schema

For information about this property's use, see the
default broker properties file, default.properties.

imq.cluster.sharecc.persist.jdbc.
vendorName.user1 ,4

String None User name, if required, for connecting to database
from vendor vendorName for shared JDBC data store
housing the cluster configuration change record

imq.cluster.sharecc.persist.jdbc.
vendorName.needpassword1,4

Boolean false Does database from vendor vendorName for shared
JDBC data store housing the cluster configuration
change record require a password for broker access?

If true, the imqbrokerd and imqdbmgr commands will
prompt for a password unless the following property,
password is set.

imq.cluster.sharecc.persist.jdbc.
vendorName.password1,4

String None Password, if required, for connecting to database from
vendor vendorName for shared JDBC data store
housing the cluster configuration change record

This property should only be specified in a password
file, as described in Password Files.

imq.cluster.sharecc.persist.jdbc.
vendorName.property.propName1,4

String None Optional vendor-specific property propName for the
JDBC driver from vendor vendorName for shared
JDBC data store housing the cluster configuration
change record

Additional Properties for Enhanced
(High-Availability) Clusters

imq.cluster.clusterid1 ,5 String None Cluster identifier

Must be a unique alphanumeric string of no more
than n-13 characters, where n is the maximum table
name length allowed by the database. No two
running clusters may have the same cluster identifier.

This string is appended to the names of all database
tables in the cluster's shared persistent store.

Note: For brokers belonging to a high-availability
cluster, this property is used in database table names
in place of imq.brokerid (see Table 17–1).

Table 17–14 (Cont.) Broker Properties for Cluster Configuration

Property Type
Default
Value Description

Bridge Properties

17-30 Open Message Queue 4.5.2 Administration Guide

Bridge Properties
Table 17–15 lists broker properties related to the bridge service manager. Table 17–16
lists broker properties related specifically to the JMS bridge service, and Table 17–17
lists broker properties related specifically to the STOMP bridge service.

imq.cluster.ha.takeoverWaitTimeou
t5

Integer 300 Time in seconds a failed broker attempting to restart
waits for an existing takeover activity (from the
broker's initial failure) to complete before exiting its
restart attempt

imq.cluster.heartbeat.hostname5 String None Host name for heartbeat service

If specified, overrides imq.hostname (see Table 17–1)
for the heartbeat service.

imq.cluster.heartbeat.port5 Integer 7676 Port number for heartbeat service

A value of 0 specifies that the port number should be
allocated dynamically by the Port Mapper.

imq.cluster.heartbeat.interval5 Integer 2 Interval between heartbeats, in seconds

imq.cluster.heartbeat.threshold5 Integer 3 Number of missed heartbeat intervals after which to
invoke monitor service

imq.cluster.monitor.interval5 Integer 30 Interval, in seconds, at which to update monitor time
stamp

Note: Larger values for this property will reduce the
frequency of database access and thus improve
overall system performance, but at the cost of slower
detection and takeover in the event of broker failure.

imq.cluster.monitor.threshold5 Integer 2 Number of missed monitor intervals after which to
initiate broker takeover

1 Must have the same value for all brokers in a cluster.
2 Can be used with the imqcmd update bkr command.
3 Can be specified independently for each broker in a cluster.
4 Conventional clusters only
5 Enhanced (high-availability) clusters only

Table 17–15 Broker Properties for the Bridge Service Manager

Property Type
Default
Value Description

imq.bridge.enabled Boolean false Is the bridge service enabled on this broker?

imq.bridge.activelist String None List of bridges that will be loaded on broker startup.

The list consists of one or more bridge names,
separated by commas. All bridge names for a broker
must be unique.

imq.bridge.admin.user String None The Message Queue broker administrative user to be
used by the bridge service manager and individual
bridges to create ADMIN connections to the broker.
For JMS bridges, this user is also used to access the
JMS bridge's built-in DMQ destination.

imq.bridge.admin.password String None The password for the imq.bridge.admin.user user.

Table 17–14 (Cont.) Broker Properties for Cluster Configuration

Property Type
Default
Value Description

Bridge Properties

Broker Properties Reference 17-31

Table 17–16 Broker Properties for a JMS Bridge Service

Property Type
Default
Value Description

imq.bridge.name.type String None The bridge type of the bridge named name. For JMS
bridges, specify a value of JMS or jms.

imq.bridge.name.xmlurl String None The URL where the XML configuration file for the
JMS bridge name is stored.

Examples:

■ http://webserver/imq/jmsbridge1.config.xml

■ (for a file on a Web server)

■ file:/net/fileserver/imq/jmsbridge1.config.xm
l

■ (for a file on a shared drive)

imq.bridge.name.autostart Boolean true Should the JMS bridge name be automatically started
when the broker is started?

imq.bridge.name.logfile.limit Integer 0 The approximate maximum number of bytes the JMS
bridge name writes to any one log file.

A value of 0 (zero) indicates that there is no maximum
limit.

imq.bridge.name.logfile.count Integer 1 The number of log files the JMS bridge name cycles
through.

imq.bridge.tm.props

imq.bridge.name.tm.props

String None Each of these properties specifies a list of key-value
pairs for the built-in transaction coordinator for the
JMS bridge name.

The list consists of one or more key=value pairs
separated by commas.

When the imq.persist.store is file, the built-in
transaction coordinator supports these keys:
txlogSize, txlogSync, and txlogMmap.

If the same key appears in both properties, the value
specified in imq.bridge.name.tm.props takes
precedence.

Table 17–17 Broker Properties for the STOMP Bridge Service

Property Type
Default
Value Description

imq.bridge.stomp.hostname String None Host name or IP address for the STOMP bridge
service

If specified, overrides imq.hostname (see Table 17–1)
for the STOMP bridge service.

imq.bridge.stomp.tcp.enabled Boolean true Does the STOMP bridge accept TCP connections?

imq.bridge.stomp.tcp.port Integer 7672 The port on which the STOMP bridge listens for TCP
connections, provided that
imq.bridge.stomp.tcp.enabled is true.

imq.bridge.stomp.tls.enabled Boolean false Does the STOMP bridge accept SSL/TLS connections?

If true, a keystore must be created using the
imqkeytool utility before starting the broker.

imq.bridge.stomp.tls.port Integer 7673 The port on which the STOMP bridge listens for
SSL/TLS connections, provided that
imq.bridge.stomp.tls.enabled is true.

JMX Properties

17-32 Open Message Queue 4.5.2 Administration Guide

JMX Properties
The broker properties listed in Table 17–18 support the use of the Java Management
Extensions (JMX) application programming interface by Java applications. The JMX
API is used to configure and monitor broker resources.

These JMX-related properties can be set in the broker's instance configuration file
(config.properties) or at broker startup with the -D option of the Broker utility
(imqbrokerd). None of these properties can be set dynamically with the Command
utility (imqcmd).

In addition, some of these properties (imq.jmx.rmiregistry.start,
imq.jmx.rmiregistry.use, imq.jmx.rmiregistry.port) can be set with
corresponding Broker utilityimqbrokerd options described in Table 16–1.

See JMX Support for further information on administrative support of JMX clients.

imq.bridge.stomp.tls.requireClien
tAuth

Boolean false Do SSL/TLS connections require client
authentication?

imq.bridge.stomp.consumerFlowLimi
t

Integer 1000 The maximum number of unacknowledged messages
that the STOMP bridge will deliver on a transacted
STOMP subscription. The STOMP client must then
acknowledge the messages and commit the
transaction.

imq.bridge.stomp.messageTransform
er

String None The fully qualified class name of a class that extends
the Message Queue bridge MessageTransformer
abstract class by implementing the transform()
method. Place this class under the IMQ_HOME/lib/ext.
directory

imq.bridge.stomp.logfile.limit Integer 0 The approximate maximum number of bytes the
STOMP bridge writes to any one log file.

A value of 0 (zero) indicates that there is no maximum
limit.

imq.bridge.stomp.logfile.count Integer 1 The number of log files the STOMP bridge cycles
through.

Table 17–17 (Cont.) Broker Properties for the STOMP Bridge Service

Property Type
Default
Value Description

JMX Properties

Broker Properties Reference 17-33

Table 17–18 Broker Properties for JMX Support

Property Type Default Value Description

imq.jmx.connector.activelist String jmxrmi Names of JMX connectors to be activated
at broker startup, separated by commas

imq.jmx.connector.RMIconnectorName.url
path

String Shown in next
column

urlpath component of JMX service URL
for connector connectorName

Useful in cases where an RMI registry is
being used and the JMX service URL
path must be set explicitly (such as when
a shared external RMI registry is used).
See The JMX Service URL.

Default:

/jndi/rmi://brokerHost:rmiPort
/brokerHost/brokerPort/connectorNam
e

imq.jmx.connector.RMIconnectorName.por
t

Integer None: the port
is dynamically
allocated

Port number of JMX connector

Used to specify a static/known JMX
connector port, typically in cases where a
JMX client is accessing the broker's
MBean server through a firewall. See
JMX Connections Through a Firewall.

imq.jmx.connector.RMIconnectorName.use
SSL

Boolean false Use Secure Socket Layer (SSL) for
connector connectorName?

This property is set to true for the
ssljmxrmi connector.

imq.jmx.connector.RMIconnectorName.bro
kerHostTrusted

Boolean false Trust any certificate presented by broker
for connector connectorName?

Applies only when
imq.jmx.connector.connectorName.useS
SL is true.

If false, the JMX client runtime will
validate all certificates presented to it.
Validation will fail if the signer of the
certificate is not in the client's trust store.

If true, validation of certificates is
skipped. This can be useful, for instance,
during software testing when a
self-signed certificate is used.

Alphabetical List of Broker Properties

17-34 Open Message Queue 4.5.2 Administration Guide

Alphabetical List of Broker Properties
Alphabetical List of Broker Properties is an alphabetical list of broker configuration
properties, with cross-references to the relevant tables in this chapter.

imq.jmx.rmiregistry.start Boolean false Start RMI registry at broker startup?

If true, the broker will start an RMI
registry at the port specified by
imq.jmx.rmiregistry.port and use the
regsitry to store the JMX connector stub.
(The value of imq.jmx.rmiregistry.use
is ignored in this case.)

For convenience, this property can also
be set at broker startup with the
-startRmiRegistry option
ofimqbrokerd.

imq.jmx.rmiregistry.use Boolean false Use an existing RMI registry?

Applies only if
imq.jmx.rmiregistry.start is false.

If true, the broker will use an existing
RMI registry on the local host at the port
specified by imq.jmx.rmiregistry.port
to store the JMX connector stub. The
existing RMI registry must already be
running at broker startup.

For convenience, this property can also
be set at broker startup with the
-useRmiRegistry option ofimqbrokerd.

imq.jmx.rmiregistry.port Integer 1099 Port number of RMI registry

Applies only if
imq.jmx.rmiregistry.start is true or
imq.jmx.rmiregistry.use is true.

This port number will be included in the
URL path of the JMX service URL.

For convenience, this property can also
be set at broker startup with the
-rmiRegistryPort option of imqbrokerd.

Table 17–19 Alphabetical List of Broker Properties

Property Table

imq.accesscontrol.enabled Table 17–9

imq.accesscontrol.type Table 17–9

imq.accesscontrol.file.filename Table 17–9

imq.admincreate.topic.sharedConsumerFlowLimit Table 17–4

imq.audit.bsm.disabled Table 17–9

imq.audit.enabled Table 17–9

imq.authentication.basic.user_repository Table 17–9

imq.authentication.client.response.timeout Table 17–9

Table 17–18 (Cont.) Broker Properties for JMX Support

Property Type Default Value Description

Alphabetical List of Broker Properties

Broker Properties Reference 17-35

imq.authentication.type Table 17–9

imq.autocreate.destination.isLocalOnly Table 17–3

imq.autocreate.destination.limitBehavior Table 17–3

imq.autocreate.destination.maxBytesPerMsg Table 17–3

imq.autocreate.destination.maxNumMsgs Table 17–3

imq.autocreate.destination.maxNumProducers Table 17–3

imq.autocreate.destination.maxTotalMsgBytes Table 17–3

imq.autocreate.destination.useDMQ Table 17–3

imq.autocreate.queue Table 17–3

imq.autocreate.queue.consumerFlowLimit Table 17–3

imq.autocreate.queue.localDeliveryPreferred Table 17–3

imq.autocreate.queue.maxNumActiveConsumers Table 17–3

imq.autocreate.queue.maxNumBackupConsumers Table 17–3

imq.autocreate.reaptime Table 17–3

imq.autocreate.topic Table 17–3

imq.autocreate.topic.consumerFlowLimit Table 17–3

imq.autocreate.topic.sharedConsumerFlowLimit Table 17–3

imq.broker.adminDefinedRoles.count Table 17–13

imq.broker.adminDefinedRoles.namen Table 17–13

imq.brokerid Table 17–1

imq.bridge.activelist Table 17–15

imq.bridge.admin.password Table 17–15

imq.bridge.admin.user Table 17–15

imq.bridge.enabled Table 17–15

imq.bridge.name.autostart Table 17–16

imq.bridge.name.logfile.count Table 17–16

imq.bridge.name.logfile.limit Table 17–16

imq.bridge.name.tm.props Table 17–16

imq.bridge.name.type Table 17–16

imq.bridge.name.xmlurl Table 17–16

imq.bridge.stomp.consumerFlowLimit Table 17–17

imq.bridge.stomp.logfile.count Table 17–17

imq.bridge.stomp.logfile.limit Table 17–17

imq.bridge.stomp.messageTransformer Table 17–17

imq.bridge.stomp.tcp.enabled Table 17–17

imq.bridge.stomp.tcp.port Table 17–17

imq.bridge.stomp.tls.enabled Table 17–17

Table 17–19 (Cont.) Alphabetical List of Broker Properties

Property Table

Alphabetical List of Broker Properties

17-36 Open Message Queue 4.5.2 Administration Guide

imq.bridge.stomp.tls.port Table 17–17

imq.bridge.stomp.tls.requireClientAuth Table 17–17

imq.bridge.tm.props Table 17–16

imq.cluster.brokerlist Table 17–14

imq.cluster.clusterid Table 17–14

imq.cluster.dynamicChangeMasterBrokerEnabled Table 17–14

imq.cluster.ha Table 17–14

imq.cluster.heartbeat.hostname Table 17–14

imq.cluster.heartbeat.interval Table 17–14

imq.cluster.heartbeat.port Table 17–14

imq.cluster.heartbeat.threshold Table 17–14

imq.cluster.hostname Table 17–14

imq.cluster.nomasterbroker Table 17–14

imq.cluster.masterbroker Table 17–14

imq.cluster.monitor.interval Table 17–14

imq.cluster.monitor.threshold Table 17–14

imq.cluster.port Table 17–14

imq.cluster.sharecc.persist.jdbc.dbVendor Table 17–14

imq.cluster.sharecc.persist.jdbc.vendorName.driver Table 17–14

imq.cluster.sharecc.persist.jdbc.vendorName.closedburl Table 17–14

imq.cluster.sharecc.persist.jdbc.vendorName.createdburl Table 17–14

imq.cluster.sharecc.persist.jdbc.vendorName.needpassword Table 17–14

imq.cluster.sharecc.persist.jdbc.vendorName.opendburl Table 17–14

imq.cluster.sharecc.persist.jdbc.vendorName.password Table 17–14

imq.cluster.sharecc.persist.jdbc.vendorName.property.propNam
e

Table 17–14

imq.cluster.sharecc.persist.jdbc.vendorName.tableoption Table 17–14

imq.cluster.sharecc.persist.jdbc.vendorName.user Table 17–14

imq.cluster.transport Table 17–14

imq.cluster.url Table 17–14

imq.destination.DMQ.truncateBody Table 17–2

imq.destination.logDeadMsgs Table 17–13

imq.hostname Table 17–1

imq.imqcmd.password Table 17–9

imq.jmx.connector.activelist Table 17–18

imq.jmx.connector.RMIconnectorName.brokerHostTrusted Table 17–18

imq.jmx.connector.RMIconnectorName.port Table 17–18

Table 17–19 (Cont.) Alphabetical List of Broker Properties

Property Table

Alphabetical List of Broker Properties

Broker Properties Reference 17-37

imq.jmx.connector.RMIconnectorName.urlpath Table 17–18

imq.jmx.connector.RMIconnectorName.useSSL Table 17–18

imq.jmx.rmiregistry.port Table 17–18

imq.jmx.rmiregistry.start Table 17–18

imq.jmx.rmiregistry.use Table 17–18

imq.keystore.file.dirpath Table 17–9

imq.keystore.file.name Table 17–9

imq.keystore.password Table 17–9

imq.keystore.propertyName Table 17–9

imq.log.console.output Table 17–13

imq.log.console.stream Table 17–13

imq.log.file.dirpath Table 17–13

imq.log.file.filename Table 17–13

imq.log.file.output Table 17–13

imq.log.file.rolloverbytes Table 17–13

imq.log.file.rolloversecs Table 17–13

imq.log.level Table 17–13

imq.log.syslog.facility Table 17–13

imq.log.syslog.identity Table 17–13

imq.log.syslog.logconsole Table 17–13

imq.log.syslog.logpid Table 17–13

imq.log.syslog.output Table 17–13

imq.log.timezone Table 17–13

imq.message.expiration.interval Table 17–2

imq.message.max_size Table 17–2

imq.metrics.enabled Table 17–13

imq.metrics.interval Table 17–13

imq.metrics.topic.enabled Table 17–13

imq.metrics.topic.interval Table 17–13

imq.metrics.topic.persist Table 17–13

imq.metrics.topic.timetolive Table 17–13

imq.passfile.dirpath Table 17–9

imq.passfile.enabled Table 17–9

imq.passfile.name Table 17–9

imq.persist.file.destination.message.filepool.limit Table 17–6

imq.persist.file.message.cleanup Table 17–6

imq.persist.file.message.filepool.cleanratio Table 17–6

Table 17–19 (Cont.) Alphabetical List of Broker Properties

Property Table

Alphabetical List of Broker Properties

17-38 Open Message Queue 4.5.2 Administration Guide

imq.persist.file.message.max_record_size Table 17–6

imq.persist.file.sync.enabled Table 17–6

imq.persist.file.transaction.memorymappedfile.enabled Table 17–6

imq.persist.jdbc.dbVendor Table 17–8

imq.persist.jdbc.vendorName.closedburl Table 17–8

imq.persist.jdbc.vendorName.createdburl Table 17–8

imq.persist.jdbc.vendorName.driver Table 17–8

imq.persist.jdbc.vendorName.needpassword Table 17–8

imq.persist.jdbc.vendorName.opendburl Table 17–8

imq.persist.jdbc.vendorName.password Table 17–8

imq.persist.jdbc.vendorName.property.propName Table 17–8

imq.persist.jdbc.vendorName.user Table 17–8

imq.persist.store Table 17–5

imq.ping.interval Table 17–1

imq.portmapper.backlog Table 17–1

imq.portmapper.hostname Table 17–1

imq.portmapper.port Table 17–1

imq.primaryowner.contact Table 17–13

imq.primaryowner.name Table 17–13

imq.resourceState.count Table 17–2

imq.resourceState.threshold Table 17–2

imq.service.activelist Table 17–1

imq.serviceName.accesscontrol.enabled Table 17–9

imq.serviceName.accesscontrol.file.filename Table 17–9

imq.serviceName.authentication.type Table 17–9

imq.serviceName.max_threads Table 17–1

imq.serviceName.min_threads Table 17–1

imq.serviceName.protocolType.hostname Table 17–1

imq.serviceName.protocolType.port Table 17–1

imq.serviceName.threadpool_model Table 17–1

imq.shared.connectionMonitor_limit Table 17–1

imq.system.max_count Table 17–2

imq.system.max_size Table 17–2

imq.transaction.autorollback Table 17–2

imq.user_repository.file.dirpath Table 17–10

imq.user_repository.file.filename Table 17–10

imq.user_repository.ldap.base Table 17–11

Table 17–19 (Cont.) Alphabetical List of Broker Properties

Property Table

Alphabetical List of Broker Properties

Broker Properties Reference 17-39

imq.user_repository.ldap.gidattr Table 17–11

imq.user_repository.ldap.grpbase Table 17–11

imq.user_repository.ldap.grpfilter Table 17–11

imq.user_repository.ldap.grpsearch Table 17–11

imq.user_repository.ldap.memattr Table 17–11

imq.user_repository.ldap.password Table 17–11

imq.user_repository.ldap.principal Table 17–11

imq.user_repository.ldap.propertyName Table 17–11

imq.user_repository.ldap.server Table 17–11

imq.user_repository.ldap.ssl.enabled Table 17–11

imq.user_repository.ldap.ssl.socketfactory Table 17–11

imq.user_repository.ldap.timeout Table 17–11

imq.user_repository.ldap.uidattr Table 17–11

imq.user_repository.ldap.usrfilter Table 17–11

imq.user_repository.jaas.name Table 17–12

imq.user_repository.jaas.userPrincipalClass Table 17–12

imq.user_repository.jaas.groupPrincipalClass Table 17–12

Table 17–19 (Cont.) Alphabetical List of Broker Properties

Property Table

Alphabetical List of Broker Properties

17-40 Open Message Queue 4.5.2 Administration Guide

18

Physical Destination Property Reference 18-1

18Physical Destination Property Reference

This chapter provides reference information about configuration properties for
physical destinations.

Physical Destination Properties
Table 18–1 lists the configuration properties for physical destinations. These properties
can be set when creating or updating a physical destination. For auto-created
destinations, you set default values in the broker's instance configuration file (see
Table 17–3).

Table 18–1 Physical Destination Properties

Property Type Default Value Description

maxNumMsgs1 Integer -1 Maximum number of unconsumed messages

A value of -1 denotes an unlimited number of
messages.

For the dead message queue, the default value is 1000.

Note: When flow control is in effect (limitBehavior =
FLOW_CONTROL), it is possible for the specified message
limit to be exceeded because the broker cannot react
quickly enough to stop the flow of incoming messages.
In such cases, the value specified for maxNumMsgs serves
as merely a hint for the broker rather than a strictly
enforced limit. However, if the number of unconsumed
messages would exceed imq.system.max_count, the
broker generates a ResourceAllocationException
indicating that the destination is full and rejecting new
messages.

maxBytesPerMsg String -1 Maximum size, in bytes, of any single message

Rejection of a persistent message is reported to the
producing client with an exception; no notification is
sent for nonpersistent messages.

The value may be expressed in bytes, kilobytes, or
megabytes, using the following suffixes:

■ b: Bytes

■ k: Kilobytes (1024 bytes)

■ m: Megabytes (1024 × 1024 = 1,048,576 bytes)

An unsuffixed value is expressed in bytes; a value of -1
denotes an unlimited message size.

Physical Destination Properties

18-2 Open Message Queue 4.5.2 Administration Guide

Examples:

■ 1600: 1600 bytes

■ 1600b: 1600 bytes

■ 16k: 16 kilobytes (= 16,384 bytes)

■ 16m: 16 megabytes (= 16,777,216 bytes)

■ -1: No limit

maxTotalMsgBytes1 String -1 Maximum total memory, in bytes, for unconsumed
messages

The syntax is the same as for maxBytesPerMsg (see
above).

For the dead message queue, the default value is 10m.

limitBehavior String REJECT_NEWEST Broker behavior when memory-limit threshold reached:

■ FLOW_CONTROL: Slow down producers

■ REMOVE_OLDEST: Throw out oldest messages

■ REMOVE_LOW_PRIORITY: Throw out lowest-priority
messages according to age; no notification to
producing client

■ REJECT_NEWEST: Reject newest messages; notify
producing client with an exception only if message
is persistent

When FLOW_CONTROL is specified, it is still possible for
the number of messages to exceed imq.system.max_
count. In this situation, the broker generates a
ResourceAllocationException indicating that the
destination is full and rejecting new messages.

If the value is REMOVE_OLDEST or REMOVE_LOW_PRIORITY
and the useDMQ property is true, excess messages are
moved to the dead message queue. For the dead
message queue itself, the default limit behavior is
REMOVE_OLDEST and cannot be set to FLOW_CONTROL.

maxNumProducers2 Integer 100 Maximum number of message producers for destination

When this limit is reached, no new producers can be
created. A value of -1 denotes an unlimited number of
producers.

maxNumActiveConsumers3 Integer -1 Maximum number of active message consumers in
load-balanced delivery from queue destination

A value of -1 denotes an unlimited number of
consumers.

This property used mostly in cases where message order
is important and you want to provide backup
consumers in case the principal consumer of a queue
fails. If message order is not important, then you would
simply use multiple consumers to provide for scalability
and availability.

maxNumBackupConsumers3 Integer 0 Maximum number of backup message consumers in
load-balanced delivery from queue destination

A value of -1 denotes an unlimited number of
consumers.

Table 18–1 (Cont.) Physical Destination Properties

Property Type Default Value Description

Physical Destination Properties

Physical Destination Property Reference 18-3

consumerFlowLimit Integer 1000 Maximum number of messages delivered to a consumer
in a single batch

In load-balanced queue delivery, this is the initial
number of queued messages routed to an active
consumer before load balancing begins.

The client runtime can override this limit by specifying
a lower value on the connection factory object.

A value of 0 or -1 denotes an unlimited number of
messages.

Not used when the JMS resource adapter, jmsra, is used
to consume messages in a GlassFish Server cluster.

isLocalOnly2 Boolean false Local delivery only?

This property applies only to destinations in broker
clusters, and cannot be changed once the destination has
been created. If true, the destination is not replicated on
other brokers and is limited to delivering messages only
to local consumers (those connected to the broker on
which the destination is created).

localDeliveryPreferred2
,3

Boolean false Local delivery preferred?

This property applies only to load-balanced queue
delivery in broker clusters. If true, messages will be
delivered to remote consumers only if there are no
consumers on the local broker; the destination must not
be restricted to local-only delivery (isLocalOnly must
be false).

useDMQ2 Boolean true Send dead messages to dead message queue?

If false, dead messages will simply be discarded.

Table 18–1 (Cont.) Physical Destination Properties

Property Type Default Value Description

Physical Destination Properties

18-4 Open Message Queue 4.5.2 Administration Guide

validateXMLSchemaEnable
d

4

Boolean false XML schema validation is enabled?

When XML validation is enabled, the Message Queue
client runtime will attempt to validate an XML message
against the specified XSDs (or against the DTD, if no
XSD is specified) before sending it to the broker. If the
specified schema cannot be located or the message
cannot be validated, the message is not sent, and an
exception is thrown. Client applications using this
feature should use JRE 1.5 or above.

If set to false or not set, then XML schema validation is
not enabled for the destination.

XMLSchemaURIList4 String null Space separated list of XML schema document (XSD)
URI strings

The URIs point to the location of one or more XSDs to
use for XML schema validation, if enabled.

Use double quotes around this value if multiple URIs
are specified.

Example:

"http://foo/flap.xsd http://test.com/test.xsd"

If this property is not set or null and XML validation is
enabled, XML validation is performed using a DTD
specified in the XML document.

if an XSD is changed, as a result of changing application
requirements, all client applications producing XML
messages based on the changed XSD must reconnect to
the broker.

reloadXMLSchemaOnFailur
e4

Boolean false Reload XML schema on failure enabled?

If set to true and XML validation fails, then the Message
Queue client runtime will attempt to reload the XSD
before attempting again to validate a message. The
client runtime will throw an exception if the validation
fails using the reloaded SXD.

If set to false or not set, then the schema is not reloaded
if validation fails.

1 In a cluster environment, applies to each individual instance of a destination rather than collectively to all instances in the
cluster

2 Does not apply to dead message queue
3 Queue destinations only
4 This property should be set when a destination is inactive: when it has no consumers or producers and when there are no

messages in the destination. Otherwise the producer must reconnect.

Table 18–1 (Cont.) Physical Destination Properties

Property Type Default Value Description

19

Administered Object Attribute Reference 19-1

19Administered Object Attribute Reference

This chapter provides reference information about the attributes of administered
objects. It consists of the following sections:

■ Connection Factory Attributes

■ Destination Attributes

Connection Factory Attributes
The attributes of a connection factory object are grouped into categories described in
the following sections below:

■ Connection Handling

■ Client Identification

■ Reliability and Flow Control

■ Queue Browser and Server Sessions

■ Standard Message Properties

■ Message Header Overrides

Connection Handling
Table 19–1 lists the connection factory attributes for connection handling.

Connection Factory Attributes

19-2 Open Message Queue 4.5.2 Administration Guide

Table 19–1 Connection Factory Attributes for Connection Handling

Attribute Type Default Value Description

imqAddressList String An existing
Message Queue
3.0 address, if
any; if none,
the first entry
in Table 19–2

List of broker addresses

The list consists of one or more addresses, separated by
commas. Each address specifies (or implies) the host
name, port number, and connection service for a broker
instance to which the client can connect. Address syntax
varies depending on the connection service and port
assignment method; see below for details.

Literal IP addresses as host names: You can use a literal
IPv4 or IPv6 address as a host name. If you use a literal
IPv6 address, its format must conform to RFC2732
(http://www.ietf.org/rfc/rfc2732.txt),
Format for Literal IPv6 Addresses in URL's.

Note: In an enhanced broker cluster, the value of this
attribute is updated dynamically as brokers enter and
leave the cluster, so that it always reflects the cluster's
current membership.

imqAddressListBehavior String PRIORITY Order in which to attempt connection to broker
addresses:

■ PRIORITY: Order specified in address list

■ RANDOM: Random order

Note: If many clients share the same connection factory,
specify random connection order to prevent them from
all attempting to connect to the same address.

imqAddressListIteration
s

Integer 1 Number of times to iterate through address list
attempting to establish or reestablish a connection

A value of -1 denotes an unlimited number of
iterations.

Note: In the event of broker failure in an enhanced
broker cluster, this attribute is ignored and the Message
Queue client runtime iterates through the address list
indefinitely until it succeeds in reconnecting to a
takeover broker. The effect is equivalent to an
imqAddressListIterations value of -1, overriding any
other explicit or default setting of this attribute. The
only way for a client application to avoid this behavior
is to close the connection explicitly on broker failure.

imqPingInterval Integer 30 Interval, in seconds, at which to test connection between
client and broker

A value of 0 or -1 disables periodic testing of the
connection.

imqReconnectEnabled Boolean false Attempt to reestablish a lost connection?

Note: In the event of broker failure in an enhanced
broker cluster, this attribute is ignored and automatic
reconnection is always attempted. The effect is
equivalent to an imqReconnectEnabled value of true,
overriding any other explicit or default setting of this
attribute. The only way for a client application to avoid
this behavior is to close the connection explicitly on
broker failure.

Connection Factory Attributes

Administered Object Attribute Reference 19-3

The value of the imqAddressList attribute is a comma-separated string specifying one
or more broker addresses to which to connect. The general syntax for each address is
as follows:

scheme:// address
where scheme identifies one of the addressing schemes shown in the first column of
Table 19–2 and address denotes the broker address itself. The exact syntax for
specifying the address depends on the addressing scheme, as shown in the last column
of the table.

imqReconnectAttempts Integer 0 Number of times to attempt connection (or
reconnection) to each address in address list before
moving on to next

A value of -1 denotes an unlimited number of
connection attempts: attempt repeatedly to connect to
first address until successful. For example, in an
enhanced broker cluster, this value will allow for
connection to the failover broker.

imqReconnectInterval Long
integer

3000 Interval, in milliseconds, between reconnection attempts

This value applies both for successive attempts on a
given address and for successive addresses in the list.

Note: Too small a value may give the broker insufficient
recovery time; too large a value may cause unacceptable
connection delays.

imqSocketConnectTimeout Long
integer

0 Socket timeout, in milliseconds, used when a TCP
connection is made to the broker

This value applies when connecting to the port mapper
as well as when connecting to the required service.

The timeout value 0 (zero) denotes an infinite timeout,
in which case the connection will block until it is
established or an error occurs.

imqSSLIsHostTrusted Boolean false Trust any certificate presented by broker?

If false, the Message Queue client runtime will validate
all certificates presented to it. Validation will fail if the
signer of the certificate is not in the client's trust store.

If true, validation of certificates is skipped. This can be
useful, for instance, during software testing when a
self-signed certificate is used.

NOTE: To use signed certificates from a certification
authority, set this attribute to false.

Table 19–1 (Cont.) Connection Factory Attributes for Connection Handling

Attribute Type Default Value Description

Connection Factory Attributes

19-4 Open Message Queue 4.5.2 Administration Guide

Table 19–2 Message Broker Addressing Schemes

Sche
me Service Syntax Description

mq jms or
ssljms

[hostName][:portNumber][/serviceName] Assign port dynamically for jms or
ssljms connection service

The address list entry specifies the host
name and port number for the Message
Queue Port Mapper. The Port Mapper
itself dynamically assigns a port to be
used for the connection.

Default values:

■ hostName = localhost

■ portNumber = 7676

■ serviceName = jms

For the ssljms connection service, all
variables must be specified explicitly.

Literal IP addresses as host names: You
can use a literal IPv4 or IPv6 address as a
host name. If you use a literal IPv6
address, its format must conform to
RFC2732
(http://www.ietf.org/rfc/rfc273
2.txt), Format for Literal IPv6 Addresses
in URL's.

mqtcp jms hostName:portNumber/jms Connect to specified port using jms
connection service

Bypasses the Port Mapper and makes a
TCP connection directly to the specified
host name and port number.

mqssl ssljms hostName:portNumber/ssljms Connect to specified port using ssljms
connection service

Bypasses the Port Mapper and makes a
secure SSL connection directly to the
specified host name and port number.

http httpjms http://hostName:portNumber/contextRoot/tunnel

If multiple broker instances use the same tunnel
servlet, the following syntax connects to a specific
broker instance rather than a randomly selected
one:

http://hostName:portNumber/contextRoot/tunnel
?

■ ServerName=hostName:instanceName

Connect to specified port using httpjms
connection service

Makes an HTTP connection to a Message
Queue tunnel servlet at the specified
URL. The broker must be configured to
access the HTTP tunnel servlet.

https httpsjms https://hostName:portNumber/contextRoot/tunne
l

If multiple broker instances use the same tunnel
servlet, the following syntax connects to a specific
broker instance rather than a randomly selected
one:

https://hostName:portNumber/contextRoot/tunne
l?

■ ServerName=hostName:instanceName

Connect to specified port using httpsjms
connection service

Makes a secure HTTPS connection to a
Message Queue tunnel servlet at the
specified URL. The broker must be
configured to access the HTTPS tunnel
servlet.

Connection Factory Attributes

Administered Object Attribute Reference 19-5

Client Identification
Table 19–4 lists the connection factory attributes for client identification.

Reliability and Flow Control
Table 19–5 lists the connection factory attributes for reliability and flow control.

Table 19–3 Message Broker Address Examples

Service Broker Host Port Example Address

Not specified Not specified Not specified No address (mq://localHost:7676/jms)

Not specified Specified host Not specified myBkrHost (mq://myBkrHost:7676/jms)

Not specified Not specified Specified Port Mapper port 1012 (mq://localHost:1012/jms)

ssljms Local host Standard Port Mapper port mq://localHost:7676/ssljms

ssljms Specified host Standard Port Mapper port mq://myBkrHost:7676/ssljms

ssljms Specified host Specified Port Mapper port mq://myBkrHost:1012/ssljms

jms Local host Specified service port mqtcp://localhost:1032/jms

ssljms Specified host Specified service port mqssl://myBkrHost:1034/ssljms

httpjms Not applicable Not applicable http://websrvr1:8085/imq/tunnel

httpsjms Not applicable Not applicable https://websrvr2:8090/imq/tunnel

Table 19–4 Connection Factory Attributes for Client Identification

Attribute Type
Default
Value Description

imqDefaultUsername String guest Default user name for authenticating with broker

imqDefaultPassword String guest Default password for authenticating with broker

imqConfiguredClientID String null Administratively configured client identifier

imqDisableSetClientID Boolean false Prevent client from changing client identifier using
setClientID method?

Connection Factory Attributes

19-6 Open Message Queue 4.5.2 Administration Guide

Table 19–5 Connection Factory Attributes for Reliability and Flow Control

Attribute Type
Default
Value Description

imqAbortOnPingAckTimeout Boolean false Should the connection to the broker be aborted when
imqPingAckTimeout milliseconds have passed?

If the connection is aborted, the Message Queue Client
Runtime operates as though the connection to the
broker were broken.

imqAckTimeout String 0 Maximum time, in milliseconds, to wait for broker
acknowledgment before throwing an exception

A value of 0 denotes no timeout (wait indefinitely).

Note: In some situations, too low a value can cause
premature timeout: for example, initial authentication of
a user against an LDAP user repository using a secure
(SSL) connection can take more than 30 seconds.

imqConnectionFlowCount Integer 100 Number of payload messages in a metered batch

Delivery of payload messages to the client is
temporarily suspended after this number of messages,
allowing any accumulated control messages to be
delivered. Payload message delivery is resumed on
notification by the client runtime, and continues until
the count is again reached.

A value of 0 disables metering of message delivery and
may cause Message Queue control messages to be
blocked by heavy payload message traffic.

imqConnectionFlowLimitEnable
d

Boolean false Limit message flow at connection level?

imqConnectionFlowLimit Integer 1000 Maximum number of messages per connection to
deliver and buffer for consumption

Message delivery on a connection stops when the
number of unconsumed payload messages pending
(subject to flow metering governed by
imqConnectionFlowCount) exceeds this limit. Delivery
resumes only when the number of pending messages
falls below the limit. This prevents the client from being
overwhelmed with pending messages that might cause
it to run out of memory.

This attribute is ignored if
imqConnectionFlowLimitEnabled is false.

imqConsumerFlowLimitPrefetch Boolean true Is message prefetching and buffering as specified by
imqConsumerFlowLimit and imqConsumerFlowThreshold
enabled?

When set to false, message prefetching and buffering is
disabled, and each consumer is delivered one message
at a time, which can give rise to a number of
performance issues.

This property should be set to false only when
business logic demands that each consumer have only
one message at a time.

Connection Factory Attributes

Administered Object Attribute Reference 19-7

Queue Browser and Server Sessions
Table 19–6 lists the connection factory attributes for queue browsing and server
sessions.

imqConsumerFlowLimit Integer 1000 Maximum number of messages per consumer to deliver
and buffer for consumption

Message delivery to a given consumer stops when the
number of unconsumed payload messages pending for
that consumer exceeds this limit. Delivery resumes only
when the number of pending messages for the
consumer falls below the percentage specified by
imqConsumerFlowThreshold. This can be used to
improve load balancing among multiple consumers and
prevent any single consumer from starving others on
the same connection.

A value of 0 or -1 denotes an unlimited number of
messages.

This limit can be overridden by a lower value set for a
queue's own consumerFlowLimit attribute (see Physical
Destination Property Reference). Note also that message
delivery to all consumers on a connection is subject to
the overall limit specified by imqConnectionFlowLimit.

imqConsumerFlowThreshold Integer 50 Number of messages per consumer buffered in the
client runtime, as a percentage of
imqConsumerFlowLimit, below which to resume
message delivery

imqPingAckTimeout Integer 0 Maximum time, in milliseconds, to wait for a ping reply
or any data sent from the broker since its last ping reply
or data sent.

A value of 0 denotes no timeout (wait indefinitely).

This value is ignored if the imqAbortOnPingAckTimeout
attribute is set to false.

Table 19–5 (Cont.) Connection Factory Attributes for Reliability and Flow Control

Attribute Type
Default
Value Description

Connection Factory Attributes

19-8 Open Message Queue 4.5.2 Administration Guide

Standard Message Properties
The connection factory attributes listed in Table 19–7 control whether the Message
Queue client runtime sets certain standard message properties defined in the Java
Message Service Specification.

Message Header Overrides
Table 19–8 lists the connection factory attributes for overriding JMS message header
fields.

Table 19–6 Connection Factory Attributes for Queue Browser and Server Sessions

Attribute Type

Defaul
t
Value Description

imqQueueBrowserMaxMessagesPerRetr
ieve

Integer 1000 Maximum number of messages to retrieve at one
time when browsing contents of a queue
destination

Note: This attribute does not affect the total
number of messages browsed, only the way they
are chunked for delivery to the client runtime
(fewer but larger chunks or more but smaller
ones). The client application will always receive all
messages in the queue. Changing the attribute's
value may affect performance, but will not affect
the total amount of data retrieved.

imqQueueBrowserRetrieveTimeout Long integer 60000 Maximum time, in milliseconds, to wait to retrieve
messages, when browsing contents of a queue
destination, before throwing an exception

imqLoadMaxToServerSession Boolean true Load up to maximum number of messages into a
server session?

If false, the client will load only a single message
at a time.

This attribute applies only to JMS application
server facilities.

Table 19–7 Connection Factory Attributes for Standard Message Properties

Property Type
Default
Value Description

imqSetJMSXUserID Boolean false Set JMSXUserID property (identity of user sending
message) for produced messages?

imqSetJMSXAppID Boolean false Set JMSXAppID property (identity of application sending
message) for produced messages?

imqSetJMSXProducerTXID Boolean false Set JMSXProducerTXID property (transaction identifier of
transaction within which message was produced) for
produced messages?

imqSetJMSXConsumerTXID Boolean false Set JMSXConsumerTXID property (transaction identifier of
transaction within which message was consumed) for
consumed messages?

imqSetJMSXRcvTimestamp Boolean false Set JMSXRcvTimestamp property (time message delivered
to consumer) for consumed messages?

Destination Attributes

Administered Object Attribute Reference 19-9

Destination Attributes
Table 19–9 lists the attributes that can be set for a destination administered object.

Table 19–8 Connection Factory Attributes for Message Header Overrides

Attribute Type
Default
Value Description

imqOverrideJMSDeliveryMode Boolean false Allow client-set delivery mode to be
overridden?

imqJMSDeliveryMode Integer 2 Overriding value of delivery mode:

1 Nonpersistent

2 Persistent

imqOverrideJMSExpiration Boolean false Allow client-set expiration time to be
overridden?

imqJMSExpiration Long
integer

0 Overriding value of expiration time, in
milliseconds

A value of 0 denotes an unlimited
expiration time (message never expires).

imqOverrideJMSPriority Boolean false Allow client-set priority level to be
overridden?

imqJMSPriority Integer 4
(normal)

Overriding value of priority level (0 to 9)

imqOverrideJMSHeadersToTemporaryDestinati
ons

Boolean false Apply overrides to temporary
destinations?

Table 19–9 Destination Attributes

Attribute Type Default Value Description

imqDestinationName String Untitled_Destination_
Object

Name of physical destination

The destination name may contain only
alphanumeric characters (no spaces) and
must begin with an alphabetic character or
the underscore (_) or dollar sign ($)
character. It may not begin with the
characters mq.

imqDestinationDescripti
on

String None Descriptive string for destination

Destination Attributes

19-10 Open Message Queue 4.5.2 Administration Guide

20

JMS Resource Adapter Property Reference 20-1

20JMS Resource Adapter Property Reference

This chapter describes the configuration properties of the Message Queue JMS
Resource Adapter (JMS RA), which enables you to integrate Message Queue with any
J2EE 1.4 application server by means of the standard J2EE connector architecture
(JCA). When plugged into an application server, the Resource Adapter allows
applications deployed in that application server to use Message Queue to send and
receive JMS messages.

The Message Queue JMS Resource Adapter exposes its configuration properties
through three JavaBean components:

■ The ResourceAdapter JavaBean (ResourceAdapter JavaBean) affects the behavior
of the Resource Adapter as a whole.

■ The ManagedConnectionFactory JavaBean (ManagedConnectionFactory JavaBean)
affects connections created by the Resource Adapter for use by message-driven
beans (MDBs).

■ The ActivationSpec JavaBean (ActivationSpec JavaBean) affects message
endpoints that represent MDBs in their interactions with the messaging system.

To set property values for these entities, you use the tools provided by your
application server for configuration and deployment of the Resource Adapter and for
deployment of MDBs.

This chapter lists and describes the configuration properties of the Message Queue
JMS Resource Adapter. It contains the following sections:

■ About Shared Topic Subscriptions for Clustered Containers

■ ResourceAdapter JavaBean

■ ManagedConnectionFactory JavaBean

■ ActivationSpec JavaBean

About Shared Topic Subscriptions for Clustered Containers
The Message Queue JMS Resource Adapter provides a special feature called shared
subscriptions for containers that support clustering, such as GlassFish Server. This
feature enables clustered containers to share the load of processing messages for topic
subscriptions across the instances of a cluster.

When this feature is enabled, the following behaviors apply:

■ Attempts by multiple connections to use the same client id do not result in an
exception, provided that the connections are from different instances in the cluster.

About Shared Topic Subscriptions for Clustered Containers

20-2 Open Message Queue 4.5.2 Administration Guide

■ Two or more subscriptions on the same topic with the same client id and (if the
subscription is durable) the same durable subscription name are considered
"shared"; that is, they are treated as a single subscription, with each message being
sent to only one of the participating subscriptions.

The sharing of subscriptions relies on client id being set, not only for durable
subscriptions (which always require client id) but for non-durable subscriptions
(which do not normally require client id). If the subscription is being created by the
resource adapter for use by a message-driven bean (MDB), and client id is not set, then
the resource adapter will set the client id to the name of the MDB. However if the
subscription is being created programmatically using the JMS API, and client id is not
set, then an exception will be thrown.

Note that, in the EJB or web container, applications that create a connection using a
connection factory are not permitted to set client id on the newly created connection,
but must set it on the connection factory instead. This restriction is imposed by the EJB
specification, though it applies to web components as well. There is no such
restrictions in the application client container.

Disabling Shared Subscriptions
By default, the shared subscriptions feature is enabled. In some applications that use
non-durable subscriptions, however, the shared behavior is not desired. In such cases,
disable the shared subscriptions feature by setting the
useSharedSubscriptionInClusteredContainer property to false on either the
ActivationSpec or ManagedConnectionFactory, as appropriate:

■ For an MDB, set the ActivationSpec property
useSharedSubscriptionInClusteredContainer to false. Do this in exactly the
same way as with other ActivationSpec properties, using annotations in the MDB
itself or in the deployment descriptor ejb-jar.xml or glassfish-ejb-jar.xml.
Alternatively, if the glassfish-ejb-jar.xml deployment descriptor specifies a
connection factory using the <mdb-connection-factory> element, then the
property can be configured on the connection factory instead, as described in the
next item.

■ For GlassFish applications creating a non-durable subscription using the JMS API
rather than using an MDB, set the connection factory property
useSharedSubscriptionInClusteredContainer to false using the GlassFish
Administration Console, the GlassFish asadmin command or the resource
descriptor glassfish-resources.xml.

Only set useSharedSubscriptionInClusteredContainer to false for non-durable
subscriptions.

Consumer Flow Control When Shared Subscriptions Are Used
When shared subscriptions are being used, then consumer flow control operates
slightly differently than is described in Client Runtime Message Flow Adjustments.

With a normal topic subscription, the maximum number of messages that can be held
pending for any single subscriber, waiting to be consumed, is defined by the broker
property imq.autocreate.topic.consumerFlowLimit for auto-created topics, or the
destination property consumerFlowLimit for administratively-created topics. Both
properties have a default value of 1000. This can be overridden on a per-connection
basis by setting the connection factory property imqConsumerFlowLimit to a lower
value than that defined for the topic.

ResourceAdapter JavaBean

JMS Resource Adapter Property Reference 20-3

When the subscription is shared, however, different logic applies. In this case, the limit
is defined by the broker property imq.autocreate.topic.sharedConsumerFlowLimit
for auto-created topics or the broker property
imq.admincreate.topic.sharedConsumerFlowLimit for all administratively-created
topics. It is not possible to set this limit on individual administratively-created topics.
Both properties have a default value of 5. This can be overridden on a per-connection
basis by setting the connection factory property imqConsumerFlowLimit to a lower
value than that defined for the topic. Note that, as with all connection factory
properties, this is specified using the options property of the managed connection
factory.

ResourceAdapter JavaBean
The ResourceAdapter configuration configures the default JMS Resource Adapter
behavior. Table 20–1 lists and describes the properties with which you can configure
this JavaBean.

Table 20–1 Resource Adapter Properties

Property Type Default Value Description

connectionURL1 String mq://localhost:7676/jms Message service address for
connecting to the Message
Queue service

brokerInstanceName String imqbroker Name of broker instance

brokerPort Integer 7676 Port number for connecting to
broker

brokerBindAddress String Null Address to which broker binds
on host machine

If null, the broker will bind to all
addresses on the host machine.

userName2 String guest Default user name for
connecting to Message Queue
service

password2 String guest Default password for connecting
to Message Queue service

addressListBehavior String PRIORITY Order in which to attempt
connection to Message Queue
service:

■ PRIORITY: Order specified in
address list

■ RANDOM: Random order

Note: Reconnection attempts
after a connection failure start
with the broker whose
connection failed and proceed
sequentially through the address
list, regardless of the value set
for this property.

addressListIterations Integer 1 Number of times to iterate
through address list attempting
to establish or reestablish a
connection

reconnectEnabled Boolean false Attempt to reestablish a lost
connection?

ManagedConnectionFactory JavaBean

20-4 Open Message Queue 4.5.2 Administration Guide

ManagedConnectionFactory JavaBean
A managed connection factory is used to create connections managed by the resource
adapter. Table 20–2 shows the properties of the ManagedConnectionFactory JavaBean;
if set, these properties override the corresponding properties of the ResourceAdapter
JavaBean.

reconnectAttempts Integer 6 Number of times to attempt
reconnection to each address in
address list before moving on to
next

reconnectInterval Long
integer

30000 Interval, in milliseconds,
between reconnection attempts

brokerEnableHA Boolean false Enable high availability?

clusterID String None Cluster identifier

If specified, only brokers with
the same cluster identifier can be
clustered together. In the event
of broker failure, client
connections will fail over only to
brokers with the same cluster
identifier as the original broker.
If not specified, client
connections can fail over to any
other broker with an unspecified
cluster identifier.

For standalone brokers (those
not belonging to a cluster), this
property is ignored.

The identifier may contain only
alphabetic letters (A-Z, a-z),
numeric digits (0-9), and the
underscore character (_).

brokerID String None Broker identifier

For brokers using a JDBC-based
persistent data store, this string
is appended to the names of all
database tables to make them
unique in the case where more
than one broker instance is using
the same database. For brokers
using a file-based data store, this
property is ignored.

In an enhanced cluster, each
broker must have a unique
broker identifier.

The identifier may contain only
alphabetic letters (A-Z, a-z),
numeric digits (0-9), and the
underscore character (_).

1 Must be specified
2 Required

Table 20–1 (Cont.) Resource Adapter Properties

Property Type Default Value Description

ManagedConnectionFactory JavaBean

JMS Resource Adapter Property Reference 20-5

Table 20–2 Managed Connection Factory Properties

Property Type Default Value Description

addressList String Value of
connectionURL
property of
ResourceAdapter
JavaBean (see
Table 20–1)

List of message service addresses
for connecting to Message Queue
service

userName1 String guest User name for connecting to
Message Queue service

password1 String guest Password for connecting to
Message Queue service

clientID String None Client identifier for connections
to Message Queue service

addressListBehavior String PRIORITY Order in which to attempt
connection to Message Queue
service:

■ PRIORITY: Order specified in
address list

■ RANDOM: Random order

Note: Reconnection attempts
after a connection failure start
with the broker whose
connection failed and proceed
sequentially through the address
list, regardless of the value set
for this property.

addressListIterations Integer 1 Number of times to iterate
through address list attempting
to establish or reestablish a
connection

reconnectEnabled Boolean false Attempt to reestablish a lost
connection?

reconnectAttempts Integer 6 Number of times to attempt
reconnection to each address in
address list before moving on to
next

ManagedConnectionFactory JavaBean

20-6 Open Message Queue 4.5.2 Administration Guide

reconnectInterval Long
integer

30000 Interval, in milliseconds,
between reconnection attempts

options1 String None A list of additional connection
factory properties to be used
when creating connections to a
Message Queue broker.

When specified, the value of
options must be a
comma-separated list of
connection factory properties
and their values, in the form:

propertyName=value

If value contains a comma or an
equals sign, precede the symbol
with a backslash (\) or enclose
the entire value in quotes; for
example:

prop1=comma\,val,prop2="equa
ls=val"

The options property cannot
specify properties that are
configured internally or that
have their own setter methods,
specifically:
imqReconnectEnabled,
imqReconnectAttempts,
imqReconnectInterval,
imqDefaultUsername,
imqDefaultPassword,
imqAddressList,
imqAddressListIterations.
Any values specified in options
for these properties are ignored.

useSharedSubscriptionInClusteredContai
ner

Boolean true Controls whether topic
subscriptions created using this
ManagedConnectionFactory will
be shared when running in a
clustered container, as described
in About Shared Topic
Subscriptions for Clustered
Containers.

Set to true (the default) to share
subscriptions. The clientID
property must also be set, even if
the subscription is nondurable.

Set to false to not share
subscriptions. This setting
should only be used for
nondurable subscriptions. The
clientID property does not need
to be set.

1 Optional

Table 20–2 (Cont.) Managed Connection Factory Properties

Property Type Default Value Description

ActivationSpec JavaBean

JMS Resource Adapter Property Reference 20-7

ActivationSpec JavaBean
Table 20–3 shows the configurable properties of the ActivationSpec JavaBean. These
properties are used by the application server when instructing the Resource Adapter
to activate a message endpoint and associate it with a message-driven bean.

Table 20–3 ActivationSpec Properties

Property Type Default Value Description

addressList1,2 String Value of
connectionURL
property of
ResourceAdapter
JavaBean (see
Table 20–1)

Message service address for
connecting to Message Queue
service

userName1 ,2 String Inherited from
ResourceAdapter
JavaBean (see
Table 20–1)

User name for connecting to
Message Queue service.

password1 ,2 String Inherited from
ResourceAdapter
JavaBean (see
Table 20–1)

Password for connecting to
Message Queue service.

clientId3 String None Client ID for connections to
Message Queue service

This property must be set if
subscriptionDurability is set
to Durable.

addressListBehavior1,2 String Inherited from
ResourceAdapter
JavaBean (see
Table 20–1)

Order in which to attempt
connection or reconnection to
Message Queue service:

PRIORITY: order specified in
address list

RANDOM: Random order

addressListIterations1,2 Integer Inherited from
ResourceAdapter
JavaBean (see
Table 20–1)

Number of times to iterate
through addressList attempting
to establish or reestablish a
connection.

When this limit is reached an
exception will be thrown and a
new connection attempt will
begin, with no limit.

reconnectAttempts1 ,2 Integer Inherited from
ResourceAdapter
JavaBean (see
Table 20–1)

Number of times to attempt
connection or reconnection to
each address in addressList
before moving on to next.

reconnectInterval11,2 Integer Inherited from
ResourceAdapter
JavaBean (see
Table 20–1)

Interval, in milliseconds,
between reconnection attempts

destination3 String None Name of destination from which
to consume messages

The value must be that of the
destinationName property for a
Message Queue destination
administered object.

ActivationSpec JavaBean

20-8 Open Message Queue 4.5.2 Administration Guide

destinationType3 String None Type of destination specified by
destination property:

■ javax.jms.Queue: Queue
destination

■ javax.jms.Topic: Topic
destination

messageSelector1,3 String None Message selector for filtering
messages delivered to consumer

subscriptionName3 String None Name for durable subscriptions

This property must be set if
subscriptionDurability is set
to Durable.

subscriptionDurability3 String NonDurable Durability of consumer for topic
destination:

■ Durable: Durable consumer

■ NonDurable: Nondurable
consumer

This property is valid only if
destinationType is set to
javax.jms.Topic, and is
optional for nondurable
subscriptions and required for
durable ones. If set to Durable,
the clientID and
subscriptionName properties
must also be set.

acknowledgeMode1,3 String Auto-acknowledge Acknowledgment mode:

■ Auto-acknowledge:
Auto-acknowledge mode

■ Dups-ok-acknowledge:
Dups-OK-acknowledge
mode

customAcknowledgeMode String None Acknowledgment mode for
MDB message consumption

Valid values are No_acknowledge
or null.

You can use no-acknowledge
mode only for a nontransacted,
nondurable topic subscription; if
you use this setting with a
transacted subscription or a
durable subscription,
subscription activation will fail.

endpointExceptionRedeliveryAttempts Integer 6 Number of times to redeliver a
message when MDB throws an
exception during message
delivery

Table 20–3 (Cont.) ActivationSpec Properties

Property Type Default Value Description

ActivationSpec JavaBean

JMS Resource Adapter Property Reference 20-9

sendUndeliverableMsgsToDMQ Boolean true Place message in dead message
queue when MDB throws a
runtime exception and number
of redelivery attempts exceeds
the value of
endpointExceptionRedeliveryA
ttempts?

If false, the Message Queue
broker will attempt redelivery of
the message to any valid
consumer, including the same
MDB.

options1 String None A list of additional connection
factory properties to be used
when creating connections to a
Message Queue broker.

When specified, the value of
options must be a
comma-separated list of
connection factory properties
and their values, in the form:

propertyName=value

If value contains a comma or an
equals sign, precede the symbol
with a backslash (\) or enclose
the entire value in quotes; for
example:

prop1=comma\,val,prop2="equa
ls=val"

The options property cannot be
used to specify properties that
are configured internally or that
have their own setter methods,
specifically:
imqReconnectEnabled,
imqReconnectAttempts,
imqReconnectInterval,
imqDefaultUsername,
imqDefaultPassword,
imqAddressList,
imqAddressListIterations,
imqAddressListBehavior.
Any values specified in options
for these properties are ignored.

Table 20–3 (Cont.) ActivationSpec Properties

Property Type Default Value Description

ActivationSpec JavaBean

20-10 Open Message Queue 4.5.2 Administration Guide

Note that there is no reconnectEnabled property for the ActivationSpec JavaBean.

useSharedSubscriptionInClusteredContai
ner

Boolean true Controls whether topic
subscriptions created using this
ActivationSpec will be shared
when running in a clustered
container, as described in About
Shared Topic Subscriptions for
Clustered Containers.

Set to true (the default) to share
subscriptions.

Set to false to not share
subscriptions. This setting
should only be used for
nondurable subscriptions.

1 Optional
2 Property specific to Message Queue JMS Resource Adapter
3 Standard Enterprise JavaBean (EJB) and J2EE Connector Architecture (CA) property

Table 20–3 (Cont.) ActivationSpec Properties

Property Type Default Value Description

21

Metrics Information Reference 21-1

21Metrics Information Reference

This chapter describes the metrics information that a Message Queue broker can
provide for monitoring, tuning, and diagnostic purposes. This information can be
made available in a variety of ways:

■ In a log file (see Sending Metrics Data to Log Files)

■ Interactively with the Command utility's imqcmd metrics subcommand (see Using
the Command Utility)

■ In metrics messages sent to a metrics topic destination (see Using the
Message-Based Monitoring API)

■ Through JMX MBeans that can be accessed programmatically by Java applications
using the JMX Administration API.

The tables in this chapter list the kinds of metrics information available and the forms
in which it can be provided. For metrics provided through the Command utility's
imqcmd metrics subcommand, the tables list the metric type with which they can be
requested; for those provided in metrics messages, the tables list the metrics topic
destination to which they are delivered. All the metrics information in this chapter can
be accessed progamatically using the JMX Administration API as described in the
Open Message Queue Developer's Guide for JMX Clients

The chapter consists of the following sections:

■ JVM Metrics

■ Brokerwide Metrics

■ Connection Service Metrics

■ Physical Destination Metrics

JVM Metrics
Table 21–1 shows the metrics information that the broker reports for the broker process
JVM (Java Virtual Machine) heap.

Brokerwide Metrics

21-2 Open Message Queue 4.5.2 Administration Guide

Brokerwide Metrics
Table 21–2 shows the brokerwide metrics information that the broker reports.

Table 21–1 JVM Metrics

Metrics Quantity Description
Log
File?

metrics
bkrMetri
c Type Metrics Topic

JVM heap: total memory Current total memory, in bytes Yes cxn mq.metrics.jv
m

JVM heap: free memory Amount of memory currently available for use,
in bytes

Yes cxn mq.metrics.jv
m

JVM heap: max memory Maximum allowable heap size, in bytes Yes None mq.metrics.jv
m

Table 21–2 Brokerwide Metrics

Metrics Quantity Description
Log
File?

metrics
bkrMetri
c Type Metrics Topic

Connections

Num connections Total current number of connections for all
connection services

Yes cxn mq.metrics.br
oker

Num threads Total current number of threads for all
connection services

Yes cxn None

Min threads Total minimum number of threads for all
connection services

Yes cxn None

Max threads Total maximum number of threads for all
connection services

Yes cxn None

Stored Messages

Num messages Current number of payload messages stored in
memory and persistent store

No None1 mq.metrics.br
oker

Total message bytes Total size in bytes of payload messages
currently stored in memory and persistent store

No None1 mq.metrics.br
oker

Message Flow

Num messages in Cumulative number of payload messages
received since broker started

Yes ttl mq.metrics.br
oker

Num messages out Cumulative number of payload messages sent
since broker started

Yes ttl mq.metrics.br
oker

Rate messages in Current rate of flow of payload messages into
broker

Yes rts None

Rate messages out Current rate of flow of payload messages out of
broker

Yes rts None

Message bytes in Cumulative size in bytes of payload messages
received since broker started

Yes ttl mq.metrics.br
oker

Message bytes out Cumulative size in bytes of payload messages
sent since broker started

Yes ttl mq.metrics.br
oker

Rate message bytes in Current rate of flow of payload message bytes
into broker

Yes rts None

Connection Service Metrics

Metrics Information Reference 21-3

Connection Service Metrics
Table 21–3 shows the metrics information that the broker reports for individual
connection services.

Rate message bytes out Current rate of flow of payload message bytes
out of broker

Yes rts None

Num packets in Cumulative number of payload and control
packets received since broker started

Yes ttl mq.metrics.br
oker

Num packets out Cumulative number of payload and control
packets sent since broker started

Yes ttl mq.metrics.br
oker

Rate packets in Current rate of flow of payload and control
packets into broker

Yes rts None

Rate packets out Current rate of flow of payload and control
packets out of broker

Yes rts None

Packet bytes in Cumulative size in bytes of payload and
control packets received since broker started

Yes ttl mq.metrics.br
oker

Packet bytes out Cumulative size in bytes of payload and
control packets sent since broker started

Yes ttl mq.metrics.br
oker

Rate packet bytes in Current rate of flow of payload and control
packet bytes into broker

Yes rts None

Rate packet bytes out Current rate of flow of payload and control
packet bytes out of broker

Yes rts None

Destinations

Num destinations Current number of physical destinations No None mq.metrics.br
oker

1 Use query bkr command instead

Table 21–3 Connection Service Metrics

Metrics Quantity Description
Log
File?

metrics
svcMetri
c Type Metrics Topic

Connections

Num connections Current number of connections No cxn1 None

Num threads Current number of threads No cxn1 None

Min threads Minimum number of threads assigned to
service

No cxn None

Max threads Maximum number of threads assigned to
service

No cxn None

Message Flow

Num messages in Cumulative number of payload messages
received through connection service since
broker started

No ttl None

Table 21–2 (Cont.) Brokerwide Metrics

Metrics Quantity Description
Log
File?

metrics
bkrMetri
c Type Metrics Topic

Physical Destination Metrics

21-4 Open Message Queue 4.5.2 Administration Guide

Physical Destination Metrics
Table 21–4 shows the metrics information that the broker reports for individual
destinations.

Num messages out Cumulative number of payload messages sent
through connection service since broker started

No ttl None

Rate messages in Current rate of flow of payload messages into
broker through connection service

No rts None

Rate messages out Current rate of flow of payload messages out of
broker through connection service

No rts None

Message bytes in Cumulative size in bytes of payload messages
received through connection service since
broker started

No ttl None

Message bytes out Cumulative size in bytes of payload messages
sent through connection service since broker
started

No ttl None

Rate message bytes in Current rate of flow of payload message bytes
into broker through connection service

No rts None

Rate message bytes out Current rate of flow of payload message bytes
out of broker through connection service

No rts None

Num packets in Cumulative number of payload and control
packets received through connection service
since broker started

No ttl None

Num packets out Cumulative number of payload and control
packets sent through connection service since
broker started

No ttl None

Rate packets in Current rate of flow of payload and control
packets into broker through connection service

No rts None

Rate packets out Current rate of flow of payload and control
packets out of broker through connection
service

No rts None

Packet bytes in Cumulative size in bytes of payload and
control packets received through connection
service since broker started

No ttl None

Packet bytes out Cumulative size in bytes of payload and
control packets sent through connection service
since broker started

No ttl None

Rate packet bytes in Current rate of flow of payload and control
packet bytes into broker through connection
service

No rts None

Rate packet bytes out Current rate of flow of payload and control
packet bytes out of broker through connection
service

No rts None

1 Also available with query svc command

Table 21–3 (Cont.) Connection Service Metrics

Metrics Quantity Description
Log
File?

metrics
svcMetri
c Type Metrics Topic

Physical Destination Metrics

Metrics Information Reference 21-5

Table 21–4 Physical Destination Metrics

Metrics Quantity Description
Log
File?

metrics
dstMetric
Type Metrics Topic

Message Consumers

Num consumers Current number of
associated message
consumers

For queue
destinations, this
attribute includes
both active and
backup consumers.
For topic
destinations, it
includes both
nondurable and
(active and inactive)
durable subscribers
and is equivalent to
"Num active
consumers."

No con mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

Peak num consumers Peak number of
associated message
consumers since
broker started

For queue
destinations, this
attribute includes
both active and
backup consumers.
For topic
destinations, it
includes both
nondurable and
(active and inactive)
durable subscribers
and is equivalent to
"Peak num active
consumers."

No con mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

Avg num consumers Average number of
associated message
consumers since
broker started

For queue
destinations, this
attribute includes
both active and
backup consumers.
For topic
destinations, it
includes both
nondurable and
(active and inactive)
durable subscribers
and is equivalent to
"Avg num active
consumers."

No con mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

Physical Destination Metrics

21-6 Open Message Queue 4.5.2 Administration Guide

Num active consumers Current number of
associated active
message consumers

For topic
destinations, this
attribute includes
both nondurable and
(active and inactive)
durable subscribers
and is equivalent to
"Num consumers."

No con mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

Peak num active
consumers

Peak number of
associated active
message consumers
since broker started

For topic
destinations, this
attribute includes
both nondurable and
(active and inactive)
durable subscribers
and is equivalent to
"Peak num
consumers."

No con mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

Avg num active consumers Average number of
associated active
message consumers
since broker started

For topic
destinations, this
attribute includes
both nondurable and
(active and inactive)
durable subscribers
and is equivalent to
"Avg num
consumers."

No con mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

Num backup consumers1 Current number of
associated backup
message consumers

No con mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

Peak num backup
consumers1

Peak number of
associated backup
message consumers
since broker started

No con mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

Avg num backup
consumers1

Average number of
associated backup
message consumers
since broker started

No con mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

Stored Messages

Num messages Current number of
messages stored in
memory and
persistent store

No conttlrt
s2

mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

Table 21–4 (Cont.) Physical Destination Metrics

Metrics Quantity Description
Log
File?

metrics
dstMetric
Type Metrics Topic

Physical Destination Metrics

Metrics Information Reference 21-7

Num messages remote Current number of
messages stored in
memory and
persistent store that
were sent from a
remote broker in a
cluster. This number
does not include
messages included in
transactions.

No Not
Available3

Not Available

Peak num messages Peak number of
messages stored in
memory and
persistent store since
broker started

No conttlrt
s

mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

Avg num messages Average number of
messages stored in
memory and
persistent store since
broker started

No conttlrt
s

mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

Total message bytes Current total size in
bytes of messages
stored in memory
and persistent store

No ttlrts2 mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

Total message bytes remote Current total size in
bytes of messages
stored in memory
and persistent store
that were sent from a
remote broker in a
cluster. This value
does not include
messages included in
transactions.

No Not
Available
3

Not Available

Peak total message bytes Peak total size in
bytes of messages
stored in memory
and persistent store
since broker started

No ttlrts mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

Avg total message bytes Average total size in
bytes of messages
stored in memory
and persistent store
since broker started

No ttlrts mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

Message Flow

Num messages in Cumulative number
of messages received
since broker started

No ttl mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

Num messages out Cumulative number
of messages sent
since broker started

No ttl mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

Table 21–4 (Cont.) Physical Destination Metrics

Metrics Quantity Description
Log
File?

metrics
dstMetric
Type Metrics Topic

Physical Destination Metrics

21-8 Open Message Queue 4.5.2 Administration Guide

Msg bytes in Cumulative size in
bytes of messages
received since broker
started

No ttl mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

Msg bytes out Cumulative size in
bytes of messages
sent since broker
started

No ttl mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

Peak message bytes Size in bytes of
largest single
message received
since broker started

No ttlrts mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

Rate num messages in Current rate of flow
of messages received

No rts None

Rate num messages out Current rate of flow
of messages sent

No rts None

Rate msg bytes in Current rate of flow
of message bytes
received

No rts None

Rate msg bytes out Current rate of flow
of message bytes sent

No rts None

Disk Utilization

Disk reserved4 Amount of disk
space, in bytes,
reserved for
destination

No dsk mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

Disk used4 Amount of disk
space, in bytes,
currently in use by
destination

No dsk mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

Disk utilization ratio4 Ratio of disk space in
use to disk space
reserved for
destination

No dsk mq.metrics.destination.queue.queueNa
memq.metrics.destination.topic.topic
Name

1 Queue destinations only
2 Also available with query dst command
3 Available only with imqcmd query dst command
4 File-based persistence only

Table 21–4 (Cont.) Physical Destination Metrics

Metrics Quantity Description
Log
File?

metrics
dstMetric
Type Metrics Topic

22

JES Monitoring Framework Reference 22-1

22JES Monitoring Framework Reference

This chapter describes the monitoring information items that Message Queue exposes
through the Sun Java Enterprise System Monitoring Framework (JESMF), using the
Monitoring Framework's Common Monitoring Model (CMM). It contains the
following sections:

■ Common Attributes

■ Message Queue Product Information

■ Broker Information

■ Port Mapper Information

■ Connection Service Information

■ Destination Information

■ Persistent Store Information

■ User Repository Information

Common Attributes
The attributes listed in Table 22–1 are common to all (or almost all) CMM objects.

Message Queue Product Information
Table 22–2 shows attributes of the Message Queue product itself that can be accessed
with JESMF.

Table 22–1 JESMF Common Object Attributes

Attribute Description

Name Object name

Caption Short description

Description Full description

LastUpdateTime Time last updated

OperationalStatus Current status (for example, OK or DORMANT)

StatusDescriptions Description of status

OperationalStatusLastCh
ange

Time of last change in operational status

Broker Information

22-2 Open Message Queue 4.5.2 Administration Guide

Broker Information
Table 22–3 shows the JESMF -accessible attributes pertaining to each broker instance.

Port Mapper Information
The attributes shown in Table 22–4 provide information about a broker's Port Mapper.

Table 22–2 JESMF-Accessible Message Queue Product Attributes

Attribute Description

ProductName Product name

ProductIdentifyingNumbe
r

Identifying number of product, in the form

■ urn:uuid:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

Value changes for every version.

ProductVendor Vendor name

ProductVersion Version number

RevisionNumber Revision number

BuildNumber Build number

PatchID Patch identifier (if any)

CollectionID Identification key for installed product object

Differentiates among product installations; usually identifies the
installation location.

InstallDate Installation date

Table 22–3 JESMF-Accessible Message Queue Broker Attributes

Attribute Description

PrimaryOwnerName Name of primary system owner (broker property
imq.primaryowner.name; see Table 17–13)

PrimaryOwnerContact Contact information for primary system owner (broker property
imq.primaryowner.contact; see Table 17–13)

Roles Array of strings denoting broker's roles (taken from broker
properties imq.broker.adminDefinedRoles.namen; see
Table 17–13)

StartupTime Time of last startup (date and time in milliseconds)

URL URL of Port Mapper

ConfigurationDirectory Broker instance directory (for example,
/var/imq/instances/mybroker)

DirectoryName Distinguished name of directory (for example, LDAP) entry
where static information about application is stored

An empty string indicates that no information about the
application is available in the directory.

Table 22–4 JESMF-Accessible Message Queue Port Mapper Attributes

Attribute Description

LabeledURI URI for accessing Port Mapper, in the form

■ mq://hostName:portNumber

Connection Service Information

JES Monitoring Framework Reference 22-3

Connection Service Information
Table 22–5 shows the JESMF -accessible attributes pertaining to each connection
service.

Secured Is Port Mapper access secure (SSL/TLS)?

Table 22–5 JESMF-Accessible Message Queue Connection Service Attributes

Attribute Description

LabeledURI URI for accessing connection service, in the form

■ mq://hostName:portNumber/serviceName

if dynamically allocated, or

■ mqtcp://hostName:servicePort/serviceName

or

■ mqssl://hostName:servicePort/serviceName

if statically assigned

Secured Is connection service access secure (SSL/TLS)?

ConnectionsCount Current number of connections

NumConnectionsCreated Cumulative number of connections created since broker started

FailedConnectionsCount Cumulative number of connections rejected since broker started

CurrentNumberOfThreads Current number of threads actively handling connections

MinThreadPoolSize Minimum number of threads maintained in connection service's
thread pool (broker property imq.serviceName.min_threads; see
Table 17–1)

MaxThreadPoolSize Number of threads beyond which no new threads are added to
thread pool for use by connection service (broker property
imq.serviceName.max_threads; see Table 17–1)

NumProducers Current number of message producers

NumConsumers Current number of message consumers

NumMsgsIn Cumulative number of messages received since broker started

NumMsgsOut Cumulative number of messages sent since broker started

InBytesCount Cumulative size in bytes of messages received since broker
started

OutBytesCount Cumulative size in bytes of messages sent since broker started

NumPktsIn Cumulative number of packets received since broker started

NumPktsOut Cumulative number of packets sent since broker started

PktBytesIn Cumulative size in bytes of packets received since broker started

PktBytesOut Cumulative size in bytes of packets sent since broker started

Table 22–4 (Cont.) JESMF-Accessible Message Queue Port Mapper Attributes

Attribute Description

Destination Information

22-4 Open Message Queue 4.5.2 Administration Guide

Destination Information
Table 22–6 shows the JESMF -accessible attributes pertaining to each destination. Each
of these attributes corresponds to a Message Queue physical destination property; see
Table 18–1 for further information.

Persistent Store Information
The attributes shown in Table 22–7 pertain to the persistent data store.

Table 22–6 JESMF-Accessible Message Queue Destination Attributes

Attribute Corresponding Property Description

Type Destination type (q = queue, t =
topic)

MaxNumMsgs maxNumMsgs Maximum number of unconsumed
messages

MaxBytesPerMsg maxBytesPerMsg Maximum size, in bytes, of any
single message

MaxTotalMsgBytes maxTotalMsgBytes Maximum total memory, in bytes,
for unconsumed messages

LimitBehavior limitBehavior Broker behavior when memory-limit
threshold reached

MaxNumProducers1

1 Does not apply to dead message queue

maxNumProducers Maximum number of associated
message producers

MaxNumActiveConsumers2

2 Queue destinations only

maxNumActiveConsumers Maximum number of associated
active message consumers in
load-balanced delivery

MaxNumBackupConsumers2 maxNumBackupConsumers Maximum number of associated
backup message consumers in
load-balanced delivery

ConsumerFlowLimit consumerFlowLimit Maximum number of messages
delivered to consumer in a single
batch

LocalOnly1 isLocalOnly Local delivery only?

LocalDeliveryPreferred1
,2

localDeliveryPreferred Local delivery preferred?

UseDMQ1 useDMQ Send dead messages to dead
message queue?

Table 22–7 JESMF-Accessible Message Queue Persistent Store Attributes

Attribute Description

AccessInfo URL for accessing JDBC database

InfoFormat Format of AccessInfo attribute (URL)

JDBCDriver JDBC driver

UserName User name for authentication

User Repository Information

JES Monitoring Framework Reference 22-5

User Repository Information
The attributes shown in Table 22–8 pertain to the LDAP user repository.

Table 22–8 JESMF-Accessible Message Queue User Repository Attributes

Attribute Description

AccessInfo URL for accessing LDAP server

InfoFormat Format of AccessInfo attribute (URL)

Base Root or base node for user lookup

GroupBase Root or base node for group lookup

UserName User name for authentication

User Repository Information

22-6 Open Message Queue 4.5.2 Administration Guide

Part IV
Part IV Appendixes

■ Appendix A, "Distribution-Specific Locations of Message Queue Data"

■ Appendix B, "Stability of Message Queue Interfaces"

■ Appendix C, "HTTP/HTTPS Support"

■ Appendix D, "JMX Support"

■ Appendix E, "Frequently Used Command Utility Commands"

A

Distribution-Specific Locations of Message Queue Data A-1

ADistribution-Specific Locations of Message
Queue Data

Message Queue data is stored in different locations based on the distribution used to
install Message Queue. The tables that follow show the location of various types of
Message Queue data for the following types of installations:

■ Installations from an IPS image

■ Installations of Previous Message Queue Versions from Solaris SVR4 Packages

■ Installations of Previous Message Queue Versions from Linux RPMs

In the tables, instanceName denotes the name of the broker instance with which the
data is associated.

Installations from an IPS image
Table A–1 shows the location of Message Queue data when Message Queue is installed
from an IPS image, such as when the Message Queue installer is used. Locations
denote the IMQ_HOME and IMQ_VARHOME directory variables defined in Directory
Variable Conventions.

Table A–1 Message Queue Data Locations for Installations from an IPS Image

Data Category Location

Command line
executable files

IMQ_HOME/bin

Broker instance
configuration
properties

IMQ_VARHOME/instances/instanceName/props/config.properties

Broker configuration
file templates

IMQ_HOME/lib/props/broker/

Persistent data store
(messages,
destinations, durable
subscriptions,
transactions,
acknowledgements)

IMQ_VARHOME/instances/instanceName/fs370/or a JDBC-accessible
data store

Broker instance log
file directory (default
location)

IMQ_VARHOME/instances/instanceName/log/

Administered objects
(object store)

Local directory of your choice or an LDAP server

Installations of Previous Message Queue Versions from Solaris SVR4 Packages

A-2 Open Message Queue 4.5.2 Administration Guide

Installations of Previous Message Queue Versions from Solaris SVR4
Packages

Table A–2 shows the location of Message Queue data when Message Queue was
installed from Solaris SVR4 packages.

Security: user
repository

IMQ_VARHOME/instances/instanceName/etc/passwdor an LDAP server

Security: access
control file (default
location)

IMQ_
VARHOME/instances/instanceName/etc/accesscontrol.properties

Security: password
file directory (default
location)

IMQ_HOME/etc/

Security: example
password file

IMQ_HOME/etc/passfile.sample

Security: broker's key
store file location

IMQ_HOME/etc/

JavaDoc API
documentation

IMQ_HOME/javadoc/index.html

Example applications
and configurations

IMQ_HOME/examples/

Java archive (.jar),
Web archive (.war),
and Resource Adapter
archive (.rar) files

IMQ_HOME/lib/

External resource
(.jar) files such as
JDBC drivers, JAAS
login modules, and so
forth

IMQ_HOME/lib/ext

JMS Bridge DTD file IMQ_HOME/lib/dtd

Note: Message Queue is no longer distributed as Solaris SVR4
packages. The following information is provided as a point of
reference when upgrading from previous versions of Message
Queue that were distributed as Solaris SVR4 packages.

Table A–2 Message Queue Data Locations for Installations from Solaris SVR4 Packages

Data Category Location

Command line
executable files

/usr/bin

Broker instance
configuration
properties

/var/imq/instances/instanceName/props/config.properties

Broker configuration
file templates

/usr/share/lib/imq/props/broker/

Table A–1 (Cont.) Message Queue Data Locations for Installations from an IPS Image

Data Category Location

Installations of Previous Message Queue Versions from Linux RPMs

Distribution-Specific Locations of Message Queue Data A-3

Installations of Previous Message Queue Versions from Linux RPMs

Table A–3 shows the location of Message Queue data when Message Queue was
installed from Linux RPMs.

Persistent data store
(messages,
destinations, durable
subscriptions,
transactions,
acknowledgements)

/var/imq/instances/instanceName/fs370or a JDBC-accessible data
store

Broker instance log
file directory (default
location)

/var/imq/instances/instanceName/log/

Administered objects
(object store)

Local directory of your choice or an LDAP server

Security: user
repository

/var/imq/instances/instanceName/etc/passwdor an LDAP server

Security: access
control file (default
location)

/var/imq/instances/instanceName/etc/accesscontrol.properties

Security: password
file directory (default
location)

/var/imq/instances/instanceName/etc/

Security: example
password file

/etc/imq/passfile.sample

Security: broker's key
store file location

/etc/imq/

JavaDoc API
documentation

/usr/share/javadoc/imq/index.html

Example applications
and configurations

/usr/demo/imq/

Java archive (.jar),
Web archive (.war),
and Resource Adapter
archive (.rar) files

/usr/share/lib/imq

External resource
(.jar) files such as
JDBC drivers, JAAS
login modules, and so
forth

/usr/share/lib/imq/ext

JMS Bridge DTD file /usr/share/lib/imq/dtd

Note: Message Queue is no longer distributed as Linux RPMs.
The following information is provided as a point of reference when
upgrading from previous versions of Message Queue that were
distributed as Linux RPMs.

Table A–2 (Cont.) Message Queue Data Locations for Installations from Solaris SVR4

Data Category Location

Installations of Previous Message Queue Versions from Linux RPMs

A-4 Open Message Queue 4.5.2 Administration Guide

Table A–3 Message Queue Data Locations for Installations from Linux RPMs

Data Category Location

Command line
executable files

/opt/sun/mq/bin

Broker instance
configuration
properties

/var/opt/sun/mq/instances/instanceName/props/config.propertie
s

Broker configuration
file templates

/opt/sun/mq/private/share/lib/props/

Persistent data store
(messages,
destinations, durable
subscriptions,
transactions,
acknowledgements)

/var/opt/sun/mq/instances/instanceName/fs370/or a
JDBC-accessible data store

Broker instance log
file directory (default
location)

/var/opt/sun/mq/instances/instanceName/log/

Administered objects
(object store)

Local directory of your choice or an LDAP server

Security: user
repository

/var/opt/sun/mq/instances/instanceName/etc/passwdor an LDAP
server

Security: access
control file (default
location)

/var/opt/sun/mq/instances/instanceName/etc/accesscontrol.prop
erties

Security: password
file directory (default
location)

/var/opt/sun/mq/instances/instanceName/etc/

Security: example
password file

/etc/opt/sun/mq/passfile.sample

Security: broker's key
store file location

/etc/opt/sun/mq/

JavaDoc API
documentation

/opt/sun/mq/javadoc/index.html

Example applications
and configurations

/opt/sun/mq/examples/

Java archive (.jar),
Web archive (.war),
and Resource Adapter
archive (.rar) files

/opt/sun/mq/share/lib/

External resource
(.jar) files such as
JDBC drivers, JAAS
login modules, and so
forth

/opt/sun/mq/share/lib/ext

Shared library (.so)
files

/opt/sun/mq/lib/

JMS Bridge DTD file /opt/sun/mq/share/lib/dtd

B

Stability of Message Queue Interfaces B-1

BStability of Message Queue Interfaces

Message Queue uses many interfaces that can help administrators automate tasks.
This appendix classifies the interfaces according to their stability. The more stable an
interface is, the less likely it is to change in subsequent versions of the product.

Any interface that is not listed in this appendix is private and not for customer use.

Classification Scheme
Table B–1 describes the stability classification scheme.

Interface Stability
Table B–2 lists the interfaces and their classifications.

Table B–1 Interface Stability Classification Scheme

Classification Description

Private Not for direct use by customers. May change or be removed in
any release.

Evolving For use by customers. Subject to incompatible change at a major
(e.g. 3.0, 4.0) or minor (e.g. 3.1, 3.2) release. The changes will be
made carefully and slowly. Reasonable efforts will be made to
ensure that all changes are compatible but that is not guaranteed.

Stable For use by customers. Subject to incompatible change at a major
(for example, 3.0 or 4.0) release only.

Standard For use by customers. These interfaces are defined by a formal
standard, and controlled by a standards organization.
Incompatible changes to these interfaces are rare.

Unstable For use by customers. Subject to incompatible change at a major
(e.g. 3.0, 4.0) or minor (e.g. 3.1, 3.2) release. Customers are
advised that these interfaces may be removed or changed
substantially and in an incompatible way in a future release. It is
recommended that customers not create explicit dependencies on
unstable interfaces.

Table B–2 Stability of Message Queue Interfaces

Interface Classification

Command Line Interfaces

imqbrokerd command line interface Evolving

imqadmin command line interface Unstable

Interface Stability

B-2 Open Message Queue 4.5.2 Administration Guide

imqcmd command line interface Evolving

imqdbmgr command line interface Unstable

imqkeytool command line interface Evolving

imqobjmgr command line interface Evolving

imqusermgr command line interface Unstable

imqbridgemgr command line interface Evolving

Output from imqbrokerd, imqadmin, imqcmd, imqdbmgr, imqkeytool,
imqobjmgr, imqusermgr

Unstable

Commands

imqobjmgr command file Evolving

imqbrokerd command Stable

imqadmin command Unstable

imqcmd command Stable

imqdbmgr command Unstable

imqkeytool command Stable

imqobjmgr command Stable

imqusermgr command Unstable

imqbridgemgr command Evolving

APIs

JMS API (javax.jms) Standard

JAXM API (javax.xml) Standard

C-API Evolving

C-API environment variables Unstable

Message-based monitoring API Evolving

Administered Object API (com.sun.messaging) Evolving

.jar and .war Files

imq.jar location and name Stable

jms.jar location and name Evolving

imqbroker.jar location and name Private

imqutil.jar location and name Private

imqadmin.jar location and name Private

imqservlet.jar location and name Evolving

imqhttp.war location and name Evolving

imqhttps.war location and name Evolving

imqjmsra.rar location and name Evolving

imqxm.jar location and name Evolving

jaxm-api.jar location and name Evolving

Table B–2 (Cont.) Stability of Message Queue Interfaces

Interface Classification

Interface Stability

Stability of Message Queue Interfaces B-3

saaj-api.jar location and name Evolving

saaj-impl.jar location and name Evolving

activation.jar location and name Evolving

mail.jar location and name Evolving

dom4j.jar location and name Private

fscontext.jar location and name Unstable

Files

Broker log file location and content format Unstable

password file Unstable

accesscontrol.properties file Unstable

System Destinations

mq.sys.dmq destination Stable

mq.metrics.* destinations Evolving

Configuration Properties

Message Queue JMS Resource Adapter configuration properties Evolving

Message Queue JMS Resource Adapter JavaBean and ActivationSpec
configuration properties

Evolving

Message Properties and Formats

Dead message queue message property, JMSXDeliveryCount Standard

Dead message queue message properties, JMS_SUN_* Evolving

Message Queue client message properties: JMS_SUN_* Evolving

JMS message format for metrics or monitoring messages Evolving

Miscellaneous

Message Queue JMS Resource Adapter package,
com.sun.messaging.jms.ra

Evolving

JDBC schema for storage of persistent messages Evolving

Table B–2 (Cont.) Stability of Message Queue Interfaces

Interface Classification

Interface Stability

B-4 Open Message Queue 4.5.2 Administration Guide

C

HTTP/HTTPS Support C-1

CHTTP/HTTPS Support

Message Queue includes support for Java clients to communicate with a message
broker by means of the HTTP or secure HTTP (HTTPS) transport protocols, rather
than through a direct TCP connection. (HTTP/ HTTPS support is not available for C
clients.) Because HTTP/ HTTPS connections are normally allowed through firewalls,
this allows client applications to be separated from the broker by a firewall.

This appendix describes the architecture used to enable HTTP/ HTTPS support and
explains the setup work needed to allow Message Queue clients to use such
connections. It has the following sections:

■ HTTP/HTTPS Support Architecture

■ Enabling HTTP/HTTPS Support

■ Troubleshooting

HTTP/HTTPS Support Architecture
Message Queue's support architecture is very similar for both HTTP and HTTPS
support, as shown in Figure C–1:

■ On the client side, an HTTP or HTTPS transport driver (part of the Message Queue
client runtime) encapsulates each message into an HTTP request and makes sure
that these requests are transmitted in the correct sequence.

■ If necessary, the client can use an HTTP proxy server to communicate with the
broker. The proxy's address is specified using command line options when starting
the client; seeUsing an HTTP Proxy for more information.

■ An HTTP or HTTPS tunnel servlet (both bundled with Message Queue) is loaded
into an application server or Web server on the broker side and used to pull
payload messages from client HTTP requests before forwarding them to the
broker. The tunnel servlet also sends broker messages back to the client in
response to the client's HTTP requests. A single tunnel servlet can be used to
access multiple brokers.

■ On the broker side, the httpjms or httpsjms connection service unwraps and
demultiplexes incoming messages from the corresponding tunnel servlet.

Enabling HTTP/HTTPS Support

C-2 Open Message Queue 4.5.2 Administration Guide

Figure C–1 HTTP/HTTPS Support Architecture

The main difference between HTTP and HTTPS connections is that in the HTTPS case
(httpsjms connection service), the tunnel servlet has a secure connection to both the
client application and the broker. The secure connection to the broker is established by
means of the Secure Socket Layer (SSL) protocol. Message Queue's SSL-enabled
HTTPS tunnel servlet passes a self-signed certificate to any broker requesting a
connection. The broker uses the certificate to establish an encrypted connection to the
tunnel servlet. Once this connection is established, a secure connection between the
client application and the tunnel servlet can be negotiated by the client application and
the application server or Web server.

Enabling HTTP/HTTPS Support
The procedures for enabling HTTP and HTTPS support are essentially the same for
both protocols, although a few extra steps are required in the HTTPS case to generate
and access the needed encryption keys and certificates. The steps are as follows. (For
HTTPS, start with step 1; for non-secure HTTP, start with step 4.)

1. (HTTPS only) Generate a self-signed certificate for the HTTPS tunnel servlet.

2. (HTTPS only) Modify the deployment descriptor in the tunnel servlet's .war file to
specify the location and password of the certificate key store.

3. (HTTPS only) Validate the Web or application server's self-signed certificate and
install it in the client application's trust store.

4. (HTTP and HTTPS) Deploy the HTTP or HTTPS tunnel servlet.

5. (HTTP and HTTPS) Configure the broker's httpjms or httpsjms connection service
and start the broker.

6. (HTTP and HTTPS) Configure an HTTP or HTTPS connection.

The following subsections describe each of these steps in greater detail, using
GlassFish Server as an example for purposes of illustration. If you are using a different
application server or Web server (such as Oracle iPlanet Web Server), the procedures
will be substantially similar but may differ in detail; see your server product's own
documentation for specifics.

JMS Client

Broker

Connection
Services

httpjms/httpsjms

HTTP
Proxy

Message Queue
Client Runtime

HTTP
Tunnel
Servlet

HTTPS
Tunnel
Servlet

Web Server or
Application Server

HTTPS

HTTP

TLS TCP

F
irew

all

Enabling HTTP/HTTPS Support

HTTP/HTTPS Support C-3

Step 1 (HTTPS Only): Generating a Self-Signed Certificate for the Tunnel Servlet
Message Queue's SSL support is oriented toward securing on-the-wire data, on the
assumption that the client is communicating with a known and trusted server.
Therefore, SSL is implemented using only self-signed server certificates. Before
establishing an HTTPS connection, you must obtain such a certificate. (This step is not
needed for ordinary, non-secure HTTP connections.)

Run the Message Queue Key Tool utility (imqkeytool) to generate a self-signed
certificate for the tunnel servlet. (On UNIX systems, you may need to run the utility as
the root user in order to have permission to create the key store.) Enter the following at
the command prompt:

imqkeytool -servlet keyStoreLocation
where keyStoreLocation is the location of Message Queue's key store file.

The Key Tool utility prompts you for a key store password:

Enter keystore password:
After you have entered a valid password, the utility prompts you for identifying
information from which to construct an X.500 distinguished name. Table C–1 shows
the prompts and the values to be provided for each prompt. Values are case-insensitive
and can include spaces.

When you have entered the information, the Key Tool utility displays it for
confirmation: for example,

 Is CN=mqserver.sun.com, OU=purchasing, ON=Acme Widgets, Inc.,
 L=San Francisco, ST=California, C=US correct?

To accept the current values and proceed, enter yes; to reenter values, accept the
default or enter no. After you confirm, the utility pauses while it generates a key pair.

Next, the utility asks for a password to lock the key pair (key password). Press Return
in response to this prompt to use the same password for both the key password and
the key store password.

Table C–1 Distinguished Name Information Required for a Self-Signed Certificate

Prompt X.500 Attribute Description Example

What is your first and
last name?

commonName (CN) Fully qualified name of server
running the broker

mqserver.sun.com

What is the name of your
organizational unit?

organizationalUnit (OU) Name of department or division purchasing

What is the name of your
organization?

organizationName (ON) Name of larger organization,
such as a company or
government entity

Acme Widgets, Inc.

What is the name of your
city or locality?

localityName (L) Name of city or locality San Francisco

What is the name of your
state or province?

stateName (ST) Full (unabbreviated) name of
state or province

California

What is the two-letter
country code for this
unit?

country (C) Standard two-letter country code US

Enabling HTTP/HTTPS Support

C-4 Open Message Queue 4.5.2 Administration Guide

The Key Tool utility generates a self-signed certificate and places it in Message Queue's
key store file at the location you specified for the keyStoreLocation argument.

Step 2 (HTTPS Only): Specifying the Key Store Location and Password
The tunnel servlet's Web archive (.war) file includes a deployment descriptor, an XML
file containing the basic configuration information needed by the application server or
Web server to load and run the servlet. Before deploying the .war file for the HTTPS
tunnel servlet, you must edit the deployment descriptor to specify the location and
password of the certificate key store. (This step is not needed for ordinary, non-secure
HTTP connections.)

To Specify the Location and Password of the Certificate Key Store
1. Copy the .war file to a temporary directory:

cp IMQ_HOME/lib/imqhttps.war /tmp
2. Make the temporary directory your current directory.

cd /tmp
3. Extract the contents of the .war file.

jar xvf imqhttps.war
4. List the .war file's deployment descriptor.

Enter the command

ls -l WEB-INF/web.xml
to confirm that the deployment descriptor file (WEB-INF/web.xml) was successfully
extracted.

5. Edit the deployment descriptor to specify the key store location and password.

Edit the web.xml file to provide appropriate values for the keystoreLocation and
keystorePassword elements (as well as servletPort and servletHost, if
necessary): for example,

<init-param>
<param-name>keystoreLocation</param-name>
<param-value>/local/tmp/imqhttps/keystore</param-value>
</init-param>
<init-param>
<param-name>keystorePassword</param-name>
<param-value>shazam</param-value>
</init-param>
<init-param>
<param-name>servletHost</param-name>
<param-value>localhost</param-value>
</init-param>

Caution: Be sure to remember the password you specify. You
must provide this password later to the tunnel servlet so it can
open the key store.

Caution: The HTTPS tunnel servlet must be able to see the key
store. Be sure to move or copy the generated key store from the
location specified by keyStoreLocation to one accessible to the tunnel
servlet (see Step 4 (HTTP and HTTPS): Deploying the Tunnel
Servlet).

Enabling HTTP/HTTPS Support

HTTP/HTTPS Support C-5

<init-param>
<param-name>servletPort</param-name>
<param-value>7674</param-value>
</init-param>

6. Reassemble the contents of the .war file.

jar uvf imqhttps.war WEB-INF/web.xml

Step 3 (HTTPS Only): Validating and Installing the Server's Self-Signed Certificate
In order for a client application to communicate with the Web or application server,
you must validate the server's self-signed certificate and install it in the application's
trust store. The following procedure shows how:

To Validate and Install the Server's Self-Signed Certificate
1. Validate the server's certificate.

By default, the GlassFish Server generates a self-signed certificate and stores it in a
key store file at the location

appServerRoot/glassfish/domains/domain1/config/keystore.jks
where appServerRoot is the root directory in which the application server is
installed.

a. Make the directory containing the key store file your current directory.

For example, to use the Application Server's default key store file (as shown
above), navigate to its directory with the command

cd appServerRoot/glassfish/domains/domain1/config
where appServerRoot is, again, the root directory in which the application
server is installed.

b. List the contents of the key store file.

The Key Tool utility's -list option lists the contents of a specified key store
file. For example, the following command lists the Application Server's default
key store file (keystore.jks):

keytool -list -keystore keystore.jks -v
The -v option tells the Key Tool utility to display certificate fingerprints in
human-readable form.

c. Enter the key store password.

The Key Tool utility prompts you for the key store file's password:

Enter keystore password:

Note: If you are concerned about exposure of the key store
password, you can use file-system permissions to restrict access to
the imqhttps.war file.)

Note: If necessary, you can use the JDK Key Tool utility to
generate a key store of your own and use it in place of the default
key store. For more information, see "Establishing a Secure
Connection Using SSL" in The Java EE 5 Tutorial.

Enabling HTTP/HTTPS Support

C-6 Open Message Queue 4.5.2 Administration Guide

By default, the key store password is set to changeit; you can use the Key Tool
utility's -storepasswd option to change it to something more secure. After you
have entered a valid password, the Key Tool utility will respond with output
like the following:

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

Alias name: slas
Creation date: Nov 13, 2007
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=helios, OU=Sun Java System Application Server, O=Sun
Microsystems,
L=Santa Clara, ST=California, C=US
Issuer: CN=helios, OU=Sun Java System Application Server, O=Sun
Microsystems,
L=Santa Clara, ST=California, C=US
Serial number: 45f74784
Valid from: Tue Nov 13 13:18:39 PST 2007 until: Fri Nov 10 13:18:39 PST
2017
Certificate fingerprints:
 MD5: 67:04:CC:39:83:37:2F:D4:11:1E:81:20:05:98:0E:D9
 SHA1: A5:DE:D8:03:96:69:C5:55:DD:E1:C4:13:C1:3D:1D:D0:4C:81:7E:CB
 Signature algorithm name: MD5withRSA
 Version: 1

d. Verify the certificate's fingerprints.

Obtain the correct fingerprints for the Application Server's self-signed
certificate by independent means (such as by telephone) and compare them
with the fingerprints displayed by the keytool list command. Do not accept
the certificate and install it in your application's trust store unless the
fingerprints match.

2. Export the Application Server's certificate to a certificate file.

Use the Key Tool utility's -export option to export the certificate from the
Application Server's key store to a separate certificate file, from which you can
then import it into your application's trust store. For example, the following
command exports the certificate shown above, whose alias is slas, from the
Application Server's default key store (keystore.jks) to a certificate file named
slas.cer:

keytool -export -keystore keystore.jks -storepass changeit
-alias slas -file slas.cer
The Key Tool utility responds with the output

Certificate stored in file <slas.cer>
3. Verify the contents of the certificate file.

If you wish, you can double-check the contents of the certificate file to make sure it
contains the correct certificate:

a. List the contents of the certificate file.

The Key Tool utility's -printcert option lists the contents of a specified
certificate file. For example, the following command lists the certificate file
slas.cer that was created in the preceding step:

Enabling HTTP/HTTPS Support

HTTP/HTTPS Support C-7

keytool -printcert -file slas.cer -v
Once again, the -v option tells the Key Tool utility to display the certificate's
fingerprints in human-readable form. The resulting output looks like the
following:

Owner: CN=helios, OU=Sun Java System Application Server, O=Sun
Microsystems,
L=Santa Clara, ST=California, C=US
Issuer: CN=helios, OU=Sun Java System Application Server, O=Sun
Microsystems,
L=Santa Clara, ST=California, C=US
Serial number: 45f74784
Valid from: Tue Nov 13 13:18:39 PST 2007 until: Fri Nov 10 13:18:39 PST
2017
Certificate fingerprints:
 MD5: 67:04:CC:39:83:37:2F:D4:11:1E:81:20:05:98:0E:D9
 SHA1: A5:DE:D8:03:96:69:C5:55:DD:E1:C4:13:C1:3D:1D:D0:4C:81:7E:CB
 Signature algorithm name: MD5withRSA
 Version: 1

b. Confirm the certificate's contents.

Examine the output from the keytool printcert command to make sure that
the certificate is correct.

4. Import the certificate into your application's trust store.

The Key Tool utility's -import option installs a certificate from a certificate file in a
specified trust store. For example, if your client application's trust store is kept in
the file /local/tmp/imqhttps/appKeyStore, the following command will install
the certificate from the file slas.cer created above:

keytool -import -file slas.cer -keystore "/local/tmp/imqhttps/appKeyStore"

Step 4 (HTTP and HTTPS): Deploying the Tunnel Servlet
You can deploy the HTTP or HTTPS tunnel servlet on GlassFish Server either from the
command line or by using the application server's Web-based administration GUI. In
either case, you must then modify the Application Server's security policy file to grant
permissions for the tunnel servlet.

To deploy the tunnel servlet from the command line, use the deploy subcommand of
the application server administration utility (asadmin): for example,

asadmin deploy --user admin --passwordfile pfile.txt --force=true
/local/tmp/imqhttps/imqhttps.war
The procedure below shows how to use the Web-based GUI to deploy the servlet.

After deploying the tunnel servlet (whether from the command line or with the
Web-based GUI), proceed to Modifying the Application Server's Security Policy File
for instructions on how to grant it the appropriate permissions.

To Deploy the HTTP or HTTPS Tunnel Servlet
1. Deploy the tunnel servlet:

a. In the Web-based administration GUI, choose

App Server>Instances>appServerInstance>Applications>Web Applications
where appServerInstance is the application server instance on which you are
deploying the tunnel servlet.

b. Click the Deploy button.

Enabling HTTP/HTTPS Support

C-8 Open Message Queue 4.5.2 Administration Guide

2. Specify the .war file location:

a. Enter the location of the tunnel servlet's Web archive file (imqhttp.war or
imqhttps.war) in the File Path text field.

The file is located in the IMQ_HOME/lib directory.

b. Click the OK button.

3. Specify the context root directory:

a. Enter the /contextRoot portion of the tunnel servlet's URL.

The URL has the form

http://hostName:portNumber/contextRoot/tunnel
or

https://hostName:portNumber/contextRoot/tunnel
For example, if the URL for the tunnel servlet is

http://hostName:portNumber/imq/tunnel
the value you enter would be

/imq
b. Click the OK button.

A confirmation screen appears, showing that the tunnel servlet has been
successfully deployed and is enabled by default. The servlet is now available
at the URL

http://hostName:portNumber/contextRoot/tunnel
or

https://hostName:portNumber/contextRoot/tunnel
where contextRoot is the context root directory you specified in step a above.
Clients can now use this URL to connect to the message service using an
HTTP or HTTPS connection.

4. Modify the server's security policy file

Once you have deployed the HTTP or HTTPS tunnel servlet, you must grant it the
appropriate permissions by modifying the Application Server's security policy file,
as described in the next procedure.

Modifying the Application Server's Security Policy File
Each application server instance has a security policy file specifying its security
policies or rules. Unless modified, the default security policies would prevent the
HTTP or HTTPS tunnel servlet from accepting connections from the Message Queue
message broker. In order for the broker to connect to the tunnel servlet, you must add
an additional entry to this policy file:

1. Open the security policy file.

The file is named server.policy and resides at a location that varies depending
on your operating system platform. On the Solaris platform, for example, the
policy file for server jeeves would be located at

appServerRoot/glassfish/domains/domain1/jeeves/config/server.policy
where appServerRoot is the root directory in which GlassFish Server is installed.

2. Add the following entry to the file:

grant codeBase
"file:appServerRoot/glassfish/domains/domain1/jeeves

Enabling HTTP/HTTPS Support

HTTP/HTTPS Support C-9

/applications/j2ee-modules/imqhttps/-
{
permission java.net.SocketPermission "*","connect,accept,resolve";
};

3. Save and close the security policy file.

Step 5 (HTTP and HTTPS): Configuring the Connection Service
HTTP/HTTPS support is not activated for a broker by default, so before connecting
using these protocols, you need to reconfigure the broker to activate the httpjms or
httpsjms connection service. Table C–2 shows broker configuration properties
pertaining specifically to these two connection services. Once reconfigured, the broker
can be started normally, as described under Starting Brokers.

To Activate the httpjms or httpsjms Connection Service
1. Open the broker's instance configuration file.

The instance configuration file is named config.properties and is located in IMQ_
VARHOME/instances/instanceName/props.

2. Add httpjms or httpsjms to the list of active connection services.

Add the value httpjms or httpsjms to the imq.service.activelist property: for
example,

imq.service.activelist=jms,admin,httpjms
or

imq.service.activelist=jms,admin,httpsjms
3. Set any other HTTP/HTTPS-related configuration properties as needed.

At startup, the broker looks for an application server or Web server and an HTTP
or HTTPS tunnel servlet running on its local host machine. If necessary, you can
reconfigure the broker to access a remote tunnel servlet instead, by setting the
servletHost and servletPort properties appropriately (see Table C–2): for
example,

imq.httpjms.http.servletHost=helios
imq.httpjms.http.servletPort=7675
You can also improve performance by reconfiguring the connection service's
pullPeriod property. This specifies the interval, in seconds, at which each client
issues HTTP/HTTPS requests to pull messages from the broker. With the default
value of -1, the client will keep one such request pending at all times, ready to pull

Table C–2 Broker Configuration Properties for the httpjms and httpsjms Connection Services

Property Type Default Value Description

imq.httpjms.http.servletHostimq.h
ttpsjms.https.servletHost

String localhost Host name or IP address of (local or remote)
host running tunnel servlet

imq.httpjms.http.servletPortimq.h
ttpsjms.https.servletPort

Integer httpjms:
7675httpsjms:
7674

Port number of tunnel servlet

imq.httpjms.http.pullPeriodimq.ht
tpsjms.https.pullPeriod

Integer -1 Interval, in seconds, between client HTTP/
HTTPS requests

If zero or negative, the client will keep one
request pending at all times.

imq.httpjms.http.connectionTimeou
timq.httpsjms.https.connectionTim
eout

Integer 60 Tunnel servlet timeout interval

Enabling HTTP/HTTPS Support

C-10 Open Message Queue 4.5.2 Administration Guide

messages as fast as possible. With a large number of clients, this can cause a heavy
drain on server resources, causing the server to become unresponsive. Setting the
pullPeriod property to a positive value configures the client's HTTP/HTTPS
transport driver to wait that many seconds between pull requests, conserving
server resources at the expense of increased response times to clients.

The connectionTimeout property specifies the interval, in seconds, that the client
runtime waits for a response from the HTTP/ HTTPS tunnel servlet before
throwing an exception, as well as the time the broker waits after communicating
with the tunnel servlet before freeing a connection. (A timeout is necessary in this
case because the broker and the tunnel servlet have no way of knowing if a client
that is accessing the tunnel servlet has terminated abnormally.)

Step 6 (HTTP and HTTPS): Configuring a Connection
To make HTTP/HTTPS connections to a broker, a client application needs an
appropriately configured connection factory administered object. Before configuring
the connection factory, clients wishing to use secure HTTPS connections must also
have access to SSL libraries provided by the Java Secure Socket Extension (JSSE) and
must obtain a trusted root certificate.

Installing a Root Certificate (HTTPS Only)
If the root certificate of the certification authority (CA) that signed your application
server's (or Web server's) certificate is not in the trust store by default, or if you are
using a proprietary application server or Web server certificate, you must install the
root certificate in the trust store. (This step is not needed for ordinary, non-secure
HTTP connections, or if the CA's root certificate is already in the trust store by
default.)

Installing a Root Certificate in the Trust Store

1. Import the root certificate.

Execute the command

JRE_HOME/bin/keytool -import -trustcacerts
-alias certAlias -file certFile
-keystore trustStoreFile
where certFile is the file containing the root certificate, certAlias is the alias
representing the certificate, and trustStoreFile is the file containing your trust store.

2. Confirm that you trust the certificate.

Answer YES to the question Trustthiscertificate?

3. Identify the trust store to the client application.

In the command that launches the client application, use the -D option to specify
the following properties:

javax.net.ssl.trustStore=trustStoreFile
javax.net.ssl.trustStorePassword=trustStorePassword

Configuring the Connection Factory (HTTP and HTTPS)
To enable HTTP/HTTPS support, you need to set the connection factory's
imqAddressList attribute to the URL of the HTTP/HTTPS tunnel servlet. The URL has
the form

http://hostName:portNumber/contextRoot/tunnel
or

Enabling HTTP/HTTPS Support

HTTP/HTTPS Support C-11

https://hostName:portNumber/contextRoot/tunnel
where hostName:portNumber is the host name and port number of the application
server or Web server hosting the tunnel servlet and contextRoot is the context root
directory you specified when deploying the tunnel servlet on the server, as described
above under Step 4 (HTTP and HTTPS): Deploying the Tunnel Servlet.

You can set the imqAddressList attribute in any of the following ways:

■ Use the -o option to the imqobjmgr command that creates the connection factory
administered object (see Adding a Connection Factory).

■ Set the attribute when creating the connection factory administered object using
the Administration Console (imqadmin).

■ Use the -D option to the command that launches the client application.

■ Use an API call to set the attributes of the connection factory after you create it
programmatically in client application code (see the Open Message Queue
Developer's Guide for Java Clients).

Using a Single Servlet to Access Multiple Brokers (HTTP and HTTPS)
It is not necessary to configure multiple application or Web servers and tunnel servlets
in order to access multiple brokers; you can share a single server instance and tunnel
servlet among them. To do this, you must configure the imqAddressList connection
factory attribute as follows:

http://hostName:portNumber/contextRoot/tunnel?ServerName=
brokerHostName:instanceName
or

https://hostName:portNumber/contextRoot/tunnel?ServerName=
brokerHostName:instanceName
where brokerHostName is the broker instance host name and instanceName is the name
of the specific broker instance you want your client to access.

To check that you have entered the correct values for brokerHostName and
instanceName, generate a status report for the HTTP/HTTPS tunnel servlet by
accessing the servlet URL from a browser:

http://localhost:8080/imqhttp/tunnel
The report lists all brokers being accessed by the servlet, as shown in Example C–1.

Example C–1 Tunnel Servlet Status Report

HTTP tunnel servlet ready.
Servlet Start Time : Thu May 30 01:08:18 PDT 2002
Accepting secured connections from brokers on port : 7675
Total available brokers = 2
Broker List :
 helios:broker1
 selene:broker2

Using an HTTP Proxy
To use an HTTP proxy to access the HTTPS tunnel servlet, set the system properties
http.proxyHost and http.proxyPort to the proxy server's host name and port
number. You can set these properties using the -D option to the command that
launches the client application.

Troubleshooting

C-12 Open Message Queue 4.5.2 Administration Guide

Troubleshooting
This section describes possible problems with an HTTP or HTTPS connection and
provides guidance on how to handle them.

Server or Broker Failure
The consequences of a server or broker failure in an (HTTP or HTTPS) connection vary
depending on the specific component that has failed:

■ If the application server or Web server fails and is restarted, all existing
connections are restored with no effect on clients.

■ If the broker fails and is restarted, an exception is thrown and clients must
reestablish their connections.

■ In the unlikely event that both the broker and the application server or Web server
fail and the broker is not restarted, the application server or Web server will
restore client connections and continue waiting for a broker connection without
notifying clients. To avoid this situation, always restart the broker after a failure.

Client Failure to Connect Through the Tunnel Servlet
If an HTTPS client cannot connect to the broker through the tunnel servlet, do the
following:

If a Client Cannot Connect
1. Start the tunnel servlet and the broker.

2. Use a browser to access the servlet manually through the tunnel servlet URL.

3. Use the following administrative commands to pause and resume the connection:

imqcmd pause svc -n httpsjms -u admin
imqcmd resume svc -n httpsjms -u admin
When the service resumes, an HTTPS client should be able to connect to the broker
through the tunnel servlet.

D

JMX Support D-1

DJMX Support

Message Queue includes support for Java-based client programs to programmatically
configure and monitor Message Queue resources by means of the Java Management
Extensions (JMX) application programming interface. These resources include brokers,
connection services, connections, destinations, durable subscribers, and transactions,
Use of the JMX API from the client side is fully described in the Open Message Queue
Developer's Guide for JMX Clients. This appendix describes the JMX support
infrastructure on the broker side, including the following topics:

■ JMX Connection Infrastructure

■ JMX Configuration

JMX Connection Infrastructure
The JMX API allows Java client applications to monitor and manage broker resources
by programmatically accessing JMX MBeans (managed beans) that represent broker
resources. As explained in "JMX-Based Administration" in Open Message Queue
Technical Overview, the broker implements MBeans associated with individual broker
resources, such as connection services, connections, destinations, and so forth, as well
as with whole categories of resources, such as the set of all destinations on a broker.
There are separate configuration MBeans and monitor MBeans for setting a resource's
configuration properties and monitoring its runtime state.

MBean Access Mechanism
In the JMX implementation used by Message Queue, JMX client applications access
MBeans using remote method invocation (RMI) protocols provided by JDK 1.5 (and
later).

When a broker is started, it automatically creates MBeans that correspond to broker
resources and places them in an MBean server (a container for MBeans). JMX client
applications access the MBean server by means of an JMX RMI connector (heretofore
called a JMX connector), which is used to obtain an MBean server connection, which,
in turn, provides access to individual MBeans.

The broker also creates and configures two default JMX connectors, jmxrmi and
ssljmxrmi. These connectors are similar to the broker connection services used to
provide connections to the broker from JMS clients. By default, only the jmxrmi
connector is activated at broker startup. The ssljmxrmi connector, which is configured
to use SSL encryption, can be activated using the imq.jmx.connector.activelist
broker property (see To Activate the SSL-Based JMX connector).

JMX client applications programmatically access JMX MBeans by first obtaining an
MBean server connection from the jmxrmi or ssljmxrmi connector. The connector itself

JMX Connection Infrastructure

D-2 Open Message Queue 4.5.2 Administration Guide

is accessed by using a proxy object (or stub) that is obtained from the broker by the
JMX client runtime, as shown in the following figure. Encapsulated in the connector
stub is the port at which the connector resides, which is dynamically assigned each
time a broker is started, and other connection properties.

Figure D–1 Basic JMX Infrastructure

The JMX Service URL
JMX client applications obtain a JMX connector stub using an address called the JMX
service URL. The value and format of the JMX service URL depends on how the
broker's JMX support is configured:

■ Static JMX service URL. The JMX service URL specifies the location of the JMX
connector stub in an RMI registry. When the broker is started, it creates the JMX
connector stub and places it in the specified location in the RMI registry. This
location is fixed across broker startups.

■ Dynamic JMX service URL.The JMX service URL contains the JMX connector stub
as a serialized object. This URL is dynamically created each time the broker is
started.

A JMX service URL has the following form:

service:jmx:rmi://brokerHost[:connectorPort]urlpath

where rmi://brokerHost[:connectorPort] specifies the host (and optionally a port) used
by the JMX connector. By default the port is assigned dynamically on broker startup,
but can be set to a fixed value for JMX connections through a firewall.

The urlpath portion of the JMX service URL depends on whether the JMX service URL
is static (see Static JMX Service URL: Using an RMI Registry) or dynamic (see Dynamic
JMX Service URL: Not Using an RMI Registry). In either case, you can determine the
value of the JMX service URL by using the imqcmd list jmx subcommand (see the
examples in RMI Registry Configuration).

By default, the broker does not use an RMI registry, and the JMX runtime obtains a
JMX connector stub by extracting it from a dynamic JMX service URL. However, if the
broker is configured to use an RMI registry, then JMX runtime uses a static JMX service
URL to perform a JNDI lookup of the JMX connector stub in the RMI registry. This
approach, illustrated in the following figure, has the advantage of providing a fixed
location at which the connector stub resides, one that does not change across broker
startups.

BrokerJMX Runtime

JMX
Client

JMX
Connector Stub

MBean Server

MBean
Server

Connection
MBeans

JMX Connector

JMX Configuration

JMX Support D-3

Figure D–2 Obtaining a Connector Stub from an RMI Registry

The Admin Connection Factory
Message Queue also provides, as a convenience, an AdminConnectionFactory class
that hides the details of the JMX Service URL and JMX connector stub. The Admin
Connection Factory uses the Message Queue Port Mapper service to get the relevant
JMX Service URL (regardless of the form being used) and thereby obtain a JMX
connector stub. JMX applications that use the Admin Connection Factory only need to
know the broker's host and Port Mapper port. The scheme is shown in the following
figure.

Figure D–3 Obtaining a Connector Stub from an Admin Connection Factory

For programmatic details, see "Obtaining a JMX Connector from an Admin
Connection Factory" in Open Message Queue Developer's Guide for JMX Clients.

JMX Configuration
Broker configuration properties that support JMX are listed in Table 17–18. These
properties can be set in the broker's instance configuration file (config.properties) or
at broker startup with the -D option of the Broker utility (imqbrokerd). None of these
properties can be set dynamically with the Command utility (imqcmd). In addition, as
described below, some of these properties can be set with corresponding imqbrokerd
options.

This section discusses several JMX configuration topics:

Broker
JMX

Runtime
JMX

Client

JMX
Connector Stub

MBean Server

MBean
Server

Connection
MBeans

JMX Connector

JMX
Connector

Stub

RMI
Registry

BrokerMQ/JMX
Runtime

Admin
Connection

Factory

JMX
Client

JMX
Connector Stub

MBean Server

MBean
Server

Connection
MBeans

JMX Connector

Port
Mapper

JMX Configuration

D-4 Open Message Queue 4.5.2 Administration Guide

■ RMI Registry Configuration

■ SSL-Based JMX Connections

■ JMX Connections Through a Firewall

RMI Registry Configuration
You can configure the broker to do any of the following:

■ Start an RMI registry (imq.jmx.rmiregistry.start=true)

If the broker is configured to start an RMI registry, then the broker will do the
following:

■ Start an RMI registry in the broker process. The RMI registry will remain
operational during the lifetime of the broker.

■ Store the JMX connector stub for it's connectors in this RMI registry.

■ Advertise a static JMX Service URL that points to the relevant JMX connector
stub in this registry.

■ Shut down the RMI registry as part of the broker shutdown process.

■ Use an existing RMI registry (imq.jmx.rmiregistry.use=true)

If the broker is configured to use an existing RMI registry on the local host, then
the broker will do the following:

■ Expect an RMI registry to be running on the same host (at a port which can
also be specified)

■ Store the JMX connector stub for it's connectors in this externally managed
RMI registry.

■ Advertise a static JMX Service URL that points to the relevant JMX connector
stub in this registry. This means the registry must remain operational during
the lifetime of the broker.

■ Not shut down the RMI registry as part of the broker shutdown process.

■ Not use a registry at all (both imq.jmx.rmiregistry.start and
imq.jmx.rmiregistry.use are set to false).

If the broker is configured to not use a registry, then the broker will advertise a
dynamic JMX Service URL that contains the JMX connector stub as a serialized
object.

The choice of using or not using an RMI registry depends upon whether you want a
static or dynamic JMX Service URL, respectively. The advantages and disadvantages of
using an RMI registry are shown in the following table.

Table D–1 Advantages and Disadvantages of Using an RMI Registry

Scenari
o Broker Configuration Advantages Disadvantages

Using a
Registry

(Static
JMX
Service
URL)

Configuration Properties:

imq.jmx.rmigegistry.sta
rt

imq.jmx.rmigegistry.use

imq.jmx.rmigegistry.por
t

The value of the JMX
Service URL is constant
across broker restarts.

Broker depends on an RMI
registry, either one it starts
or one that is externally
available. There is
therefore one more port to
worry about with regard
to port conflicts or firewall
configurations.

JMX Configuration

JMX Support D-5

If a registry is being used, the imq.jmx.rmiregistry.port property specifies the port
number for the RMI registry. For convenience, you can also specify these RMI registry
related properties by using equivalent Broker utility (imqbrokerd) options at broker
startup: -startRmiRegistry, -useRmiRegistry, and -rmiRegistryPort, respectively
(see Table 16–1).

Static JMX Service URL: Using an RMI Registry
When using an RMI Registry to store a JMX connector stub, the urlpath portion of the
JMX service URL (see The JMX Service URL) does not change across broker startups
and has the following form:

/jndi/rmi://brokerHost[:rmiPort]/brokerHost/portMapperPort/connectorName

This path consists of two segments:

■ /jndi/rmi://brokerHost[:rmiPort]

Specifies the RMI registry host and port at which the JMX contector stub is
obtained by performing a JNDI lookup. The default port is 1099.

■ /brokerHost/portMapperPort/connectorName

Specifies the location within the RMI registry where the JMX connector stub is
stored.

Example D–1 JMX Service URL When Using an RMI Registry

The following example shows the JMX service URL for the default jmxrmi connector in
the case where an RMI registry is started on port 1098 on a host called yourhost:

imqbrokerd -startRmiRegistry -rmiRegistryPort 1098

% imqcmd list jmx -u admin -passfile /myDir/psswds
Listing JMX Connectors on the broker specified by:

Host Primary Port

localhost 7676

Name Active URL
jmxrmi true service:jmx:rmi://yourhost/jndi/rmi://yourhost:1098
 /yourhost/7676/jmxrmi
ssljmxrmi false

Successfully listed JMX Connectors.

Not
Using a
Registry

(Dynami
c JMX
Service
URL)

Default Broker does not start up
an RMI registry. There is
therefore one less port to
worry about with regard
to port conflicts or firewall
configurations.

The value of the JMX
Service URL changes at
every broker startup. JMX
applications need to be
provided a new URL
every time the broker
restarts. (This is not an
issue with JMX client
applications that use the
AdminConnectionFactory
class.)

Table D–1 (Cont.) Advantages and Disadvantages of Using an RMI Registry

Scenari
o Broker Configuration Advantages Disadvantages

JMX Configuration

D-6 Open Message Queue 4.5.2 Administration Guide

The JMX service URL could potentially contain a hostname and port three separate
times, indicating the location of the JMX connector, the RMI registry, and the broker,
respectively.

Dynamic JMX Service URL: Not Using an RMI Registry
When not using an RMI Registry to store a JMX connector stub, the urlpath portion of
the JMX service URL is dynamically generated at broker startup and has the following
form:

/stub/rO0ABdmVyLlJlpIDJyGvQkwAAAARod97VdgAEAeA==

where the string following /stub/ is the is the serialized JMX connector stub encoded
in BASE64 (shortened above for legibility)

Example D–2 JMX Service URL When Not Using an RMI Registry

The following example shows the JMX service URL for the default jmxrmi connector
when no RMI registry is started by the broker and no existing registry is used.

imqbrokerd

% imqcmd list jmx -u admin -passfile /myDir/psswds
Listing JMX Connectors on the broker specified by:

Host Primary Port

localhost 7676

Name Active URL
jmxrmi true service:jmx:rmi://yourhost/stub/rO0ABdmVyLlJlpIDJy==

ssljmxrmi false

Successfully listed JMX Connectors.

SSL-Based JMX Connections
If you need to have secure, encrypted connections between a JMX client and the
broker's MBean server, then you need to configure both sides of the connection
accordingly.

Broker Side SSL Configuration
As mentioned in JMX Connection Infrastructure, a broker is configured by default for
non-secure communication using the preconfigured jmxrmi connector. Applications
wishing to use the Secure Socket Layer (SSL) for secure communication must activate
the alternate ssljmxrmi connector. The ssljmxrmi connector is preconfigured with
imq.jmx.connector.RMIconnectorName.useSSL=true.

To Activate the SSL-Based JMX connector

1. Obtain and install a signed certificate.

The procedure is the same as for the ssljms, ssladmin, or cluster connection
service, as described under Using Signed Certificates.

2. Install the root certification authority certificate in the trust store if necessary.

JMX Configuration

JMX Support D-7

3. Add the ssljmxrmi connector to the list of JMX connectors to be activated at
broker startup:

imq.jmx.connector.activelist=jmxrmi,ssljmxrmi
4. Start the broker.

Use the Broker utility (imqbrokerd), either passing it the keystore password in a
passfile or typing it from at the command line when prompted.

5. Disable validation of certificates if desired.

By default, the ssljmxrmi connector (or any other SSL-based connector) is
configured to validate all broker SSL certificates presented to it. Validation will fail
if the signer of the certificate is not in the client's trust store. To avoid this
validation (for instance, when using self-signed certificates during software
testing), set the broker property
imq.jmx.connector.ssljmxrmi.brokerHostTrusted to true.

JMX Client Side SSL Configuration
On the client side, if the AdminConnectionFactory class is being used to obtain a JMX
connector, the AdminConnectionFactory object must be configured with a URL
specifying the ssljmxrmi connector:

AdminConnectionFactory acf = new AdminConnectionFactory();
 acf.setProperty(AdminConnectionConfiguration.imqAddress,
 "mq://myhost:7676/ssljmxrmi");

In addition, if the JMX client needs to access the trust store, use the system properties
javax.net.ssl.trustStore and javax.net.ssl.trustStorePassword to point the
JMX client to the trust store. For example:

java -Djavax.net.ssl.trustStore=/tmp/myStrustsore
-Djavax.net.ssl.trustStorePassword=myTurstword MyApp

JMX Connections Through a Firewall
If a JMX client application needs to connect to a broker that is located behind a
firewall, the broker must be configured to use fixed JMX ports so the firewall can, in
turn, be configured to allow traffic on these ports. The relevant ports are the following:

■ The port used by the JMX connector. The property used to configure this port is
imq.jmx.connector.connectorName.port, where connectorName can be jmxrmi or
ssljmxrmi.

■ The port used by the RMI registry, if any. The property used to configure this port
is imq.jmx.rmiregistry.port. The equivalent command line option for
imqbrokerd is -rmiRegistryPort.

Once these ports are specified, configure the firewall to allow traffic on these ports.

Example D–3 JMX Configuration for Firewall When Not Using a RMI Registry

The following example starts a broker with no RMI registry and a jmxrmi connector on
port 5656 on a host called yourhost, as follows:

imqbrokerd -Dimq.jmx.connector.jmxrmi.port=5656

The resulting JMX service URL is:

service:jmx:rmi://yourhost:5656/stub/rO0ABdmVyLlJlpIDJy==

JMX Configuration

D-8 Open Message Queue 4.5.2 Administration Guide

The JMX service URL shows the connector port. In this case, you need to configure the
firewall to allow traffic only on port 5656.

Example D–4 JMX Configuration for Firewall When Using an RMI Registry

The following example starts a broker with an RMI registry on port 1098 and a jmxrmi
connector on port 5656 on a host called yourhost, as follows:

imqbrokerd -startRmiRegistry -rmiRegistryPort 1098
-Dimq.jmx.connector.jmxrmi.port=5656

The resulting JMX service URL is:

 service:jmx:rmi://yourhost:5656/jndi/rmi://yourhost:1098
 /yourhost/7676/jmxrmi

The JMX service URL shows both these ports. You need to configure the firewall to
allow traffic on ports 1098 and 5656.

E

Frequently Used Command Utility Commands E-1

EFrequently Used Command Utility
Commands

This appendix lists some frequently used Message Queue Command utility (imqcmd)
commands. For a comprehensive list of command options and attributes available to
you from the command line, refer to Command Utility in Command Utility.

Syntax
imqcmd subcommand argument [
options]
imqcmd -h|H
imqcmd -v

-H or -h provides comprehensive help. The -v subcommand provides version
information.

When you use imqcmd, the Command utility prompts you for a password. To avoid the
prompt (and to increase security), you can use the -passfile pathToPassfile option to
point the utility to a password file that contains the administrator user name and
password.

Example: imqcmd query bkr -u adminUserName -passfile pathToPassfile -b
myServer:7676

Broker and Cluster Management
imqcmd query bkr
imqcmd pause bkr
imqcmd restart bkr
imqcmd resume bkr
imqcmd shutdown bkr -b myBroker:7676
imqcmd update bkr -o "imq.system.max_count=1000"
imqcmd reload cls

Broker Configuration Properties (-o option)
Broker Configuration Properties (-o option) lists frequently used broker configuration
properties. For a full list of broker configuration properties and their descriptions, see
Broker Properties Reference

Service and Connection Management

E-2 Open Message Queue 4.5.2 Administration Guide

Service and Connection Management
imqcmd list svc
imqcmd query svc
imqcmd update svc -n jms -o "minThreads=200" -o "maxThreads=400" -o "port=8995"
imqcmd pause svc -n jms
imqcmd resume svc -n jms
imqcmd list cxn -svn jms
imqcmd query cxn -n 1234567890

Durable Subscriber Management
imqcmd list dur -d MyTopic
imqcmd destroy dur -n myDurSub -c "clientID-111.222.333.444"
imqcmd purge dur -n myDurSub -c "clientID-111.222.333.444"

Transaction Management
imqcmd list txn
imqcmd commit txn -n 1234567890
imqcmd query txn -n 1234567890
imqcmd rollback txn -n 1234567890

Destination Management
imqcmd create dst -n MyQueue -t q -o "maxNumMsgs=1000" -o "maxNumProducers=5"
imqcmd update dst -n MyTopic -t t -o "limitBehavior=FLOW_CONTROL| REMOVE_
OLDEST|REJECT_NEWEST|REMOVE_LOW_PRIORITY"
imqcmd compact dst -n MyQueue -t q

Table E–1 Broker Configuration Properties (-o option)

Property Notes

imq.autocreate.queue

imq.autocreate.queue.maxNumActiveConsumers Specify -1 for unlimited

imq.autocreate.queue.maxNumBackupConsumers Specify -1 for unlimited

imq.autocreate.topic

imq.cluster.url

imq.destination.DMQ.truncateBody

imq.destination.logDeadMessages

imq.log.file.rolloverbytes Specify -1 for unlimited

imq.log.file.rolloversecs Specify -1 for unlimited

imq.log.level NONEERRORWARNINGINFO

imq.message.max_size Specify -1 for unlimited

imq.portmapper.port

imq.system.max_count Specify -1 for unlimited

imq.system.max_size Specify -1 for unlimited

Metrics

Frequently Used Command Utility Commands E-3

imqcmd purge dst -n MyQueue -t q
imqcmd pause dst -n MyQueue -t q -pst PRODUCERS|CONSUMERS|ALL
imqcmd resume dst -n MyQueue -t q
imqcmd destroy dst -n MyQueue -t q
imqcmd query dst -n MyQueue -t q
imqcmd list dst -tmp

Destination Configuration Properties (-o option)
Destination Configuration Properties (-o option) lists frequently used destination
configuration properties. For a full list of destination configuration properties and
their descriptions, see Physical Destination Property Reference

Metrics
imqcmd metrics bkr -m cxn|rts|ttl -int 5 -msp 20
imqcmd metrics svc -m cxn|rts|ttl
imqcmd metrics dst -m con|dsk|rts|ttl

Table E–2 Destination Configuration Properties (-o option)

Property Notes

consumerFlowLimit Specify 0 or -1 for unlimited

isLocalOnly (create only)

limitBehavior FLOW_CONTROLREMOVE_OLDESTREJECT_
NEWESTREMOVE_LOW_PRIORITY

localDeliveryPreferred (queue only)

maxNumActiveConsumers (queue only) Specify -1 for unlimited

maxNumBackupConsumers (queue only) Specify -1 for unlimited

maxBytesPerMsg Specify -1 for unlimited

maxNumMsgs Specify -1 for unlimited

maxNumProducers Specify -1 for unlimited

maxTotalMsgBytes Specify -1 for unlimited

useDMQ

Metrics

E-4 Open Message Queue 4.5.2 Administration Guide

	Preface
	Part I Introduction to Message Queue Administration
	1 Administrative Tasks and Tools
	Administrative Tasks
	Administration in a Development Environment
	Administration in a Production Environment

	Administration Tools
	Built-in Administration Tools
	JMX-Based Administration

	2 Quick-Start Tutorial
	Starting the Administration Console
	Administration Console Online Help
	Working With Brokers
	Starting a Broker
	Adding a Broker to the Administration Console
	Connecting to a Broker
	Viewing Connection Services

	Working With Physical Destinations
	Creating a Physical Destination
	Viewing Physical Destination Properties
	Purging Messages From a Physical Destination
	Deleting a Physical Destination

	Working With Object Stores
	Adding an Object Store
	Connecting to an Object Store

	Working With Administered Objects
	Adding a Connection Factory
	Adding a Destination
	Viewing Administered Object Properties
	Deleting an Administered Object

	Running the Sample Application
	To Run the Sample Application

	Part II Administrative Tasks
	3 Starting Brokers and Clients
	Preparing System Resources
	Synchronizing System Clocks
	Setting the File Descriptor Limit

	Starting Brokers
	Starting Brokers Interactively
	Starting Brokers Automatically

	Deleting a Broker Instance
	Starting Clients

	4 Configuring a Broker
	Broker Services
	Setting Broker Configuration Properties
	Modifying Configuration Files
	Setting Configuration Properties from the Command Line

	5 Managing a Broker
	Command Utility Preliminaries
	Using the Command Utility
	Specifying the User Name and Password
	Specifying the Broker Name and Port
	Displaying the Product Version
	Displaying Help
	Examples

	Managing Brokers
	Shutting Down and Restarting a Broker
	Quiescing a Broker
	Pausing and Resuming a Broker
	Updating Broker Properties
	Viewing Broker Information

	6 Configuring and Managing Connection Services
	Configuring Connection Services
	Port Mapper
	Thread Pool Management

	Managing Connection Services
	Pausing and Resuming a Connection Service
	Updating Connection Service Properties
	Viewing Connection Service Information

	Managing Connections

	7 Managing Message Delivery
	Configuring and Managing Physical Destinations
	Command Utility Subcommands for Physical Destination Management
	Creating and Destroying Physical Destinations
	Pausing and Resuming a Physical Destination
	Purging a Physical Destination
	Updating Physical Destination Properties
	Viewing Physical Destination Information
	Managing Physical Destination Disk Utilization
	Using the Dead Message Queue

	Managing Broker System-Wide Memory
	Managing Durable Subscriptions
	Managing Transactions

	8 Configuring Persistence Services
	Introduction to Persistence Services
	File-Based Persistence
	File-Based Persistence Properties
	Configuring a File-Based Data Store
	Securing a File-Based Data Store
	Optimizing File-Based Transaction Persistence

	JDBC-Based Persistence
	JDBC-Based Persistence Properties
	Configuring a JDBC-Based Data Store
	Securing a JDBC-Based Data Store

	Data Store Formats

	9 Configuring and Managing Security Services
	Introduction to Security Services
	Authentication
	Authorization
	Encryption

	User Authentication
	Using a Flat-File User Repository
	Using an LDAP User Repository
	Using JAAS-Based Authentication

	User Authorization
	Access Control File Syntax
	Application of Authorization Rules
	Authorization Rules for Connection Services
	Authorization Rules for Physical Destinations

	Message Encryption
	Using Self-Signed Certificates
	Using Signed Certificates

	Password Files
	Security Concerns
	Password File Contents

	Connecting Through a Firewall
	To Enable Broker Connections Through a Firewall

	Audit Logging with the Solaris BSM Audit Log

	10 Configuring and Managing Broker Clusters
	Configuring Broker Clusters
	The Cluster Configuration File
	Cluster Configuration Properties
	Displaying a Cluster Configuration

	Managing Broker Clusters
	Managing Conventional Clusters
	Managing Enhanced Clusters
	Converting a Conventional Cluster to an Enhanced Cluster

	11 Managing Administered Objects
	Object Stores
	LDAP Server Object Stores
	File-System Object Stores

	Administered Object Attributes
	Connection Factory Attributes
	Destination Attributes

	Using the Object Manager Utility
	Connecting to a Secured LDAP Server (ldaps)
	Adding Administered Objects
	Deleting Administered Objects
	Listing Administered Objects
	Viewing Administered Object Information
	Modifying Administered Object Attributes
	Using Command Files

	12 Configuring and Managing Bridge Services
	The Bridge Service Manager
	Bridge-Related Broker Properties
	Bridge Manager Utility
	Logging of Bridge Services

	Configuring and Managing JMS Bridge Services
	JMS Bridge Components
	JMS Bridge Features
	Message Processing Sequence Across a Link in a JMS Bridge
	Configuring a JMS Bridge
	Starting and Stopping JMS Bridges
	Starting and Stopping Links in a JMS Bridge

	Configuring and Managing STOMP Bridge Services
	Configuring the STOMP Bridge
	Starting and Stopping the STOMP Bridge
	Message Processing Sequence Across the STOMP Bridge
	STOMP Protocol Features and the STOMP Bridge

	13 Monitoring Broker Operations
	Monitoring Services
	Introduction to Monitoring Tools
	Configuring and Using Broker Logging
	Logger Properties
	Log Message Format
	Default Logging Configuration
	Changing the Logging Configuration

	Using the Command Utility to Display Metrics Interactively
	imqcmd metrics
	Metrics Outputs: imqcmd metrics
	imqcmd query

	Using the JMX Administration API
	Using the Java ES Monitoring Console
	Using the Message-Based Monitoring API
	Setting Up Message-Based Monitoring
	Security and Access Considerations
	Metrics Outputs: Metrics Messages

	14 Analyzing and Tuning a Message Service
	About Performance
	The Performance Tuning Process
	Aspects of Performance
	Benchmarks
	Baseline Use Patterns

	Factors Affecting Performance
	Message Delivery Steps
	Application Design Factors Affecting Performance
	Message Service Factors Affecting Performance

	Adjusting Configuration To Improve Performance
	System Adjustments
	Broker Memory Management Adjustments
	Client Runtime Message Flow Adjustments
	Adjusting Multiple-Consumer Queue Delivery

	15 Troubleshooting
	A Client Cannot Establish a Connection
	Connection Throughput Is Too Slow
	A Client Cannot Create a Message Producer
	Message Production Is Delayed or Slowed
	Messages Are Backlogged
	Broker Throughput Is Sporadic
	Messages Are Not Reaching Consumers
	Dead Message Queue Contains Messages
	To Inspect the Dead Message Queue

	Part III Reference
	16 Command Line Reference
	Command Line Syntax
	Broker Utility
	Command Utility
	General Command Utility Options
	Broker Management
	Connection Service Management
	Connection Management
	Physical Destination Management
	Durable Subscription Management
	Transaction Management
	JMX Management

	Object Manager Utility
	Database Manager Utility
	User Manager Utility
	Bridge Manager Utility
	Service Administrator Utility
	Key Tool Utility

	17 Broker Properties Reference
	Connection Properties
	Routing and Delivery Properties
	Persistence Properties
	File-Based Persistence Properties
	File-Based Persistence Properties for Transaction Logging
	JDBC-Based Persistence Properties

	Security Properties
	Monitoring Properties
	Cluster Configuration Properties
	Bridge Properties
	JMX Properties
	Alphabetical List of Broker Properties

	18 Physical Destination Property Reference
	Physical Destination Properties

	19 Administered Object Attribute Reference
	Connection Factory Attributes
	Connection Handling
	Client Identification
	Reliability and Flow Control
	Queue Browser and Server Sessions
	Standard Message Properties
	Message Header Overrides

	Destination Attributes

	20 JMS Resource Adapter Property Reference
	About Shared Topic Subscriptions for Clustered Containers
	Disabling Shared Subscriptions
	Consumer Flow Control When Shared Subscriptions Are Used

	ResourceAdapter JavaBean
	ManagedConnectionFactory JavaBean
	ActivationSpec JavaBean

	21 Metrics Information Reference
	JVM Metrics
	Brokerwide Metrics
	Connection Service Metrics
	Physical Destination Metrics

	22 JES Monitoring Framework Reference
	Common Attributes
	Message Queue Product Information
	Broker Information
	Port Mapper Information
	Connection Service Information
	Destination Information
	Persistent Store Information
	User Repository Information

	Part IV Appendixes
	A Distribution-Specific Locations of Message Queue Data
	Installations from an IPS image
	Installations of Previous Message Queue Versions from Solaris SVR4 Packages
	Installations of Previous Message Queue Versions from Linux RPMs

	B Stability of Message Queue Interfaces
	Classification Scheme
	Interface Stability

	C HTTP/HTTPS Support
	HTTP/HTTPS Support Architecture
	Enabling HTTP/HTTPS Support
	Step 1 (HTTPS Only): Generating a Self-Signed Certificate for the Tunnel Servlet
	Step 2 (HTTPS Only): Specifying the Key Store Location and Password
	Step 3 (HTTPS Only): Validating and Installing the Server's Self-Signed Certificate
	Step 4 (HTTP and HTTPS): Deploying the Tunnel Servlet
	Step 5 (HTTP and HTTPS): Configuring the Connection Service
	Step 6 (HTTP and HTTPS): Configuring a Connection

	Troubleshooting
	Server or Broker Failure
	Client Failure to Connect Through the Tunnel Servlet

	D JMX Support
	JMX Connection Infrastructure
	MBean Access Mechanism
	The JMX Service URL
	The Admin Connection Factory

	JMX Configuration
	RMI Registry Configuration
	SSL-Based JMX Connections
	JMX Connections Through a Firewall

	E Frequently Used Command Utility Commands
	Syntax
	Broker and Cluster Management
	Broker Configuration Properties (-o option)

	Service and Connection Management
	Durable Subscriber Management
	Transaction Management
	Destination Management
	Destination Configuration Properties (-o option)

	Metrics

