

Open Message Queue
Developer's Guide for C Clients

Release 4.5.2

February 2012

This guide provides programming and reference information
for developers working with Message Queue who want to
use the C language binding to the Message Queue Service to
send, receive, and process Message Queue messages.

Open Message Queue Developer's Guide for C Clients, Release 4.5.2

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

1 Introduction

Message Queue for the C Developer.. 1-1
Building and Running C Clients... 1-2

Building C Clients .. 1-2
Providing Runtime Support ... 1-3

Working With the Sample C-Client Programs.. 1-4
Basic C-Client Programs ... 1-4
Distributed Transaction Sample Programs .. 1-5

Client Application Deployment Considerations ... 1-7

2 Using the C API

Message Queue C Client Setup Operations.. 2-1
To Set Up a Message Queue C Client to Produce Messages ... 2-1
To Set Up a Message Queue C Client to Consume Messages Synchronously.......................... 2-2
To Set Up a Message Queue C Client to Consume Messages Asynchronously 2-2

Working With Properties .. 2-3
Setting Connection and Message Properties.. 2-3
Getting Message Properties .. 2-4

Working With Connections .. 2-6
Defining Connection Properties... 2-7
Working With Secure Connections ... 2-8
Shutting Down Connections.. 2-11

Working With Sessions and Destinations .. 2-11
Creating a Session ... 2-11
Managing a Session... 2-13
Creating Destinations ... 2-13

Working With Messages .. 2-14
Composing Messages ... 2-14
Sending a Message.. 2-16
Receiving Messages .. 2-18
Processing a Message ... 2-20

Working With Distributed Transactions ... 2-20
Message Queue Resource Manager Information ... 2-21

iv

Programming Examples... 2-22
Error Handling ... 2-22

To Handle Errors in Your Code .. 2-22
Memory Management .. 2-22
Logging.. 2-23

3 Client Design Issues

Producers and Consumers .. 3-1
Using Selectors Efficiently ... 3-2
Determining Message Order and Priority... 3-2
Managing Threads ... 3-3

Message Queue C Runtime Thread Model .. 3-3
Concurrent Use of Handles .. 3-3
Single-Threaded Session Control... 3-4
Connection Exceptions .. 3-4

Managing Physical Destination Limits.. 3-4
Managing the Dead Message Queue.. 3-5
Factors Affecting Performance... 3-7

Delivery Mode (Persistent/Non-persistent) .. 3-8
Use of Transactions .. 3-9
Acknowledgement Mode.. 3-9
Durable and Non-Durable Subscriptions .. 3-10
Use of Selectors (Message Filtering)... 3-10
Message Size .. 3-11
Message Type .. 3-11

4 Reference

Data Types ... 4-1
Connection Properties ... 4-4
Acknowledge Modes ... 4-7
Callback Type for Asynchronous Message Consumption... 4-8
Callback Type for Asynchronous Message Consumption in Distributed Transactions 4-9
Callback Type for Connection Exception Handling .. 4-10

Function Reference ... 4-10
MQAcknowledgeMessages ... 4-14
MQCloseConnection... 4-15
MQCloseMessageConsumer ... 4-15
MQCloseMessageProducer ... 4-16
MQCloseSession.. 4-16
MQCommitSession ... 4-17
MQCreateAsyncDurableMessageConsumer .. 4-17
MQCreateAsyncMessageConsumer .. 4-19
MQCreateBytesMessage .. 4-21
MQCreateConnection... 4-21
MQCreateDestination... 4-23
MQCreateDurableMessageConsumer ... 4-24
MQCreateMessage .. 4-26

v

MQCreateMessageConsumer ... 4-26
MQCreateMessageProducer.. 4-27
MQCreateMessageProducerForDestination ... 4-28
MQCreateProperties ... 4-29
MQCreateSession .. 4-29
MQCreateTemporaryDestination... 4-30
MQCreateTextMessage .. 4-31
MQCreateXASession .. 4-32
MQFreeConnection... 4-33
MQFreeDestination... 4-34
MQFreeMessage.. 4-34
MQFreeProperties ... 4-35
MQFreeString .. 4-35
MQGetAcknowledgeMode.. 4-35
MQGetBoolProperty... 4-36
MQGetBytesMessageBytes .. 4-36
MQGetConnectionProperties .. 4-37
MQGetDestinationName ... 4-37
MQGetDestinationType ... 4-38
MQGetErrorTrace ... 4-38
MQGetFloat64Property .. 4-39
MQGetInt16Property.. 4-40
MQGetInt32Property.. 4-40
MQGetInt64Property.. 4-41
MQGetInt8Property.. 4-41
MQGetMessageHeaders .. 4-42
MQGetMessageProperties ... 4-43
MQGetMessageReplyTo .. 4-44
MQGetMessageType .. 4-44
MQGetMetaData ... 4-45
MQGetPropertyType.. 4-45
MQGetStatusCode .. 4-46
MQGetStatusString ... 4-47
MQGetStringProperty .. 4-47
MQGetTextMessageText.. 4-47
MQGetXAConnection .. 4-48
MQInitializeSSL... 4-48
MQPropertiesKeyIterationGetNext.. 4-49
MQPropertiesKeyIterationHasNext... 4-50
MQPropertiesKeyIterationStart .. 4-50
MQReceiveMessageNoWait .. 4-51
MQReceiveMessageWait ... 4-52
MQReceiveMessageWithTimeout .. 4-53
MQRecoverSession ... 4-54
MQRollBackSession .. 4-55
MQSendMessage... 4-55
MQSendMessageExt ... 4-56

vi

MQSendMessageToDestination.. 4-58
MQSendMessageToDestinationExt.. 4-59
MQSetBoolProperty.. 4-60
MQSetBytesMessageBytes ... 4-61
MQSetFloat32Property ... 4-61
MQSetFloat64Property ... 4-62
MQSetInt16Property... 4-62
MQSetInt32Property... 4-63
MQSetInt64Property... 4-63
MQSetInt8Property... 4-64
MQSetMessageHeaders ... 4-64
MQSetMessageProperties .. 4-66
MQSetMessageReplyTo ... 4-66
MQSetStringProperty ... 4-67
MQSetTextMessageText... 4-67
MQStartConnection .. 4-68
MQStatusIsError.. 4-68
MQStopConnection .. 4-69
MQUnsubscribeDurableMessageConsumer... 4-69

Header Files .. 4-70

A Message Queue C API Error Codes

Error Codes ... A-1

vii

Preface

This book provides programming and reference information for developers working
with Message Queue 4.5.2, who want to use the C language binding to the Message
Queue Service to send, receive, and process Message Queue messages.

This preface consists of the following sections:

■ Who Should Use This Book

■ Before You Read This Book

■ How This Book Is Organized

■ Documentation Conventions

■ Related Documentation

■ Documentation, Support, and Training

■ Documentation Accessibility

Who Should Use This Book
This guide is for developers who want to use the C-API in order to write C or C++
messaging programs that can interact with the Message Queue broker to send and
receive JMS messages.

This book assumes that readers are experienced C or C++ programmers and that they
are familiar with the Java Message Service specification.

Before You Read This Book
You must read the Open Message Queue Technical Overview to become familiar with
Message Queue's implementation of the Java Message Service specification, with the
components of the Message Queue service, and with the basic process of developing,
deploying, and administering a Message Queue application.

How This Book Is Organized
This guide is designed to be read from beginning to end. The following table briefly
describes the contents of each chapter.

viii

Documentation Conventions
This section describes the following conventions used in Message Queue
documentation:

■ Typographic Conventions

■ Symbol Conventions

■ Shell Prompt Conventions

■ Directory Variable Conventions

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

Symbol Conventions
The following table explains symbols that might be used in this book.

Chapter Description

Chapter 1, "Introduction" Introduces the C-API, provides quick start instructions on compiling and
building Message Queue C clients. Introduces the Message Queue C-Client
sample applications that are shipped with Message Queue, and explains
how you set up your environment to run these examples. Provides a
deployment worksheet.

Chapter 2, "Using the C API" Explains how you use the C-API to construct, to send, to receive, and to
process messages. This chapter also covers error handling, memory
management, and logging.

Chapter 3, "Client Design Issues" Explains the major considerations that you need to keep in mind when
designing a Message Queue C client.

Chapter 4, "Reference" Provides complete reference information for the Message Queue C-API:
data structures and functions. It also lists and describes the contents of the
C-API header files.

Appendix A, "Message Queue C API
Error Codes"

Lists the code and descriptive string returned for errors that are returned
by C library functions.

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with
onscreen computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or
value

The command to remove a file is
rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Note: Some emphasized items appear
bold online.

ix

Shell Prompt Conventions
The following table shows the conventions used in Message Queue documentation for
the default UNIX system prompt and superuser prompt for the C shell, Bourne shell,
Korn shell, and for the Windows operating system.

Directory Variable Conventions
Message Queue documentation makes use of three directory variables; two of which
represent environment variables needed by Message Queue. (How you set the
environment variables varies from platform to platform.)

The following table describes the directory variables that might be found in this book
and how they are used. Some of these variables refer to the directory mqInstallHome,
which is the directory where Message Queue is installed to when using the installer or
unzipped to when using a zip-based distribution.

Symbol Description Example Meaning

[] Contains optional
arguments and
command options.

ls [-l] The -l option is not required.

{ | } Contains a set of
choices for a required
command option.

-d {y|n} The -d option requires that you
use either the y argument or
the n argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous
multiple keystrokes.

Control-A Press the Control key while
you press the A key.

+ Joins consecutive
multiple keystrokes.

Ctrl+A+N Press the Control key, release
it, and then press the
subsequent keys.

> Indicates menu item
selection in a graphical
user interface.

File > New > Templates From the File menu, choose
New. From the New submenu,
choose Templates.

Shell Prompt

C shell on UNIX, Linux, or AIX machine-name%

C shell superuser on UNIX, Linux, or AIX machine-name#

Bourne shell and Korn shell on UNIX, Linux, or AIX $

Bourne shell and Korn shell superuser on UNIX, Linux, or AIX #

Windows command line C:\>

Note: In this book, directory variables are shown without
platform-specific environment variable notation or syntax (such as
$IMQ_HOME on UNIX). Non-platform-specific path names use UNIX
directory separator (/) notation.

x

Related Documentation
The information resources listed in this section provide further information about
Message Queue in addition to that contained in this manual. The section covers the
following resources:

■ Message Queue Documentation Set

■ Java Message Service (JMS) Specification

■ JavaDoc

■ Example Client Applications

■ Online Help

Message Queue Documentation Set
The documents that constitute the Message Queue documentation set are listed in the
following table in the order in which you might normally use them. These documents
are available through the Oracle GlassFish Server documentation web site at

http://www.oracle.com/technetwork/indexes/documentation/index.ht
ml

Variable Description

IMQ_HOME The Message Queue home directory:

■ For installations of Message Queue bundled with GlassFish Server, IMQ_
HOME is as-install-parent/mq, where as-install-parent is the parent directory
of the GlassFish Server base installation directory, glassfish3 by
default.

■ For installations of Open Message Queue, IMQ_HOME is
mqInstallHome/mq.

IMQ_VARHOME The directory in which Message Queue temporary or dynamically created
configuration and data files are stored; IMQ_VARHOME can be explicitly set as
an environment variable to point to any directory or will default as
described below:

■ For installations of Message Queue bundled with GlassFish Server, IMQ_
VARHOME defaults to as-install-parent/glassfish/domains/domain1/imq.

■ For installations of Open Message Queue, IMQ_HOME defaults to
mqInstallHome/var/mq.

IMQ_JAVAHOME An environment variable that points to the location of the Java runtime
environment (JRE) required by Message Queue executable files. By default,
Message Queue looks for and uses the latest JDK, but you can optionally set
the value of IMQ_JAVAHOME to wherever the preferred JRE resides.

Document Audience Description

Technical Overview Developers and
administrators

Describes Message Queue concepts, features, and
components.

Release Notes Developers and
administrators

Includes descriptions of new features, limitations,
and known bugs, as well as technical notes.

Administration Guide Administrators,
also recommended
for developers

Provides background and information needed to
perform administration tasks using Message
Queue administration tools.

xi

Java Message Service (JMS) Specification
The Message Queue message service conforms to the Java Message Service (JMS)
application programming interface, described in the Java Message Service Specification.
This document can be found at the URL
http://www.oracle.com/technetwork/java/jms/index.html.

JavaDoc
JMS and Message Queue API documentation in JavaDoc format is included in
Message Queue installations at IMQ_HOME/javadoc/index.html. This documentation
can be viewed in any HTML browser. It includes standard JMS API documentation as
well as Message Queue–specific APIs.

Example Client Applications
Message Queue provides a number of example client applications to assist developers.

Example Java Client Applications
Example Java client applications are included in Message Queue installations at IMQ_
HOME/examples. See the README files located in this directory and its subdirectories for
descriptive information about the example applications.

Example C Client Programs
Example C client applications are included in Message Queue installations at IMQ_
HOME/examples/C. See the README files located in this directory and its subdirectories
for descriptive information about the example applications.

Example JMX Client Programs
Example Java Management Extensions (JMX) client applications are included in
Message Queue installations at IMQ_HOME/examples/jmx. See the README files located in
this directory and its subdirectories for descriptive information about the example
applications.

Online Help
Online help is available for the Message Queue command line utilities; for details, see
"Command Line Reference" in Open Message Queue Administration Guide. The Message
Queue graphical user interface (GUI) administration tool, the Administration Console,
also includes a context-sensitive help facility; for details, see "Administration Console
Online Help" in Open Message Queue Administration Guide.

Developer's Guide for
Java Clients

Developers Provides a quick-start tutorial and programming
information for developers of Java client programs
using the Message Queue implementation of the
JMS or SOAP/JAXM APIs.

Developer's Guide for
C Clients

Developers Provides programming and reference
documentation for developers of C client programs
using the Message Queue C implementation of the
JMS API (C-API).

Developer's Guide for
JMX Clients

Administrators Provides programming and reference
documentation for developers of JMX client
programs using the Message Queue JMX API.

Document Audience Description

xii

Documentation, Support, and Training
The Oracle web site provides information about the following additional resources:

■ Documentation
(http://www.oracle.com/technetwork/indexes/documentation/inde
x.html)

■ Support (http://www.oracle.com/us/support/044752.html)

■ Training (http://education.oracle.com/pls/web_prod-plq-dad/db_
pages.getpage?page_id=315)

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

1

Introduction 1-1

1Introduction

This chapter summarizes the differences between the C API and the Java API to
Message Queue and provides a quick start to compiling and running Message Queue
C clients. It covers the following topics:

■ Message Queue for the C Developer

■ Building and Running C Clients

■ Working With the Sample C-Client Programs

■ Client Application Deployment Considerations

You should be familiar with the concepts presented in the Open Message Queue
Technical Overview before you read this chapter.

Depending on your needs, after you read this chapter, you can proceed either to
Chapter 3, "Client Design Issues", which describes the major issues governing C client
design, or to Chapter 2, "Using the C API", which explains how you use C data types
and functions to obtain the messaging behavior that interests you.

The term "C developer" is used generically throughout this book and includes the C++
developer as well.

Message Queue for the C Developer
The Message Queue product is an enterprise messaging system that implements the
Java Message Specification (JMS) standard as a JMS provider. Message Queue
developers can use two programming interfaces to establish a connection to the
broker, and send or receive messages:

■ C clients use the API described in this manual to send messages to and retrieve
messages from a Message Queue broker.

■ Java clients use the Java API, described in the Open Message Queue Technical
Overview, to send messages to and receive messages from a Message Queue
broker.

Message Queue provides a C API to its messaging services to enable legacy C
applications and C++ applications to participate in JMS-based messaging. It is
important to understand however that the Java Message Service specification is a
standard for Java clients only; thus the C API described in this book is specific to the
Message Queue provider and cannot be used with other JMS providers. A messaging
application that includes a C client cannot be handled by another JMS provider.

The C interface, compared to the Java interface, does not support the following
features:

Building and Running C Clients

1-2 Open Message Queue 4.5.2 Developer's Guide for C Clients

■ The use of administered objects

■ Map, stream, or object message types

■ Consumer-based flow control

■ Queue browsers

■ JMS application server facilities (ConnectionConsumer, distributed transactions)

■ Receiving or sending SOAP messages

■ Receiving or sending compressed JMS messages

■ Auto-reconnect or failover, which allows the client runtime to automatically
reconnect to a broker if a connection fails

■ The NO_ACKNOWLEDGE mode

Like the Java interface, the C interface does support the following:

■ Publish/subscribe and point-to-point connections

■ Synchronous and asynchronous receives

■ CLIENT, AUTO, and DUPS_OK acknowledgement modes

■ Local transactions

■ Session recover

■ Temporary topics and queues

■ Message selectors

The JMS programming model is the foundation for the design of a Message Queue C
client. Using the C API explains how this model is implemented by the C data types
and functions used by a Message Queue C client for delivery of messages.

The next section provides a quick introduction to building and running Message
Queue clients.

Building and Running C Clients
Message Queue provides several sample Message Queue C-client applications that
illustrate how to send and receive messages. Before you run these applications, read
through the next two sections to make sure that you understand the general procedure
and requirements for building and running Message Queue C-client programs.

Building C Clients
This section explains how you build Message Queue programs from C source files.
You should already be familiar with writing and compiling C applications.

Header Files and Shared Libraries
The Message Queue C client includes the header files (mqcrt.h), the C client runtime
shared library mqcrt, and its direct dependency libraries. When writing a Message
Queue C client application, you should include the header files and link to the runtime
library mqcrt.

The header files are located in IMQ_HOME/include, and the 32-bit runtime library is
located in IMQ_HOME/lib. A 64-bit runtime library is available for the following
platforms in the specified location:

Building and Running C Clients

Introduction 1-3

■ Linux: IMQ_HOME/lib64

■ Solaris SPARC: IMQ_HOME/lib/sparcv9

■ Solaris x86: IMQ_HOME/lib/amd64

Pre-Processor Definitions
Use the appropriate compiler for your platform, as described in the Open Message
Queue Release Notes.

When compiling a Message Queue C client application, you need to specify the
pre-processor definition shown for each platform in Table 1–1. This definition is used
to support Message Queue fixed-size integer types.

C++ Runtime Library Support
When building a Message Queue C client application, you should be aware that the
Message Queue C runtime library is a multi-threaded library and requires C++
runtime library support:

■ On Solaris, this support is provided by the Oracle Solaris Studio libCrun C++
runtime library.

■ On Linux, this support is provided by the gcc/g++ libstdc++ runtime library.

■ On AIX, this support is provided by the C++ runtime library in the in the
XLC/C++ Runtime Environment.

■ On Windows, this support is provided by Microsoft Windows Visual C++ runtime
library msvcrt.

Providing Runtime Support
To run a Message Queue C-client application, you need to make sure that the
application can find the mqcrt shared library. Please consult the documentation for
your compiler to determine the best way to do this.

You also need to make sure that the appropriate C++ runtime support library, as
described in C++ Runtime Library Support is available.

On Windows you also need to make sure that your application can find the dependent
libraries NSPR and NSS that are shipped with Message Queue. These may be different
from the NSPR and NSS libraries that are installed on your system to support the
Netscape browser and GlassFish Server. The mqcrt shared library depends directly on
the NSPR and NSS versions installed with Message Queue. If a different version of the
libraries is loaded at runtime, you may get a runtime error specifying that the libraries
being used are incompatible. If this happens, look on your system to see if other
versions of the NSPR or NSS libraries exist; for example, libnspr4.dll or nss3.dll. If
you find such versions, take appropriate action to make sure that Message Queue can
access the versions it needs.

Table 1–1 Preprocessor Definitions for Supporting Fixed-Size Integer Types

Platform Definition

Solaris SOLARIS

Linux LINUX

AIX AIX

Windows WIN32

Working With the Sample C-Client Programs

1-4 Open Message Queue 4.5.2 Developer's Guide for C Clients

Working With the Sample C-Client Programs
This section describes the sample C-Client programs that are installed with Message
Queue and explains how you should build them and run them.

Message Queue provides two sets of sample C-client programs: basic C-client
programs and distributed transaction programs.

Basic C-Client Programs
The sample C-client program files include the following:

These sample programs are located in IMQ_HOME/examples/C.

Building the Basic C-Client Sample Programs
The following commands illustrate the process of building and linking the sample
application Producer.c on the Solaris, Linux, AIX, and Windows platforms. The
commands include the pre-processor definitions needed to support Message Queue
C-API fixed-size integer types. For options used to support multithreading, please
consult documentation for your compiler.

To Compile and Link on Solaris OS Use the following command:

CC -compat=5 -mt -DSOLARIS -Iheader_path -o Producer \\
 -Lruntime_path -lmqcrt Producer.c

where header_path and runtime_path are the paths to the Message Queue header file
and runtime shared library appropriate to your processor architecture, as listed in
Header Files and Shared Libraries.

For 64-bit support on either the SPARC or x86 processor architecture, you must also
specify the -xarch compiler option:

■ SPARC: -xarch=v9

■ x86: -xarch=amd64

For example, to compile and link the example application Solaris SPARC 64–bit, you
would use the following command:

CC -compat=5 -mt -xarch=v9 -DSOLARIS -I$IMQ_HOME/include -o Producer \\
-L$IMQ_HOME/lib/sparcv9 -lmqcrt Producer.c

To Compile and Link on Linux Use the following command:

g++ -DLINUX -D_REENTRANT -I$IMQ_HOME/include -o Producer \\
-L$IMQ_HOME/lib -lmqcrt Producer.c

Table 1–2 Basic C-Client Sample Program Files

Sample Program Description

Producer.c Illustrates how you send a message

Consumer.c Illustrates how you receive a message synchronously

ProducerAsyncConsumer.c Illustrates how you send a message and receive it
asynchronously

RequestReply.c Illustrates how you send and respond to a message that
specifies a reply-to destination

Working With the Sample C-Client Programs

Introduction 1-5

To Compile and Link on AIX Use the following command:

xlC_r -qthreaded -DAIX -I$IMQ_HOME/include -o Producer \\
-blibsuff:so -l$IMQ_HOME/lib -imqcrt Producer.c

To Compile and Link on Windows Use the following command:

cl /c /MD -DWIN32 -I%IMQ_HOME%\include Producer.c

link Producer.obj /NODEFAULTLIB msvcrt.lib \\
/LIBPATH:%IMQ_HOME%\lib mqcrt.lib

Running the Basic C-Client Sample Programs
Before you run any sample programs, you should start the broker. You can display
output describing the command-line options for each program by starting the program
with the -help option.

For example, the following command, runs the program Producer. It specifies that the
program should connect to the broker running on the host MyHost and port 8585, and
that it should send a message to the destination My Topic :

Producer -h MyHost -p 8585 -d MyTopic

The directories that contain the sample programs also include a README file that
explains how you should run their respective samples.

Distributed Transaction Sample Programs
The distributed transaction sample programs show how to use the X/Open
distributed transaction (XA) support of the Message Queue C-API with an X/Open
distributed transaction processing system (in this case Oracle Tuxedo:
http://www.oracle.com/technetwork/middleware/tuxedo/overview/ind
ex.html.)

The distributed transaction sample programs include the following files:

These sample programs are located in IMQ_HOME/examples/C/tuxedo.

The following procedures document how to set up Tuxedo as a distributed transaction
manager, how to build the sample distributed transaction programs, and how to run

Table 1–3 Distributed Transaction Sample Program Files

Sample Program Description

jmsserver.c Implements Tuxedo services that send and receive
messages using the Message Queue C-API

jmsclient_sender.c Tuxedo client that uses the message producing service in
jmsserver.c

jmsclient_receiver.c Tuxedo client that uses the message receiving service in
jmsserver.c

async_jmsserver.c Implements a Tuxedo service that asynchronously
consumes messages using the Message Queue C-API

jmsclient_async_receiver.c Tuxedo client that uses the asynchronous message
consuming service in async_jmsserver.c

Working With the Sample C-Client Programs

1-6 Open Message Queue 4.5.2 Developer's Guide for C Clients

the sample programs. The procedures are based on the synchronous message
consumption samples and assume a Solaris operating system platform.

To Set Up Tuxedo as a Distributed Transaction Manager
1. Install Tuxedo.

See Tuxedo documentation for instructions.

2. Set up the following environment variables:

3. Build the Tuxedo transaction monitor server (TMS).

a. Add the following entry to the $TUXDIR/udataobj/RM file:

SUN_MQ:sun_mq_xa_switch:-lmqcrt

b. Build the TMS executable using buildtms:

buildtms -o $TUXDIR/bin/<exe-name> -r SUN_MQ

4. Configure the Tuxedo servers.

tmloadcf config-file

where config-file is the Tuxedo UBBCONFIG file.

To Build the Distributed Transaction Sample Programs
1. Build the server side of the sample application (jmsserver.c).

cc -I$IMQ_HOME/include -I$TUXDIR/include -g -c jmsserver.c
buildserver -v -t -r SUN_MQ -s SENDMESSAGES,RECVMESSAGES -o jmsserver
-f jmsserver.o -f -lmqcrt

2. Build the client side of the sample application (jmsclient_sender.c and jmsclient_
receiver.c).

cc -I$TUXDIR/include -c jmsclient_sender.c
buildclient -o jmsclient_sender -f jmsclient_sender.o
cc -I$TUXDIR/include -c jmsclient_receiver.c
buildclient -o jmsclient_receiver -f jmsclient_receiver.o

To Run the Distributed Transaction Sample Programs
1. Start a Message Queue broker.

Environment Variable Description

LD_LIBRARY_PATH Modify to include Message Queue C-API runtime library path
and TUXDIR/lib path

TUXDIR Tuxedo install root

PATH modify to include $TUXDIR/bin and compiler path

TUXCONFIG TUXCONFIG filename path

TLOGDEVICE Tuxedo transaction log filename path

MQ_HOME Message Queue install root

MQ_LOG_FILE Message Queue C-API runtime log file name

MQ_LOG_FILE_APPEND_PID Set so that Message Queue C-API runtime log file name will be
auto-appended with the Tuxedo server process id

Client Application Deployment Considerations

Introduction 1-7

imqbrokerd -tty

2. Start the Tuxedo servers.

tmboot

3. Run the client-side applications.

jmsclient_sender
jmsclient_receiver

4. Confirm the messages are produced to and consumed from the applicable
destination.

imqcmd list dst -u admin
imqcmd querry dst -t q -n xatestqueue -u admin

Client Application Deployment Considerations
When you are ready to deploy your client application, you should make sure the
administrator knows your application's needs. The following checklist shows the basic
information required. Consult with your administrator to determine the exact
information needed. In some cases, it might be useful to provide a range of values
rather than a specific value. Refer to "Physical Destination Property Reference" in Open
Message Queue Administration Guide about attribute names and default values.

■ Configuring physical destinations:

– Type:

– Name:

– Properties:

– Maximum number of messages expected:

– Maximum message bytes expected:

■ Configuring Dead Message Queue:

– Place dead messages on Dead Message Queue:

– Log the placement of messages on the Dead Message Queue:

– Discard the body of messages placed on the Dead Message Queue:

Client Application Deployment Considerations

1-8 Open Message Queue 4.5.2 Developer's Guide for C Clients

2

Using the C API 2-1

2Using the C API

This chapter describes how to use C functions to accomplish specific tasks and
provides brief code samples to illustrate some of these tasks. (For clarity, the code
examples shown in the following sections omit a function call status check.)

Following a brief discussion of overall design and a summary of client tasks, the topics
covered include the following:

■ Message Queue C Client Setup Operations

■ Working With Properties

■ Working With Connections

■ Working With Sessions and Destinations

■ Working With Messages

■ Error Handling

■ Memory Management

■ Logging

This chapter does not provide exhaustive information about each function. For
detailed function information, please see the description of that function in Reference.

For information on building Message Queue C programs, see Client Design Issues.

Message Queue C Client Setup Operations
The general procedures for producing and consuming messages are introduced below.
The procedures have a number of common steps which need not be duplicated if a
client is both producing and consuming messages.

To Set Up a Message Queue C Client to Produce Messages
1. Call the MQCreateProperties function to get a handle to a properties object.

2. Use one or more of the MQSet...Property functions to set connection properties
that specify the name of the broker, its port number, and its behavior.

3. Use the MQCreateConnection function to create a connection.

4. Use the MQCreateSession function to create a session and to specify its
acknowledge mode and its receive mode. If the session will be used only for
producing messages, use the receive mode MQ_SESSION_SYNC_RECEIVE to avoid
creating a thread for asynchronous message delivery.

Message Queue C Client Setup Operations

2-2 Open Message Queue 4.5.2 Developer's Guide for C Clients

5. Use the MQCreateDestination function to specify a physical destination on the
broker. The destination name you specify must be the same as the name of the
physical destination.

6. Use the MQCreateMessageProducer function or the
MQCreateMessageProducerForDestination function to create a message producer.
(If you plan to send a lot of messages to the same destination, you should use the
MQCreateMessageProducerForDestination function.)

7. Use the MQCreateBytesMessage function or the MQCreateTextMessage function to
get a newly created message handle.

8. Call the MQCreateProperties function to get a handle to a properties object that
will describe the message header properties. This is only required if you want to
set a message header property.

9. Use one or more of the MQSet...Property functions to set properties that specify
the value of the message header properties you want to set.

10. Use the MQSetMessageHeaders function, passing a handle to the properties object
you created in Step 8 and Step 9.

11. Repeat Step 8 if you want to define custom message properties, and then use the
MQSetMessageProperties function to set these properties for your message.

12. Use the MQSetMessageReplyTo function if you want to specify a destination where
replies to the message are to be sent.

13. Use one of the MQSendMessage... functions to send the message.

To Set Up a Message Queue C Client to Consume Messages Synchronously
1. Call the MQCreateProperties function to get a handle to a properties object.

2. Use one or more of the MQSet...Property functions to set connection properties
that specify the name of the broker, its port number, and its behavior.

3. Use the MQCreateConnection function to create a connection.

4. Use the MQCreateSession function to create a session and to specify its receive
mode. Specify MQ_SESSION_SYNC_RECEIVE for a synchronous session.

5. Use the MQCreateDestination function to specify a destination on the broker from
which the consumer is to receive messages. The destination name you specify
must be the same as the name of the physical destination.

6. Use the MQCreateMessageConsumer function or the
MQCreateDurableMessageConsumer function to create a consumer.

7. Use the MQStartConnection function to start the connection.

8. Use one of the MQReceiveMessage... functions to start message delivery.

To Set Up a Message Queue C Client to Consume Messages Asynchronously
1. Call the MQCreateProperties function to get a handle to a properties object.

2. Use one or more of the MQSet...Property functions to set connection properties
that specify the name of the broker, its port number, and its behavior.

3. Use the MQCreateConnection function to create a connection.

Working With Properties

Using the C API 2-3

4. Use the MQCreateSession function to create a session and to specify its
acknowledge mode and its receive mode. Specify MQ_SESSION_ASYNC_RECEIVE for
asynchronous message delivery.

5. Use the MQCreateDestination function to specify a destination on the broker from
which the consumer is to receive messages. The logical destination name you
specify must be the same as the name of the physical destination.

6. Write a callback function of type MQMessageListenerFunc that will be called when
the broker starts message delivery. In the body of this callback function, use the
functions described in Processing a Message , to process the contents of the
incoming message.

7. Use the MQCreateAsyncMessageConsumer function or the
MQCreateAsyncDurableMessageConsumer function to create a consumer.

8. Use the MQStartConnection function to start the connection and message delivery.

Working With Properties
When you create a connection, set message header properties, or set user-defined
message properties, you must pass a handle to a properties object. You use the
MQCreateProperties function to create this object and to obtain a handle to it. When
you receive a message, you can use specific MQGet...Property functions to obtain the
type and value of each message property.

This section describes the functions you use to set and get properties. A property is
defined as a key-value pair.

Setting Connection and Message Properties
You use the functions listed in Table 2–1 to create a handle to a properties object, and
to set properties. You can use these functions to create and define properties for
connections or for individual messages.

Set message properties and message header properties using the same procedure you
use to set connection properties. You can set the following message header properties
for sending a message:

■ MQ_CORRELATION_ID_HEADER_PROPERTY

■ MQ_MESSAGE_TYPE_HEADER_PROPERTY

For more information, see the description of the MQSetMessageProperties function.

Table 2–1 Functions Used to Set Properties

Function Description

MQCreateProperties Creates a properties object and passes back a handle to it.

MQSetBoolProperty Sets an MQBool property.

MQSetStringProperty Sets an MQString property.

MQSetInt8Property Sets an MQInt8 property.

MQSetInt16Property Sets an MQInt16 property.

MQSetInt32Property Sets an MQInt32 property.

MQSetInt64Property Sets an MQInt64 property.

MQSetFloat32Property Sets an MQFloat32 property.

Working With Properties

2-4 Open Message Queue 4.5.2 Developer's Guide for C Clients

To Set Properties for a Connection
1. Call the MQCreateProperties function to get a handle to a newly created

properties object.

2. Call one of the MQSet...Property functions to set one of the connection properties
described in Table 4–2 . At a minimum, you must specify the name of the host of
the broker to which you want to connect and its port number.

Which function you call depends on the type of the property you want to set; for
example, to set an MQString property, you call the MQSetStringProperty function;
to set an MQBool property, you call the MQSetBoolProperty function; and so on.
Each function that sets a property requires that you pass a key name and value;
these are listed and described in Table 4–2.

3. When you have set all the properties you want to define for the connection, you
can then create the connection, by calling the MQCreateConnection function.

Once the connection is created with the properties you specify, you cannot change
its properties. If you need to change connection properties after you have created a
connection, you will need to destroy the old connection and its associated objects
and create a new one with the desired properties. It is a good idea to think through
the desired behavior before you create a connection.

The code sample below illustrates how you create a properties handle and how
you use it for setting connection properties.

MQStatus status;
MQPropertiesHandle propertiesHandle = MQ_INVALID_HANDLE;

status = (MQCreateProperties(&propertiesHandle);

status = (MQSetStringProperty(propertiesHandle,
 MQ_BROKER_HOST_PROPERTY, "localhost"));

status = (MQSetInt32Property(propertiesHandle,
 MQ_BROKER_PORT_PROPERTY, 7676));

status = MQSetStringProperty(propertiesHandle,
 MQ_CONNECTION_TYPE_PROPERTY, "TCP"));

The Message Queue C client runtime sets the connection properties that specify
the name and version of the Message Queue product; you can retrieve these using
the functionMQGetMetaData. These properties are described at the end of
Table 4–2, starting with MQ_NAME_PROPERTY.

Getting Message Properties
When you receive a message, if you are interested in the message properties, you need
to obtain a handle to the properties object associated with that message:

■ Use the MQGetMessageProperties function to obtain a handle to the properties
object for user-defined properties.

MQSetFloat64Property Sets an MQFloat64 property.

Table 2–1 (Cont.) Functions Used to Set Properties

Function Description

Working With Properties

Using the C API 2-5

■ If you are interested in any message header properties, use the
MQGetMessageHeaderProperties function to obtain a handle to the header
properties. See MQGetMessageHeaders.

Having obtained the handle, you can iterate through the properties and then use the
appropriate MQGet...Property function to determine the type and value of each
property.

Table 2–2 lists the functions you use to iterate through a properties handle and to
obtain the type and value of each property.

To Iterate Through a Properties Handle
1. Start the process by calling the MQPropertiesKeyIterationStart function.

2. Loop using the MQPropertiesKeyIterationHasNext function.

3. Extract the name of each property key by calling the
MQPropertiesKeyIterationGetNext function.

4. Determine the type of the property value for a given key by calling the
MQGetPropertyType function.

5. Use the appropriate MQGet...Property function to find the value of the specified
property key and type.

If you know the property key, you can just use the appropriate MQGet...Property
function to get its value. The code sample below illustrates how you implement
these steps.

MQStatus status;

MQPropertiesHandle headersHandle = MQ_INVALID_HANDLE;

MQBool redelivered;

ConstMQString my_msgtype;

Table 2–2 Functions Used to Get Message Properties

Function Description

MQPropertiesKeyIterationStart Starts the iteration process through the specified
properties handle.

MQPropertiesKeyIterationHasNext Returns MQ_TRUE if there are additional property keys
left in the iteration.

MQPropertiesKeyIterationGetNext Passes back the address of the next property key in the
referenced property handle.

MQGetPropertyType Gets the type of the specified property.

MQGetBoolProperty Gets the value of the specified MQBool type property.

MQGetStringProperty Gets the value of the specified MQString type property.

MQGetInt8Property Gets the value of the specified MQInt8 type property.

MQGetInt16Property Gets the value of the specified MQInt16 type property.

MQGetInt32Property Gets the value of the specified MQInt32 type property.

MQGetInt64Property Gets the value of the specified MQInt64 type property.

MQGetFloat32Property Gets the value of the specified MQFloat32 type property.

MQGetFloat64Property Gets the value of the specified MQFloat64 type property.

Working With Connections

2-6 Open Message Queue 4.5.2 Developer's Guide for C Clients

status = (MQGetMessageHeaders(messageHandle, &headersHandle));

status = (MQGetBoolProperty(headersHandle,
 MQ_REDELIVERED_HEADER_PROPERTY, &redelivered));

status = MQGetStringProperty(headersHandle,
 MQ_MESSAGE_TYPE_HEADER_TYPE_PROPERTY, &my_msgtype);

Working With Connections
All messaging occurs within the context of a connection: the behavior of the
connection is defined by the properties set for that connection. You use the functions
listed in Table 2–3 to create, start, stop, and close a connection.

Before you create a connection, you must do the following:

■ Define the connection properties. See Setting Connection and Message Properties
for more information.

■ Specify a user name and password for the connection. See "User Authentication"
in Open Message Queue Administration Guide for information on how to set up
users.

■ Write a connection exception listener function. You will need to pass a reference to
this listener when you create the connection. This function will be called
synchronously when a connection exception occurs for this connection. For more
information, see Callback Type for Connection Exception Handling .

■ If you want a secure connection, call the MQIntitializeSSL function to initialize
the SSL library. See Working With Secure Connections for more information.

When you have completed these steps, you are ready to call MQCreateConnection to
create a connection. After you create the connection, you can create a session as
described in Working With Sessions and Destinations .

When you send a message, you do not need to start the connection explicitly by calling
MQStartConnection. You do need to call MQStartConnection before the broker can
deliver messages to a consumer.

Table 2–3 Functions Used to Work with Connections

Function Description

MQInitializeSSL Initializes the SSL library. You must call this function before you
create any connection that uses SSL.

MQCreateConnection Creates a connection and passes back a handle to it.

MQStartConnection Starts the specified connection and starts or resumes delivery of
messages.

MQStopConnection Stops the specified connection.

MQGetMetaData Returns a handle to name and version information for the
Message Queue product.

MQCloseConnection Closes the specified connection.

Working With Connections

Using the C API 2-7

If you need to halt delivery in the course of processing messages, you can call the
MQStopConnection function.

Defining Connection Properties
Connection properties specify the following information:

■ The host name and port of the broker to which you want to connect

■ The transport protocol of the connection service used by the client

■ How broker and client acknowledgements are handled to support messaging
reliability

■ How message flow is to be managed

■ How secure messaging should be implemented

The following sections examine the effect of properties used to manage connection
handling, reliability, message flow, and security.

Table 4–2 lists and describes all properties of a connection. For information on how to
set and change connection properties, see Working With Properties.

Connection Handling
Connections to a message server are specified by a broker host name and port number.

■ Set MQ_BROKER_NAME_PROPERTY to specify the broker name.

■ Set MQ_BROKER_PORT_PROPERTY to specify the port of the broker's port mapper
service. In this case, the port mapper will dynamically assign the port to which the
client connects.

■ Set MQ_BROKER_SERVICE_PORT_PROPERTY to specify the number of a port to which
the client connects. This is a static, fixed port assignment; it bypasses the broker's
port mapper service. If you do need to connect to a fixed port on the broker, make
sure that the service needed is enabled and available at the specified port by
setting the imq.serviceName.protocolType.port broker property.

■ Set the connection property MQ_CONNECTION_TYPE_PROPERTY to specify the
underlying transport protocol. Possible values are TCP or SSL.

Remember that you need to configure the JMS service port on the broker side as
well. For example, if you want to connect your client via ssljms to port 1756, you
would do the following.

– On the client side: Set the MQ_SERVICE_PORT_PROPERTY to 1756 and set the MQ_
CONNECTION_TYPE_PROPERTY to SSL.

– On the broker side: Set the imq.serviceNameType.protocol.port property to 1756
as follows.

imq.ssljms.ssl.port=1756

The MQ_PING_INTERVAL_PROPERTY also affects connection handling. This property is set
to the interval (in seconds) that the connection can be idle before the C client runtime
pings the broker to test whether the connection is still alive. This property is useful for
either producers who use the connection infrequently or for clients who are exclusive
consumers, passively waiting for messages to arrive. The default value is 30 seconds.
Setting an interval that is too low may result in some performance loss. The minimum
permitted value is 1 second to prevent this from happening.

Working With Connections

2-8 Open Message Queue 4.5.2 Developer's Guide for C Clients

Currently, the C-API does not support auto-reconnect or failover, which allows the
client runtime to automatically reconnect to a broker if a connection fails.

Reliability
Two connection properties enable the acknowledgement of messages sent to the
broker and of messages received from the broker. These are described in Message
Acknowledgement. In addition to setting these properties, you can also set MQ_ACK_
TIMEOUT_PROPERTY, which determines the maximum time that the client runtime will
wait for any broker acknowledgement before throwing an exception.

Flow Control
A number of connection properties determine the use of Message Queue control
messages by the client runtime. Messages sent and received by Message Queue clients
and Message Queue control messages pass over the same client-broker connection.
Because of this, delays may occur in the delivery of control messages, such as broker
acknowledgements, if these are held up by the delivery of JMS messages. To prevent
this type of congestion, Message Queue meters the flow of JMS messages across a
connection.

■ Set MQ_CONNECTION_FLOW_COUNT_PROPERTY to specify the number of Message
Queue messages in a metered batch. When this number of messages is delivered to
the client runtime, delivery is temporarily suspended, allowing any control
messages that had been held up to be delivered. Message delivery is resumed
upon notification by the client runtime, and continues until the count is again
reached.

■ MQ_CONNECTION_FLOW_LIMIT_PROPERTY specifies the maximum number of
unconsumed messages that can be delivered to a client runtime. When the number
of messages reaches this limit, delivery stops and resumes only when the number
of unconsumed messages drops below the specified limit. This helps a consuming
client that is taking a long time to process messages from being overwhelmed with
pending messages that might cause it to run out of memory.

■ MQ_CONNECTION_FLOW_LIMIT_ENABLED_PROPERTY specifies whether the value MQ_
CONNECTION_FLOW_LIMIT_PROPERTY is used to control message flow.

You should keep the value of MQ_CONNECTION_FLOW_COUNT_PROPERTY low if the client is
doing operations that require many responses from the broker; for example, the client
is using the CLIENT_ACKNOWLEDGE or AUTO_ACKNOWLEDGE modes, persistent messages,
transactions, or if the client is adding or removing consumers. You can increase the
value of MQ_CONNECTION_FLOW_COUNT_PROPERTY without compromising performance if
the client has only simple consumers on a connection using DUPS_OK mode.

The C API does not currently support consumer-based flow control.

Working With Secure Connections
Establishing a secure connection between the client and the broker requires both the
administrator and the developer to do some additional work. The administrator's
work is described in "Message Encryption" in Open Message Queue Administration
Guide. In brief, it requires that the administrator do the following:

■ Generate certificates (self-signed or signed by a certificate authority) and add
those certificates to the broker's keystore

■ Enable the ssljms connection service in the broker

■ Provide the password to the certificate keystore when starting the broker

Working With Connections

Using the C API 2-9

The developer must also do some work to configure the client for secure messaging.
The work required depends on whether the broker is trusted (the default setting) and
on whether the developer wants to provide an additional means of verification if the
broker is not trusted and the initial attempt to create a secure connection fails.

The MessageQueue C-API library uses NSS to support the SSL transport protocol
between the Message Queue C client and the Message Queue broker. The developer
must take care if the client application using secure Message Queue connections uses
NSS (for other purposes) directly as well and does NSS initialization. For additional
information, see Coordinating NSS Initialization.

Configuring the Client for Secure Communication
By default the MQ_SSL_BROKER_IS_TRUSTED property is set to true, and this means that
the Message Queue client runtime will accept any certificate that is presented to it. The
following procedure explains what you must do to establish a secure connection.

To Establish a Secure Connection Follow this procedure:

1. Set the MQ_CONNECTION_TYPE_PROPERTY to SSL .

2. If you want the runtime to check the broker's certificate, set the MQ_SSL_BROKER_
IS_TRUSTED property to false. Otherwise, you can leave it to its default (true)
value.

3. Generate the NSS files certN.db, keyN.db, and secmod.db using the certificate
database tool certutil.

You can find this tool in mqInstallHome/nss/bin.

For directions and an example of using this tool, see

http://www.mozilla.org/projects/security/pki/nss/tools/certut
il.html

4. Note the path name of the directory that contains the NSS files you generated in
Configuring the Client for Secure Communication.

5. If you have set the MQ_SSL_BROKER_IS_TRUSTED property to false, use the
certutil tool to import the root certificate of the authority certifying the broker
into the database files you generated in Configuring the Client for Secure
Communication .

Make sure that the MQ_BROKER_HOST_PROPERTY value is set to the same value as the
(CN) common name in the broker's certificate.

6. If you have set the MQ_SSL_BROKER_IS_TRUSTED property to false, you have the
option of enabling broker fingerprint-based verification in case authorization fails.
For details, see Verification Using Fingerprints.

7. Call the function MQInitializeSSL once (and only once) before creating the
connection, and pass the name of the directory that contains the NSS files you
generated in Configuring the Client for Secure Communication. If the broker is
trusted, these files can be empty.

You must call this function before you create any connection to the broker,
including connections that do not use SSL.

Verification Using Fingerprints
If certificate authorization fails when the broker is using a certificate authority, it is
possible to give the client runtime another means of establishing a secure connection

Working With Connections

2-10 Open Message Queue 4.5.2 Developer's Guide for C Clients

by comparing broker certificate fingerprints. If the fingerprints match, the connection
is granted; if they do not match, the attempt to create the connection will fail.

To Set Up Fingerprint Certification Follow this procedure:

1. Set the broker connection property MQ_SSL_CHECK_BROKER_FINGERPRINT to true.

2. Retrieve the broker's certificate fingerprint by using the java keytool -list option
on the broker's keystore file:

You will use the output of this command as the value for the connection property
MQ_SSL_BROKER_CERT_FINGERPRINT in Verification Using Fingerprints. For
example, if the output contains a value like the following:

Certificate fingerprint (MD5): F6:A5:C1:F2:E6:63:40:73:97:64:39:6C:1B:35:0F:8E

You would specify this value for MQ_SSL_BROKER_CERT_FINGEPRINT.

3. Set the connection property MQ_SSL_BROKER_CERT_FINGEPRINT to the value
obtained in Verification Using Fingerprints.

Coordinating NSS Initialization
If your application uses NSS directly, other than to support Message Queue secure
communication, you need to coordinate NSS initialization with the Message Queue
C-API library. There are two cases to consider:

■ Your application does not use secure Message Queue connections.

In this case, you should do your application's NSS initialization before calling
MQCreateConnection to create any connection to the Message Queue broker.

■ Your application does use secure Message Queue connections.

In this case, you should follow the procedure outlined below before calling
MQCreateConnection to create any Message Queue connection.

To Coordinate NSS Initialization Follow this procedure:

1. Call the function MQInitializeSSL. (You must specify the path to the directory
containing the NSS files as the certdbpath parameter to this function.)

Your application's use of NSS must specify the same certdbpath value for the
location of its NSS files. (That is, the certificates needed by your application must
be located in the same directory as the certificates needed by Message Queue.)

Internally, the function MQInitializeSSL does the following:

■ Calls the function NSS_Init(certdbpath).

■ Sets DOMESTIC cipher policy using the function NSS_SetDomesticPolicy().

■ Enables all cipher suites, including RSA_NULL_MD5 by calling the function SSL_
CipherPrefSetDefault(SSL_RSA_WITH_NULL_MD5, PR_TRUE) .

■ Calls the function SSL_ClearSessionCache().

2. If your application needs different cipher suite settings, after you call the
MQInitializeSSL() function, you can modify the cipher suites by calling the
function SSL_CipherPrefSetDefault. However, note that these changes will affect
your secure connection to the Message Queue broker as well.

Working With Sessions and Destinations

Using the C API 2-11

Shutting Down Connections
In order to do an orderly shutdown, you need to close the connection by calling
MQCloseConnection and then to free the memory associated with the connection by
calling the MQFreeConnection function.

■ Closing the connection closes all sessions, producers, and consumers created from
this connection. This also forces all threads associated with this connection that are
blocking in the library to return.

■ After all the application threads associated with this connection and its descendant
sessions, producers, and consumers have returned, the application can call the
MQFreeConnection function to release all resources associated with the
connection.

To get information about a connection, call the MQGetMetaData function. This returns
name and version information for the Message Queue product.

Working With Sessions and Destinations
A session is a single-threaded context for producing and consuming messages. You
can create multiple producers and consumers for a session, but you are restricted to
using them serially. In effect, only a single logical thread of control can use them. A
session supports reliable delivery through acknowledgment options or by using
transactions.

Table 2–4 describes the functions you use to create and manage sessions.

Creating a Session
The MQCreateSession function creates a new session and initializes a handle to it in
the sessionHandle parameter. The number of sessions you can create for a single
connection is limited only by system resources. You can create a session after you have
created a connection.

When you create a session, you specify whether it is transacted, the acknowledge
mode, and the receive mode. After you create a session, you can create the producers,
consumers, and destinations that use the session context to do their work.

Transacted Sessions
If you specify that a session be transacted, the acknowledge mode is ignored. Within a
transacted session, the broker tracks sends and receives, completing these operations
only when the client issues a call to commit the transaction. If a send or receive
operation fails, the operation will return an error. Your application can handle the error
by ignoring it, retrying it, or rolling back the entire transaction. When a transaction is

Table 2–4 Functions Used to Work with Sessions

Function Description

MQCreateSession Creates the specified session and passes back a handle to it.

MQGetAcknowledgeMode Passes back the acknowledgement mode of the specified session.

MQRecoverSession Stops message delivery and restarts message delivery with the
oldest unacknowledged message. (For non-transacted sessions.)

MQRollBackSession Rolls back a transaction associated with the specified session.

MQCommitSession Commits a transaction associated with the specified session.

MQCloseSession Closes the specified session.

Working With Sessions and Destinations

2-12 Open Message Queue 4.5.2 Developer's Guide for C Clients

committed, all the successful operations are completed. When a transaction is rolled
back, all the successful operations are cancelled. A transaction cannot encompass both
the production and consumption of the same message.

The scope of a local transaction is a single session. One or more producer or consumer
operations can be grouped into a single local transaction only if performed in the
context of a single session.

To extend the scope of a transaction beyond a single session, you can use a distributed
transaction. A distributed transaction is managed by an external distributed transaction
manager, as described in Working With Distributed Transactions.

Message Acknowledgement
Both messages that are sent and messages that are received can be acknowledged.

In the case of message producers, if you want the broker to acknowledge its having
received a non-persistent message (to its physical destination), you must set the
connection's MQ_ACK_ON_PRODUCE_PROPERTY to MQ_TRUE. If you do so, the sending
function will return only after the broker has acknowledged receipt of the message. By
default, the broker acknowledges receipt of persistent messages.

Acknowledgements on the consuming side means that the client runtime
acknowledges delivery and consumption of all messages from a physical destination
before the message service deletes the message from that destination. You can specify
one of the following acknowledge modes for the consuming session when you create
that session.

■ MQ_AUTO_ACKNOWLEDGE specifies that the session automatically acknowledge each
message consumed by the client.

■ MQ_CLIENT_ACKNOWLEDGE specifies that the client must explicitly acknowledge
messages by calling MQAcknowledgeMessages. In this case, all messages are
acknowledged that have been consumed up to the point where the acknowledge
function is called. (This could include messages consumed asynchronously by
many different message listeners in that session, independent of the order in
which they were consumed.)

■ MQ_DUPS_OK_ACKNOWLEDGE specifies that the session acknowledges receipt of
messages after each ten messages are consumed. It does not guarantee that
messages are delivered and consumed only once.

(The setting of the connection property MQ_ACK_ON_ACKNOWLEDGE_PROPERTY also
determines the effect of some of these acknowledge modes. For more information, see
Table 4–2.)

Receive Mode
You can specify a session's receive mode as either MQ_SESSION_SYNC_RECEIVE or MQ_
SESSION_ASYNC_RECEIVE. If the session you create will be used for sending messages

Note: In the DUPS_OK_ACKNOWLEDGE mode, the session does not
wait for broker acknowledgements. This option can be used in
Message Queue C clients for which duplicate messages are not a
problem. Also, you can call the MQRecoverSession function to
explicitly request redelivery of messages that have been received
but not yet acknowledged by the client. When redelivering such
messages, the broker will set the header field MQ_REDLIEVERED_
HEADER_PROPERTY .

Working With Sessions and Destinations

Using the C API 2-13

only, you should specify MQ_SESSION_SYNC_RECEIVE for its receive mode for
optimization because the asynchronous receive mode automatically allocates an
additional thread for the delivery of messages it expects to receive.

Managing a Session
Managing a session involves using threads appropriately for the type of session
(synchronous or asynchronous) and managing message delivery for both transacted
and nontransacted sessions. For more information about thread management, see
Managing Threads.

■ For a session that is not transacted, use the MQRecoverSession function to restart
message delivery with the last unacknowledged message.

■ For a session that is transacted, use the MQRollBackSession function to roll back
any messages that were delivered within this transaction. Use the
MQCommitSession function to commit all messages associated with this
transaction.

■ Use the MQCloseSession function to close a session and all its associated
producers and consumers. This function also frees memory allocated for the
session.

You can get information about a session's acknowledgment mode by calling the
MQGetAcknowledgeMode function.

Creating Destinations
After creating a session, you can create destinations or temporary destinations for the
messages you want to send. Table 2–5 lists the functions you use to create and to get
information about destinations.

A destination refers to where a message is destined to go. A physical destination is a JMS
message service entity (a location on the broker) to which producers send messages
and from which consumers receive messages. The message service provides the
routing and delivery for messages sent to a physical destination.

When a Message Queue C client creates a destination programmatically using the
MQCreateDestination function, a destination name must be specified. The function
initializes a handle to a destination data type that holds the identity (name) of the
destination. The important thing to remember is that this function does not create the
physical destination on the broker; this must be done by the administrator. The
destination that is created programmatically however must have the exact same name
and type as the physical destination created on the broker. For example, if you use the
MQCreateDestination function to create a queue destination called myMailQDest, the
administrator has to create a physical destination on the broker named myMailQDest.

Destination names starting with "mq" are reserved and should not be used by client
programs.

Table 2–5 Functions Used to Work with Destinations

Functions Description

MQCreateDestination Creates a destination and initializes a handle to it.

MQCreateTemporaryDestination Creates a temporary destination and initializes a handle to
it.

MQGetDestinationType Returns the type (queue or topic) of the specified
destination.

Working With Messages

2-14 Open Message Queue 4.5.2 Developer's Guide for C Clients

Programming Domains
When you create a destination, you must also specify its type: MQ_QUEUE_DESTINATION
or MQ_TOPIC_DESTINATION. See "Messaging Domains" in Open Message Queue Technical
Overview for a discussion of these two types of destinations and how to choose the
type that suits your needs.

Auto-Created Destinations
By default, the imq.autocreate.topic and imq.autocreate.queue broker properties
are turned on. In this case, which is more convenient in a development environment,
the broker automatically creates a physical destination whenever a message consumer
or message producer attempts to access a non-existent destination. The auto-created
physical destination will have the same name as that of the destination you created
using the MQCreateDestination function.

Temporary Destinations
You use the MQCreateTemporaryDestination function to create a temporary
destination. You can use such a destination to implement a simple request/reply
mechanism. When you pass the handle of a temporary destination to the
MQSetMessageReplyTo function, the consumer of the message can use that handle as
the destination to which it sends a reply.

Temporary destinations are explicitly created by client applications and are
automatically deleted when the connection is closed. They are maintained (and
named) by the broker only for the duration of the connection for which they are
created. Temporary destinations are system-generated uniquely for their connection
and only their own connection is allowed to create message consumers for them.

Getting Information About Destinations
Use the MQGetDestinationType function to determine the type of a destination: queue
or topic. There may be times when you do not know the type of the destination to
which you are replying: for example, when you get a handle from the
MQGetMessageReplyTo function. Because the semantics of queue and topic destinations
differ, you need to determine the type of a destination in order to reply appropriately.

Working With Messages
This section describes how you use the C-API to complete the following tasks:

■ Compose a message

■ Send a message

■ Receive a message

■ Process a message

Composing Messages
You can create either a text message or a bytes message. A message, whether text or
bytes, is composed of a header, properties, and a body. You can also create a message
type which has no body.

Table 2–6 lists the functions you use to construct messages.

Working With Messages

Using the C API 2-15

Message Header
A header is required of every message. Header fields contain values used for routing
and identifying messages.

Some header field values are set automatically by Message Queue during the process
of producing and delivering a message, some depend on settings specified when
message producers send a message, and others are set on a message-by-message basis
by the client using the MQSetMessageHeader function. Table 2–7 lists the header fields
defined (and required) by JMS and their corresponding names, as defined by the
C-API.

For additional information about each property type and who sets it, see
MQSetMessageHeaders.

Message Body Types
JMS specifies six classes (or types) of messages. The C-API supports only three of these
types, as described in Table 2–8. If a Message Queue C client expects to receive
messages from a Message Queue Java client, it will be unable to process messages

Table 2–6 Functions Used to Construct Messages

Function Description

MQCreateMessage Creates an MQ_MESSAGE type message.

MQCreateBytesMessage Creates an MQ_BYTES_MESSAGE message.

MQCreateTextMessage Creates an MQ_TEXT_MESSAGE message.

MQSetMessageHeaders Sets message header properties. (Optional)

MQSetMessageProperties Sets user-defined message properties.

MQSetStringProperty Sets the body of an MQ_TEXT_MESSAGE message.

MQSetBytesMessageBytes Sets the body of an MQ_BYTES_MESSAGE message.

MQSetMessageReplyTo Specifies the destination where replies to this message
should be sent.

Table 2–7 JMS-defined Message Header

JMS Message Header Field C-API Message Header Property Name

JMSDestination Defined implicitly when a producer sends a message to a
destination, or when a consumer receives a message from a
destination.

JMSDeliveryMode MQ_PERSISTENT_HEADER_PROPERTY

JMSExpiration MQ_EXPIRATION_HEADER_PROPERTY

JMSPriority MQ_PRIORITY_HEADER_PROPERTY

JMSMessageID MQ_MESSAGE_ID_HEADER_PROPERTY

JMSTimeStamp MQ_TIMESTAMP_HEADER_PROPERTY

JMSRedelivered MQ_REDELIVERED_HEADER_PROPERTY

JMSCorrelationID MQ_CORRELATION_ID_HEADER_PROPERTY

JMSReplyTo Set by the MQSetMessageReplyTo function, and obtained by the
MQGetMessageReplyTo function.

JMSPriority MQ_MESSAGE_TYPE_HEADER_PROPERTY

Working With Messages

2-16 Open Message Queue 4.5.2 Developer's Guide for C Clients

whose body types are other than those described in the table. It will also be unable to
process messages that are compressed by the Message Queue Java client runtime.

Composing the Message
Create a message using either the MQCreateBytesMessage function or the
MQCreateTextMessage function. Either of these functions returns a message handle
that you can then pass to the functions you use to set the message body, header, and
properties (listed in Composing Messages). You can also use the MQCreateMessage
function to create a message that has a header and properties but no message body.

■ Use the MQSetTextMessageText function to define the body of a text message; use
the MQSetBytesMessageBytes function to define the body of a bytes message.

■ Use the MQSetMessageHeaders to set any message header properties.

The message header can specify up to eight properties; most of these are set by the
client runtime when sending the message or are set by the broker. The client can
set MQ_CORRELATION_ID_HEADER_PROPERTY and MQ_MESSAGE_TYPE_HEADER_
PROPERTY for sending a message.

■ Use the MQSetMessageProperties function to set any user-defined properties for
this message.

When you set message header properties or when you set additional user-defined
properties, you must pass a handle to a properties object that you have created using
the MQCreateProperties function. For more information, see Working With Properties.

You can use the MQSetMessageReplyTo function to associate a message with a
destination that recipients can use for replies. To do this, you must first create a
destination that will serve as your reply-to destination. Then, pass a handle to that
destination when you call the MQSetMessageReplyTo function. The receiver of a
message can use the MQGetMessageReplyTo function to determine whether a sender
has set up a destination where replies are to be sent.

Sending a Message
Messages are sent by a message producer within the context of a connection and a
session. Once you have obtained a connection, created a session, and composed your
message, you can use the functions listed in Table 2–9to create a message producer and
to send the message.

Which function you choose to send a message depends on the following factors:

■ Whether you want the send function to override certain message header
properties

Send functions whose names end in Ext allow you to override default values for
priority, time-to-live, and delivery mode header properties.

Table 2–8 C-API Message Body Types

Type Description

MQ_Text_Message A message whose body contains an MQString string, for example
an XML message.

MQ_Bytes_Message A message whose body contains a stream of uninterpreted bytes.

MQ_Message A message consisting of a header and (optional) properties, but
no body.

Working With Messages

Using the C API 2-17

■ Whether you want to send the message to the destination associated with the
message producer

If you created a message producer with no specified destination, you must used
one of the ...ToDestination send functions. If you created a message producer
with a specified destination, you must use one of the other send functions.

If you send a message using one of the functions that does not allow you to override
header properties, the following message header fields are set to default values by the
send function.

■ MQ_PERSISTENT_HEADER_PROPERTY will be set to MQ_PERSISTENT_DELIVERY.

■ MQ_PRIORITY_HEADER_PROPERTY will be set to 4.

■ MQ_EXPIRATION_HEADER_PROPERTY will be set to 0, which means that the message
will never expire.

To override these values, use one of the extended send functions. For a complete list of
message header properties, see MQGetMessageHeaders .

Message headers also contain fields that can be set by the sending client; in addition,
you can set user-defined message properties as well. For more information, see
Composing Messages.

You can set the connection property MQ_ACK_ON_PRODUCE_PROPERTY when you create
the connection to make sure that the message has reached its destination on the broker:

■ By default, the broker acknowledges receiving persistent messages only.

■ If you set the property to MQ_TRUE, the broker acknowledges receipt of all messages
(persistent and non-persistent) from the producing client.

■ If you set the property to MQ_FALSE, the broker does not acknowledge receipt of
any message (persistent or non-persistent) from the producing client.

Note that "acknowledgement" in this case is not programmatic but internally
implemented. That is, the client thread is blocked and does not return until the broker
acknowledges messages it receives.

An administrator can set a broker limit, REJECT_NEWEST, which allows the broker to
avert memory problems by rejecting the newest incoming message. If the incoming
message is persistent, then an error is returned which the sending client should
handle, perhaps by retrying the send a bit later. If the incoming message is not

Table 2–9 Functions for Sending Messages

Function Action

MQCreateMessageProducer Creates a message producer with no specified
destination.

MQCreateMessageProducerForDestination Creates a message producer with a specified
destination.

MQSendMessage Sends a message for the specified producer.

MQSendMessageExt Sends a message for the specified producer and
allows you to set priority, time-to-live, and
delivery mode.

MQSendMessageToDestination Sends a message to the specified destination.

MQSendMessageToDestinationExt Sends a message to the specified destination and
allows you to set priority, time-to-live, and
delivery mode.

Working With Messages

2-18 Open Message Queue 4.5.2 Developer's Guide for C Clients

persistent, the client has no way of knowing that the broker rejected it. The broker
might also reject a message if it exceeds a specified limit.

Receiving Messages
Messages are received by a message consumer in the context of a connection and a
session. In order to receive messages, you must explicitly start the connection by
calling the MQStartConnection function.

Table 2–10 lists the functions you use to create message consumers and to receive
messages.

Working With Consumers
When you create a consumer, you need to make several decisions:

■ Do you want to receive messages synchronously or asynchronously?

If you create a synchronous consumer, you can call one of three kinds of receive
functions to receive your messages. If you create an asynchronous consumer, you
must specify the name of a callback function that the client runtime can call when
a message is delivered to the destination for that consumer. For information about
the callback function signature, see Callback Type for Asynchronous Message
Consumption .

■ If you are consuming messages from a topic, do you want to use a durable or a
nondurable consumer?

Table 2–10 Functions Used to Receive Messages

Function Description

MQCreateMessageConsumer Creates the specified synchronous consumer
and passes back a handle to it.

MQCreateDurableMessageConsumer Creates a durable synchronous message
consumer for the specified destination.

MQCreateAsyncMessageConsumer Creates an asynchronous message consumer
for the specified destination.

MQCreateAsyncDurableMessageConsumer Creates a durable asynchronous message
consumer for the specified destination.

MQUnsubscribeDurableMessageConsumer Unsubscribes the specified durable message
consumer.

MQReceiveMessageNoWait Passes a handle back to a message delivered to
the specified consumer if a message is
available; otherwise it returns an error.

MQReceiveMessageWait Passes a handle back to a message delivered to
the specified consumer if a message is
available; otherwise it blocks until a message
becomes available.

MQReceiveMessageWithTimeout Passes a handle back to a message delivered to
the specified consumer if a message is
available within the specified amount of time.

MQAcknowledgeMessages Acknowledges the specified message and all
messages received before it on the same
session

MQCloseMessageConsumer Closes the specified consumer.

Working With Messages

Using the C API 2-19

A durable consumer receives all the messages published to a topic, including the
ones published while the subscriber is inactive. A nondurable consumer only
receives messages while the subscriber is active.

The broker retains a record of this durable subscription and makes sure that all
messages from the publishers to this topic are retained until they are either
acknowledged by this durable subscriber or until they have expired. Sessions with
durable subscribers must always provide the same client identifier. In addition,
each consumer must specify a durable name using the durableName parameter,
which uniquely identifies (for each client identifier) each durable subscription it
creates.

A session's consumers are automatically closed when you close the session or
connection to which they belong. However, messages will be routed to the durable
subscriber while it is inactive and delivered when a new durable consumer is
recreated. To close a consumer without closing the session or connection to which it
belongs, use the MQCloseMessageConsumer function. If you want to close a durable
consumer permanently, you should call the function
MQUnsubscribeDurableMessageConsumer after closing it, to delete state information
maintained by the broker on behalf of the durable consumer.

Receiving a Message Synchronously
If you have created a synchronous consumer, you can use one of three receive
functions: MQReceiveMessageNoWait, MQReceiveMessageWait , or
MQReceiveMessagewithTimeOut. In order to use any of these functions, you must have
specified MQ_SESSION_SYNC_RECEIVE for the receive mode when you created the
session.

When you create a session you must specify one of several acknowledge modes for
that session. If you specify MQ_CLIENT_ACKNOWLEDGE as the acknowledge mode for the
session, you must explicitly call the MQAcknowledgeMessages function to acknowledge
messages that you have received. If the session is transacted, the acknowledge mode
parameter is ignored.

When the receiving function returns, it gives you a handle to the delivered message.
You can pass that handle to the functions described in Processing a Message, in order
to read message properties and information stored in the header and body of the
message.

It is possible that a message can be lost for synchronous consumers in a session using
AUTO_ACKNOWLEDGE mode if the provider fails. To prevent this possibility, you should
either use a transacted session or a session in CLIENT_ACKNOWLEDGE mode.

Because distributed applications involve greater processing time, such an application
might not behave as expected if it were run locally. For example, calling the
MQReceiveMessageNoWait function might return MQ_NO_MESSAGE even when there is a
message available to be retrieved on the broker. See the usage notes provided in the
section MQReceiveMessageNoWait for more information.

Receiving a Message Asynchronously
To receive a message asynchronously, you must create an asynchronous message
consumer and pass the name of an MQMessageListenerFunc type callback function.
(Therefore, you must set up the callback function before you create the asynchronous
consumer that will use it.) You should start the connection only after creating an
asynchronous consumer. If the connection is already started, you should stop the
connection before creating an asynchronous consumer.

Working With Distributed Transactions

2-20 Open Message Queue 4.5.2 Developer's Guide for C Clients

You are also responsible for writing the message listener function. Mainly, the function
needs to process the incoming message by examining its header, body, and properties,
or it needs to pass control to a function that can do this processing. The client is also
responsible for freeing the message handle (either from within the listener or from
outside of the listener) by calling the MQFreeMessage function.

When you create a session you must specify one of several acknowledge modes for
that session. If you specify MQ_CLIENT_ACKNOWLEDGE as the acknowledge mode for the
session, you must explicitly call the MQAcknowledgeMessages function to acknowledge
messages that you have received.

For more information about the signature and content of a call back function, see
Callback Type for Asynchronous Message Consumption.

When the callback function is called by the session delivery of a message, it gives you
a handle to the delivered message. You can pass that handle to the functions described
in Processing a Message, in order to read message properties and information stored in
the header and body of the message.

Processing a Message
When a message is delivered to you, you can examine the message's properties, type,
headers, and body. The functions used to process a message are described in
Processing a Message.

If you are interested in a message's header information, you need to call the
MQGetMessageHeaders function. If you need to read or check any user-defined
properties, you need to call the MQGetMessageProperties function. Each of these
functions passes back a properties handle. For information on how you can read
property values, see Getting Message Properties.

Before you can examine the message body, you can call the MQGetMessageType
function to determine whether the message is a text or bytes message. You can then
call the MQGetTextMessageText, or the MQGetBytesMessageBytes function to get the
contents of the message.

Some message senders specify a reply destination for their message. Use the
MQGetMessageReplyTo function to determine that destination.

Working With Distributed Transactions
In accordance with the X/Open distributed transaction model, Message Queue C-API
support for distributed transactions relies upon a distributed transaction manager. The
distributed transaction manage tracks and manages distributed transactions,
coordinating the decision to commit them or roll them back, and coordinating failure

Table 2–11 Functions Used to Process Messages

Function Description

MQGetMessageHeaders Gets message header properties.

MQGetMessageProperties Gets user-defined message properties.

MQGetMessageType Gets the message type: MQ_TEXT_MESSAGE or MQ_BYTES_MESSAGE

MQGetTextMessageText Gets the body of an MQ_TEXT_MESSAGE message.

MQGetBytesMessageBytes Gets the body of an MQ_BYTES_MESSAGE message.

MQGetMessageReplyTo Gets the destination where replies to this message should be sent.

Working With Distributed Transactions

Using the C API 2-21

recovery. The Message Queue C-API supports the X/Open XA interface, qualifying it
as an XA-compliant resource manager. This support allows C-API clients running in a
distributed transaction processing environment to participate in distributed
transactions.

In particular, two C-API functions support the participation of C-API clients in
distributed transactions:

MQGetXAConnection()
MQCreateXASession()

If a C-client application is to be used in the context of a distributed transaction, then it
must obtain a connection by using MQGetXAConnection() and create a session for
producing and consuming messages by using MQCreateXASession(). The start,
commit, and rollback, of any distributed transaction is managed by the distributed
transaction manager.

For more information on XA resource managers, see the XA Specification
(http://www.opengroup.org/onlinepubs/009680699/toc.pdf).

Message Queue Resource Manager Information
In accordance with the X/Open XA interface specification, a distributed transaction
manager needs the following information regarding the Message Queue XA-compliant
resource manager:

■ Name of the xa_switch_t structure: sun_my_xa_switch

■ Name of the Resource Manager: SUN_RM

■ The MQ C-API library to be linked: mqcrt

■ The xa_close string and format: none

■ The xa_open string and format: semicolon (";")-separated name/value pairs

The following name/value pairs are supported:

Table 2–12 Message Queue Resource Manager Name/Value Pairs

Name Value Description Default

address host:port The host:port of the broker's Portmapper
service.

localhost:7676

username string The username for connecting to the broker guest

password string The username's password guest

conntype TCP or SSL The protocol type of the connection to the
broker

TCP

trustedhost true/false Whether the broker host is trusted (only
applicable for conntype=SSL)

true

certdbpath string The full path to the directory that contains
NSS certificate and key database files

not set

clientid string Required only for JMS durable subscriptions not set

reconnects integer The number of re-connection attempts to
broker (0 means no reconnect)

0

Error Handling

2-22 Open Message Queue 4.5.2 Developer's Guide for C Clients

Programming Examples
To help you program an application that uses distributed transactions, Message Queue
provides programming examples based on the Tuxedo distributed transaction
manager. A description of the sample programs and their location is provided in
Table 1–3.

Error Handling
Nearly all Message Queue C functions return an MQStatus result. You can use this
return value to determine whether the function returned successfully and, if not, to
determine the cause of the error.

Table 2–13 lists the functions you use to get error information.

To Handle Errors in Your Code
1. Call MQStatusIsError, passing it an MQStatus result for the function whose result

you want to test.

2. If the MQStatusIsError function returns MQ_TRUE , call MQGetStatusCode or
MQGetStatusString to identify the error.

3. If the status code and string information is not sufficient to identify the cause of
the error, you can get additional diagnostic information by calling
MQGetErrorTrace to obtain the calling thread's current error trace if this
information is available.

Reference lists common errors returned for each function. In addition to these
errors, the following error codes may be returned by any Message Queue C
function:

■ MQ_STATUS_INVALID_HANDLE

■ MQ_OUT_OF_MEMORY

■ MQ_NULL_PTR_ARG

In addition, the MQ_TIMEOUT_EXPIRED can return from any Message Queue C
function that communicates with the Message Queue broker if the connection MQ_
ACK_TIMEOUT_PROPERTY is set to a non-zero value.

Memory Management
Table 2–14 lists the functions you use to free or deallocate memory allocated by the
Message Queue-C client library on behalf of the user. Such deallocation is part of
normal memory management and will prevent memory leaks.

Table 2–13 Functions Used in Handling Errors

Function Description

MQStatusIsError Returns an MQ_TRUE if the specified MQStatus is an error.

MQGetStatusCode Returns the error code for the specified MQStatus.

MQGetStatusString Returns a descriptive string for the specified MQStatus.

MQGetErrorTrace Returns the calling thread's current error trace or NULL if no error
trace is available.

Logging

Using the C API 2-23

The functions MQCloseConnection, MQCloseSession , MQCloseMessageProducer, and
MQCloseMessageConsumer are used to free resources associated with connections,
sessions, producers, and consumers.

You should free a connection only after you have closed the connection with the
MQCloseConnection function and after all of the application threads associated with
this connection and its dependent sessions, producers, and consumers have returned.

You should not free a connection while an application thread is active in a library
function associated with this connection or one of its dependent sessions, producers,
consumers, and destinations.

Freeing a connection does not release resources held by a message associated with this
connection. You must free memory allocated for this message by explicitly calling the
MQFreeMessage function.

You should not free a properties handle if the properties handle passed to a function
becomes invalid on its return. If you do, you will get an error.

Logging
The Message Queue C-API library uses two environment variables to control
execution-time logging:

■ MQ_LOG_FILE specifies the file to which log messages are directed. If you do not
specify a file name for this variable, stderr is used. If MQ_LOG_FILE is a directory
name, it should include a trailing directory separator.

By default, .n (where n is 0, 1, 2,...) is appended to the actual log file name. This is
used as a rotation index, and the indices are used sequentially when the maximum
log file size is reached. You can use %g to specify a rotation index replacement in
MQ_LOG_FILE after the last directory separator. Only the last %g is used if multiple
%g's are specified. the %g replacement can be escaped with %. The maximum
rotation index is 9, and the maximum log file size is 1 MB. These limits are not
configurable.

■ MQ_LOG_LEVEL specifies a numeric level that indicates the detail of logging
information needed:

-1
OFF, which suppresses the generation of log messages

0
SEVERE level, which indicates a severe failure

1
WARNING level, which indicates a potential problem

Table 2–14 Functions Used to Free Memory

Function Description

MQFreeConnection Frees memory allocated to the specified connection.

MQFreeDestination Frees memory allocated to the specified destination.

MQFreeMessage Frees memory allocated to the specified message.

MQFreeProperties Frees memory allocated to the specified properties handle.

MQFreeString Frees memory allocated to the specified MQString.

Logging

2-24 Open Message Queue 4.5.2 Developer's Guide for C Clients

2
INFO level, for informational messages

3
CONFIG level, for static configuration messages

4
FINE level, which provides tracing information

5
FINER level, which provides detailed tracing information

6
FINEST level, which provides highly detailed tracing information

For any value of MQ_LOG_LEVEL, log messages of that value or lower are generated.
For example, setting MQ_LOG_LEVEL to 2 causes INFO, WARNING and SEVERE log
messages to be generated.

The default level is 3, CONFIG.

3

Client Design Issues 3-1

3Client Design Issues

This chapter describes a number of messaging issues that impact Message Queue C
client design. It covers the following topics:

■ Producers and Consumers

■ Using Selectors Efficiently

■ Determining Message Order and Priority

■ Managing Threads

■ Managing Physical Destination Limits

■ Managing the Dead Message Queue

■ Factors Affecting Performance

This chapter does not discuss the particulars of the C-API and how to use the data
types and functions it defines to create messaging clients. For this information, see
Using the C API.

Producers and Consumers
Aside from the reliability your client requires, the design decisions that relate to
producers and consumers include the following:

■ Do you want to use a point-to-point or a publish/subscribe domain?

There are some interesting permutations here. There are times when you would
want to use publish/subscribe even when you have only one subscriber.
Performance considerations might make the point-to-point model more efficient
than the publish/subscribe model, when the work of sorting messages between
subscribers is too costly. Sometimes these decisions cannot be made in the abstract,
but different prototypes must be developed and tested.

■ Are you using an asynchronous message consumer that does not get called often
or a producer that is seldom used?

You might need to adjust the MQ_PING_INTERVAL_PROPERTY when you create your
connection, so that your client gets an exception if the connection should fail. For
more information see Connection Handling.

■ Are you using a synchronous consumer in a distributed application?

You might need to allow a small time interval between connecting and calling the
MQReceiveMessageNoWait function in order not to miss a pending message. For
more information, see usage information in the section
MQReceiveMessageNoWait.

Using Selectors Efficiently

3-2 Open Message Queue 4.5.2 Developer's Guide for C Clients

Using Selectors Efficiently
The use of selectors can have a significant impact on the performance of your
application. It's difficult to put an exact cost on the expense of using selectors since it
varies with the complexity of the selector expression, but the more you can do to
eliminate or simplify selectors the better.

One way to eliminate (or simplify) selectors is to use multiple destinations to sort
messages. This has the additional benefit of spreading the message load over more
than one producer, which can improve the scalability of your application. For those
cases when it is not possible to do that, here are some techniques that you can use to
improve the performance of your application when using selectors:

■ Have consumers share selectors. As of version 3.5 of Message Queue, message
consumers with identical selectors "share" that selector in the broker, which can
significantly improve performance. So if there is a way to structure your
application to have some selector sharing, consider doing so.

■ Use IN instead of multiple string comparisons. For example, expression number 1
is much more efficient than expression number 2, especially if expression 2 usually
evaluates to false.

color IN ('red', 'green', 'white') \\ Expression 1

color = 'red' OR color = 'green' OR color = 'white' \\Expression 2

■ Use BETWEEN instead of multiple integer comparisons. For example, expression 1 is
more efficient than expression 2, especially if expression 2 usually evaluates to
true.

size BETWEEN 6 AND 10 \\Expression 1

size>= 6 AND size <= 10 \\Expression 2

■ Order the selector expression so that MQ can short circuit the evaluation. The
short circuiting of selector evaluation was added in MQ 3.5 and can easily double
or triple performance when using selectors depending on the complexity of the
expression.

– If you have two expressions joined by an OR, put the expression that is most
likely to evaluate to TRUE first.

– If you have two expressions joined by an AND, put the expression that is most
likely to evaluate to FALSE first.

For example, if size is usually greater than 6, but color is rarely red you would
want the order of an OR expression to be the following.

size> 6 OR color = 'red'

If you are using AND, use the following order.

color = 'red' AND size> 6

Determining Message Order and Priority
In general, all messages sent to a destination by a single session are guaranteed to be
delivered to a consumer in the order they were sent. However, if they are assigned
different priorities, a messaging system will attempt to deliver higher priority
messages first.

Managing Threads

Client Design Issues 3-3

Beyond this, the ordering of messages consumed by a client can have only a rough
relationship to the order in which they were produced. This is because the delivery of
messages to a number of destinations and the delivery from those destinations can
depend on a number of issues that affect timing, such as the order in which the
messages are sent, the sessions from which they are sent, whether the messages are
persistent, the lifetime of the messages, the priority of the messages, the message
delivery policy of queue destinations, and message service availability.

Managing Threads
This section addresses a number of thread management issues that you should be
aware of in designing and programming a Message Queue C client. It covers the
following topics:'

■ Message Queue C Runtime Thread Model

■ Concurrent Use of Handles

■ Single-Threaded Session Control

■ Connection Exceptions

Message Queue C Runtime Thread Model
The Message Queue C-API library creates the threads needed to provide runtime
support for a Message Queue C client. It uses NSPR (Netscape Portable Runtime)
GLOBAL threads. NSPR GLOBAL threads are fully compatible with native threads on each
supported platform. Message Queue C Runtime Thread Model shows the thread
model that the NSPR GLOBAL threads map to on each platform. For more information
on NSPR, see

http://www.mozilla.org/projects/nspr/

Concurrent Use of Handles
Table 3–2 lists the handles (objects) used in a C client program and specifies which of
these may be used concurrently and which can only be used by one logical thread at a
time.

Table 3–1 Thread Model for NSPR GLOBAL Threads

Platform Thread Model

Solaris pthreads

Linux pthreads

AIX pthreads

Windows Win32 threads (from Microsoft Visual C++ runtime library msvcrt)

Table 3–2 Handles and Concurrency

Handle Supports Concurrent Use

MQDestinationHandle YES

MQConnectionHandle YES

MQSessionHandle NO

MQProducerHandle NO

MQConsumerHandle NO

Managing Physical Destination Limits

3-4 Open Message Queue 4.5.2 Developer's Guide for C Clients

Single-Threaded Session Control
A session is a single-threaded context for producing and consuming messages.
Multiple threads should not use the same session concurrently nor use the objects it
creates concurrently. The only exception to this occurs during the orderly shutdown of
the session or its connection when the client calls the MQCloseSession or the
MQCloseConnection function. Follow these guidelines in designing your client:

■ If a client wants to have one thread producing messages and other threads
consuming messages, the client should use a separate session for its producing
thread.

■ Do not create an asynchronous message consumer while the connection is in
started mode.

■ A session created with MQ_SESION_ASYNC_RECEIVE mode uses a single thread to
run all its consumers' MQMessageListenerFunc callback functions. Clients that
want concurrent delivery should use multiple sessions.

■ Do not call the MQStopConnection, MQCloseSession , or the MQCloseConnection
functions from a MQMessageListenerFunc callback function. (These calls will not
return until delivery of messages has stopped.)

■ Call the MQFreeConnection function after MQCloseConnection and all of the
application threads associated with a connection and its sessions, producers, and
consumers have returned.

The Message Queue C runtime library provides one thread to a session in MQ_SESSION_
ASYNC_RECEIVE mode for asynchronous message delivery to its consumers. When the
connection is started, all its sessions that have created asynchronous consumers are
dedicated to the thread of control that delivers messages. Client code should not use
such a session from another thread of control. The only exception to this is the use of
MQCloseSession and MQCloseConnection.

Connection Exceptions
When a connection exception occurs, the Message Queue C library thread that is
provided to the connection calls its MQConnectionExceptionListenerFunc callback if
one exists. If an MQConnectionExceptionListenerFunc callback is used for multiple
connections, it can potentially be called concurrently from different connection
threads.

You should not call the MQCloseConnection function in an
MQConnectionExceptionListenerFunc callback. Instead the callback function should
notify another thread to call MQCloseConnection and return.

Managing Physical Destination Limits
When creating a topic or queue destination, the administrator can specify how the
broker should behave when certain memory limits are reached. Specifically, when the
number of messages reaching a physical destination exceeds the number specified
with the maxNumMsgs property or when the total amount of memory allowed for

MQMessageHandle NO

MQPropertiesHandle NO

Table 3–2 (Cont.) Handles and Concurrency

Handle Supports Concurrent Use

Managing the Dead Message Queue

Client Design Issues 3-5

messages exceeds the number specified with the maxTotalMsgBytes property, the
broker takes one of the following actions, depending on the setting of the
limitBehavior property:

■ Slows message producers (FLOW_CONTROL)

■ Throws out the oldest message in memory (REMOVE_OLDEST)

■ Throws out the lowest priority message in memory (REMOVE_LOW_PRIORITY)

■ Rejects the newest messages (REJECT_NEWEST)

If the default value REJECT_NEWEST is specified for the limitBehavior property, the
broker throws out the newest messages received when memory limits are exceeded. If
the message discarded is a persistent message, the producing client gets an error
which you should handle by re-sending the message later.

If any of the other values is selected for the limitBehavior property or if the message
is not persistent (or persistent and MQ_ACK_ON_PRODUCE_PROPERTY is false), the
application client is not notified if a message is discarded. Application clients should
let the administrator know how they prefer this property to be set for best
performance and reliability.

Managing the Dead Message Queue
When a message is deemed undeliverable, it is automatically placed on a special
queue called the dead message queue. A message placed on this queue retains all of its
original headers (including its original destination) and information is added to the
message's properties to explain why it became a dead message. For a description of the
destination properties and of the broker properties that control the system's use of the
dead message queue, see "Using the Dead Message Queue" in Open Message Queue
Administration Guide.

This section describes the message properties that you can set or examine
programmatically to determine the following:

■ Whether a dead message can be sent to the dead message queue.

■ Whether the broker should log information when a message is destroyed or
moved to the dead message queue.

■ Whether the body of the message should also be stored when the message is
placed on the dead message queue.

■ Why the message was placed on the dead message queue and any ancillary
information.

(Message Queue 4.5.2 clients can set properties related to the dead message queue on
messages and send those messages to clients compiled against Message Queue 3.5x or
earlier versions. However clients receiving such messages cannot examine these
properties without recompiling against Message Queue 4.5.2 libraries.)

The dead message queue is automatically created by the system and called
mq.sys.dmq. You can write a Java program that uses the metrics monitoring API,
described in "Using the Metrics Monitoring API" in Open Message Queue Developer's
Guide for Java Clients. or the JMX API, described in the Open Message Queue Developer's
Guide for JMX Clients, to determine whether that queue is growing, to examine
messages on that queue, and so on.

You can set the properties described in Table 3–3 for any message to control how the
broker should handle that message if it deems it to be undeliverable. Note that these

Managing the Dead Message Queue

3-6 Open Message Queue 4.5.2 Developer's Guide for C Clients

message properties are needed only to override default destination, or default
broker-based behavior.

The properties described in Table 3–4 are set by the client runtime for a message
placed in the dead message queue.

Table 3–3 Message Properties Relating to Dead Message Queue

Property Type Description

JMS_SUN_PRESERVE_UNDELIVERED Boolean For a dead message, the default value of
unset, specifies that the message should be
handled as specified by the useDMQ property
of the destination to which the message was
sent.

A value of true overrides the setting of the
useDMQ property and sends the dead message
to the dead message queue,.

A value of false overrides the setting of the
useDMQ property and prevents the dead
message from being placed in the dead
message queue.

JMS_SUN_LOG_DEAD_MESSAGES Boolean The default value of unset, will behave as
specified by the broker configuration
property imq.destination.logDeadMsgs.

A value of true overrides the setting of the
imq.destination.logDeadMsgs broker
property and specifies that the broker should
log the action of removing a message or
moving it to the dead message queue.

A value of false overrides the setting of the
imq.destination.logDeadMsgs broker
property and specifies that the broker should
not log these actions.

JMS_SUN_TRUNCATE_MSG_BODY Boolean The default value of unset, will behave as
specified by the broker property
imq.destination.DMQ.truncateBody.

A value of true overrides the setting of the
imq.destination.DMQ.truncateBody
property and specifies that the body of the
message should be discarded when the
message is placed in the dead message queue.

A value of false overrides the setting of the
imq.destination.DMQ.truncateBody
property and specifies that the body of the
message should be stored along with the
message header and properties when the
message is placed in the dead message queue.

Table 3–4 Dead Message Properties

Property Type Description

JMSXDeliveryCount

Integer Specifies the most number of times the
message was delivered to a given
consumer. This value is set only for
ERROR or UNDELIVERABLE messages.

JMS_SUN_DMQ_UNDELIVERED_TIMESTAMP

Long Specifies the time (in milliseconds)
when the message was placed on the
dead message queue.

Factors Affecting Performance

Client Design Issues 3-7

Factors Affecting Performance
Application design decisions can have a significant effect on overall messaging
performance. In general, the more reliable the delivery of messages, the more
overhead and bandwidth are required to achieve it. The trade-off between reliability
and performance is a significant design consideration. You can maximize performance
and throughput by choosing to produce and consume non-persistent messages. On the
other hand, you can maximize reliability by producing and consuming persistent
messages using a transacted session. Between these extremes are a number of options,
depending on the needs of your application. This section describes how these options
or factors affect performance. They include the following:

■ Delivery Mode (Persistent/Non-persistent)

JMS_SUN_DMQ_UNDELIVERED_REASON

String Specifies one of the following values to
indicate the reason why the message
was placed on the dead message
queue:

■ OLDEST

■ LOW_PRIORITY

■ EXPIRED

■ UNDELIVERABLE

■ ERROR

If the message was marked dead for
multiple reasons, for example it was
undeliverable and expired, only one
reason will be specified by this
property.

The ERROR value is returned when a
message cannot be delivered due to an
internal error; this is an unusual
condition. In this case, the sender
should just resend the message.

JMS_SUN_DMQ_PRODUCING_BROKER

String For message traffic in broker clusters:
specifies the name and port number of
the broker that sent the message. A
null value indicates that it was the local
broker.

JMS_SUN_DMQ_DEAD_BROKER

String For message traffic in broker clusters:
specifies the name and port number of
the broker that placed the message on
the dead message queue. A null value
indicates that it was the local broker.

JMS_SUN_DMQ_UNDELIVERED_EXCEPTION

String Specifies the name of the exception (if
the message was dead because of an
exception) on either the client or the
broker.

JMS_SUN_DMQ_UNDELIVERED_COMMENTS

String An optional comment provided when
the message is marked dead.

JMS_SUN_DMQ_BODY_TRUNCATED

Boolean A value of true indicates that the
message body was not stored. A value
of false indicates that the message
body was stored.

Table 3–4 (Cont.) Dead Message Properties

Property Type Description

Factors Affecting Performance

3-8 Open Message Queue 4.5.2 Developer's Guide for C Clients

■ Use of Transactions

■ Acknowledgement Mode

■ Durable and Non-Durable Subscriptions

■ Use of Selectors (Message Filtering)

■ Message Size

■ Message Type.

Table 3–5 summarizes how application design factors affect messaging performance.
The table shows two scenarios (a high reliability, low performance scenario and a high
performance, low reliability scenario) and the choice of application design factors that
characterizes each. Between these extremes, there are many choices and trade-offs that
affect both reliability and performance.

Delivery Mode (Persistent/Non-persistent)
Persistent messages guarantee message delivery in case of message server failure. The
broker stores these message in a persistent store until all intended consumers
acknowledge they have consumed the message.

Broker processing of persistent messages is slower than for non-persistent messages
for the following reasons:

Table 3–5 Comparison of High Reliability and High Performance Scenarios

Application Design
Factor

High ReliabilityLow
Performance Scenario

High PerformanceLow
Reliability Scenario

Delivery mode Persistent messages Non-persistent messages

Use of transactions Transacted sessions No transactions

Acknowledgement mode AUTO_ACKNOWLEDGE or CLIENT_
ACKNOWLEDGE

DUPS_OK_ACKNOWLEDGE

Durable/non-durable
subscriptions

Durable subscriptions Non-durable subscriptions

Use of selectors Message filtering No message filtering

Message size Small messages Large messages

Message body type Complex body types Simple body types

Note: In the discussion that follows, performance data was
generated on a two-CPU, 1002 Mhz, Solaris 8 system, using
file-based persistence. The performance test first warmed up the
Message Queue broker, allowing the Just-In-Time compiler to
optimize the system and the persistent database to be primed.

Once the broker was warmed up, a single producer and a single
consumer were created, and messages were produced for 30
seconds. The time required for the consumer to receive all
produced messages was recorded, and a throughput rate (messages
per second) was calculated. This scenario was repeated for different
combinations of the application design factors shown in Factors
Affecting Performance.

Factors Affecting Performance

Client Design Issues 3-9

■ A broker must reliably store a persistent message so that it will not be lost should
the broker fail.

■ The broker must confirm receipt of each persistent message it receives. Delivery to
the broker is guaranteed once the method producing the message returns without
an exception.

■ Depending on the client acknowledgment mode, the broker might need to confirm
a consuming client's acknowledgement of a persistent message.

The differences in performance for persistent and non-persistent modes can be
significant--about 25% faster for non-persistent messages.

Use of Transactions
A transaction guarantees that all messages produced or consumed within the scope of
the transaction will be either processed (committed) or not processed (rolled back) as a
unit. In general, the overhead of both local and distributed transaction processing
dwarfs all other performance differentiators.

A message produced or consumed within a transaction is slower than those produced
or consumed outside of a transaction for the following reasons:

■ Additional information must be stored with each produced message.

■ In some situations, messages in a transaction are stored when normally they
would not be. For example, a persistent message delivered to a topic destination
with no subscriptions would normally be deleted, however, at the time the
transaction is begun, information about subscriptions is not available.

■ Information on the consumption and acknowledgement of messages within a
transaction must be stored and processed when the transaction is committed.

Acknowledgement Mode
Other than using transactions, you can ensure reliable delivery by having the client
acknowledge receiving a message. If a session is closed without the client
acknowledging the message or if the message server fails before the acknowledgment
is processed, the broker redelivers that message, setting the MQ_REDELIVERED_HEADER_
PROPERTY message header.

For a non-transacted session, the client can choose one of three acknowledgement
modes, each of which has its own performance characteristics:

■ AUTO_ACKNOWLEDGE. The system automatically acknowledges a message once the
consumer has processed it. This mode guarantees at most one redelivered message
after a provider failure.

■ CLIENT_ACKNOWLEDGE. The application controls the point at which messages are
acknowledged. All messages that have been received in the same session up to the
message where the acknowledge function is called upon are acknowledged. If the
message server fails while processing a set of acknowledgments, one or more
messages in that group might be redelivered.

Note that this behavior models the JMS 1.0.2 specification rather than the JMS 1.1
specification

(Using CLIENT_ACKNOWLEDGE mode is similar to using transactions, except there is
no guarantee that all acknowledgments will be processed together if a provider
fails during processing.)

Factors Affecting Performance

3-10 Open Message Queue 4.5.2 Developer's Guide for C Clients

■ DUPS_OK_ACKNOWLEDGE. This mode instructs the system to acknowledge messages
in a lazy manner. Multiple messages can be redelivered after a provider failure.

Performance is impacted by acknowledgement mode for the following reasons:

■ Extra control messages between broker and client are required in AUTO_
ACKNOWLEDGE and CLIENT_ACKNOWLEDGE modes. The additional control messages
add processing overhead and can interfere with JMS payload messages, causing
processing delays.

■ In AUTO_ACKNOWLEDGE and CLIENT_ACKNOWLEDGE modes, the client must wait until
the broker confirms that it has processed the client's acknowledgment before the
client can consume more messages. (This broker confirmation guarantees that the
broker will not inadvertently redeliver these messages.)

■ The Message Queue persistent store must be updated with the acknowledgement
information for all persistent messages received by consumers, thereby decreasing
performance.

In general, our tests show about a 7% difference in performance between pesistent and
nonpersistent messages, no matter which acknowledgment mode is used. That is,
while persistence is a significant factor affecting performance, acknowledgment mode
is not.

Durable and Non-Durable Subscriptions
Subscribers to a topic destination have either durable or non-durable subscriptions.
Durable subscriptions provide increased reliability at the cost of slower throughput for
the following reasons:

■ The Message Queue message server must persistently store the list of messages
assigned to each durable subscription so that should a message server fail, the list
is available after recovery.

■ Persistent messages for durable subscriptions are stored persistently, so that
should a message server fail, the messages can still be delivered after recovery,
when the corresponding consumer becomes active. By contrast, persistent
messages for non-durable subscriptions are not stored persistently (should a
message server fail, the corresponding consumer connection is lost and the
message would never be delivered).

For nonpersistent messages, performance is about the same for durable and non
durable subscriptions. For persistent messages, performance is about 20% lower for
durable subscriptions than for nondurable subscriptions.

Use of Selectors (Message Filtering)
Application developers can have the messaging provider sort messages according to
criteria specified in the message selector associated with a consumer and deliver to
that consumer only those messages whose property value matches the message
selector. For example, if an application creates a subscriber to the topic WidgetOrders
and specifies the expression NumberOfOrders>1000 for the message selector, messages
with a NumberOfOrders property value of 1001 or more are delivered to that subscriber.

Creating consumers with selectors lowers performance (as compared to using multiple
destinations) because additional processing is required to handle each message. When
a selector is used, it must be parsed so that it can be matched against future messages.
Additionally, the message properties of each message must be retrieved and compared
against the selector as each message is routed. However, using selectors provides more

Factors Affecting Performance

Client Design Issues 3-11

flexibility in a messaging application and may lower resource requirements at the
expense of speed.

In our tests, performance results were affected by the use of selectors only in the case
of nondurable subscribers, which ran about 33% faster without selectors. For durable
subscribers and for queue consumers, performance was not affected by the use of
selectors. For more information on using selectors, see Using Selectors Efficiently

Message Size
Message size affects performance because more data must be passed from producing
client to broker and from broker to consuming client, and because for persistent
messages a larger message must be stored.

However, by batching smaller messages into a single message, the routing and
processing of individual messages can be minimized, providing an overall
performance gain. In this case, information about the state of individual messages is
lost.

In our tests we compared performance for persistent and non-persistent 1k, 10k, and
100k messages. We found that 100k messages were processed two to three times faster
than 10k messages, and 10k messages were processed five to six times faster than 1k
messages. For both persistent and non-persistent messages, the size of the message
affected the processing rate much more than its delivery mode. For 1k messages,
non-persistent messages were almost twice as fast; for 10k messages, non-persistent
messages were about 33% faster; for 100k messages, non persistent messages were
about 5% faster. In our tests all messages were sent to a queue destination and used
the AUTO_ACKNOWLEDGE acknowledgement mode.

Message Type
The C API supports three message types:

■ MQ_BYTES_MESSAGE, which contains a set of bytes in a format determined by the
application

■ MQ_TEXT_MESSAGE, which is a simple MQString

■ MQ_MESSAGE, which contains a header and properties but no body

Since performance varies with the complexity of the data, text messages are slightly
more expensive to send than byte messages, and messages that have no body are the
fastest.

Factors Affecting Performance

3-12 Open Message Queue 4.5.2 Developer's Guide for C Clients

4

Reference 4-1

4Reference

This chapter provides reference documentation for the Message Queue C-API. It
includes information about the following:

■ Data Types describes the C declarations for data types used by Message Queue
messaging

■ Function Reference describes the C functions that implement Message Queue
messaging

■ Header Files describes the contents of the C-API header files

For information on building C-Message Queue programs, see Client Design Issues.

For information on how you use the C API to complete specific programming tasks,
see Using the C API.

Data Types
Data Types summarizes the data types defined by the Message Queue C API. The table
lists data types in alphabetical order and provides cross references for types that
require broader discussion.

Note that Message Queue data types designated as handles map to opaque structures
(objects). Please do not attempt to dereference these handles to get to the underlying
objects. Instead, use the functions provided to access the referenced objects.

Table 4–1 Message Queue C-API Data Type Summary

Message Queue Type Description

ConstMQString

A constant MQString.

MQAckMode

An enum used to specify the acknowledgement
mode of a session. Possible values include the
following:

■ MQ_AUTO_ACKNOWLEDGE

■ MQ_CLIENT_ACKNOWLEDGE

■ MQ_DUPS_OK_ACKNOWLEDGE

■ MQ_SESSION_TRANSACTED

See Acknowledge Modes for more information.

Data Types

4-2 Open Message Queue 4.5.2 Developer's Guide for C Clients

MQBool

A boolean that can assume one of two values:

MQ_TRUE(=1)
MQ_FALSE(=0).

MQChar

char type.

MQConnectionHandle

A handle used to reference a Message Queue
connection. You get this handle when you call
the MQCreateConnection function.

MQConsumerHandle

A handle used to reference a Message Queue
consumer. A consumer can be durable,
nondurable and synchronous, or asynchronous.
You get this handle when you call one of the
functions used to create consumers. See
Receiving Messages for more information.

MQDeliveryMode

An enum used to specify whether a message is
sent persistently:

■ MQ_NON_PERSISTENT_DELIVERY

■ MQ_PERSISTENT_DELIVERY

You specify this value with the
MQSendMessageExt function or the
MQSendMessageToDestinationExt function.

MQDestinationHandle

A handle used to reference a Message Queue
destination. You get this handle when you call
the MQCreateDestination function or the
MQCreateTemporaryDestination function.

MQDestinationType

An enum used to specify the type of a
destination:

■ MQ_QUEUE_DESTINATION

■ MQ_TOPIC_DESTINATION

You set the destination type using the
MQCreateDestination function or the
MQCreateTemporaryDestination function.

MQError

A 32-bit unsigned integer.

MQConnectionExceptionListenerFunc

The type of a callback function used for
connection exception handling. For more
information, see Callback Type for Connection
Exception Handling.

MQFloat32

A 32-bit floating-point number.

MQFloat64

A 64-bit floating-point number.

MQInt16

A 16-bit signed integer.

Table 4–1 (Cont.) Message Queue C-API Data Type Summary

Message Queue Type Description

Data Types

Reference 4-3

MQInt32

A 32-bit signed integer.

MQInt64

A 64-bit signed integer.

MQInt8

An 8-bit signed integer.

MQMessageHandle

A handle used to reference a Message Queue
message. You get this handle when you call the
MQCreateBytesMessage function, or the
MQCreateTextMessage function, or on receipt of
a message.

MQMessageListenerFunc

The type of a callback function used for
asynchronous message receipt. For more
information, see Callback Type for
Asynchronous Message Consumption.

MQMessageType

An enum passed back by the
MQGetMessageType and used to specify the
type of a message; possible values include the
following:

■ MQ_TEXT_MESSAGE

■ MQ_BYTES_MESSAGE

■ MQ_MESSAGE

■ MQ_UNSUPPORTED_MESSAGE

MQProducerHandle

A handle used to reference a Message Queue
producer. You get this handle when you call
MQCreateMessageProducer or
MQCreateMessageProducerForDestination.

MQPropertiesHandle

A handle used to reference Message Queue
properties. You use this handle to define or read
connection properties and message headers or
message properties. See Working With
Properties for more information.

MQReceiveMode

An enum used to specify whether consumers are
synchronous or asynchronous. It can be one of
the following:

■ MQ_SESSION_SYNC_RECEIVE

■ MQ_SESSION_ASYNC_RECEIVE

See MQCreateSession for more information.

MQSessionHandle

A handle used to reference a Message Queue
session. You get this handle when you call the
MQCreateSession function.

MQStatus

A data type returned by nearly all functions
defined in mqcrt.h. See Error Handling for more
information on how you handle errors returned
by Message Queue functions.

Table 4–1 (Cont.) Message Queue C-API Data Type Summary

Message Queue Type Description

Data Types

4-4 Open Message Queue 4.5.2 Developer's Guide for C Clients

Connection Properties
When you create a connection using the MQCreateConnection function, you must pass
a handle to an object of type MQPropertiesHandle. The following table lists and
describes the key values that define each property. The procedure that follows the
table explains how you set the properties referenced by this handle.

MQString

A null terminated UTF-8 encoded character
string

MQType

An enum used to return the type of a single
property; possible values include the following:

■ MQ_INT8_TYPE

■ MQ_INT16_TYPE

■ MQ_INT32_TYPE

■ MQ_INT64_TYPE

■ MQ_FLOAT32_TYPE

■ MQ_FLOAT64_TYPE

■ MQ_STRING_TYPE

■ MQ_INVALID_TYPE

Table 4–2 Connection Properties

Key Name Description

MQ_CONNECTION_TYPE_PROPERTY

An MQString specifying the transport protocol of the connection
service used by the client. Supported types are TCP or TLS (SSL).
The TCP protocol underlies the jms service; the TLS protocol
supports the ssljms service.

Default: TCP

MQ_ACK_TIMEOUT_PROPERTY

A 32-bit integer specifying the maximum time in milliseconds
that the client runtime will wait for any broker
acknowledgement before returning an MQ_TIMEOUT_EXPIRED
error. A value of 0 means there is no time-out.

Default: 0

MQ_BROKER_HOST_PROPERTY

An MQString specifying the broker host name to which to
connect.

If you set the property MQ_SSL_BROKER_IS_TRUSTED to
false, the value you specify for the property MQ_BROKER_
HOST_PROPERTY must match the CN (common name) of the
broker's certificate.

No default.

Table 4–1 (Cont.) Message Queue C-API Data Type Summary

Message Queue Type Description

Data Types

Reference 4-5

MQ_PING_INTERVAL_PROPERTY

A 32-bit integer specifying the interval (in seconds) that the
connection can remain idle before the client runtime tests the
connection by pinging the broker. (The exact amount of time it
takes for the ping to detect connection failure varies with the
system's TCP configuration.)

A ping interval that is <= 0 turns off the ping for the connection.
The minimum allowable interval is 1 second. This prevents an
application from setting the interval to a value that would affect
performance.

The ping interval is logged at the INFO level by the C client
runtime when a connection is created.

Default: 30 seconds

MQ_BROKER_PORT_PROPERTY

A 32-bit integer specifying the number of the port for the
broker's port mapper service.

No default.

MQ_BROKER_SERVICE_PORT_PROPERTY

A 32–bit integer that specifies the number of a port to which the
client connects. This is a static, fixed port assignment; it
bypasses the broker's port mapper service. If you do need to
connect to a fixed port on the broker, make sure that the service
needed is enabled and available at the specified port by setting
the imq.serviceName.protocolType.port broker property.

MQ_ACK_ON_PRODUCE_PROPERTY

An MQBool specifying whether the producing client waits for
broker acknowledgement of receipt of message from the
producing client.

If set to MQ_TRUE, the broker acknowledges receipt of all
messages (persistent and non-persistent) from the producing
client, and the producing client thread will block waiting for
those acknowledgements.

If set to MQ_FALSE, broker does not acknowledge receipt of any
message (persistent or non-persistent) from the producing
client, and the producing client thread will not block waiting for
broker acknowledgements.

Default: the broker acknowledges receipt of persistent messages
only from the producing client, and the producing client thread
will block waiting for those acknowledgements.

MQ_ACK_ON_ACKNOWLEDGE_PROPERTY

An MQBool specifying whether the broker confirms
(acknowledges) consumer acknowledgements. A consumer
acknowledgement can be initiated either by the client's session
or by the consuming client, depending on the session
acknowledgement mode (see Acknowledge Modes). If the
session's acknowledgement mode is MQ_DUPS_OK_ACKNOWLEDGE,
this flag has no effect.

If set to MQ_TRUE, the broker acknowledges all consuming
acknowledgements, and the consuming client thread blocks
waiting for these broker acknowledgements.

If set to MQ_FALSE, the broker does not acknowledge any
consuming client acknowledgements, and the consuming client
thread will not block waiting for such broker
acknowledgements.

Default: MQ_TRUE

For more information, see the discussion for the
MQAcknowledgeMessages function and Message
Acknowledgement.

Table 4–2 (Cont.) Connection Properties

Key Name Description

Data Types

4-6 Open Message Queue 4.5.2 Developer's Guide for C Clients

MQ_CONNECTION_FLOW_COUNT_PROPERTY

A 32-bit integer, greater than 0, specifying the number of
Message Queue messages in a metered batch. When this
number of messages is delivered from the broker to the client
runtime, delivery is temporarily suspended, allowing any
control messages that had been held up to be delivered. Payload
message delivery is resumed upon notification by the client
runtime, and continues until the count is again reached.

Default: 100

MQ_CONNECTION_FLOW_LIMIT_ENBABLED_PROPERTY

An MQBool specifying whether the value MQ_CONNECTION_FLOW_
LIMIT_PROPERTY is used to control message flow. Specify MQ_
TRUE to use the value and MQ_FALSE otherwise.

Default: MQ_FALSE

MQ_CONNECTION_FLOW_LIMIT_PROPERTY

A 32-bit integer, greater than 0, specifying the maximum
number of unconsumed messages the client runtime can hold
for each connection. Note however, that unless MQ_CONNECTION_
FLOW_LIMIT_ENBABLED_PROPERTY is MQ_TRUE, this limit is not
checked.

When the number of unconsumed messages held by the client
runtime for the connection exceeds the limit, message delivery
stops. It is resumed (in accordance with the flow metering
governed by MQ_CONNECTION_FLOW_COUNT_PROPERTY) only when
the number of unconsumed messages drops below the value set
with this property.

This limit prevents a consuming client that is taking a long time
to process messages from being overwhelmed with pending
messages that might cause it to run out of memory.

Default: 1000

MQ_SSL_BROKER_IS_TRUSTED

An MQ_Bool specifying whether the broker is trusted.

Default: MQ_TRUE

MQ_SSL_CHECK_BROKER_FINGERPRINT

An MQ_Bool. If it is set to MQ_TRUE and if MQ_SSL_BROKER_IS_
TRUSTED is MQ_FALSE, the broker's certificate fingerprint is
compared with the MQ_SSL_BROKER_CERT_FINGERPRINT property
value in case of certificate authorization failure. If they match,
the broker's certificate is authorized for use in the SSL
connection.

Default: MQ_FALSE

MQ_SSL_BROKER_CERT_FINGERPRIN

An MQString specifying the MD5 hash, in hex format, of the
broker's certificate.

Default: NULL

MQ_NAME_PROPERTY

An MQString that specifies the name of the Message Queue
product. This property is set by the runtime library. See
MQGetMetaData for more information.

MQ_VERSION_PROPERTY

An MQInt32 that specifies the version of the Message Queue
product. This property is set by the runtime library. See
MQGetMetaData for more information.

MQ_MAJOR_VERSION_PROPERTY

An MQInt32 that specifies the major version of the Message
Queue product. For example, if the version is 3.5.0.1, the major
version would be 3.

This property is set by the runtime library. See MQGetMetaData
for more information.

Table 4–2 (Cont.) Connection Properties

Key Name Description

Data Types

Reference 4-7

To Set Connection Properties
1. Call the MQCreateProperties function to get a handle to a newly created

properties object

2. Call a function to set one of the connection properties listed in Table 4–2.

Which function you call depends on the type of the property you want to set; for
example, to set an MQString property, you call the MQSetStringProperty function;
to set a MQBool property, you call the MQSetBoolProperty function; and so on. Each
function that sets a property requires that you pass a key name (constant) and
value; these are listed and described in Table 4–2.

3. When you have set all the properties you want to define for the connection, you
can then create the connection, by calling the MQCreateConnection function.

The runtime library sets the connection properties that specify the name and
version of the Message Queue product; you can retrieve these using the
MQGetMetaData function. These properties are described at the end of Table 4–2,
starting with MQ_NAME_PROPERTY.

Acknowledge Modes
The Message Queue runtime supports reliable delivery by using transacted sessions or
through acknowledgement options set at the session level. When you use the
MQCreateSession function to create a session, you must specify an acknowledgement
option for that session using the acknowledgeMode parameter. The value of this
parameter is ignored for transacted sessions.

Table 4–3describes the effect of the options you can set using the acknowledgeMode
parameter.

MQ_MINOR_VERSION_PROPERTY

An MQInt32 that specifies the minor version of the Message
Queue product. For example, if the version is 3.5.0.1, the minor
version would be 5.

This property is set by the runtime library. See MQGetMetaData
for more information.

MQ_MICRO_VERSION_PROPERTY

An MQInt32 that specifies the micro version of the Message
Queue product. For example, if the version is 3.5.0.1, the micro
version would be 0.

This property is set by the runtime library. See MQGetMetaData
for more information.

MQ_SERVICE_PACK_PROPERTY

An MQInt32 that specifies the service pack version of the
Message Queue product. For example, if the version is 3.5.0.1,
the service pack version would be 1.

This property is set by the runtime library. See MQGetMetaData
for more information.

MQ_UPDATE_RELEASE_PROPERTY

An MQInt32 that specifies the update release version of the
Message Queue product. For example, if the version is 3.7 UR1,
the update release value would be 1.

This property is set by the runtime library. See MQGetMetaData
for more information.

Table 4–2 (Cont.) Connection Properties

Key Name Description

Data Types

4-8 Open Message Queue 4.5.2 Developer's Guide for C Clients

Callback Type for Asynchronous Message Consumption
When you call the MQCreateAsyncMessageConsumer function or the
MQCreateAsyncDurableMessageConsumer function, you must pass the name of an
MQMessageListenerFunc type callback function that is to be called when the consumer
receives a message to the specified destination.

The MQMessageListenerFunc type has the following definition:

MQError (* MQMessageListenerFunc)(
 const MQSessionHandle sessionHandle,
 const MQConsumerHandle consumerHandle,
 MQMessageHandle messageHandle
 void * callbackData);

Parameters

sessionHandle
The handle to the session to which this consumer belongs. The client runtime specifies
this handle when it calls your message listener.

consumerHandle
A handle to the consumer receiving the message. The client runtime specifies this
handle when it calls your message listener.

messageHandle
A handle to the incoming message. The client runtime specifies this handle when it
calls your message listener.

callbackData
The void pointer that you passed to the function MQCreateAsyncMessageConsumer
or the function MQCreateAsyncDurableMessageConsumer.

The body of a message listener function is written by the receiving client. Mainly, the
function needs to process the incoming message by examining its header, body, and
properties. The client is also responsible for freeing the message handle (either from
within the handler or from outside the handler) by calling MQFreeMessage.

Table 4–3 acknowledgeMode Values

Enum Description

MQ_AUTO_ACKNOWLEDGE

The session automatically acknowledges each message consumed
by the client. This happens when one of the receive functions
returns successfully, or when the message listener processing the
message returns successfully.

MQ_CLIENT_ACKNOWLEDGE

The client explicitly acknowledges all messages for the session
that have been consumed up to the point when the
MQAcknowledgeMessages function has been called. See the
discussion of the function MQAcknowledgeMessages for
additional information.

MQ_DUPS_OK_ACKNOWLEDGE

The session acknowledges after ten messages have been
consumed and does not guarantee that messages are delivered
and consumed only once.

MQ_SESSION_TRANSACTED

This value is read only. It is set by the library if you have passed
MQ_TRUE for the isTransacted parameter to the MQCreateSession
function. It is returned to you by the MQGetAcknowledgeMode
function if the session is transacted.

Data Types

Reference 4-9

In addition, you should observe the following guidelines when writing the message
listener function:

■ If you specify MQ_CLIENT_ACKNOWLEDGE as the acknowledge mode for the session,
you must explicitly call the MQAcknowledgeMessages function to acknowledge
messages that you have received. For more information, see the description of the
function MQAcknowledgeMessages.

■ Do not try to close the session (or the connection to which it belongs) and
consumer handle in the message listener.

■ It is possible for a message listener to return an error; however, this is considered a
client programming error. If the listener discovers that the message is badly
formatted or if it cannot process it for some other reason, it should handle the
problem itself by re-directing it to an application-specific bad-message destination
and process it later.

If the message listener does return an error, the client runtime will try to redeliver
the message once if the session's acknowledge mode is either MQ_AUTO_
ACKNOWLEDGE or MQ_DUPS_OK_ACKNOWLEDGE .

Callback Type for Asynchronous Message Consumption in Distributed Transactions
MQMessageListenerBAFunc is the type of the callback functions of before/after
MQMessageListenerFunc for asynchronous message receiving from a distributed
transaction session.

The MQMessageListenerBAFunc type has the following definition:

MQError (* MQMessageListenerBAFunc)(
 const MQSessionHandle sessionHandle,
 const MQConsumerHandle consumerHandle,
 MQMessageHandle messageHandle
 MQError errorCode
 void * callbackData);

Parameters

sessionHandle
The handle to the session to which this consumer belongs. The client runtime specifies
this handle when it calls your message listener.

consumerHandle
A handle to the consumer receiving the message. The client runtime specifies this
handle when it calls your message listener.

messageHandle
A handle to the incoming message. The client runtime specifies this handle when it
calls your message listener.

errorCode
Client runtime processing status that is passed to the before/after callback functions.

callbackData
The void pointer that is passed to the function MQCreateAsyncMessageConsumer.

Function Reference

4-10 Open Message Queue 4.5.2 Developer's Guide for C Clients

Callback Type for Connection Exception Handling
The client runtime will call this function when a connection exception occurs.

The MQConnectionExceptionListenerFunc type has the following definition:

Void (* MQConnectionExceptionListenerFunc)(
 const MQConnectionHandle connectionHandle,
 MQStatus exception,
 void * callbackData);

Parameters

connectionHandle
The handle to the connection on which the connection exception occurred. The client
runtime sets this handle when it calls the connection exception handler.

exception
An MQStatus for the connection exception that occurred. The client runtime specifies
this value when it calls the exception handler.

You can pass this status result to any functions used to handle errors to get an error
code or error string. For more information, see Error Handling.

callbackData
Whatever void pointer was passed as the listenerCallbackData parameter to the
functionMQCreateConnection for more information.

The body of a connection exception listener function is written by the client. This
function will only be called synchronously with respect to a single connection. If you
install it as the connection exception listener for multiple connections, then it must be
reentrant.

Do not try to close the session (or the connection to which it belongs) in the exception
listener.

Function Reference
This section describes the C-API functions in alphabetical order. Function Reference
lists the C-API functions.

Note: What additional information is needed for his function
type?

Table 4–4 Message Queue C-API Function Summary

Function Description

MQAcknowledgeMessages Acknowledges the specified message and all
messages received before it on the same session.

MQCloseConnection Closes the specified connection.

MQCloseMessageConsumer Closes the specified consumer.

MQCloseMessageProducer Closes the specified message producer without
closing its connection.

MQCloseSession Closes the specified session.

Function Reference

Reference 4-11

MQCommitSession Commits a transaction associated with the
specified session.

MQCreateAsyncDurableMessageConsumer Creates a durable asynchronous message
consumer for the specified destination.

MQCreateAsyncMessageConsumer Creates an asynchronous message consumer for
the specified destination.

MQCreateBytesMessage Creates an MQ_BYTES_MESSAGE message.

MQCreateConnection Creates a connection to the broker.

MQCreateDestination Creates a logical destination and passes a handle
to it back to you.

MQCreateDurableMessageConsumer Creates a durable synchronous message
consumer for the specified destination.

MQCreateMessage Creates an MQ_MESSAGE message.

MQCreateMessageConsumer Creates a synchronous message consumer for the
specified destination.

MQCreateMessageProducer Creates a message producer with no default
destination.

MQCreateMessageProducerForDestination Creates a message producer with a default
destination.

MQCreateProperties Creates a properties handle.

MQCreateSession Creates a session and passes back a handle to the
session.

MQCreateTemporaryDestination Creates a temporary destination and passes its
handle back to you.

MQCreateTextMessage Creates a text message.

MQCreateXASession Creates a distributed transaction (XA) session.

MQFreeConnection Releases memory assigned to the specified
connection and to all resources associated with
that connection.

MQFreeDestination Releases memory assigned to the specified
destination and to all resources associated with
that destination.

MQFreeMessage Releases memory assigned to the specified
message.

MQFreeProperties Releases the memory allocated to the referenced
properties handle.

MQFreeString Releases the memory allocated to the specified
MQString.

MQGetAcknowledgeMode Passes back the acknowledgement mode of the
specified session.

MQGetBoolProperty Passes back a property of type MQBool.

MQGetBytesMessageBytes Passes back the address and size of a MQ_BYTES_
MESSAGE message body.

MQGetConnectionProperties Passes back a handle to the properties used in
creating the connection associated with the
specified connection handle.

Table 4–4 (Cont.) Message Queue C-API Function Summary

Function Description

Function Reference

4-12 Open Message Queue 4.5.2 Developer's Guide for C Clients

MQGetDestinationName Passes back the name of the physical destination
to which the specified message has been sent.

MQGetDestinationType Passes back the type of the specified destination.

MQGetErrorTrace Returns a string describing the stack at the time
the specified error occurred.

MQGetFloat32Property Passes back the value of the MQFloat32 property
for the specified key.

MQGetFloat64Property Passes back the value of the MQFloat64 property
for the specified key.

MQGetInt16Property Passes back the value of the MQInt16 property for
the specified key.

MQGetInt32Property Passes back the value of the MQInt32 property for
the specified key.

MQGetInt64Property Passes back the value of the MQInt64 property for
the specified key.

MQGetInt8Property Passes back the value of the MQInt8 property for
the specified key.

MQGetMessageHeaders Passes back a handle to the header of the
specified message.

MQGetMessageProperties Passes back a handle to the properties for the
specified message.

MQGetMessageReplyTo Passes back the destination where replies to this
message should be sent.

MQGetMessageType Passes back the type of the specified message.

MQGetMetaData Passes back Message Queue version information.

MQGetPropertyType Passes back the type of the specified property
key.

MQGetStatusCode Returns the code for the specified MQStatus
result.

MQGetStatusString Returns a string description for the specified
MQStatus result.

MQGetStringProperty Passes back the value for the specified property.
Type (in the function name) can be String, Bool,
Int8, Int16, Int32, Int64 , Float32, Float64.

MQGetTextMessageText Passes back the contents of an MQ_TEXT_MESSAGE
message.

MQGetXAConnection Passes back the distributed transaction (XA)
connection.

MQInitializeSSL Initializes the SSL library. You must call this
function before you create a connection that uses
SSL.

MQPropertiesKeyIterationGetNext Passes back the next property key in the
properties handle.

MQPropertiesKeyIterationHasNext Returns true if there is another property key in a
properties object.

MQPropertiesKeyIterationStart Starts iterating through a properties object.

Table 4–4 (Cont.) Message Queue C-API Function Summary

Function Description

Function Reference

Reference 4-13

MQReceiveMessageNoWait Passes back a handle to a message delivered to
the specified consumer.

MQReceiveMessageWait Passes back a handle to a message delivered to
the specified consumer when the message
becomes available.

MQReceiveMessageWithTimeout Passes back a handle to a message delivered to
the specified consumer if a message is available
within the specified amount of time.

MQRecoverSession Stops message delivery and restarts message
delivery with the oldest unacknowledged
message.

MQRollBackSession Rolls back a transaction associated with the
specified session.

MQSendMessage Sends a message for the specified producer.

MQSendMessageExt Sends a message for the specified producer and
allows you to set priority, time-to-live, and
delivery mode.

MQSendMessageToDestination Sends a message to the specified destination.

MQSendMessageToDestinationExt Sends a message to the specified destination and
allows you to set message header properties.

MQSetBoolProperty Sets an MQBool property with the specified key to
the specified value.

MQSetBytesMessageBytes Sets the message body for the specified MQ_
BYTES_MESSAGE message.

MQSetFloat32Property Sets an MQFloat 32 property with the specified
key to the specified value.

MQSetFloat64Property Sets an MQFloat 64 property with the specified
key to the specified value.

MQSetInt16Property Sets an MQInt16 property with the specified key
to the specified value.

MQSetInt32Property Sets an MQInt 32 property with the specified key
to the specified value.

MQSetInt64Property Sets an MQInt64 property with the specified key
to the specified value.

MQSetInt8Property Sets an MQInt8 property with the specified key to
the specified value.

MQSetMessageHeaders Sets the header part of the message.

MQSetMessageProperties Sets the user-defined properties for the specified
message.

MQSetMessageReplyTo Specifies the destination where replies to this
message should be sent.

MQSetStringProperty Sets an MQString property with the specified key
to the specified value.

MQSetStringProperty Sets the message body for the specified MQ_TEXT_
MESSAGE message.

MQSetTextMessageText Defines the body for a text message.

Table 4–4 (Cont.) Message Queue C-API Function Summary

Function Description

Function Reference

4-14 Open Message Queue 4.5.2 Developer's Guide for C Clients

MQAcknowledgeMessages
The MQAcknowledgeMessages function acknowledges the specified message and all
messages received before it on the same session. This function is valid only if the
session is created with acknowledge mode set to MQ_CLIENT_ACKNOWLEDGE .

MQAcknowledgeMessages (const MQSessionHandle sessionHandle,
 const MQMessageHandle messageHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

sessionHandle
The handle to the session for the consumer that received the specified message.

messageHandle
A handle to the message that you want to acknowledge. This handle is passed back to
you when you receive the message (either by calling one of the receive functions or
when a message is delivered to your message listener function.)

Whether you receive messages synchronously or asynchronously, you can call the
MQAcknowledgeMessages function to acknowledge receipt of the specified message and
of all messages that preceded it.

When you create a session you specify one of several acknowledge modes for that
session; these are described in Table 4–3. If you specify MQ_CLIENT_ACKNOWLEDGE as the
acknowledge mode for the session, you must explicitly call the
MQAcknowledgeMessages function to acknowledge receipt of messages consumed in
that session.

By default, the calling thread to the MQAcknowledgeMessages function will be blocked
until the broker acknowledges receipt of the acknowledgment for the broker
consumed. If, when you created the session's connection, you specified the property
MQ_ACK_ON_ACKNOWLEDGE_PROPERTY to be MQ_FALSE, the calling thread will not wait for
the broker to acknowledge the acknowledgement.

Common Errors
MQ_SESSION_NOT_CLIENT_ACK_MODE
MQ_SESSION_NOT_CLIENT_ACK_MODE
MQ_MESSAGE_NOT_IN_SESSION
MQ_CONCURRENT_ACCESS

MQStartConnection Starts the specified connection to the broker and
starts or resumes message delivery.

MQStatusIsError Returns MQ_TRUE if the specified MQStatus result
is an error.

MQStopConnection Stops the specified connection to the broker. This
stops the broker from delivering messages.

MQUnsubscribeDurableMessageConsumer Unsubscribes the specified durable message
consumer.

Table 4–4 (Cont.) Message Queue C-API Function Summary

Function Description

Function Reference

Reference 4-15

MQ_SESSION_CLOSED
MQ_BROKER_CLOSED

MQCloseConnection
The MQCloseConnection function closes the connection to the broker.

MQCloseConnection(MQConnectionHandle connectionHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

connectionHandle
The handle to the connection that you want to close. This handle is created and passed
back to you by the function MQCreateConnection.

Closing the connection closes all sessions, producers, and consumers created from this
connection. This also forces all threads associated with this connection that are
blocking in the library to return.

Closing the connection does not actually release all the memory associated with the
connection. After all the application threads associated with this connection (and its
dependent sessions, producers, and consumers) have returned, you should call the
MQFreeConnection function to release these resources. However, MQFreeConnection
() does not release resources held by a message or a destination associated with this
connection. You must free memory allocated for a message or a destination by
explicitly calling the MQFreeMessage or the MQFreeDestination function.

Common Errors
MQ_CONCURRENT_DEADLOCK (If the function is called from an exception listener or a
consumer's message listener.)

MQ_ILLEGAL_CLOSE_XA_CONNECTION (If called to claose an XA connection.)

MQCloseMessageConsumer
The MQCloseMessageConsumer function closes the specified message consumer.

MQCloseMessageConsumer(MQConsumerHandle consumerHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

consumerHandle
The handle to the consumer you want to close. This handle is created and passed back
to you by one of the functions used to create consumers.

This handle is invalid after the function returns successfully.

Function Reference

4-16 Open Message Queue 4.5.2 Developer's Guide for C Clients

A session's consumers are automatically closed when you close the session or
connection to which they belong. To close a consumer without closing the session or
connection to which it belongs, use the functionMQCloseMessageConsumer.

If the consumer you want to close is a durable consumer and you want to close this
consumer permanently, you should call the function
MQUnsubscribeDurableMessageConsumer after closing the consumer in order to
delete any state information maintained by the broker for this consumer.

Common Errors
MQ_CONSUMER_NOT_IN_SESSION
MQ_BROKER_CONNECTION_CLOSED

MQCloseMessageProducer
The MQCloseMessageProducer function closes a message producer.

MQCloseMessageProducer(MQProducerHandle producerHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

producerHandle
A handle for this producer that was passed to you by the
functionMQCreateMessageProducer or by the function
MQCreateMessageProducerForDestination.

This handle is invalid after the function returns successfully.

Use the MQCloseMessageProducer function to close a producer without closing its
associated session or connection.

Common Errors
MQ_PRODUCER_NOT_IN_SESSION

MQCloseSession
The MQCloseSession function closes the specified session.

MQCloseSession(MQSessionHandle sessionHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

sessionHandle
The handle to the session that you want to close. This handle is created and passed
back to you by the MQCreateSession function.

This handle is invalid after the function returns successfully.

Function Reference

Reference 4-17

Closing a session closes the resources (producers and consumers) associated with that
session and frees up the memory allocated for that session.

Calling this function does not release resources held by a message or a destination
associated with this session. You must free memory allocated for a message or a
destination by explicitly calling the MQFreeMessage or the MQFreeDestination
function.

There is no need to close the producers or consumers of a closed session.

Common Errors
MQ_CONCURRENT_DEADLOCK

(If called from a consumer's message listener in the session.)

MQCommitSession
The MQCommitSession function commits a transaction associated with the specified
session.

MQCommitSession(const MQSessionHandle sessionHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

sessionHandle
The handle to the transacted session that you want to commit.

A transacted session supports a series of transactions. Transactions organize a session's
input message stream and output message stream into a series of atomic units. A
transaction's input and output units consist of those messages that have been
produced and consumed within the session's current transaction. (Note that the receipt
of a message cannot be part of the same transaction that produces the message.) When
you call the MQCommitSession function, its atomic unit of input is acknowledged and
its associated atomic unit of output is sent.

The completion of a session's current transaction automatically begins the next
transaction. The result is that a transacted session always has a current transaction
within which its work is done. Use the MQRollBackSession () function to roll back a
transaction.

Common Errors
MQ_NOT_TRANSACTED_SESSION
MQ_CONCURRENT_ACCESS
MQ_SESSION_CLOSED
MQ_BROKER_CONNECTION_CLOSED
MQ_NOT_TRANSACTED_SESSION
MQ_XA_SESSION_IN_PROGRESS

MQCreateAsyncDurableMessageConsumer
The MQCreateAsyncDurableMessageConsumer function creates an asynchronous
durable message consumer for the specified destination.

Function Reference

4-18 Open Message Queue 4.5.2 Developer's Guide for C Clients

MQCreateAsyncDurableMessageConsumer (
 const MQSessionHandle sessionHandle,
 const MQDestinationHandle destinationHandle,
 ConstMQString durableName,
 ConstMQString messageSelector,
 MQBool noLocal,
 MQMessageListenerFunc messageListener,
 void * listenerCallbackData,
 MQConsumerHandle * consumerHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

sessionHandle
The handle to the session to which this consumer belongs. This handle is passed back
by the MQCreateSession function. For this asynchronous durable consumer, the
session must have been created with the MQ_SESSION_ASYNC_RECEIVE receive mode.

destinationHandle
A handle to a topic destination on which the consumer receives messages. This handle
remains valid after the call.

durableName
An MQString specifying a name for the durable subscriber. The library makes a copy of
the durableName string.

messageSelector
An expression (based on SQL92 conditional syntax) that specifies the criteria upon
which incoming messages should be selected for this consumer.

Specify a NULL or empty string to indicate that there is no message selector for this
consumer. In this case, all messages are delivered.

The library makes a copy of the messageSelector string.

For more information about SQL, see X/Open CAE Specification Data Management:
Structured Query Language (SQL), Version 2, ISBN 1-85912-151-9, March 1966.

noLocal
Specify MQ_TRUE to inhibit delivery of messages published by this consumer's own
connection.

messageListener
The name of an MQMessageListenerFunc type callback function that is to be called
when this consumer receives a message on the specified destination.

listenerCallbackData
A pointer to data that you want passed to your message listener function when it is
called by the library.

consumerHandle
Output parameter for the handle that references the consumer for the specified
destination.

Function Reference

Reference 4-19

In the case of an asynchronous consumer, you should not start a connection before
calling the MQCreateAsyncDurableMessageConsumer function. (You should create a
connection, create a session, set up your asynchronous consumer, create the consumer,
and then start the connection.) Attempting to create a consumer when the connection
is not stopped, will result in an MQ_CONCURRENT_ACCESS error.

The MQCreateAsyncDurableMessageConsumer function creates an asynchronous
durable message consumer for the specified destination. You can define parameters to
filter messages and to inhibit the delivery of messages you published to your own
connection. Note that the session's receive mode (sync/async) must be appropriate for
the kind of consumer you are creating (sync/async). To create a synchronous durable
message consumer for a destination, call the function
MQCreateDurableMessageConsumer.()

Durable consumers can only be used for topic destinations. If you are creating an
asynchronous consumer for a queue destination or if you are not interested in
messages that arrive to a topic while you are inactive, you might prefer to use the
function MQCreateAsyncMessageConsumer.

The broker retains a record of this durable subscription and makes sure that all
messages from the publishers to this topic are retained until they are either
acknowledged by this durable subscriber or until they have expired. Sessions with
durable subscribers must always provide the same client identifier. (See
MQCreateConnection, clientID parameter.) In addition, each durable consumer must
specify a durable name using the durableName parameter, which uniquely identifies
(for each client identifier) the durable subscription when it is created.

A session's consumers are automatically closed when you close the session or
connection to which they belong. However, messages will be routed to the durable
subscriber while it is inactive and delivered when the durable consumer is recreated.
To close a consumer without closing the session or connection to which it belongs, use
the MQCloseMessageConsumer function. If you want to close a durable consumer
permanently, you should call the MQUnsubscribeDurableMessageConsumer after
closing it to delete state information maintained by the Broker on behalf of the durable
consumer.

Common Errors
MQ_NOT_ASYNC_RECEIVE_MODE
MQ_INVALID_MESSAGE_SELECTOR
MQ_DESTINATION_CONSUMER_LIMIT_EXCEEDEED
MQ_TEMPORARY_DESTINATION_NOT_IN_CONNECTION
MQ_CONSUMER_NO_DURABLE_NAME
MQ_QUEUE_CONSUMER_CANNOT_BE_DURABLE
MQ_CONCURRENT_ACCESS
MQ_SESSION_CLOSED
MQ_BROKER_CONNECTION_CLOSED

MQCreateAsyncMessageConsumer
The MQCreateAsyncMessageConsumer function creates an asynchronous message
consumer for the specified destination.

MQCreateAsyncMessageConsumer
 (const MQSessionHandle sessionHandle,
 const MQDestinationHandle destinationHandle,
 ConstMQString messageSelector,
 MQBool noLocal,
 MQMessageListenerFunc messageListener,

Function Reference

4-20 Open Message Queue 4.5.2 Developer's Guide for C Clients

 void * listenerCallBackData,
 MQConsumerHandle * consumerHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

sessionHandle
The handle to the session to which this consumer belongs. This handle is created and
passed back to you by the MQCreateSession function. For this asynchronous
consumer, the session must have been created with the MQ_SESSION_ASYNC_RECEIVE
receive mode.

destinationHandle
A handle to the destination on which the consumer receives messages. This handle
remains valid after the call returns.

messageSelector
An expression (based on SQL92 conditional syntax) that specifies the criteria upon
which incoming messages should be selected for this consumer.

Specify a NULL or empty string to indicate that there is no message selector for this
consumer. In this case, all messages will be delivered.

The library makes a copy of the messageSelector string.

For more information about SQL, see X/Open CAE Specification Data Management:
Structured Query Language (SQL), Version 2, ISBN 1-85912-151-9, March 1966.

noLocal
Specify MQ_TRUE to inhibit delivery of messages published by this consumer's own
connection.

The setting of this parameter applies only to topic destinations. It is ignored for
queues.

messageListener
The name of an MQMessageListenerFunc type callback function that is to be called
when this consumer receives a message for the specified destination.

listenerCallbackData
A pointer to data that you want passed to your message listener function when it is
called by the library.

consumerHandle
Output parameter for the handle that references the consumer for the specified
destination.

In the case of an asynchronous consumer, you should not start a connection before
calling the MQCreateAsyncDurableMessageConsumer function. (You should create a
connection, create a session, set up your asynchronous consumers, create the
consumer, and then start the connection.) Attempting to create a consumer when the
connection is not stopped will result in an MQ_CONCURRENT_ACCESS error.

The MQCreateAsyncMessageConsumer function creates an asynchronous message
consumer for the specified destination. You can define parameters to filter messages
and to inhibit the delivery of messages you published to your own connection. Note

Function Reference

Reference 4-21

that the session's receive mode (sync/async) must be appropriate for the kind of
consumer you are creating (sync/async). To create a synchronous message consumer
for a destination, use the MQCreateMessageConsumer function.

If this consumer is on a topic destination, it will only receive messages produced while
the consumer is active. If you are interested in receiving messages published while this
consumer is not active, you should create a consumer using the
MQCreateAsyncDurableMessageConsumer function instead.

A session's consumers are automatically closed when you close the session or
connection to which they belong. To close a consumer without closing the session or
connection to which it belongs, use the MQCloseMessageConsumer function.

Common Errors
MQ_NOT_ASYNC_RECEIVE_MODE
MQ_INVALID_MESSAGE_SELECTOR
MQ_DESTINATION_CONSUMER_LIMIT_EXCEEDEED
MQ_TEMPORARY_DESTINATION_NOT_IN_CONNECTION
MQ_CONCURRENT_ACCESS
MQ_SESSION_CLOSED
MQ_BROKER_CONNECTION_CLOSED

MQCreateBytesMessage
The MQCreatesBytesMessage function creates a bytes message and passes a handle to it
back to you.

MQCreateBytesMessage(MQMessageHandle * messageHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

messageHandle
Output parameter for the handle to the new, empty message.

After you obtain the handle to a bytes message, you can use this handle to define its
content with the MQSetBytesMessageBytesMQSetBytesMessageBytes function, to set
its headers with the MQSetMessageHeaders function, and to set its properties with the
MQSetMessageProperties function.

MQCreateConnection
The MQCreateConnection function creates a connection to the broker.

If you want to connect to the broker over SSL, you must call the MQInitializeSSL
function to initialize the SSL library before you create the connection.

MQCreateConnection
 (MQPropertiesHandle propertiesHandle
 ConstMQString username,
 ConstMQString password,
 ConstMQString clientID,
 MQConnectionExceptionListenerFunc exceptionListener,
 void * listenerCallBackData,

Function Reference

4-22 Open Message Queue 4.5.2 Developer's Guide for C Clients

 MQConnectionHandle * connectionHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

propertiesHandle
A handle that specifies the properties that determine the behavior of this connection.
You must create this handle using the MQCreateProperties function before you try to
create a connection. This handle will be invalid after the function returns successfully.

See Table 4–2 for information about connection properties.

username
An MQString specifying the user name to use when connecting to the broker.

The library makes a copy of the username string.

password
An MQString specifying the password to use when connecting to the broker.

The library makes a copy of the password string.

clientID
An MQString used to identify the connection. If you use the connection for a durable
consumer, you must specify a non-NULL client identifier.

The library makes a copy of the clientID string.

exceptionListener
A connection-exception callback function used to notify the user that a connection
exception has occurred.

listenerCallBackData
A data pointer that can be passed to the connection exceptionListener callback
function whenever it is called. The user can set this pointer to any data that may be
useful to pass along to the connection exception listener for this connection. Set this to
NULL if you do not need to pass data back to the connection exception listener.

connectionHandle
Output parameter for the handle to the connection that is created by this function.

The MQCreateConnection function creates a connection to the broker. The behavior of
the connection is specified by key values defined in the properties referenced by the
propertiesHandle parameter. You must use the MQCreateProperties function to
define these properties.

You cannot change the properties of a connection you have already created. If you
need different connection properties, you must close and free the old connection and
then create a new connection with the desired properties.

■ Use the MQStartConnection function to start or restart the connection. Use the
MQStopConnection function to stop a connection.

■ Use the MQGetMetaData function to get information about the name of the
Message Queue product and its version.

Function Reference

Reference 4-23

■ Use the MQCloseConnection function to close a connection, and then use the
MQFreeConnection function to free the memory allocated for that connection.

Setting a Client Identifier To keep track of durable subscriptions, Message Queue uses a
unique client identifier that associates a client's connection with state information
maintained by the message service on behalf of the client. By definition, a client
identifier is unique, and applies to only one connection at a time.

The messaging service uses a client identifier in combination with a durable
subscription name to uniquely identify each durable subscription. If a durable
subscriber is inactive at the time that messages are delivered to a topic destination, the
broker retains messages for that subscriber and delivers them when the subscriber
once again becomes active.

Handling Connection Exceptions Use the exceptionListener parameter to pass the name
of a user-defined callback function that can be called synchronously when a
connection exception occurs for this connection. Use the exceptionCallBackData
parameter to specify any user data that you want to pass to the callback function.

Common Errors
MQ_INCOMPATIBLE_LIBRARY
MQ_CONNECTION_UNSUPPORTED_TRANSPORT
MQ_COULD_NOT_CREATE_THREAD
MQ_INVALID_CLIENT_ID
MQ_CLIENT_ID_IN_USE
MQ_COULD_NOT_CONNECT_TO_BROKER
MQ_SSL_NOT_INITIALIZED

This error can be returned if MQ_CONNECTION_TYPE_PROPERTY is SSL and you have not
called the MQInitializeSSL function before creating this connection.

MQCreateDestination
The MQCreateDestination function creates a a logical destination and passes a handle
to it back to you.

MQCreateDestination(const MQSessionHandle sessionHandle
 ConstMQString destinationName,
 MQDestinationType destinationType,
 MQDestinationHandle * destinationHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

sessionHandle
The handle to the session with which you want to associate this destination.

destinationName
An MQString specifying the logical name of this destination. The library makes a copy
of the destinationName string. See discussion below.

Destination names starting with "mq" are reserved and should not be used by clients.

Function Reference

4-24 Open Message Queue 4.5.2 Developer's Guide for C Clients

destinationType
An enum specifying the destination type, either MQ_QUEUE_DESTINATION or MQ_TOPIC_
DESTINATION.

destinationHandle
Output parameter for the handle to the newly created destination. You can pass this
handle to functions sending messages or to message producers or consumers.

The MQCreateDestination function creates a logical destination and passes a handle to
it back to you. Note that the Message Queue administrator has to also create a physical
destination on the broker, whose name and type is the same as the destination created
here, in order for messaging to happen. For example, if you use this function to create
a queue destination called myMailQDest, the administrator has to create a physical
destination on the broker named myMailQDest.

If you are doing development, you can simplify this process by turning on the
imq.autocreate.topic or imq.autocreate.queue properties for the broker. If you do
this, the broker automatically creates a physical destination whenever a message
consumer or message producer attempts to access a non-existent destination. The
auto-created destination will have the same name as the logical destination name you
specified using the MQCreateDestination function. By default, the broker has the
properties imq.autocreate.topic and imq.autocreate.queue turned on.

Common Errors
MQ_INVALID_DESTINATION_TYPE
MQ_SESSION_CLOSED

MQCreateDurableMessageConsumer
The MQCreateDurableMessageConsumer function creates a synchronous durable
message consumer for the specified topic destination.

MQCreateDurableMessageConsumer
 (const MQSessionHandle sessionHandle,
 const MQDestinationHandle destinationHandle,
 ConstMQString durableName,
 ConstMQString messageSelector,
 MQBool noLocal
 MQConsumerHandle * consumerHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

sessionHandle
The handle to the session to which this consumer belongs. This handle is passed back
to you by the MQCreateSession function. For this (synchronous) durable consumer,
the session must have been created with the MQ_SESSION_SYNC_RECEIVE receive mode.

destinationHandle
A handle to a topic destination on which the consumer receives messages. This handle
remains valid after the call returns.

Function Reference

Reference 4-25

durableName
An MQString specifying the name of the durable subscriber to the topic destination.
The library makes a copy of the durableName string.

messageSelector
An expression (based on SQL92 conditional syntax) that specifies the criteria upon
which incoming messages should be selected for this consumer.

Specify a NULL or empty string to indicate that there is no message selector for this
consumer. In this case, the consumer receives all messages. The library makes a copy
of the messageSelector string.

For more information about SQL, see X/Open CAE Specification Data Management:
Structured Query Language (SQL), Version 2, ISBN 1-85912-151-9, March 1966.

noLocal
Specify MQ_TRUE to inhibit delivery of messages published by this consumer's own
connection.

consumerHandle
Output parameter for the handle that references the consumer for the specified
destination.

The MQCreateDurableMessageConsumer function creates a synchronous message
consumer for the specified destination. A durable consumer receives all the messages
published to a topic, including the ones published while the subscriber is inactive.

You can define parameters to filter messages and to inhibit the delivery of messages
you published to your own connection. Note that the session's receive mode
(sync/async) must be appropriate for the kind of consumer you are creating
(sync/async). To create an asynchronous durable message consumer for a destination,
call the function MQCreateAsyncDurableMessageConsumer.

Durable consumers are for topic destinations. If you are creating a consumer for a
queue destination or if you are not interested in messages that arrive to a topic while
you are inactive, you should use the function MQCreateMessageConsumer.()

The broker retains a record of this durable subscription and makes sure that all
messages from the publishers to this topic are retained until they are either
acknowledged by this durable subscriber or until they have expired. Sessions with
durable subscribers must always provide the same client identifier (see
MQCreateConnection, clientID parameter). In addition, each durable consumer must
specify a durable name using the durableName parameter, which uniquely identifies
(for each client identifier) the durable subscription when it is created.

A session's consumers are automatically closed when you close the session or
connection to which they belong. However, messages will be routed to the durable
subscriber while it is inactive and delivered when the durable consumer is recreated.
To close a consumer without closing the session or connection to which it belongs, use
the MQCloseMessageConsumer function. If you want to close a durable consumer
permanently, you should call the MQUnsubscribeDurableMessageConsumer function
after closing it to delete state information maintained by the broker on behalf of the
durable consumer.

Common Errors
MQ_NOT_SYNC_RECEIVE_MODE
MQ_INVALID_MESSAGE_SELECTOR
MQ_DESTINATION_CONSUMER_LIMITE_EXCEEDEED
MQ_TEMPORARY_DESTINATION_NOT_IN_CONNECTION

Function Reference

4-26 Open Message Queue 4.5.2 Developer's Guide for C Clients

MQ_CONSUMER_NO_DURABLE_NAME
MQ_QUEUE_CONSUMER_CANNOT_BE_DURABLE
MQ_CONCURRENT_ACCESS
MQ_SESSION_CLOSED
MQ_BROKER_CONNECTION_CLOSED

MQCreateMessage
The MQCreateMessage function creates a new message of type MQ_MESSAGE.

MQCreateMessage
 (MQMessageHandle * messageHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

messageHandle
Output parameter for the handle that references the newly created message.

Use the MQCreateMessage function to create a message that has a header and,
optionally, properties, but which does not have a body. Such messages might be used
by applications to signal events, which could be specified using header fields or
message properties. This could improve performance because the message does not
have a body and therefore there is no body to parse.

MQCreateMessageConsumer
The MQCreateMessageConsumer function creates a synchronous message consumer for
the specified destination.

MQCreateMessageConsumer
 (const MQSessionHandle sessionHandle,
 const MQDestinationHandle destinationHandle,
 ConstMQString messageSelector,
 MQBool noLocal
 MQConsumerHandle * consumerHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

sessionHandle
The handle to the session to which this consumer belongs. This handle is passed back
to you by the MQCreateSession function. For this (synchronous) consumer, the session
must have been created with the MQ_SESSION_SYNC_RECEIVE receive mode.

destinationHandle
A handle to the destination on which the consumer receives messages. This handle
remains valid after the call returns.

Function Reference

Reference 4-27

messageSelector
An expression (based on SQL92 conditional syntax) that specifies the criteria upon
which incoming messages should be selected for this consumer. Specify a NULL or
empty string to indicate that there is no message selector for this consumer and that all
messages should be returned.

The library makes a copy of the messageSelector string.

For more information about SQL, see X/Open CAE Specification Data Management:
Structured Query Language (SQL), Version 2, ISBN 1-85912-151-9, March 1966.

noLocal
Specify MQ_TRUE to inhibit delivery of messages published by this consumer's own
connection. This applies only to topic destinations; it is ignored for queues.

consumerHandle
Output parameter for the handle that references the consumer for the specified
destination.

The MQCreateMessageConsumer() function creates a synchronous message consumer
for the specified destination. You can define parameters to filter messages and to
inhibit the delivery of messages you published to your own connection. Note that the
session's receive mode (sync/async) must be appropriate for the kind of consumer you
are creating (sync/async). To create an asynchronous message consumer for a
destination, use the MQCreateAsyncMessageConsumer function.

If the consumer is a topic destination, it can only receive messages that are published
while it is active. To receive messages published while this consumer is not active, you
should create a consumer using either the MQCreateDurableMessageConsumer
function or the MQCreateAsyncDurableMessageConsumer function, depending on
the receive mode you defined for the session.

A session's consumers are automatically closed when you close the session or
connection to which they belong. To close a consumer without closing the session or
connection to which it belongs, use the MQCloseMessageConsumer () function.

Common Errors
MQ_NOT_SYNC_RECEIVE_MODE
MQ_INVALID_MESSAGE_SELECTOR
MQ_DESTINATION_CONSUMER_LIMIT_EXCEEDEED
MQ_TEMPORARY_DESTINATION_NOT_IN_CONNECTION
MQ_CONCURRENT_ACCESS
MQ_SESSION_CLOSED
MQ_BROKER_CONNECTION_CLOSED

MQCreateMessageProducer
The MQCreateMessageProducer function creates a message producer that does not
have a specified destination.

MQCreateMessageProducer(const MQSessionHandle sessionHandle,
 MQProducerHandle * producerHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Function Reference

4-28 Open Message Queue 4.5.2 Developer's Guide for C Clients

Parameters

sessionHandle
The handle to the session to which this producer should belong.

producerHandle
Output parameter for the handle that references the producer.

The MQCreateMessageProducer function creates a message producer that does not
have a specified destination. In this case, you will specify the destination when
sending the message itself by using either the MQSendMessageToDestination function
or the MQSendMessageToDestinationExt function.

Using the MQCreateMessageProducer function is appropriate when you want to use
the same producer to send messages to a variety of destinations. If, on the other hand,
you want to use one producer to send many messages to the same destination, you
should use the MQCreateMessageProducerForDestination function instead.

A session's producers are automatically closed when you close the session or
connection to which they belong. To close a producer without closing the session or
connection to which it belongs, use the MQCloseMessageProducer function.

Common Errors
MQ_SESSION_CLOSED

MQCreateMessageProducerForDestination
The MQCreateMessageProducerForDestination function creates a message producer
with a specified destination.

MQCreateMessageProducerForDestination
 (const MQSessionHandle sessionHandle,
 const MQDestinationHandle destinationHandle,
 MQProducerHandle * producerHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

sessionHandle
The handle to the session to which this producer belongs.

destinationHandle
A handle to the destination where you want this producer to send all messages. This
handle remains valid after the call returns.

producerHandle
Output parameter for the handle that references the producer.

The MQCreateMessageProducerForDestination function creates a message producer
with a specified destination. All messages sent out by this producer will go to that
destination. Use the MQSendMessage function or the MQSendMessageExt function to
send messages for a producer with a specified destination.

Function Reference

Reference 4-29

Use the MQCreateMessageProducer function when you want to use one producer to
send messages to a variety of destinations.

A session's producers are automatically closed when you close the session or
connection to which they belong. To close a producer without closing the session or
connection to which it belongs, use the MQCloseMessageProducer () function.

Common Errors
MQ_SESSION_CLOSED
MQ_BROKER_CONNECTION_CLOSED

MQCreateProperties
The MQCreateProperties function creates a properties handle and passes it back to the
caller.

MQCreateProperties (MQPropertiesHandle * propertiesHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

propertiesHandle
Output parameter for the handle that references the newly created properties object.

Use the MQCreateProperties function to get a properties handle. You can then use the
appropriate MQSet...Property function to set the desired properties.

MQCreateSession
The MQCreateSession function creates a session, defines its behavior, and passes back
a handle to the session.

MQCreateSession(const MQConnectionHandle connectionHandle,
 MQBool isTransacted,
 MQAckMode acknowledgeMode,
 MQReceiveMode receiveMode
 MQSessionHandle * sessionHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

connectionHandle
The handle to the connection to which this session belongs. This handle is passed back
to you by the MQCreateConnection function. You can create multiple sessions on a
single connection.

isTransacted
An MQBool specifying whether this session is transacted. Specify MQ_TRUE if the session
is transacted. In this case, the acknowledgeMode parameter is ignored.

Function Reference

4-30 Open Message Queue 4.5.2 Developer's Guide for C Clients

acknowledgeMode
An enumeration of the possible kinds of acknowledgement modes for the session. See
Acknowledge Modes for information on these values.

After you have created a session, you can determine its acknowledgement mode by
calling the MQGetAcknowledgeMode function.

receiveMode
An enumeration specifying whether this session will do synchronous or asynchronous
message receives. Specify MQ_SESSION_SYNC_RECEIVE or MQ_SESSION_ASYNC_RECEIVE.

If the session is only for producing messages, the receiveMode has no significance. In
that case, specify MQ_SESSION_SYNC_RECEIVE to optimize the session's resource use.

sessionHandle
A handle to this session. You will need to pass this handle to the functions you use to
manage the session and to create destinations, consumers, and producers associated
with this session.

The MQCreateSession function creates a new session and passes back a handle to it in
the sessionHandle parameter. The number of sessions you can create for a single
connection is limited only by system resources. A session is a single-thread context for
producing and consuming messages. You can create multiple producers and
consumers for a session, but you are restricted to use them serially. In effect, only a
single logical thread of control can use them.

A session with a registered message listener is dedicated to the thread of control that
delivers messages to the listener. This means that if you want to send messages, for
example, you must create another session with which to do this. The only operations
you can perform on a session with a registered listener, is to close the session or the
connection.

After you create a session, you can create the producers, consumers, and destinations
that use the session context to do their work.

■ For a session that is not transacted, use the MQRecoverSession function to restart
message delivery with the last unacknowledged message.

■ For a session that is transacted, use the MQRollBackSession function to roll back
any messages that were delivered within this transaction. Use the
MQCommitSession function to commit all messages associated with this
transaction.

■ For a session that has acknowledgeMode set to MQ_CLIENT_ACKNOWLEDGE, use the
function MQAcknowledgeMessages to acknowledge consumed messages.

■ Use the MQCloseSession function to close a session and all its associated
producers and consumers. This function also frees memory allocated for the
session.

MQCreateTemporaryDestination
The MQCreateTemporaryDestination function creates a temporary destination and
passes its handle back to you.

MQCreateTemporaryDestination(const MQSessionHandle sessionHandle
 MQDestinationType destinationType,
 MQDestinationHandle * destinationHandle);

Function Reference

Reference 4-31

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

sessionHandle
The handle to the session with which you want to associate this destination.

destinationType
An enum specifying the destination type, either MQ_QUEUE_DESTINATION or MQ_TOPIC_
DESTINATION.

destinationHandle
Output parameter for the handle to the newly created temporary destination.

You can use a temporary destination to implement a simple request/reply mechanism.
When you pass the handle of a temporary destination to the MQSetMessageReplyTo
function, the consumer of the message can use that handle as the destination to which
it sends a reply.

Temporary destinations are explicitly created by client applications; they are deleted
when the connection is closed. They are maintained (and named) by the broker only
for the duration of the connection for which they are created. Temporary destinations
are system-generated uniquely for their connection and only their own connection is
allowed to create message consumers for them.

For more information, see "The Request-Reply Pattern" in Open Message Queue
Technical Overview and "Managing a Broker ", "Configuring and Managing Connection
Services" and "Managing Administered Objects" in Open Message Queue Administration
Guide.

Common Errors
MQ_INVALID_DESTINATION_TYPE
MQ_SESSION_CLOSED

MQCreateTextMessage
The MQCreatesTextMessage function creates a text message and passes a handle to it
back to you.

MQCreateTextMessage(MQMessageHandle * messageHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

messageHandle
Output parameter for the handle to the new, empty message.

After you obtain the handle to a text message, you can use this handle to define its
content with the MQSetBytesMessageBytesMQSetStringProperty function, to set its
headers with the MQSetMessageHeaders function, and to set its properties with the
MQSetMessageProperties function.

Function Reference

4-32 Open Message Queue 4.5.2 Developer's Guide for C Clients

MQCreateXASession
The MQCreateXASession function creates a distributed transaction (XA) session on an
XA connection, defines its behavior, and passes back a handle to the session.

MQCreateXASession(const MQConnectionHandle connectionHandle,
 MQReceiveMode receiveMode
 MQMessageListenerBAFunc beforeMessageListener,
 MQMessageListenerBAFunc afterMessageListener,
 void * callbackData,
 MQSessionHandle * sessionHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

connectionHandle
The handle to the connection to which this session belongs. This handle is passed back
to you by the MQGetXAConnection function. You can create multiple sessions on a
single connection.

receiveMode
An enumeration specifying whether this session will do synchronous or asynchronous
message receives. Specify MQ_SESSION_SYNC_RECEIVE or MQ_SESSION_ASYNC_RECEIVE.

If the session is only for producing messages, the receiveMode has no significance. In
that case, specify MQ_SESSION_SYNC_RECEIVE to optimize the session's resource use.

beforeMessageListener
A callback function before asynchronous message delivery.

afterMessageListener
A callback function after asynchronous message delivery.

callbackData
A data pointer to be passed to the beforeDelivery and afterDelivery functions.

sessionHandle
A handle to this session. You will need to pass this handle to the functions you use to
manage the session and to create destinations, consumers, and producers associated
with this session.

If receiveMode is MQ_SESSION_SYNC_RECEIVE, pass NULL for beforeMessageListener,
afterMessageListener, and callbackData.

The MQCreateXASession function creates a new distributed transaction (XA) session.
The connectionHandle must be a XA connection handle.

An XA session is the same as a regular session created by MQCreateSession (see
MQCreateSession) except:

■ An XA session is always XA transacted and the distributed transaction is managed
by a X/Open distributed transaction manager. MQCommitSession and
MQRollbackSession should not be called on a XA session.

■ Sending/receiving messages with an XA session must be done in an XA
transaction.

Function Reference

Reference 4-33

■ If receiveMode is MQ_SESSION_ASYNC_RECEIVE, callback functions
beforeMessageListener and afterMessageListener must be specified.
beforeMessageListener will be called by the C-API runtime before it calls the
messageListener callback; afterMessageListener will be called by the C-API
runtime after it calls the messageListener callback.

The beforeMessageListener and afterMessageListener functions are provided
to the application to associate and disassociate the C-API runtime calling thread
with an XA transaction, to demarcate XA transactions, and to set appropriate
application association context to the calling thread if the application's distributed
transaction processing environment requires that.

During normal processing, the C-API runtime:

1. Calls the beforeMessageListener function.

2. Processes the message, calling the messageListener function.

3. Calls the afterMessageListener function.

However, errors can alter this processing sequence:

– If the beforeMessageListener function returns an error (a value other than
MQ_OK), the C-API runtime logs a warning message containing the error code
and then stops processing the message. It does not call messageListener or
afterMessageListener.

– If the attempt to call messageListener fails, or if message acknowledgement
fails, the C-API runtime passes the appropriate error code to
afterMessageListener.

– If the messageListener function returns an error, the C-API runtime logs a
warning containing the error code and then passes the MQ_CALLBACK_RUNTIME_
ERROR error to afterMessageListener, regardless of the actual error code
returned.

– If the afterMessageListener function returns an error, the C-API runtime logs
a warning containing the error code.

Even if an error occurs, the callbackData parameter is passed to the
beforeMessageListener and afterMessageListener functions unchanged.

Common Errors
MQ_NOT_XA_CONNECTION
MQ_INVALID_RECEIVE_MODE
MQ_BROKER_CONNECTION_CLOSED
MQ_COULD_NOT_CREATE_THREAD

MQFreeConnection
The MQFreeConnection function deallocates memory assigned to the specified
connection and to all resources associated with that connection.

MQFreeConnection(MQConnectionHandle connectionHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Function Reference

4-34 Open Message Queue 4.5.2 Developer's Guide for C Clients

Parameters

connectionHandle
A handle to the connection you want to free.

You must call this function after you have closed the connection with the
MQCloseConnection() function and after all of the application threads associated with
this connection and its dependent sessions, producers, and consumers have returned.

You must not call this function while an application thread is active in a library
function associated with this connection or one of its dependent sessions, producers,
consumers, and destinations.

Calling this function does not release resources held by a message or a destination
associated with this connection. You must free memory allocated for a message or a
destination by explicitly calling the MQFreeMessage or the MQFreeDestination
function.

Common Errors
MQ_STATUS_CONNECTION_NOT_CLOSED

MQFreeDestination
The MQFreeDestination function frees memory allocated for the destination
referenced by the specified handle.

MQFreeDestination(MQDestinationHandle destinationHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

destinationHandle
A handle to the destination you want to free.

Calling the MQCloseConnection, MQCloseSession or MQFreeConnection function does
not automatically free destinations created for the connection or for the session.

MQFreeMessage
The MQFreeMessage function frees memory allocated for the message referenced by the
specified handle.

MQFreeMessage(MQMessageHandle messageHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

messageHandle
A handle to the message you want to free.

Function Reference

Reference 4-35

Calling the MQCloseCOnnection, MQCloseSession or MQFreeConnection function does
not automatically free messages associated with that connection or session.

MQFreeProperties
The MQFreeProperties function frees the memory allocated to the referenced
properties object.

MQFreeProperties(MQPropertiesHandle propertiesHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

propertiesHandle
A handle to the properties object you want to free.

You should not free a properties handle if the properties handle passed to a function
becomes invalid on its return. If you do, you will get an error.

MQFreeString
The MQFreeString function frees the memory allocated for the specified MQString.

MQFreeString(MQString statusString);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

statusString
An MQString returned by the MQGetStatusString function or by the MQGetErrorTrace
function.

MQGetAcknowledgeMode
The MQGetAcknowledgeMode function passes back the acknowledgement mode of the
specified session.

MQGetAcknowledgemode(const MQSessionHandle sessionHandle
 MQAckMode * ackMode);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

sessionHandle
The handle to the session whose acknowledgement mode you want to determine.

Function Reference

4-36 Open Message Queue 4.5.2 Developer's Guide for C Clients

ackMode
Output parameter for the ackMode. The ackMode returned can be one of four
enumeration values. See Acknowledge Modes for information about these values.

If you want to change the acknowledge mode, you need to create another session with
the desired mode.

MQGetBoolProperty
The MQGetBoolProperty function passes back the value of the MQBool property for the
specified key.

MQGetBoolProperty(const MQPropertiesHandle propertiesHandle,
 ConstMQString key,
 MQBool * value);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

propertiesHandle
A properties handle for the specified key you want to get.

key
The name of a property key.

value
Output parameter for the property value.

Common Errors
MQ_NOT_FOUND
MQ_INVALID_TYPE_CONVERSION

MQGetBytesMessageBytes
The MQGetBytesMessageBytes function passes back the address and size of a bytes
message body.

MQGetBytesMessageBytes(const MQMessageHandle messageHandle,
 const MQInt8 * messageBytes
 MQInt32 * messageBytesSize);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

messageHandle
A handle to a message that is passed to you when you receive a message.

Function Reference

Reference 4-37

messageBytes
Output parameter that contains the start address of the bytes that constitute the body
of this bytes message.

messageBytesSize
Output parameter that contains the size of the message body in bytes.

After you obtain the handle to a message, you can use the MQGetMessageType
function to determine its type and, if the type is MQ_BYTES_MESSAGE, you can use the
MQGetBytesMessageBytes function to retrieve the message bytes (message body).

The bytes message passed to you by this function is not a copy. You should not modify
the bytes or attempt to free it.

MQGetConnectionProperties
The MQGetConnectionProperties function gets the connection properties used to
create the connection specified by s connectionHandle.

MQGetConnectionProperties (const MQConnectionHandle connectionHandle,
MQPropertiesHandle * propertiesHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

connectionHandle
A handle to a connection.

propertiesHandle
A handle to the properties of the connection.

The caller is responsible to free the returned connection properties by calling
MQFreeProperties.

MQGetDestinationName
The MQGetDestinatioName function passes back the name of the specified destination.

MQGetDestinationName (const MQDestinationHandle destinationHandle,
 MQString * destinationName);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

destinationHandle
A handle to the destination whose name you want to know.

destinationName
Output parameter for the destination name. The returned destinationName is a copy
which the caller is responsible for freeing by calling the MQFreeString() function

Function Reference

4-38 Open Message Queue 4.5.2 Developer's Guide for C Clients

Use the MQGetDestinationName function to get the name of a destination. This might
be useful for applications that want to do some message processing based on the
destination name.

This function is useful when using the Reply-To pattern. You can use the
MQGetMessageReplyTo function to obtain a handle to the destination where the
message should be sent. You can then use the MQGetDestinationName to get the name
of that destination.

MQGetDestinationType
The MQGetDestinationType passes back the type of the specified destination.

MQGetDestinationType (const MQDestinationHandle destinationHandle,
 MQDestinationType * destinationType);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

destinationHandle
A handle to the destination whose type you want to know.

destinationType
Output parameter for the destination type; either MQ_QUEUE_DESTINATION or MQ_TOPIC_
DESTINATION.

Use the MQGetDestinationType function to determine the type of a destination: queue
or topic. There may be times when you do not know the type of the destination to
which you are replying: for example, when you get a handle from the
MQGetMessageReplyTo function. Because the semantics of queue and topic destinations
differ, you need to determine the type of a destination in order to reply appropriately.

Once you have created a destination with a specified type, you cannot change the type
dynamically. If you want to change the type of a destination, you need to free the
destination using the MQFreeDestination function and then to create a new
destination, with the desired type, using the MQCreateDestination or the
MQCreateTemporaryDestination function.

MQGetErrorTrace
The MQGetErrorTrace function returns an MQString describing the error trace at the
time when a function call failed for the calling thread.

MQString MQGetErrorTrace ()

Having found that a Message Queue function has not returned successfully, you can
get an error trace when the error occurred by calling the MQGetErrorTrace function in
the same thread that called the unsuccessful Message Queue function.

The MQGetErrorTrace function returns an MQString describing the error trace if it can
determine this information. The function will return a NULL string if there is no error
trace available.

The following is an example of an error trace output.

connect:../../../../src/share/cclient/io/TCPSocket.cpp:195:mq:-5981

Function Reference

Reference 4-39

readBrokerPorts:../../../../src/share/cclient/client/PortMapper
 Client.cpp:48:mq:-5981
connect:../../../../../src/share/cclient/client/protocol/
 TCPProtocolHandler.cpp:111:mq:-5981
connectToBroker:../../../../src/share/cclient/client/Connection.
 cpp:412:mq:-5981
openConnection:../../../../src/share/cclient/client/Connection.
 cpp:227:mq:1900
MQCreateConnectionExt:../../../../src/share/cclient/cshim/
 iMQConnectionShim.cpp:102:mq:1900

You must call the MQFreeString function to free the MQString returned by the
MQGetErrorTrace function when you are done.

MQGetFloat32Property
The MQGetFloat32Property function passes back the value of the MQFloat32 property
for the specified key.

MQGetFloat32Property(const MQPropertiesHandle propertiesHandle,
 ConstMQString key,
 MQFloat32 * value);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

propertiesHandle
A properties handle for the key you want to get.

key
The name of a property key.

value
Output parameter for the property value.

Common Errors
MQ_NOT_FOUND
MQ_INVALID_TYPE_CONVERSION

MQGetFloat64Property
The MQGetFloat64Property function passes back the value of the MQFloat64 property
for the specified key.

MQGetFloat64Property(const MQPropertiesHandle propertiesHandle,
 ConstMQString key,
 MQFloat64 * value);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Function Reference

4-40 Open Message Queue 4.5.2 Developer's Guide for C Clients

Parameters

propertiesHandle
A properties handle for the key you want to get.

key
The name of a property key.

value
Output parameter for the property value.

Common Errors
MQ_NOT_FOUND
MQ_INVALID_TYPE_CONVERSION

MQGetInt16Property
The MQGetInt16Property function passes back the value of the MQInt16 property for
the specified key.

MQGetInt16Property(const MQPropertiesHandle propertiesHandle,
 ConstMQString key,
 MQInt16 * value);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

propertiesHandle
A properties handle for the specified key you want to get.

key
The name of a property key.

value
Output parameter for the property value.

Common Errors
MQ_NOT_FOUND
MQ_INVALID_TYPE_CONVERSION

MQGetInt32Property
The MQGetInt32Property function passes back the value of the MQInt32 property for
the specified key.

MQGetInt32Property(const MQPropertiesHandle propertiesHandle,
 ConstMQString key,
 MQInt32 * value);

Function Reference

Reference 4-41

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

propertiesHandle
A properties handle for the key you want to get.

key
The name of a property key.

value
Output parameter for the property value.

Common Errors
MQ_NOT_FOUND
MQ_INVALID_TYPE_CONVERSION

MQGetInt64Property
The MQGetInt64Property function passes back the value of the MQInt64 property for
the specified key.

MQGetint64Property (const MQPropertiesHandle propertiesHandle,
 ConstMQString key,
 MQInt64 * value);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

propertiesHandle
A properties handle for the key you want to get.

key
The name of a property key.

value
Output parameter for the property value.

Common Errors
MQ_NOT_FOUND
MQ_INVALID_TYPE_CONVERSION

MQGetInt8Property
The MQGetInt8Property function passes back the value of the MQInt8 property for the
specified key.

MQGetInt8Property (const MQPropertiesHandle propertiesHandle,
 ConstMQString key,
 MQInt8 * value);

Function Reference

4-42 Open Message Queue 4.5.2 Developer's Guide for C Clients

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

propertiesHandle
A properties handle for the key you want to get.

key
The name of a property key.

value
Output parameter for the property value.

Common Errors
MQ_NOT_FOUND
MQ_INVALID_TYPE_CONVERSION

MQGetMessageHeaders
The MQGetMessageHeaders function passes back a handle to the message headers.

MQGetMessageHeaders
(const MQMessageHandle messageHandle
 MQPropertiesHandle * headersHandle) ;

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

messageHandle
The message handle.

headersHandle
Output parameter for the handle to the message header properties.

The MQGetMessageHeaders function passes back a handle to the message headers. The
message header includes the fields described in Table 4–5. Note that most of the fields
are set by the send function; the client can optionally set only two of these fields for
sending messages.

Table 4–5 Message Header Properties

Key Type Set By

MQ_CORRELATION_ID_HEADER_PROPERTY MQString Client (optional)

MQ_MESSAGE_TYPE_HEADER_PROPERTY MQString Client (optional)

Function Reference

Reference 4-43

You are responsible for freeing the headersHandle after you are done with it. Use the
MQFreeProperties function to free the handle.

Use the MQSetBytesMessageBytes MQGetMessageProperties function to determine
whether any application-defined properties were set for this message and to find out
their value.

MQGetMessageProperties
The MQGetMessageProperties function passes back the user-defined properties for a
message.

MQGetMessageProperties (const MQMessageHandle messageHandle,
 MQPropertiesHandle * propsHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

messageHandle
A handle to a message whose properties you want to get.

propertiesHandle
Output parameter for the handle to the message properties.

The MQGetMessageProperties function allows you to get application-defined
properties for a message. Properties allow an application, via message selectors, to
select or filter messages on its behalf using application-specific criteria. Having
obtained the handle, you can either use one of the MQGet...Property functions to get a
value (if you know the key name) or you can iterate through the properties using the
MQPropertiesKeyIterationStart function.

You will need to call the function MQFreeProperties() to free the resources associated
with this handle after you are done using it.

MQ_PERSISTENT_HEADER_PROPERTY MQBool Send function

MQ_EXPIRATION_HEADER_PROPERTY MQInt64 Send function

MQ_PRIORITY_HEADER_PROPERTY MQInt8 Send function

MQ_TIMESTAMP_HEADER_PROPERTY MQInt64 Send function

MQ_MESSAGE_ID_HEADER_PROPERTY MQString Send function

MQ_REDELIVERED_HEADER_PROPERTY MQBool Message Broker

Table 4–5 (Cont.) Message Header Properties

Key Type Set By

Function Reference

4-44 Open Message Queue 4.5.2 Developer's Guide for C Clients

Common Errors
MQ_NO_MESSAGE_PROPERTIES

MQGetMessageReplyTo
The MQGetMessageReplyTo function passes back the destination where replies to this
message should be sent.

MQGetMessageReplyTo (const MQMessageHandle messageHandle,
 MQDestinationHandle * destinationHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

messageHandle
A handle to a message expecting a reply. This is the handle that is passed back to you
when you receive the message.

destinationHandle
Output parameter for the handle to the reply destination.

The sender uses the MQSetMessageReplyTo function to specify a destination where
replies to the message can be sent. This can be a normal destination or a temporary
destination. The receiving client can pass the message handle to the
MQGetMessageReplyTo function and determine whether a destination for replies has
been set up for the message by the sender and what that destination is. The consumer
of the message can then use that handle as the destination to which it sends a reply.

You might need to call the MQGetDestinationType function to determine the type of
the destination whose handle is returned to you: queue or topic so that you can set up
your reply appropriately.

The advantage of setting up a temporary destination for replies is that Message Queue
automatically creates a physical destination for you, rather than your having to have
the administrator create one, when the broker's auto.create.destination property is
turned off.

You are responsible for freeing the destination handle by calling the function
MQFreeDestination.()

Common Errors
MQ_NO_REPLY_TO_DESTINATION

MQGetMessageType
The MQGetMessageType function passes back information about the type of a message:
MQ_TEXT_MESSAGE, MQ_BYTES_MESSAGE , or MQ_MESSAGE.

MQGetMessageType(const MQMessageHandle messageHandle,
 MQMessageType * messageType);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Function Reference

Reference 4-45

Parameters

messageHandle
A handle to a message whose type you want to determine.

messageType
Output parameter that contains the message type: MQ_TEXT_MESSAGE or MQ_BYTES_
MESSAGE.

After you obtain the handle to a message, you can determine the type of the message
using the MQGetMessageType function. Having determined its type, you can use the
MQGetTextMessageText function or the MQGetBytesMessageBytes function to obtain
the message content.

Note that other message types might be added in the future. You should not design
your code so that it only expects two possible message types.

MQGetMetaData
The MQGetMetaData function returns name and version information for the current
Message Queue service to which a client is connected.

MQGetMetaData (const MQConnectionHandle connectionHandle,
 MQPropertiesHandle * propertiesHandle)

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

connectionHandle
The handle to the connection that you want the information about.

propertiesHandle
Output parameter that contains the properties handle.

The Message Queue product you are using is identified by a name and a version
number. For example: "Sun Java(tm) System Message Queue 3.5.1." The version
number consists of a major, minor, micro, and update release component. For example,
the major part of version 3.5.1. is 3; the minor is 5; and the micro is 1. For release 3.7
UR1, the major part is 3; the minor is 7; and the update release is 1.

The name and version information of the Message Queue product are set by the
library when you call the MQCreateConnection function to create the connection. You
can retrieve this information by calling the MQGetMetaData function and passing a
properties handle. Once the function returns and passes the handle back, you can use
one of the MQGet...Properties functions to determine the value of a property (key).
These properties are described in Table 4–2.

MQGetPropertyType
The MQGetPropertyType function returns the type of the property value for a property
key in the specified properties handle.

MQGetPropertyType (const MQPropertiesHandle propertiesHandle,
 ConstMQString key,
 MQType * propertyType);

Function Reference

4-46 Open Message Queue 4.5.2 Developer's Guide for C Clients

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

propertiesHandle
A properties handle that you want to access.

key
The property key for which you want to get the type of the property value.

propertyType
Output parameter for the type of the property value.

Use the appropriate MQGet...Property function to find the value of the specified
property key.

Common Errors
MQ_NOT_FOUND

MQGetStatusCode
The MQGetStatusCode function returns the error code associated with specified status.

MQError MQGetStatusCode(const MQStatus status);

Parameters

status
The status returned by any Message Queue function that returns an MQStatus.

Having found that a Message Queue function has not returned successfully, you can
determine the reason by passing the return status. This function will return the error
code associated with the specified status. These codes are listed and described in
Message Queue C API Error Codes.

Some functions might return an MQStatus that contains an NSPR or NSS library error
code instead of a Message Queue error code when they fail. For NSPR and NSS library
error codes, the MQGetStatusString function will return the symbolic name of the
NSPR or NSS library error code. See NSPR and NSS public documentation for NSPR
and NSS error code symbols and their interpretation at the following locations:

■ For NSPR error codes, see the "NSPR Error Handling" chapter at the following
location:
http://www.mozilla.org/projects/nspr/reference/html/index.htm
l.

■ For SSL and SEC error codes, see the "NSS and SSL Error Codes" chapter at the
following location:
http://www.mozilla.org/projects/security/pki/nss/ref/ssl/.

To obtain an MQString that describes the error, use the MQGetStatusString function. To
get an error trace associated with the error, use the MQGetErrorTrace function.

Function Reference

Reference 4-47

MQGetStatusString
The MQGetStatusString function returns an MQString describing the specified status.

MQString MQGetStatusString(const MQStatus status);

Parameters

status
The status returned by any Message Queue function that returns an MQStatus.

Having found that a Message Queue function has not returned successfully, you can
determine the reason why by passing the return status. This function will return an
MQString describing the error associated with the specified status.

To obtain the error code for the specified status, use the MQGetStatusCode function.
To get an error trace associated with the error, use the MQGetErrorTrace function.

You must call the MQFreeString function to free the MQString returned by the
MQGetStatusString function when you are done.

MQGetStringProperty
The MQGetStringProperty function passes back the value of the specified key for the
specified MQString property.

MQGetStringProperty(const MQPropertiesHandle propertiesHandle,
 ConstMQString key,
 ConstMQString * value);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

propertiesHandle
A properties handle for the key you want to get.

key
The name of a property key.

value
Output parameter that points to the value of the specified key

You should not modify or attempt to free the value returned.

MQGetTextMessageText
The MQGetTextMessageText function passes back the contents of a text message.

MQGetTextMessageText(const MQMessageHandle messageHandle,
 ConstMQString * messageText);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Function Reference

4-48 Open Message Queue 4.5.2 Developer's Guide for C Clients

Parameters

messageHandle
A handle to an MQ_TEXT_MESSAGE message that is passed to you when you receive a
message.

messageText
The output parameter that points to the message text.

After you obtain the handle to a message, you can use the MQGetMessageType ()
function to determine its type and, if the type is text, you can use the
MQGetTextMessageText() function to retrieve the message text.

The MQString passed to you by this function is not a copy. You should not modify the
bytes or attempt to free it.

MQGetXAConnection
The MQGetXAConnection function passes back a handle to an XA connection. This
should only be called when the Message Queue C-API is used in a X/Open distributed
transaction processing environment with Message Queue as an XA-compliant resource
manager.

MQGetXAConnection(MQConnectionHandle * connectionHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

connectionHandle
A handle to an XA connection.

MQCloseConnection should not be called on an XA connection handle.

Common Errors
MQ_STATUS_INVALID_HANDLE

MQInitializeSSL
The MQInitializeSSL function initializes the SSL library.

MQInitializeSSL (ConstMQString certificateDatabasePath);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

certificateDatabasePath
An MQString specifying the path to the directory that contains the certificate data base
files.

Function Reference

Reference 4-49

The Message Queue C-API library uses NSS to support the SSL transport protocol
between the Message Queue C client and the Message Queue broker.

Before you connect to a broker over SSL, you must initialize the SSL library by calling
the MQInitializeSSL function. If your client uses secure connections, you must call
this function once and only once before you create any connection, even if that
connection is not an SSL connection.

The certificateDatabasePath parameter specifies the path to the NSS certificate
database where cert7.db or cert8.db , key3.db, and secmod.db files are located.

The work required to configure secure communication includes initializing the SSL
library using the MQInitializeSSL function. There may be additional work,
depending on whether the broker is trusted (the default setting) and on whether you
want to provide an additional means of verification if the broker is not trusted and the
initial attempt to create a secure connection fails. For complete information see
Working With Secure Connections.

You must take care if the client application using secure Message Queue connections
uses NSS (for other purposes) directly as well and does NSS initialization. For
additional information, see Coordinating NSS Initialization.

Common Errors
MQ_INCOMPATIBLE_LIBRARY
MQ_SSL_ALREADY_INITIALIZED
MQ_SSL_INIT_ERROR

MQPropertiesKeyIterationGetNext
The MQPropertiesKeyIterationGetNext function passes back the address of the next
property key in the referenced properties handle.

MQPropertiesKeyIterationGetNext
 (const MQPropertiesHandle
propertiesHandle,
 ConstMQString * key);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

propertiesHandle
A properties handle whose contents you want to access.

key
The output parameter for the next properties key in the iteration. You should not
attempt to modify or free it.

To Get Message Properties Follow this procedure:

1. Start the process by calling the MQPropertiesKeyIterationStart () function.

2. Loop using the MQPropertiesKeyIterationHasNext() function.

3. Extract the name of each property key by calling the
MQPropertiesKeyIterationGetNext () function.

Function Reference

4-50 Open Message Queue 4.5.2 Developer's Guide for C Clients

4. Determine the type of the property value for a given key by calling the
MQGetPropertyType() function.

5. Use the appropriate MQGet...Property function to find the property value for the
specified property key.

If you know the property key, you can just use the appropriate MQGet...Property
function to access its value.

You should not modify or free the property key that is passed back to you by this
function. Note that this function is not multi-thread-safe.

MQPropertiesKeyIterationHasNext
The MQPropertiesKeyIterationHasNext function returns MQ_TRUE if there are
additional property keys left in the iteration.

MQPropertiesKeyIterationHasNext
 (const MQPropertiesHandle propertiesHandle);

Return Value
MQBool

Parameters

propertiesHandle
A properties handle that you want to access.

To Get Message Properties Follow this procedure:

1. Start the process by calling the MQPropertiesKeyIterationStart () function.

2. Loop using the MQPropertiesKeyIterationHasNext() function.

3. Extract the name of each property key by calling the
MQPropertiesKeyIterationGetNext () function.

4. Determine the type of the property value for a given key by calling the
MQGetPropertyType() function.

5. Use the appropriate MQGet...Property function to find the value for the specified
property key.

If you know the property key, you can just use the appropriate MQGet...Property
function to get its value. Note that this function is not multi-thread-safe.

MQPropertiesKeyIterationStart
The MQPropertiesKeyIterationStart function starts or resets the iteration process or
the specified properties handle.

MQPropertiesKeyIterationStart
 (const PropertiesHandle propertiesHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Function Reference

Reference 4-51

Parameters

propertiesHandle
A properties handle that you want to access.

To Get Message Properties Follow this procedure:

1. Start the process by calling the MQPropertiesKeyIterationStart () function.

2. Loop using the MQPropertiesKeyIterationHasNext() function.

3. Extract the name of each property key by calling the
MQPropertiesKeyIterationGetNext () function.

4. Determine the type of the property value for a given key by calling the
MQGetPropertyType() function.

5. Use the appropriate MQGet...Property function to find the property value for the
specified property key.

If you know the property key, you can just use the appropriate MQGet...Property
function to get its value. Note that this function is not multi-thread-safe.

MQReceiveMessageNoWait
The MQReceiveMessageNoWait function passes a handle back to a message delivered to
the specified consumer if a message is available.

MQReceiveMessageNoWait(const MQConsumerHandle consumerHandle,
 MQMessageHandle *
messageHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

consumerHandle
The handle to the message consumer. This handle is passed back to you when you
create a synchronous message consumer.

messageHandle
Output parameter for the handle to the message to be received. You are responsible for
freeing the message handle when you are done by calling the MQFreeMessage()
function.

This function can only be called if the session is created with receive mode MQ_
SESSION_SYNC_RECEIVE. The MQReceiveMessageNoWait function passes a handle back
to you in the messageHandle parameter if there is a message arrived for the consumer
specified by the consumerHandle parameter. If there is no message for the consumer,
the function returns immediately with an error.

When you create a session, you specify one of several acknowledge modes for that
session; these are described in Acknowledge Modes. If you specify MQ_CLIENT_
ACKNOWLEDGE as the acknowledge mode for the session, you must explicitly call the
MQAcknowledgeMessages function to acknowledge messages that you have received.
For more information, see the description of the function MQAcknowledgeMessages.

Function Reference

4-52 Open Message Queue 4.5.2 Developer's Guide for C Clients

Because distributed applications involve greater processing time, such an application
might not behave as expected if it were run locally. For example, calling the
MQReceiveMessageNoWait function might return MQ_NO_MESSAGE even when there is a
message available to be retrieved.

If a client connects to the broker and immediately calls the MQReceiveMessageNoWait ,
it is possible that the message queued for the consuming client is in the process of
being transmitted from the broker to the client. The client runtime has no knowledge
of what is on the broker, so when it sees that there is no message available on the
client's internal queue, it returns with MQ_NO_MESSAGE .

You can avoid this problem by having your client use one of the synchronous receive
methods that specifies a timeout interval.

You can use the MQReceiveMessageWait function if you want the receive function to
block while waiting for a message to arrive. You can use the
MQReceiveMessageWithTimeout function to wait for a specified time for a message to
arrive.

Common Errors
MQ_NOT_SYNC_RECEIVE_MODE
MQ_CONCURRENT_ACCESS
MQ_NO_MESSAGE
MQ_CONSUMER_CLOSED
MQ_SESSION_CLOSED
MQ_BROKER_CONNECTION_CLOSED
MQ_THREAD_OUTSIDE_XA_TRANSACTION
MQ_XA_SESSION_NO_TRANSATION

MQReceiveMessageWait
The MQReceiveMessageWait function passes a handle back to a message delivered to
the specified consumer when the message becomes available.

MQReceiveMessageWait (const MQConsumerHandle consumerHandle,
 MQMessageHandle * messageHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

consumerHandle
The handle to the message consumer. This handle is passed back to you when you
create a synchronous message consumer.

messageHandle
Output parameter for the handle to the message to be received. You are responsible for
freeing the message handle when you are done by calling the MQFreeMessage()
function.

This function can only be called if the session is created with receive mode MQ_
SESSION_SYNC_RECEIVE. The MQReceiveMessageWait function passes a handle back to
you in the messageHandle parameter if there is a message arrived for the consumer
specified by the consumerHandle parameter. If there is no message for the consumer,
the function blocks until a message is delivered.

Function Reference

Reference 4-53

When you create a session, you specify one of several acknowledge modes for that
session; these are described in Acknowledge Modes. If you specify MQ_CLIENT_
ACKNOWLEDGE as the acknowledge mode for the session, you must explicitly call the
MQAcknowledgeMessages function to acknowledge messages that you have received.
For more information, see the description of the function MQAcknowledgeMessages.

You can use the MQReceiveMessageNoWait function instead if you do not want to
block while waiting for a message to arrive. You can use the function
MQReceiveMessageWithTimeout to wait for a specified time for a message to arrive.

Common Errors
MQ_NOT_SYNC_RECEIVE_MODE
MQ_CONCURRENT_ACCESS
MQ_CONSUMER_CLOSED
MQ_SESSION_CLOSED
MQ_BROKER_CONNECTION_CLOSED
MQ_THREAD_OUTSIDE_XA_TRANSACTION
MQ_XA_SESSION_NO_TRANSATION

MQReceiveMessageWithTimeout
The MQReceiveMessageWithTimeout function passes a handle back to a message
delivered to the specified consumer if a message is available within the specified
amount of time.

MQReceiveMessageWithTimeout
 (const MQConsumerHandle
consumerHandle,
 MQInt32 timeoutMilliseconds,
 MQMessageHandle * messageHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

consumerHandle
The handle to the message consumer. This handle is passed back to you when you
create a synchronous message consumer.

timeoutMilliseconds
The number of milliseconds to wait for a message to arrive.

messageHandle
Output parameter for the handle to the message to be received. You are responsible for
freeing the message handle when you are done by calling the MQFreeMessage()
function.

This function can only be called if the session is created with receive mode MQ_
SESSION_SYNC_RECEIVE. The MQReceiveMessageWithTimeout function passes a
handle back to you in the messageHandle parameter if a message arrives for the
consumer specified by the consumerHandle parameter in the amount of time specified
by the timoutMilliseconds parameter. If no message arrives within the specified
amount of time, the function returns an error.

Function Reference

4-54 Open Message Queue 4.5.2 Developer's Guide for C Clients

When you create a session, you specify one of several acknowledge modes for that
session; these are described in Acknowledge Modes. If you specify MQ_CLIENT_
ACKNOWLEDGE as the acknowledge mode for the session, you must explicitly call the
MQAcknowledgeMessages function to acknowledge messages that you have received.
For more information, see the description of the function MQAcknowledgeMessages.

You can use the MQReceiveMessageWait function to block while waiting for a
message to arrive. You can use the MQReceiveMessageNoWait() function if you do not
want to wait for the message to arrive.

Common Errors
MQ_NOT_SYNC_RECEIVE_MODE
MQ_CONCURRENT_ACCESS
MQ_TIMEOUT_EXPIRED
MQ_CONSUMER_CLOSED
MQ_SESSION_CLOSED
MQ_BROKER_CONNECTION_CLOSED
MQ_THREAD_OUTSIDE_XA_TRANSACTION
MQ_XA_SESSION_NO_TRANSATION

MQRecoverSession
The MQCRecoverSession function stops message delivery and restarts message
delivery with the oldest unacknowledged message.

MQRecoverSession(const MQSessionHandle sessionHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

sessionHandle
The handle to the session that you want to recover.

You can only call this function for sessions that are not transacted. To rollback message
delivery for a transacted session, use the MQRollBackSession () function. This
function may be most useful if you use the MQ_CLIENT_ACKNOWELDGE mode.

All consumers deliver messages in a serial order. Acknowledging a received message
automatically acknowledges all messages that have been delivered to the client.

Restarting a session causes it to take the following actions:

■ Stop message delivery in this session.

■ Mark all messages that might have been delivered but not acknowledged as
redelivered.

■ Restart the delivery sequence including all unacknowledged messages that had
been previously delivered. (Redelivered messages might not be delivered in their
original delivery order.)

Common Errors
MQ_TRANSACTED_SESSION
MQ_CONCURRENT_ACCESS
MQ_SESSION_CLOSED

Function Reference

Reference 4-55

MQ_BROKER_CONNECTION_CLOSED

MQRollBackSession
The MQRollBackSession function rolls back a transaction associated with the specified
session.

MQRollBackSession(const MQSessionHandle sessionHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

sessionHandle
The handle to the transacted session that you want to roll back.

A transacted session groups messages into an atomic unit known as a transaction. As
messages are produced or consumed within a transaction, the broker tracks the
various sends and receives, completing these operations only when you call the
MQCommitSession() function.

If a send or receive operation fails, you must use the MQRollBackSession function to
roll back the entire transaction. This means that those messages that have been sent are
destroyed and those messages that have been consumed are automatically recovered.

Common Errors
MQ_NOT_TRANSACTED_SESSION
MQ_CONCURRENT_ACCESS
MQ_SESSION_CLOSED
MQ_BROKER_CONNECTION_CLOSED
MQ_XA_SESSION_IN_PROGRESS

MQSendMessage
The MQSendMessage function sends a message using the specified producer.

MQSendMessage(const MQProducerHandle producerHandle,
 const MQMessageHandle messageHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

producerHandle
The handle to the producer sending this message. This handle is passed back to you by
the MQCreateMessageProducerForDestination function.

messageHandle
A handle to the message you want to send.

Function Reference

4-56 Open Message Queue 4.5.2 Developer's Guide for C Clients

The MQSendMessage function sends the specified message on behalf of the specified
producer to the destination associated with the message producer. If you use this
function to send a message, the following message header fields are set to default
values when the send completes.

■ MQ_PERSISTENT_HEADER_PROPERTY will be set to MQ_PERSISTENT_DELIVERY.

This means that the calling thread will be blocked, waiting for the broker to
acknowledge receipt of your messages, unless you set the connection property MQ_
ACK_ON_PRODUCE_PROPERTY to MQ_FALSE.

■ MQ_PRIORITY_HEADER_PROPERTY will be set to 4.

■ MQ_EXPIRATION_HEADER_PROPERTY will be set to 0, which means that the message
will never expire.

If you set those message properties, they will be ignored when a message is sent. To
send a message with these properties set to different values, you can use the
MQSendMessageExt function to specify different values for these properties.

You cannot use this function with a producer that is created without a specified
destination.

Common Errors
MQ_PRODUCER_NO_DESTINATION
MQ_PRODUCER_CLOSED
MQ_SESSION_CLOSED
MQ_BROKER_CONNECTION_CLOSED
MQ_THREAD_OUTSIDE_XA_TRANSACTION
MQ_XA_SESSION_NO_TRANSATION

MQSendMessageExt
The MQSendMessageExt function sends a message using the specified producer and
allows you to specify selected message header properties.

MQSendMessageExt
 (const MQProducerHandle producerHandle,
 const MQMessageHandle messageHandle
 MQDeliveryMode msgDeliveryMode,
 MQInt8 msgPriority,
 MQInt64 msgTimeToLive);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

producerHandle
The handle to the producer sending this message. This handle is passed back to you by
the MQCreateMessageProducerForDestination function.

messageHandle
A handle to the message you want to send.

msgDeliveryMode
An enum

Function Reference

Reference 4-57

MQ_PERSISTENT_DELIVERY
MQ_NONPERSISTENT_DELIVERY

msgPriority
A integer value of 0 through 9; 0 being the lowest priority and 9 the highest.

msgTimeToLive
An integer value specifying in milliseconds how long the message will live before it
expires. When a message is sent, its expiration time is calculated as the sum of its
time-to-live value and current GMT. A value of 0 indicates that he message will never
expire.

The MQSendMessageExt function sends the specified message on behalf of the specified
producer to the destination associated with the message producer. Use this function if
you want to change the default values for the message header properties as shown in
the next table.

Property
Default value

msgDeliveryMode
MQ_PERSISTENT_DELIVERY

msgPriority
4

msgTimeToLive
0, meaning no expiration limit

If you set these message headers using the MQSetMessageHeaders function before the
send, they will be ignored when the message is sent. When the send completes, these
message headers hold the values that are set by the send.

You cannot use this function with a producer that is created without a specified
destination.

You can set the broker property MQ_ACK_ON_PRODUCE_PROPERTY to make sure that the
message has reached its destination on the broker:

■ By default, the broker acknowledges receiving persistent messages only.

■ If you set the property to MQ_TRUE, the broker acknowledges receipt of all messages
(persistent and non-persistent) from the producing client.

■ If you set the property to MQ_FALSE, the broker does not acknowledge receipt of
any message (persistent or non-persistent) from the producing client.

Note that "acknowledgement" in this case is not programmatic but internally
implemented. That is, the client thread is blocked and does not return until the broker
acknowledges messages it receives from the producing client.

Common Errors
MQ_PRODUCER_NO_DESTINATION
MQ_INVALID_PRIORITY
MQ_INVALID_DELIVERY_MODE
MQ_PRODUCER_CLOSED
MQ_SESSION_CLOSED
MQ_BROKER_CONNECTION_CLOSED
MQ_THREAD_OUTSIDE_XA_TRANSACTION
MQ_XA_SESSION_NO_TRANSATION

Function Reference

4-58 Open Message Queue 4.5.2 Developer's Guide for C Clients

MQSendMessageToDestination
The MQSendMessageToDestination function sends a message using the specified
producer to the specified destination.

MQSendMessageToDestination
 (const MQProducerHandle producerHandle,
 const MQMessageHandle messageHandle,
 const MQDestinationHandle destinationHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

producerHandle
The handle to the producer sending this message. This handle is passed back to you by
the MQCreateMessageProducer function.

messageHandle
A handle to the message you want to send.

destinationHandle
A handle to the destination where you want to send the message.

The MQSendMessageToDestination function sends the specified message on behalf of
the specified producer to the specified destination. If you use this function to send a
message, the following message header fields are set as follows when the send
completes.

■ MQ_PERSISTENT_HEADER_PROPERTY will be set to MQ_PERSISTENT_DELIVERY.

This means that the caller will be blocked, waiting for broker acknowledgement
for the receipt of your messages unless you set the connection property MQ_ACK_
ON_PRODUCE_PROPERTY to MQ_FALSE.

■ MQ_PRIORITY_HEADER_PROPERTY will be set to 4.

■ MQ_EXPIRATION_HEADER_PROPERTY will be set to 0, which means that the message
will never expire.

To send a message with these properties set to different values, you must use the
MQSendMessageToDestinationExt function, which allows you to set these three
header properties.

If you set these message headers using the MQSetMessageHeaders function before the
send, they will be ignored when the message is sent. When the send completes, these
message headers hold the values that are set by the send.

You cannot use this function with a producer that is created with a specified
destination.

Common Errors
MQ_PRODUCER_HAS_DEFAULT_DESTINATION
MQ_PRODUCER_CLOSED
MQ_SESSION_CLOSED
MQ_BROKER_CONNECTION_CLOSED

Function Reference

Reference 4-59

MQ_THREAD_OUTSIDE_XA_TRANSACTION
MQ_XA_SESSION_NO_TRANSATION

MQSendMessageToDestinationExt
The MQSendMessageToDestinationExt function sends a message to the specified
destination for the specified producer and allows you to set selected message header
properties.

MQSendMessageToDestinationExt
 (const MQProducerHandle producerHandle,
 const MQMessageHandle messageHandle,
 const MQDestinationHandle destinationHandle,
 MQDeliveryMode msgDeliveryMode,
 MQInt8 msgPriority,
 MQInt64 msgTimeToLive);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

producerHandle
The handle to the producer sending this message. This handle is passed back to you
when you call the MQCreateMessageProducer function.

messageHandle
A handle to the message you want to send.

destinationHandle
A handle to the destination where you want to send the message.

msgDeliveryMode
An enum of either MQ_PERSISTENT_DELIVERY or MQ_NONPERSISTENT_DELIVERY.

msgPriority
A integer value of 0 through 9; 0 being the lowest priority and 9 the highest.

msgTimeToLive
An integer value specifying in milliseconds how long the message will live before it
expires. When a message is sent, its expiration time is calculated as the sum of its
time-to-live value and current GMT. A value of 0 indicates that the message will never
expire.

The MQSendMessageToDestinationExt function sends the specified message on behalf
of the specified producer to the specified destination. Use this function if you want to
change the default values for the message header properties as shown below:

Property
Default value

msgDeliveryMode
MQ_PERSISTENT_DELIVERY

msgPriority
4

Function Reference

4-60 Open Message Queue 4.5.2 Developer's Guide for C Clients

msgTimeToLive
0, meaning no expiration limit

If these default values suit you, you can use the MQSendMessageToDestination
function to send the message.

You cannot use this function with a producer that is created with a specified
destination.

You can set the broker property MQ_ACK_ON_PRODUCE_PROPERTY to make sure that the
message has reached its destination on the broker:

■ By default, the broker acknowledges receiving persistent messages only from the
producing client.

■ If you set the property to MQ_TRUE, the broker acknowledges receipt of all messages
(persistent and non-persistent) from the producing client.

■ If you set the property to MQ_FALSE, the broker does not acknowledge receipt of
any message (persistent or non-persistent) from the producing client.

Note that "acknowledgement" in this case is not programmatic but internally
implemented. That is, the client thread is blocked and does not return until the broker
acknowledges messages it receives.

Common Errors
MQ_PRODUCER_HAS_DEFAULT_DESTINATION
MQ_INVALID_PRIORITY
MQ_INVALID_DELIVERY_MODE
MQ_PRODUCER_CLOSED
MQ_SESSION_CLOSED
MQ_BROKER_CONNECTION_CLOSED
MQ_THREAD_OUTSIDE_XA_TRANSACTION
MQ_XA_SESSION_NO_TRANSATION

MQSetBoolProperty
The MQSetBoolProperty function sets an MQBool property with the specified key to the
specified value.

MQSetBoolProperty
 (const MQPropertiesHandle propertiesHandle,
 ConstMQString key,
 MQBool value);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

propertiesHandle
A handle to the properties object whose property value for the specified key you want
to set.

key
The name of the property key. The library makes a copy of the property key.

Function Reference

Reference 4-61

value
The MQBool property value.

Common Errors
MQ_HASH_VALUE_ALREADY_EXISTS

MQSetBytesMessageBytes
The MQSetBytesMessageBytes function defines the body for a bytes message.

MQSetBytesMessageBytes
 (const MQMessageHandle messageHandle,
 const MQInt8 * messageBytes,
 MQInt32 messageSize);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

messageHandle
A handle to an MQ_BYTES_MESSAGE message whose body you want to set.

messageBytes
A pointer to the bytes you want to set. The library makes a copy of the message bytes.

messageSize
An integer specifying the number of bytes in messageBytes .

After you obtain the handle to a bytes message from MQCreateBytesMessage , you can
use this handle to define its body with the MQSetBytesMessageBytes function, to set
its application-defined properties with the MQSetMessageProperties function, and to
set certain message headers with the MQSetMessageHeaders function.

MQSetFloat32Property
The MQSetFloat32Property function sets an MQFloat32 property with the specified key
to the specified value.

MQSetFloat32Property
 (const MQPropertiesHandle propertiesHandle,
 ConstMQString key,
 MQFloat32 value);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

propertiesHandle
A handle to the properties object whose property value for the specified key you want
to set.

Function Reference

4-62 Open Message Queue 4.5.2 Developer's Guide for C Clients

key
The name of a property key. The library makes a copy of the property key.

value
The MQFloat32 property value.

Common Errors
MQ_HASH_VALUE_ALREADY_EXISTS

MQSetFloat64Property
The MQSetFloat64Property function sets an MQFloat64 property with the specified key
to the specified value.

MQSetFloat64Property
 (const MQPropertiesHandle propertiesHandle,
 ConstMQString key,
 MQFloat64 value);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

propertiesHandle
A handle to the properties object whose property value for the specified key you want
to set.

key
The name of a property key. The library makes a copy of the property key.

value
The MQFloat64 property value.

Common Errors
MQ_HASH_VALUE_ALREADY_EXISTS

MQSetInt16Property
The MQSetInt16Property function sets an MQInt16 property with the specified key to
the specified value.

MQSetInt16Property
 (const MQPropertiesHandle propertiesHandle,
 ConstMQString key,
 MQInt16 value);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Function Reference

Reference 4-63

Parameters

propertiesHandle
A handle to the properties object whose property value for the specified key you want
to set.

key
The name of a property key. The library makes a copy of the property key.

value
The MQInt16 property value.

Common Errors
MQ_HASH_VALUE_ALREADY_EXISTS

MQSetInt32Property
The MQSetInt32Property function sets an MQInt32 property with the specified key to
the specified value.

MQSetInt32Property
 (const MQPropertiesHandle propertiesHandle,
 ConstMQString key,
 MQInt32 value);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

propertiesHandle
A handle to the properties object whose property value for the specified key you want
to set.

key
The name of a property key. The library makes a copy of the property key.

value
The MQInt32 property value.

Common Errors
MQ_HASH_VALUE_ALREADY_EXISTS

MQSetInt64Property
The MQSetInt64Property function sets an MQInt64 property with the specified key to
the specified value.

MQSetInt64Property
 (const MQPropertiesHandle propertiesHandle,
 ConstMQString key,
 MQInt64 value);

Function Reference

4-64 Open Message Queue 4.5.2 Developer's Guide for C Clients

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

propertiesHandle
A handle to the properties object whose property value for the specified key you want
to set.

key
The name of a property key. The library makes a copy of the property key.

value
The MQInt64 property value.

Common Errors
MQ_HASH_VALUE_ALREADY_EXISTS

MQSetInt8Property
The MQSetInt8Property function sets an MQInt8 property with the specified key to the
specified value.

MQSetInt8Property
 (const MQPropertiesHandle propertiesHandle,
 ConstMQString key,
 MQInt8 value);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

propertiesHandle
A handle to the properties object whose property value for the specified key you want
to set

key
The name of a property key. The library makes a copy of the property key.

value
The MQInt8 property value.

Common Errors
MQ_HASH_VALUE_ALREADY_EXISTS

MQSetMessageHeaders
The MQSetMessageHeaders function creates the header part of the message.

MQSetMessageHeaders
 (const MQMessageHandle messageHandle
 MQPropertiesHandle headersHandle);

Function Reference

Reference 4-65

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

messageHandle
A handle to a message.

headersHandle
A handle to the header properties object. This handle will be invalid after the function
returns successfully.

After you have created a properties handle and defined values for message header
properties using one of the MQSet...Property functions, you can pass the handle to
the MQSetMessageHeaders function to define the message header properties.

The message header properties are described in the table below. For sending messages,
the client can only set two of these: the correlation ID property and the message type
property. The client is not required to set these; they are provided for the client's
convenience. For example, the client can use the key MQ_MESSAGE_TYPE_HEADER_
PROPERTY to sort incoming messages according to application-defined message types.

Header properties that are not specified in the headersHandle are not affected. You
cannot use this function to override header properties that are set by the broker or the
send function. The header properties for persistence, expiration, and priority
(MQSetMessageHeaders)() are set to default values if the user called the
MQSendMessage() or MQSendMessageToDestination() function, or they are set to
values the user specifies (in parameters) if the user called the MQSendMessageExt () or
the MQSendMessageToDestinationExt() function.

Use the MQSetBytesMessageBytes() function or the MQSetTextMessageText() function
to set the body of a message. Use the MQSetMessageProperties function to set the
application-defined properties of a message that are not part of the header.

Table 4–6 Message Header Properties

Key Type Set By

MQ_CORRELATION_ID_HEADER_PROPERTY MQString Client (optional)

MQ_MESSAGE_TYPE_HEADER_PROPERTY MQString Client (optional)

MQ_PERSISTENT_HEADER_PROPERTY MQBool Send function

MQ_EXPIRATION_HEADER_PROPERTY MQInt64 Send function

MQ_PRIORITY_HEADER_PROPERTY MQInt8 Send function

MQ_TIMESTAMP_HEADER_PROPERTY MQInt64 Send function

MQ_MESSAGE_ID_HEADER_PROPERTY MQString Send function

MQ_REDELIVERED_HEADER_PROPERTY MQBool Message Broker

Function Reference

4-66 Open Message Queue 4.5.2 Developer's Guide for C Clients

Common Errors
MQ_PROPERTY_WRONG_VALUE_TYPE

MQSetMessageProperties
The MQSetMessageProperties function sets the specified properties for a message. You
can also use this function to change a message's properties.

MQSetMessageProperties
 (const MQMessageHandle messageHandle,
 MQPropertiesHandle propsHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

messageHandle
A handle to a message whose application-defined properties you want to set.

propertiesHandle
A handle to a properties object that you have created and set using one of the set
property functions. This handle is invalid after the function returns successfully.

After you obtain the handle to a message, you can use this handle to define its body
with the MQSetBytesMessageBytes() or MQSetTextMessageText() function, and to set
its header properties with the MQSetMessageHeaders() function.

Property values are set prior to sending a message. The MQSetMessageProperties
function allows you to set application-defined properties for a message. For example,
application-defined properties allow an application, via message selectors, to select or
filter, messages on its behalf using application-specific criteria.

You define the message properties and their values using the MQCreateProperties
function to create a properties object, then you use one of the set property functions to
define each key and value in it. See Working With Properties for more information.

MQSetMessageReplyTo
The MQSetMessageReplyTo function specifies the destination where replies to this
message should be sent.

MQSetMessageReplyTo
 (const MQMessageHandle messageHandle,
 const MQDestinationHandle destinationHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

messageHandle
A handle to a message expecting a reply.

Function Reference

Reference 4-67

destinationHandle
The destination to which the reply is sent. Usually this is a handle to a destination that
you created using the MQCreateDestination function or the function
MQCreateTemporaryDestination. The handle is still valid when this function returns.

The sender uses the MQSetMessageReply function to specify a destination where replies
to the message can be sent. This can be a normal destination or a temporary
destination. The receiver of a message can use the MQGetMessageReplyTo function to
determine whether a sender has set up a destination where replies are to be sent. The
advantage of setting up a temporary destination for replies is that Message Queue
automatically creates a physical destination for you, rather than your having to have
the administrator create one if the broker's auto_create_destination property is
turned off.

MQSetStringProperty
The MQSetStringProperty function sets an MQString property with the specified key
to the specified value.

MQSetStringProperty
 (const MQPropertiesHandle propertiesHandle,
 ConstMQString key,
 ConstMQString value);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

propertiesHandle
A handle to the properties object whose property value for the specified key you want
to set. You get this handle from the MQCreateProperties () function.

key
The name of a property key. The library makes a copy of the property key

value
The property value to set. The library makes a copy of the value.

The library makes a copy of the property key and also makes a copy of the value.

MQSetTextMessageText
The MQSetTextMessageText function defines the body for a text message.

MQSetTextMessageText
 (const MQMessageHandle messageHandle,
 ConstMQString messageText);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Function Reference

4-68 Open Message Queue 4.5.2 Developer's Guide for C Clients

Parameters

messageHandle
A handle to a message whose text body you want to set.

messageText
An MQString specifying the message text. The library makes a copy of the message
text.

After you obtain the handle to a text message, you can use this handle to define its
body with the MQSetTextMessageText() function. You can set its application-defined
properties with the MQSetMessageProperties function, and you can set certain
message headers with the MQSetMessageHeaders function.

MQStartConnection
The MQStartConnection function starts the specified connection to the broker and
starts or resumes message delivery.

MQStartConnection
 (const MQConnectionHandle connectionHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

connectionHandle
The handle to the connection that you want to start. This handle is the handle that is
created and passed back to you by the MQCreateConnection function.

When a connection is created it is in stopped mode. Until you call this function,
messages are not delivered to any consumers. Call this function to start a connection
or to restart a connection that has been stopped with the MQStopConnection()
function. To create an asynchronous consumer, you could have the connection in
stopped mode, and start or restart the connection after you have set up the
asynchronous message consumer.

Use the MQCloseConnection function to close a connection, and then use the
MQFreeConnection function to free the memory allocated to the connection.

Common Errors
MQ_BROKER_CONNECTION_CLOSED

MQStatusIsError
The MQStatusIsError function returns MQ_TRUE if the status parameter passed to it
represents an error.

MQBool MQStatusIsError(const MQStatus status);

Parameters

status
The status returned by any Message Queue function that returns an MQStatus.

Function Reference

Reference 4-69

Nearly all Message Queue C library functions return an MQStatus. You can pass this
status result to the MQStatusIsError function to determine whether your call
succeeded. If the MQStatusIsError function returns MQ_TRUE(=1), the function failed; if
it returns MQ_FALSE(=0), the function returned successfully.

If the MQStatusIsError returns MQ_TRUE, you can get more information about the error
that occurred by passing the status returned to the MQGetStatusCode function. This
function will return the error code associated with the specified status.

To obtain an MQString that describes the error, use the MQGetStatusString function. To
get an error trace associated with the error, use the MQGetErrorTrace function.

MQStopConnection
The MQStopConnection function stops the specified connection to the broker. This
stops the broker from delivering messages.

MQStopConnection
 (const MQConnectionHandle connectionHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

connectionHandle
The handle to the connection that you want to stop. This handle is passed back to you
by the MQCreateConnection function.

You can restart message delivery by calling the MQStartConnection function. When
the connection has stopped, delivery to all the connection's message consumers is
inhibited: synchronous receives block, and messages are not delivered to message
listeners. This call blocks until receives and/or message listeners in progress have
completed.

You should not call MQStopConnection in a message listener callback function.

Use the MQCloseConnection function to close a connection, and then use the
MQFreeConnection function to free the memory allocated to the connection.

Common Errors
MQ_BROKER_CONNECTION_CLOSED
MQ_CONCURRENT_DEADLOCK

MQUnsubscribeDurableMessageConsumer
The MQUnsubscribeDurableMessageConsumer function unsubscribes the specified
durable message consumer.

MQUnsubscribeDurableMessageConsumer
 (const MQSessionHandle sessionHandle,
 ConstMQString durableName);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Header Files

4-70 Open Message Queue 4.5.2 Developer's Guide for C Clients

Parameters

sessionHandle
The handle to the session to which this consumer belongs. This handle is created and
passed back to you by the MQCreateSession function.

durableName
An MQString specifying the name of the durable subscriber.

When you call the MQUnsubscribeDurableMessageConsumer function, the client
runtime instructs the broker to delete the state information that the broker maintains
for this consumer. If you try to delete a durable consumer while it has an active topic
subscriber or while a received message has not been acknowledged in the session, you
will get an error. You should only unsubscribe a durable message consumer after
closing it.

Common Errors
MQ_CANNOT_UNSUBSCRIBE_ACTIVE_CONSUMER
MQ_CONSUMER_NOT_FOUND

Header Files
The Message Queue C-API is defined in the header files listed in Table 4–7. The files
are listed in alphabetical order. The file mqcrt.h includes all the Message Queue C-API
header files.

Table 4–7 Message Queue C-API Header Files

File Name Contents

mqbasictypes.h Defines the types MQBool, MQInt8, MQInt16, MQInt32, MQInt64,
MQFloat32, MQFloat64.

mqbytes-message.h Function prototypes for creating, getting, setting bytes message.

mqcallback-types.h Asynchronous receive and connection exception handling callback
types.

mqconnection.h Function prototypes for creating, managing, and closing connections.
Function prototype for creating session.

mqconnection-props.h Connection property constants

mqconsumer.h Function prototypes for synchronous receives and closing the
consumer.

mqcrt.h All Message Queue C-API public header files.

mqdestination.h Function prototypes to free destinations and get information about
destinations.

mqerrors.h Error codes

mqheader-props.h Message header property constants

mqmessage.h Function prototypes for getting and setting parts of message, freeing
message, and acknowledging message.

Header Files

Reference 4-71

mqproducer.h Function prototypes for sending messages and closing the message
producer.

mqproperties.h Function prototypes for creating, setting, and getting properties

mqsession.h Function prototypes for managing and closing sessions; for creating
destinations, message producers and message consumers.

mqssl.h Function declaration for initializing the SSL library.

mqstatus.h Function prototypes for getting error information.

mqtext-message.h Function prototypes for creating, getting, setting text message.

mqtypes.h Enumeration of types that can be stored in a properties object, of
types of message that can be received, of acknowledgement modes, of
delivery modes, of destination types, of session receiving modes, and
of handle types.

mqversion.h Version information constant definitions.

Table 4–7 (Cont.) Message Queue C-API Header Files

File Name Contents

Header Files

4-72 Open Message Queue 4.5.2 Developer's Guide for C Clients

A

Message Queue C API Error Codes A-1

AMessage Queue C API Error Codes

Having found that a Message Queue function has not returned successfully, you can
determine the reason by passing the return status of that function to the
MQGetStatusCode function, which returns the error code associated with the specified
status. This appendix lists the error codes that can be returned and provides a
description that is associated with that code. You can retrieve the error string
(description) by calling the MQGetStatusString function.

Some Message Queue functions, when they fail, might return an MQStatus result that
contains an NSPR or NSS library error code instead of a Message Queue error code.
For NSPR and NSS library error codes, the MQGetStatusString function returns the
symbolic name of the NSPR or NSS library error code. Please see NSPR and NSS
public documentation for NSPR and NSS error code symbols and their interpretation
at the following locations:

■ For NSPR error codes, see the "NSPR Error Handling" chapter at the following site:
http://www.mozilla.org/projects/nspr/reference/html/index.htm
l

■ For NSS error codes, see the "NSS and SSL Error Codes" chapter at the following
site: http://www.mozilla.org/projects/security/pki/nss/ref/ssl/

When checking a Message Queue function for return errors, you should only reference
the Message Queue common error code symbol names in order to maintain maximum
compatibility with future releases. For each function, Reference lists the common error
codes that can be returned by that function.

For information on error handling, see Table A–1.

Error Codes
Table A–1 lists the error codes in alphabetical order. For each code listed, it provides a
description for the error code and notes whether it is a common error (Common).

Table A–1 Message Queue C Client Error Codes

Code Common Description

MQ_ACK_STATUS_NOT_OK Acknowledgement status is
not OK

MQ_ADMIN_KEY_AUTH_MISMATCH Admin key authorization
mismatch

MQ_BAD_VECTOR_INDEX Bad vector index

Error Codes

A-2 Open Message Queue 4.5.2 Developer's Guide for C Clients

MQ_BASE64_ENCODE_FAILURE Base 64 encode failure.

MQ_BASIC_TYPE_SIZE_MISMATCH Message Queue basic type
size mismatch

MQ_BROKER_BAD_REQUEST Broker: bad request

MQ_BROKER_BAD_VERSION Broker: bad version

MQ_BROKER_CONFLICT Broker: conflict

MQ_BROKER_CONNECTION_CLOSED X Broker connection is closed.

MQ_BROKER_ENTITY_TOO_LARGE Broker: entity too large

MQ_BROKER_ERROR Broker: error

MQ_BROKER_FORBIDDEN Broker: forbidden

MQ_BROKER_GONE Broker: gone

MQ_BROKER_INVALID_LOGIN Broker: invalid login

MQ_BROKER_NOT_ALLOWED Broker: not allowed

MQ_BROKER_NOT_FOUND Broker: not found

MQ_BROKER_NOT_IMPLEMENTED Broker: not implemented

MQ_BROKER_PRECONDITION_FAILED Broker: precondition failed

MQ_BROKER_RESOURCE_FULL Broker: resource full

MQ_BROKER_TIMEOUT Broker: timeout

MQ_BROKER_UNAUTHORIZED Broker: unauthorized

MQ_BROKER_UNAVAILABLE Broker: unavailable

MQ_CALLBACK_RUNTIME_ERROR X Callback runtime error
occurred

MQ_CANNOT_UNSUBSCRIBE_ACTIVE_CONSUMER X Cannot unsubscribe an active
consumer.

MQ_CLIENTID_IN_USE X Client id already in use

Table A–1 (Cont.) Message Queue C Client Error Codes

Code Common Description

Error Codes

Message Queue C API Error Codes A-3

MQ_CONCURRENT_ACCESS X Concurrent access

MQ_CONCURRENT_DEADLOCK X Operation may cause
deadlock

MQ_CONCURRENT_NOT_OWNER Concurrent access not owner

MQ_CONNECTION_CREATE_SESSION_ERROR Connection failed to create a
session.

MQ_CONNECTION_OPEN_ERROR Connection failed to open a
connection.

MQ_CONNECTION_START_ERROR Connection start failed.

MQ_CONNECTION_UNSUPPORTED_TRANSPORT X The transport specified is not
supported.

MQ_CONSUMER_CLOSED X The consumer was closed.

MQ_CONSUMER_EXCEPTION An exception occurred on the
consumer.

MQ_CONSUMER_NO_DURABLE_NAME X There is no durable name
specified

MQ_CONSUMER_NO_SESSION The consumer has no session.

MQ_CONSUMER_NOT_FOUND X Message consumer not found

MQ_CONSUMER_NOT_IN_SESSION X The consumer is not part of
this session.

MQ_CONSUMER_NOT_INITIALIZED The consumer has not been
initialized.

MQ_COULD_NOT_CONNECT_TO_BROKER X Could not connect to Broker

MQ_COULD_NOT_CREATE_THREAD X Could not create thread

MQ_DESTINATION_CONSUMER_LIMIT_EXCEEDED X The number of consumers on
the destination exceeded
limit.

MQ_DESTINATION_NO_CLASS The destination does not
have a class.

MQ_DESTINATION_NO_NAME The destination does not
have a name.

MQ_DESTINATION_NOT_TEMPORARY The destination is not
temporary

MQ_END_OF_STREAM End of stream

MQ_FILE_NOT_FOUND The property file could not be
found

Table A–1 (Cont.) Message Queue C Client Error Codes

Code Common Description

Error Codes

A-4 Open Message Queue 4.5.2 Developer's Guide for C Clients

MQ_FILE_OUTPUT_ERROR File output error

MQ_HANDLED_OBJECT_IN_USE The object could not be
deleted because there is
another reference to it.

MQ_HANDLED_OBJECT_INVALID_HANDLE_ERROR The object is invalid (i.e. it
has not been deleted).

MQ_HANDLED_OBJECT_NO_MORE_HANDLES A handle could not be
allocated because the supply
of handles has been
exhausted.

MQ_HASH_TABLE_ALLOCATION_FAILED The hash table could not be
allocated

MQ_HASH_VALUE_ALREADY_EXISTS X The hash value already exists
in the hash table.

MQ_ILLEGAL_CLOSE_XA_CONNECTION X Illegally closed an XA
connection

MQ_INCOMPATIBLE_LIBRARY X The library is incompatible

MQ_INPUT_STREAM_ERROR Input stream error

MQ_INTERNAL_ERROR Generic internal error

MQ_INVALID_ACKNOWLEDGE_MODE X Invalid acknowledge mode

MQ_INVALID_AUTHENTICATE_REQUEST Invalid authenticate request

MQ_INVALID_CLIENTID X Invalid client id

MQ_INVALID_CONSUMER_ID Invalid consumer id

MQ_INVALID_DELIVERY_MODE X Invalid delivery mode.

MQ_INVALID_DESTINATION_TYPE X Invalid destination type.

MQ_INVALID_ITERATOR Invalid iterator

MQ_INVALID_MESSAGE_SELECTOR X Invalid message selector.

MQ_INVALID_PACKET Invalid packet

MQ_INVALID_PACKET_FIELD Invalid packet field

MQ_INVALID_PORT Invalid port

Table A–1 (Cont.) Message Queue C Client Error Codes

Code Common Description

Error Codes

Message Queue C API Error Codes A-5

MQ_INVALID_PRIORITY X Invalid priority

MQ_INVALID_RECEIVE_MODE X Invalid receive mode.

MQ_INVALID_TRANSACTION_ID Invalid transaction id

MQ_INVALID_TYPE_CONVERSION X The object could not be
converted invalid input

MQ_MD5_HASH_FAILURE MD5 Hash failure

MQ_MESSAGE_NO_DESTINATION The message does not have a
destination

MQ_MESSAGE_NOT_IN_SESSION X The message was not
delivered to the session.

MQ_NEGATIVE_AMOUNT Negative amount

MQ_NO_AUTHENTICATION_HANDLER No authentication handler

MQ_NO_CONNECTION The session's connection has
been closed

MQ_NO_MESSAGE X There was no message to
receive.

MQ_NO_MESSAGE_PROPERTIES X There are no message
properties

MQ_NO_REPLY_TO_DESTINATION X The message does not have a
reply to destination.

MQ_NOT_ASYNC_RECEIVE_MODE X The session is not in async
receive mode.

MQ_NOT_FOUND X Not found

MQ_NOT_IPV4_ADDRESS Not an IPv4 Address

MQ_NOT_SYNC_RECEIVE_MODE X The session is not in sync
receive mode.

MQ_NOT_TRANSACTED_SESSION X The session is not transacted.

MQ_NOT_XA_CONNECTION X The connection is not an XA
connection.

MQ_NULL_PTR_ARG X NULL pointer passed to
method

MQ_NULL_STRING The string is NULL

MQ_NUMBER_NOT_INT16 Number not a UINT16

Table A–1 (Cont.) Message Queue C Client Error Codes

Code Common Description

Error Codes

A-6 Open Message Queue 4.5.2 Developer's Guide for C Clients

MQ_OBJECT_NOT_CLONABLE The object cannot be cloned

MQ_OUT_OF_MEMORY X Out of memory

MQ_PACKET_OUTPUT_ERROR Packet output error

MQ_POLL_ERROR Poll error

MQ_PORTMAPPER_ERROR Portmapper error

MQ_PORTMAPPER_INVALID_INPUT Portmapper returned invalid.

MQ_PORTMAPPER_WRONG_VERSION Portmapper is the wrong
version

MQ_PRODUCER_CLOSED X Producer closed.

MQ_PRODUCER_HAS_DESTINATION X The producer has a specified
destination

MQ_PRODUCER_NO_DESTINATION X The producer does not have a
specified destination.

MQ_PRODUCER_NOT_IN_SESSION X The producer is not part of
this session

MQ_PROPERTY_FILE_ERROR There was an error reading
from the property file

MQ_PROPERTY_NULL Property isNULL.

MQ_PROPERTY_WRONG_VALUE_TYPE X Property has the wrong value
type

MQ_PROTOCOL_HANDLER_AUTHENTICATE_FAILED Authenticating to the broker
failed.

MQ_PROTOCOL_HANDLER_DELETE_DESTINATION_FAILED Deleting destination failed

MQ_PROTOCOL_HANDLER_ERROR Protocol Handler error

MQ_PROTOCOL_HANDLER_GOODBYE_FAILED Error in saying goodbye to
broker.

MQ_PROTOCOL_HANDLER_HELLO_FAILED Error saying hello to the
broker.

MQ_PROTOCOL_HANDLER_READ_ERROR Reading a packet from the
broker failed.

MQ_PROTOCOL_HANDLER_RESUME_FLOW_FAILED Error resume flow from
broker.

MQ_PROTOCOL_HANDLER_SET_CLIENTID_FAILED Setting client id failed.

Table A–1 (Cont.) Message Queue C Client Error Codes

Code Common Description

Error Codes

Message Queue C API Error Codes A-7

MQ_PROTOCOL_HANDLER_START_FAILED Starting broker connection
failed.

MQ_PROTOCOL_HANDLER_STOP_FAILED Stopping broker connection
failed.

MQ_PROTOCOL_HANDLER_UNEXPECTED_REPLY Received an unexpected
reply from the broker.

MQ_PROTOCOL_HANDLER_WRITE_ERROR Writing a packet to the broker
failed.

MQ_QUEUE_CONSUMER_CANNOT_BE_DURABLE X A queue consumer cannot be
durable

MQ_READ_CHANNEL_DISPATCH_ERROR Read channel couldn't
dispatch packet.

MQ_READQTABLE_ERROR ReadQTable error

MQ_RECEIVE_QUEUE_CLOSED The receive queue is closed.

MQ_RECEIVE_QUEUE_ERROR The Session is not associated
with a connection.

MQ_REFERENCED_FREED_OBJECT_ERROR A freed object was
referenced.

MQ_REUSED_CONSUMER_ID Reused consumer id

MQ_SEND_NOT_FOUND X The destination to which this
message was sent could not
be found.

MQ_SEND_RESOURCE_FULL X The destination is full and is
rejecting new messages.

MQ_SEND_TOO_LARGE X The message exceeds the
single message size limit for
the server or for the
destination.

MQ_SERIALIZE_BAD_CLASS_UID Serialize bad class UID

MQ_SERIALIZE_BAD_HANDLE Serialize bad handle

MQ_SERIALIZE_BAD_MAGIC_NUMBER Serialize bad magic number

MQ_SERIALIZE_BAD_SUPER_CLASS Serialize bad super class

MQ_SERIALIZE_BAD_VERSION Serialize bad version

MQ_SERIALIZE_CANNOT_CLONE Serialize cannot clone

MQ_SERIALIZE_CORRUPTED_HASHTABLE Serialize corrupted hashtable

Table A–1 (Cont.) Message Queue C Client Error Codes

Code Common Description

Error Codes

A-8 Open Message Queue 4.5.2 Developer's Guide for C Clients

MQ_SERIALIZE_NO_CLASS_DESC Serialize no class description

MQ_SERIALIZE_NOT_CLASS_DEF Serialize not class definition

MQ_SERIALIZE_NOT_CLASS_HANDLE Serialize not a class object

MQ_SERIALIZE_NOT_HASHTABLE Serialize not a hashtable

MQ_SERIALIZE_NOT_OBJECT_HANDLE Serialize not a handle object

MQ_SERIALIZE_STRING_CONTAINS_NULL Serialize string containsNULL

MQ_SERIALIZE_STRING_TOO_BIG Serialize string too big

MQ_SERIALIZE_TEST_ERROR Serialize testing error

MQ_SERIALIZE_UNEXPECTED_BYTES Serialize unexpected bytes

MQ_SERIALIZE_UNRECOGNIZED_CLASS Serialize unrecognized class

MQ_SESSION_CLOSED X Session closed

MQ_SESSION_NOT_CLIENT_ACK_MODE X Session is not in client
acknowledge mode

MQ_SOCKET_CLOSE_FAILED Could not close the socket

MQ_SOCKET_CONNECT_FAILED Could not connect socket to
the host

MQ_SOCKET_ERROR Socket error

MQ_SOCKET_READ_FAILED Could not read from the
socket

MQ_SOCKET_SHUTDOWN_FAILED Could not shutdown socket

MQ_SOCKET_WRITE_FAILED Could not write to the socket

MQ_SSL_ALREADY_INITIALIZED X SSL has already been
initialized

MQ_SSL_CERT_ERROR SSL certification error

MQ_SSL_ERROR SSL error

MQ_SSL_INIT_ERROR SSL initialization error

Table A–1 (Cont.) Message Queue C Client Error Codes

Code Common Description

Error Codes

Message Queue C API Error Codes A-9

MQ_SSL_NOT_INITIALIZED X SSL not initialized

MQ_SSL_SOCKET_INIT_ERROR SSL socket initialization error

MQ_STATUS_CONNECTION_NOT_CLOSED X The connection cannot be
deleted because it was not
closed.

MQ_STATUS_INVALID_HANDLE X The handle passed to a
function is invalid.

MQ_STRING_NOT_NUMBER String not a number

MQ_SUCCESS X Success

MQ_TCP_ALREADY_CONNECTED TCP already connected.

MQ_TCP_CONNECTION_CLOSED TCP connection is closed.

MQ_TCP_INVALID_PORT Invalid TCP port.

MQ_TEMPORARY_DESTINATION_NOT_IN_CONNECTION X The temporary destination is
not in the connection.

MQ_THREAD_OUTSIDE_XA_TRANSACTION X The calling thread is not
associated with an XA
transaction

MQ_TIMEOUT_EXPIRED X Timeout expired

MQ_TRANSACTED_SESSION X Session is transacted.

MQ_TRANSACTION_ID_IN_USE Transaction id in use.

MQ_TYPE_CONVERSION_OUT_OF_BOUNDS The object conversion failed
because the value is out of
bounds

MQ_UNEXPECTED_ACKNOWLEDGEMENT Received an unexpected
acknowledgement

MQ_UNEXPECTED_NULL Unexpected null

MQ_UNINITIALIZED_STREAM Uninitialized stream

MQ_UNRECOGNIZED_PACKET_TYPE The packet type was
unrecognized

MQ_UNSUPPORTED_ARGUMENT_VALUE Unsupported argument value

MQ_UNSUPPORTED_AUTH_TYPE Unsupported authentication
type

Table A–1 (Cont.) Message Queue C Client Error Codes

Code Common Description

Error Codes

A-10 Open Message Queue 4.5.2 Developer's Guide for C Clients

MQ_UNSUPPORTED_MESSAGE_TYPE The JMS message type is not
supported

MQ_VECTOR_TOO_BIG Vector too big

MQ_WRONG_ARG_BUFFER_SIZE Buffer is the wrong size

MQ_XA_SESSION_IN_PROGRESS An XA session is in progress

MQ_XA_SESSION_NO_TRANSACTION The XA session has no active
transaction

Table A–1 (Cont.) Message Queue C Client Error Codes

Code Common Description

	Preface
	1 Introduction
	Message Queue for the C Developer
	Building and Running C Clients
	Building C Clients
	Providing Runtime Support

	Working With the Sample C-Client Programs
	Basic C-Client Programs
	Distributed Transaction Sample Programs

	Client Application Deployment Considerations

	2 Using the C API
	Message Queue C Client Setup Operations
	To Set Up a Message Queue C Client to Produce Messages
	To Set Up a Message Queue C Client to Consume Messages Synchronously
	To Set Up a Message Queue C Client to Consume Messages Asynchronously

	Working With Properties
	Setting Connection and Message Properties
	Getting Message Properties

	Working With Connections
	Defining Connection Properties
	Working With Secure Connections
	Shutting Down Connections

	Working With Sessions and Destinations
	Creating a Session
	Managing a Session
	Creating Destinations

	Working With Messages
	Composing Messages
	Sending a Message
	Receiving Messages
	Processing a Message

	Working With Distributed Transactions
	Message Queue Resource Manager Information
	Programming Examples

	Error Handling
	To Handle Errors in Your Code

	Memory Management
	Logging

	3 Client Design Issues
	Producers and Consumers
	Using Selectors Efficiently
	Determining Message Order and Priority
	Managing Threads
	Message Queue C Runtime Thread Model
	Concurrent Use of Handles
	Single-Threaded Session Control
	Connection Exceptions

	Managing Physical Destination Limits
	Managing the Dead Message Queue
	Factors Affecting Performance
	Delivery Mode (Persistent/Non-persistent)
	Use of Transactions
	Acknowledgement Mode
	Durable and Non-Durable Subscriptions
	Use of Selectors (Message Filtering)
	Message Size
	Message Type

	4 Reference
	Data Types
	Connection Properties
	Acknowledge Modes
	Callback Type for Asynchronous Message Consumption
	Callback Type for Asynchronous Message Consumption in Distributed Transactions
	Callback Type for Connection Exception Handling

	Function Reference
	MQAcknowledgeMessages
	MQCloseConnection
	MQCloseMessageConsumer
	MQCloseMessageProducer
	MQCloseSession
	MQCommitSession
	MQCreateAsyncDurableMessageConsumer
	MQCreateAsyncMessageConsumer
	MQCreateBytesMessage
	MQCreateConnection
	MQCreateDestination
	MQCreateDurableMessageConsumer
	MQCreateMessage
	MQCreateMessageConsumer
	MQCreateMessageProducer
	MQCreateMessageProducerForDestination
	MQCreateProperties
	MQCreateSession
	MQCreateTemporaryDestination
	MQCreateTextMessage
	MQCreateXASession
	MQFreeConnection
	MQFreeDestination
	MQFreeMessage
	MQFreeProperties
	MQFreeString
	MQGetAcknowledgeMode
	MQGetBoolProperty
	MQGetBytesMessageBytes
	MQGetConnectionProperties
	MQGetDestinationName
	MQGetDestinationType
	MQGetErrorTrace
	MQGetFloat64Property
	MQGetInt16Property
	MQGetInt32Property
	MQGetInt64Property
	MQGetInt8Property
	MQGetMessageHeaders
	MQGetMessageProperties
	MQGetMessageReplyTo
	MQGetMessageType
	MQGetMetaData
	MQGetPropertyType
	MQGetStatusCode
	MQGetStatusString
	MQGetStringProperty
	MQGetTextMessageText
	MQGetXAConnection
	MQInitializeSSL
	MQPropertiesKeyIterationGetNext
	MQPropertiesKeyIterationHasNext
	MQPropertiesKeyIterationStart
	MQReceiveMessageNoWait
	MQReceiveMessageWait
	MQReceiveMessageWithTimeout
	MQRecoverSession
	MQRollBackSession
	MQSendMessage
	MQSendMessageExt
	MQSendMessageToDestination
	MQSendMessageToDestinationExt
	MQSetBoolProperty
	MQSetBytesMessageBytes
	MQSetFloat32Property
	MQSetFloat64Property
	MQSetInt16Property
	MQSetInt32Property
	MQSetInt64Property
	MQSetInt8Property
	MQSetMessageHeaders
	MQSetMessageProperties
	MQSetMessageReplyTo
	MQSetStringProperty
	MQSetTextMessageText
	MQStartConnection
	MQStatusIsError
	MQStopConnection
	MQUnsubscribeDurableMessageConsumer

	Header Files

	A Message Queue C API Error Codes
	Error Codes

