
GlassFish v3 Application Server
Developer's Guide

Technology Preview 2

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–4496–06
May 2008

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

080530@20209

Contents

Preface ...13

Part I Development Tasks and Tools ... 19

1 Setting Up a Development Environment .. 21
Installing and Preparing the Server for Development .. 21
The GlassFish Project .. 22
Development Tools ... 22

The asadmin Command .. 23
The Admin Console ... 23
The NetBeans IDE .. 23
The Migration Tool ... 23
Debugging Tools .. 24
Profiling Tools .. 24
The Eclipse IDE .. 24

Sample Applications .. 24

2 Class Loaders ..25
The Class Loader Hierarchy ... 26
Delegation .. 27
Using the Java Optional Package Mechanism .. 27
Using the Endorsed Standards Override Mechanism ... 28
Class Loader Universes ... 28
Application-Specific Class Loading .. 28
Circumventing Class Loader Isolation ... 29

Using the Application Server Parent Class Loader .. 29

3

3 Debugging Applications ..31
Enabling Debugging ... 31

▼ To Set the Server to Automatically Start Up in Debug Mode ... 32
JPDA Options .. 32
Generating a Stack Trace for Debugging .. 33
Enabling Verbose Mode ... 33
Application Server Logging .. 33
Profiling Tools ... 34

The NetBeans Profiler ... 34
The HPROF Profiler .. 34
The JProbe Profiler .. 35

Part II Developing Applications and Application Components .. 39

4 Securing Applications ...41
Security Goals .. 41
Container Security .. 42

Declarative Security ... 42
Programmatic Security .. 43

Roles, Principals, and Principal to Role Mapping ... 43
Realm Configuration .. 44

Supported Realms .. 45
How to Configure a Realm .. 45
How to Set a Realm for a Web Application ... 45

JACC Support .. 45
The server.policy File ... 46

Default Permissions ... 46
Changing Permissions for an Application .. 46
Enabling and Disabling the Security Manager ... 48

5 Developing Web Services ...51
Creating Portable Web Service Artifacts .. 52
Deploying a Web Service .. 52
Web Services Registry ... 53

Contents

GlassFish v3 Application Server Developer's Guide • May 20084

The Web Service URI, WSDL File, and Test Page ... 54
Using the Woodstox Parser .. 55

6 Using the Java Persistence API .. 57
Specifying the Database .. 58
Additional Database Properties ... 60
Configuring the Cache .. 60
Setting the Logging Level .. 60
Using Lazy Loading ... 60
Primary Key Generation Defaults ... 61
Automatic Schema Generation .. 61

Annotations .. 62
Generation Options ... 62

Query Hints .. 63
Changing the Persistence Provider ... 63
Database Restrictions and Optimizations .. 64

Using @OrderBy with a Shared Session Cache .. 64
Using BLOB or CLOB Types with the Inet Oraxo JDBC Driver .. 64
Database Case Sensitivity .. 65
Sybase Finder Limitation .. 66
MySQL Database Restrictions .. 66

7 Developing Web Applications ...69
Packaging an EJB JAR File in a Web Application .. 69
Using Servlets ... 70

Invoking a Servlet With a URL ... 70
Servlet Output .. 71
Caching Servlet Results ... 72
About the Servlet Engine ... 75

Using JavaServer Pages ... 76
Creating and Managing Sessions ... 76

Configuring Sessions ... 76
Session Managers ... 77

Using the Grizzly Comet API ... 78
Introduction to Comet .. 78

Contents

5

The Hidden Example ... 82
Creating a Comet-Enabled Application .. 82
Deploying and Running a Comet-Enabled Application ... 89

Advanced Web Application Features .. 90
Internationalization Issues .. 91
Virtual Servers .. 92
Default Web Modules .. 93
Class Loader Delegation .. 93
Using the default-web.xml File .. 94
Configuring Idempotent URL Requests ... 94
Header Management ... 95
Configuring Valves and Catalina Listeners .. 96
Alternate Document Roots ... 96
Redirecting URLs ... 98
Using a context.xml File .. 98
Enabling WebDav .. 98
Using mod_jk ... 100

8 Using Enterprise JavaBeans Technology ...103
Summary of EJB 3.1 Changes ... 103
Value Added Features ... 104

Bean-Level Container-Managed Transaction Timeouts .. 105
EJB Timer Service .. 105
Using Session Beans .. 106

About the Session Bean Containers ... 106
Session Bean Restrictions and Optimizations .. 107

Handling Transactions With Enterprise Beans ... 107
Flat Transactions .. 107
Local Transactions ... 108
Administration and Monitoring .. 108

Contents

GlassFish v3 Application Server Developer's Guide • May 20086

Part III Using Services and APIs ... 109

9 Using the JDBC API for Database Access ... 111
General Steps for Creating a JDBC Resource ... 111

Integrating the JDBC Driver ... 112
Creating a Connection Pool .. 112
Testing a JDBC Connection Pool ... 113
Creating a JDBC Resource .. 113

Creating Web Applications That Use the JDBC API .. 113
Sharing Connections ... 113
Obtaining a Physical Connection From a Wrapped Connection .. 114
Using the Connection.unwrap() Method .. 114
Marking Bad Connections .. 115
Using Non-Transactional Connections .. 115
Using JDBC Transaction Isolation Levels ... 116
Allowing Non-Component Callers ... 117

Restrictions and Optimizations ... 118
Disabling Stored Procedure Creation on Sybase .. 118

10 Using the Transaction Service ...119
Transaction Scope ... 119
The Transaction Manager, the Transaction Synchronization Registry, and
UserTransaction .. 120

11 Using the Java Naming and Directory Interface .. 121
Accessing the Naming Context .. 121

Global JNDI Names ... 122
Mapping References .. 122

Index ... 125

Contents

7

8

Tables

TABLE 2–1 GlassFish Application Server Class Loaders ... 26
TABLE 7–1 URL Fields for Servlets Within an Application .. 71
TABLE 9–1 Transaction Isolation Levels .. 116

9

10

Figures

11

12

Preface

This Developer's Guide describes how to create and run JavaTM Platform, Enterprise Edition
(Java EE platform) applications that follow the open Java standards model for Java EE
components and APIs in the Sun Java System Application Server environment. Topics include
developer tools, security, debugging, and creating lifecycle modules. This book is intended for
use by software developers who create, assemble, and deploy Java EE applications using
GlassFish servers and software.

This preface contains information about and conventions for the entire GlassFishTM Application
Server documentation set.

Application Server Documentation Set
The Application Server documentation set describes deployment planning and system
installation. The Uniform Resource Locator (URL) for Application Server documentation is
http://docs.sun.com/coll/1343.7. For an introduction to Application Server, refer to the
books in the order in which they are listed in the following table.

TABLE P–1 Books in the Application Server Documentation Set

Book Title Description

Release Notes Provides late-breaking information about the software and the
documentation. Includes a comprehensive, table-based summary of the
supported hardware, operating system, Java Development Kit (JDKTM), and
database drivers.

Quick Start Guide Explains how to get started with the Application Server product.

Installation Guide Explains how to install the software and its components.

Application Deployment Guide Explains how to assemble and deploy applications to the Application Server
and provides information about deployment descriptors.

13

http://docs.sun.com/coll/1343.7

TABLE P–1 Books in the Application Server Documentation Set (Continued)
Book Title Description

Developer’s Guide Explains how to create and implement Java Platform, Enterprise Edition
(Java EE platform) applications that are intended to run on the Application
Server. These applications follow the open Java standards model for Java EE
components and APIs. This guide provides information about developer
tools, security, debugging, and creating lifecycle modules.

Java EE 5 Tutorial Explains how to use Java EE 5 platform technologies and APIs to develop
Java EE applications.

Java WSIT Tutorial Explains how to develop web applications by using the Web Service
Interoperability Technologies (WSIT). The tutorial focuses on developing
web service endpoints and clients that can interoperate with Windows
Communication Foundation (WCF) endpoints and clients.

Administration Guide Explains how to configure and manage Application Server subsystems and
components from the command line by using the asadmin(1M) utility.
Instructions for performing these tasks from the Admin Console are
provided in the Admin Console online help.

RESTful Web Services
Developer's Guide

Explains how to develop Representational State Transfer (RESTful) web
services for Application Server.

Getting Started With JRuby on
Rails for the GlassFish
Application Server

Explains how to develop Ruby on Rails applications for deployment to
Application Server.

Getting Started With Project
jMaki for the GlassFish
Application Server

Explains how to use the jMaki framework to develop Ajax-enabled web
applications that are centered on JavaScriptTM technology for deployment to
Application Server.

Reference Manual Provides reference information in man page format for Application Server
administration commands, utility commands, and related concepts.

Related Documentation
A JavadocTM tool reference for packages that are provided with the Application Server is located
at http://glassfish.dev.java.net/nonav/javaee5/api/index.html. Additionally, the
following resources might be useful:

■ The Java EE 5 Specifications (http://java.sun.com/javaee/5/javatech.html)
■ The Java EE Blueprints (http://java.sun.com/reference/blueprints/index.html)

For information about creating enterprise applications in the NetBeansTM Integrated
Development Environment (IDE), see http://www.netbeans.org/kb/60/index.html.

For information about the Java DB database for use with the Application Server, see
http://developers.sun.com/javadb/.

Preface

GlassFish v3 Application Server Developer's Guide • May 200814

http://glassfish.dev.java.net/nonav/javaee5/api/index.html
http://java.sun.com/javaee/5/javatech.html
http://java.sun.com/reference/blueprints/index.html
http://www.netbeans.org/kb/60/index.html
http://developers.sun.com/javadb/

The GlassFish Samples project is a collection of sample applications that demonstrate a broad
range of Java EE technologies. The GlassFish Samples are bundled with the Java EE Software
Development Kit (SDK), and are also available from the GlassFish Samples project page at
https://glassfish-samples.dev.java.net/.

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

TABLE P–2 Default Paths and File Names

Placeholder Description Default Value

as-install Represents the base installation directory for
Application Server.

Installations on the SolarisTM operating system and Linux
operating system:

user’s-home-directory/glassfish-v3tp2/glassfish

Windows, all installations:

SystemDrive:\Program Files\glassfish-v3tp2\glassfish

domain-root-dir Represents the directory containing all
domains.

as-install/domains/

domain-dir Represents the directory for a domain.

In configuration files, you might see
domain-dir represented as follows:

${com.sun.aas.instanceRoot}

domain-root-dir/domain-name

instance-dir Represents the directory for a server instance. domain-dir/instance-name

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–3 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

Preface

15

https://glassfish-samples.dev.java.net/

TABLE P–3 Typographic Conventions (Continued)
Typeface Meaning Example

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–4 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Preface

GlassFish v3 Application Server Developer's Guide • May 200816

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Searching Sun Product Documentation
Besides searching Sun product documentation from the docs.sun.comSM web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use sun.com in place of docs.sun.com in the search field.

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the part number of this book is 820-4496.

Preface

17

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://java.sun.com
http://www.sun.com
http://developers.sun.com
http://docs.sun.com

18

Development Tasks and Tools

P A R T I

19

20

Setting Up a Development Environment

This chapter gives guidelines for setting up an application development environment in the Sun
JavaTM System Application Server. Setting up an environment for creating, assembling,
deploying, and debugging your code involves installing the mainstream version of the
Application Server and making use of development tools. In addition, sample applications are
available. These topics are covered in the following sections:

■ “Installing and Preparing the Server for Development” on page 21
■ “The GlassFish Project” on page 22
■ “Development Tools” on page 22
■ “Sample Applications” on page 24

Installing and Preparing the Server for Development
The following components are included in the full installation.

■ JDK
■ Application Server core

■ Java 2 Platform, Standard Edition (J2SETM) 5
■ Java SE 5 compliant application server
■ Admin Console
■ asadmin utility
■ Other development and deployment tools
■ Java DB database, based on the Derby database from Apache

(http://db.apache.org/derby/manuals)

The NetBeansTM Integrated Development Environment (IDE) bundles the GlassFish edition of
the Application Server, so information about this IDE is provided as well.

After you have installed Application Server, you can further optimize the server for
development in these ways:

1C H A P T E R 1

21

http://db.apache.org/derby/manuals
http://db.apache.org/derby/manuals

■ Locate utility classes and libraries so they can be accessed by the proper class loaders. For
more information, see “Using the Application Server Parent Class Loader” on page 29.

■ Set up debugging. For more information, see Chapter 3, “Debugging Applications.”
■ Configure the Java Virtual Machine (JVMTM) software. For more information, see Chapter 3,

“Administering the Java Virtual Machine (JVM),” in GlassFish v3 Application Server
Administration Guide.

The GlassFish Project
Application Server v3 Technology Preview 2 is developed through the GlassFishSM project
open-source community at https://glassfish.dev.java.net/. The GlassFish project
provides a structured process for developing the Application Server platform that makes the
new features of Java EE 5 available faster, while maintaining the most important feature of Java
EE: compatibility. It enables Java developers to access the Application Server source code and to
contribute to the development of the Application Server. The GlassFish project is designed to
encourage communication between Sun engineers and the community.

The Java ES edition of the Application Server is based on the GlassFish source code, but
provides additional value-added features such as access to a high-availability database (HADB)
for session persistence and failover.

Development Tools
The following general tools are provided with the Application Server:

■ “The asadmin Command” on page 23
■ “The Admin Console” on page 23

The following development tools are provided with the Application Server or downloadable
from Sun:

■ “The NetBeans IDE” on page 23
■ “The Migration Tool” on page 23

The following third-party tools might also be useful:

■ “Debugging Tools” on page 24
■ “Profiling Tools” on page 24
■ “The Eclipse IDE” on page 24

The GlassFish Project

GlassFish v3 Application Server Developer's Guide • May 200822

https://glassfish.dev.java.net/

The asadminCommand
The asadmin command allows you to configure a local or remote server and perform both
administrative and development tasks at the command line. For general information about
asadmin, see the GlassFish v3 Application Server Reference Manual.

The asadmin command is located in the as-install/bin directory. Type asadmin help for a list
of subcommands.

The Admin Console
The Admin Console lets you configure the server and perform both administrative and
development tasks using a web browser. For general information about the Admin Console,
click the Help button in the Admin Console. This displays the Application Server online help.

To access the Admin Console, type http://host:4848 (developer profile) or
https://host:4848 (cluster and enterprise profiles) in your browser. The host is the name of
the machine on which the Application Server is running. By default, the host is localhost. For
example:

http://localhost:4848

The NetBeans IDE
The NetBeans IDE allows you to create, assemble, and debug code from a single, easy-to-use
interface. The GlassFish edition of the Application Server is bundled with the NetBeans 5.5 IDE.
To download the NetBeans IDE, see http://www.netbeans.org. This site also provides
documentation on how to use the NetBeans IDE with the bundled Application Server.

You can also use the Application Server with the Sun Java Studio 8 software, which is built on
the NetBeans IDE. For more information, see
http://developers.sun.com/prodtech/javatools/jsenterprise/.

The Migration Tool
The Migration Tool converts and reassembles Java EE applications and modules developed on
other application servers. This tool also generates a report listing how many files are
successfully and unsuccessfully migrated, with reasons for migration failure. For more
information and to download the Migration Tool, see
http://java.sun.com/j2ee/tools/migration/index.html.

Development Tools

Chapter 1 • Setting Up a Development Environment 23

http://www.netbeans.org
http://developers.sun.com/prodtech/javatools/jsenterprise/
http://java.sun.com/j2ee/tools/migration/index.html

Debugging Tools
You can use several debugging tools with the Application Server. For more information, see
Chapter 3, “Debugging Applications.”

Profiling Tools
You can use several profilers with the Application Server. For more information, see “Profiling
Tools” on page 34.

The Eclipse IDE
A plug-in for the Eclipse IDE is available at http://glassfishplugins.dev.java.net/. This
site also provides documentation on how to register the Application Server and use Sun-specific
deployment descriptors.

Sample Applications
Sample applications that you can examine and deploy to the Application Server are available. If
you installed the Application Server as part of installing the Java EE 5 SDK bundle from Java EE
5 Downloads (http://java.sun.com/javaee/5/downloads/), the samples may already be
installed. You can download these samples separately from the Code Samples
(http://java.sun.com/javaee/reference/code/index.jsp) page if you installed the
Application Server without them initially.

Most Application Server samples have the following directory structure:

■ The docs directory contains instructions for how to use the sample.
■ The src/java directory under each component contains source code for the sample.
■ The src/conf directory under each component contains the deployment descriptors.

With a few exceptions, sample applications follow the standard directory structure described
here: http://java.sun.com/blueprints/code/projectconventions.html.

The samples-install-dir/bp-project/main.xml file defines properties common to all sample
applications and implements targets needed to compile, assemble, deploy, and undeploy
sample applications. In most sample applications, the build.xml file imports main.xml.

In addition to the Java EE 5 sample applications, samples are also available on the GlassFish web
site at https://glassfish-samples.dev.java.net/.

Sample Applications

GlassFish v3 Application Server Developer's Guide • May 200824

http://glassfishplugins.dev.java.net/
http://java.sun.com/javaee/5/downloads/
http://java.sun.com/javaee/5/downloads/
http://java.sun.com/javaee/reference/code/index.jsp
http://java.sun.com/javaee/reference/code/index.jsp
http://java.sun.com/blueprints/code/projectconventions.html
https://glassfish-samples.dev.java.net/

Class Loaders

Understanding Application Server class loaders can help you determine where to place
supporting JAR and resource files for your modules and applications. For general information
about J2SE class loaders, see Understanding Network Class Loaders
(http://java.sun.com/developer/technicalArticles/Networking/classloaders/).

In a Java Virtual Machine (JVM), the class loaders dynamically load a specific Java class file
needed for resolving a dependency. For example, when an instance of java.util.Enumeration
needs to be created, one of the class loaders loads the relevant class into the environment. This
section includes the following topics:

■ “The Class Loader Hierarchy” on page 26
■ “Delegation” on page 27
■ “Using the Java Optional Package Mechanism” on page 27
■ “Using the Endorsed Standards Override Mechanism” on page 28
■ “Class Loader Universes” on page 28
■ “Application-Specific Class Loading” on page 28
■ “Circumventing Class Loader Isolation” on page 29

Note – For GlassFish v3 Technology Preview 2, EJB modules are not supported unless the
optional EJB container module is downloaded from the Update Center. Web services are not
supported unless the optional Metro module is downloaded from the Update Center. For
information about the Update Center, see the GlassFish v3 Application Server Quick Start
Guide.

2C H A P T E R 2

25

http://java.sun.com/developer/technicalArticles/Networking/classloaders/
http://java.sun.com/developer/technicalArticles/Networking/classloaders/

The Class Loader Hierarchy
Class loaders in the Application Server runtime follow a delegation hierarchy that is fully
described in Table 2–1.

TABLE 2–1 GlassFish Application Server Class Loaders

Class Loader Description

Application Server
Parent

The Application Server Parent class loader loads classes in the domain-dir/lib/classes
directory, followed by JAR files in the domain-dir/lib directory. It is parent to the
Application Parent class loader. No special classpath settings are required. See “Using
the Application Server Parent Class Loader” on page 29.

Application Parent The Application Parent class loader loads the classes in and needed by a specific enabled
individually deployed module. One instance of this class loader is present in each class
loader universe; see “Class Loader Universes” on page 28. The Application Parent class
loader is created with a list of URLs that point to the locations of the classes it needs to
load. It is parent to the Web class loader.

The Application Parent class loader loads classes in the following order:
1. Classes specified by the –-libraries option during deployment; see

“Application-Specific Class Loading” on page 28

2. Classes specified by the module's location attribute in the domain.xml file,
determined during deployment

3. Classes in the module's stubs directory

The location attribute points to domain-dir/applications/module-name.

The stubs directory is domain-dir/generated/ejb/module-name.

Web The Web class loader loads the servlets and other classes in a specific enabled web
module or a Java EE application that contains a web module. This class loader is present
in each class loader universe that contains a web module; see “Class Loader Universes”
on page 28. One instance is created for each web module. The Web class loader is
created with a list of URLs that point to the locations of the classes it needs to load. The
classes it loads are in WEB-INF/classes or WEB-INF/lib/*.jar. It is parent to the JSP
Engine class loader.

JSP Engine The JSP Engine class loader loads compiled JSP classes of enabled JSP files. This class
loader is present in each class loader universe that contains a JSP page; see “Class Loader
Universes” on page 28. The JSP Engine class loader is created with a list of URLs that
point to the locations of the classes it needs to load.

The Class Loader Hierarchy

GlassFish v3 Application Server Developer's Guide • May 200826

Delegation
Note that the class loader hierarchy is not a Java inheritance hierarchy, but a delegation
hierarchy. In the delegation design, a class loader delegates classloading to its parent before
attempting to load a class itself. A class loader parent can be either the System class loader or
another custom class loader. If the parent class loader cannot load a class, the class loader
attempts to load the class itself. In effect, a class loader is responsible for loading only the classes
not available to the parent. Classes loaded by a class loader higher in the hierarchy cannot refer
to classes available lower in the hierarchy.

The Java Servlet specification recommends that the Web class loader look in the local class
loader before delegating to its parent. You can make the Web class loader follow the delegation
inversion model in the Servlet specification by setting delegate="false" in the class-loader
element of the sun-web.xml file. It is safe to do this only for a web module that does not interact
with any other modules. For details, see “class-loader” in GlassFish v3 Application Server
Application Deployment Guide.

The default value is delegate="true", which causes the Web class loader to delegate in the same
manner as the other class loaders. You must use delegate="true" for a web application that
accesses EJB components or that acts as a web service client or endpoint. For details about
sun-web.xml, see GlassFish v3 Application Server Application Deployment Guide.

Note – For Technology Preview 2, the delegate value is ignored and assumed to be set to true.

Using the Java Optional Package Mechanism
Optional packages are packages of Java classes and associated native code that application
developers can use to extend the functionality of the core platform.

To use the Java optional package mechanism, copy the JAR files into the domain-dir/lib/ext
directory, then restart the server.

For more information, see Optional Packages - An Overview
(http://java.sun.com/j2se/1.5.0/docs/guide/extensions/extensions.html) and
Understanding Extension Class Loading
(http://java.sun.com/docs/books/tutorial/ext/basics/load.html).

Using the Java Optional Package Mechanism

Chapter 2 • Class Loaders 27

http://java.sun.com/j2se/1.5.0/docs/guide/extensions/extensions.html
http://java.sun.com/j2se/1.5.0/docs/guide/extensions/extensions.html
http://java.sun.com/docs/books/tutorial/ext/basics/load.html
http://java.sun.com/docs/books/tutorial/ext/basics/load.html

Using the Endorsed Standards Override Mechanism
Endorsed standards handle changes to classes and APIs that are bundled in the JDK but are
subject to change by external bodies.

To use the endorsed standards override mechanism, copy the JAR files into the
domain-dir/lib/endorsed directory, then restart the server.

For more information and the list of packages that can be overridden, see Endorsed Standards
Override Mechanism (http://java.sun.com/j2se/1.5.0/docs/guide/standards/).

Class Loader Universes
Access to components within modules installed on the server occurs within the context of
isolated class loader universes, each of which has its own Application Parent, Web, and JSP
Engine class loaders.

■ Individually Deployed Module Universe – Each individually deployed EJB JAR or web
WAR has its own class loader universe, which loads the classes in the module.

A resource such as a file that is accessed by a servlet, JSP, or EJB component must be in one of
the following locations:

■ A directory pointed to by the Libraries field or --libraries option used during deployment
■ A directory pointed to by the class loader’s classpath; for example, the web class loader’s

classpath includes these directories:

module-name/WEB-INF/classes
module-name/WEB-INF/lib

Application-Specific Class Loading
You can specify module-specific library classes during deployment in one of the following ways:

■ Use the Admin Console. Open the Applications component, then go to the page for the type
of module. Select the Deploy button. Type the comma-separated paths in the Libraries field.
For details, click the Help button in the Admin Console.

■ Use the asadmin deploy command with the --libraries option and specify
comma-separated paths. For details, see the GlassFish v3 Application Server Reference
Manual.

Application libraries are included in the Application class loader. Paths to libraries can be
relative or absolute. A relative path is relative to domain-dir/lib/applibs. If the path is
absolute, the path must be accessible to the domain administration server (DAS).

Using the Endorsed Standards Override Mechanism

GlassFish v3 Application Server Developer's Guide • May 200828

http://java.sun.com/j2se/1.5.0/docs/guide/standards/
http://java.sun.com/j2se/1.5.0/docs/guide/standards/

If multiple modules refer to the same libraries, classes in those libraries are automatically
shared. This can reduce the memory footprint and allow sharing of static information.
However, modules using application-specific libraries are not portable. Other ways to make
libraries available are described in “Circumventing Class Loader Isolation” on page 29.

For general information about deployment, see the GlassFish v3 Application Server Application
Deployment Guide.

Note – If you see an access control error message when you try to use a library, you may need to
grant permission to the library in the server.policy file. For more information, see “Changing
Permissions for an Application” on page 46.

Circumventing Class Loader Isolation
Since each application or individually deployed module class loader universe is isolated, an
application or module cannot load classes from another application or module. This prevents
two similarly named classes in different applications from interfering with each other.

To circumvent this limitation for libraries, utility classes, or individually deployed modules, you
can include the relevant path to the required classes. See “Using the Application Server Parent
Class Loader” on page 29.

Using the Application Server Parent Class Loader
To use the Application Server Parent class loader, copy the JAR files into the domain-dir/lib
directory or copy the .class files into the domain-dir/lib/classes directory, then restart the
server.

Using the Application Server Parent class loader makes a module accessible to all modules
deployed on servers that share the same configuration.

For example, using the Application Server Parent class loader is the recommended way of
adding JDBC drivers to the Application Server. For a list of the JDBC drivers currently
supported by the Application Server, see the GlassFish v3 Application Server Release Notes. For
configurations of supported and other drivers, see “Configuration Specifics for JDBC Drivers”
in GlassFish v3 Application Server Administration Guide.

Circumventing Class Loader Isolation

Chapter 2 • Class Loaders 29

30

Debugging Applications

This chapter gives guidelines for debugging applications in the GlassFish Application Server. It
includes the following sections:

■ “Enabling Debugging” on page 31
■ “JPDA Options” on page 32
■ “Generating a Stack Trace for Debugging” on page 33
■ “Enabling Verbose Mode” on page 33
■ “Application Server Logging” on page 33
■ “Profiling Tools” on page 34

Enabling Debugging
When you enable debugging, you enable both local and remote debugging. To start the server in
debug mode, use the --debug option as follows:

asadmin start-domain --user adminuser --debug [domain-name]

You can then attach to the server from the Java Debugger (jdb) at its default Java Platform
Debugger Architecture (JPDA) port, which is 9009. For example, for UNIX® systems:

jdb -attach 9009

For Windows:

jdb -connect com.sun.jdi.SocketAttach:port=9009

For more information about the jdb debugger, see the following links:

■ Java Platform Debugger Architecture - The Java Debugger:
http://java.sun.com/products/jpda/doc/soljdb.html

■ Java Platform Debugger Architecture - Connecting with JDB:
http://java.sun.com/products/jpda/doc/conninv.html#JDB

3C H A P T E R 3

31

http://java.sun.com/products/jpda/doc/soljdb.html
http://java.sun.com/products/jpda/doc/conninv.html#JDB

Application Server debugging is based on the JPDA. For more information, see “JPDA Options”
on page 32.

You can attach to the Application Server using any JPDA compliant debugger, including that of
NetBeans (http://www.netbeans.org), Sun Java Studio, JBuilder, Eclipse, and so on.

You can enable debugging even when the application server is started without the --debug
option. This is useful if you start the application server from the Windows Start Menu, or if you
want to make sure that debugging is always turned on.

▼ To Set the Server to Automatically Start Up in Debug
Mode

Use the Admin Console. In the developer profile, select the Application Server component and
the JVM Settings tab. In the cluster profile, select the JVM Settings component under the
relevant configuration.

Check the Debug Enabled box.

To specify a different port (from 9009, the default) to use when attaching the JVM to a debugger,
specify address= port-number in the Debug Options field.

To add JPDA options, add any desired JPDA debugging options in Debug Options. See “JPDA
Options”on page 32.

For details, click the Help button in the Admin Console from the JVM Settings page.

JPDA Options
The default JPDA options in Application Server are as follows:

-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=9009

For Windows, you can change dt_socket to dt_shmem.

If you substitute suspend=y, the JVM starts in suspended mode and stays suspended until a
debugger attaches to it. This is helpful if you want to start debugging as soon as the JVM starts.

To specify a different port (from 9009, the default) to use when attaching the JVM to a
debugger, specify address=port-number.

You can include additional options. A list of JPDA debugging options is available at
http://java.sun.com/products/jpda/doc/conninv.html#Invocation.

1

2

3

4

See Also

JPDA Options

GlassFish v3 Application Server Developer's Guide • May 200832

http://www.netbeans.org
http://java.sun.com/products/jpda/doc/conninv.html#Invocation

Generating a Stack Trace for Debugging
To generate a Java stack trace for debugging, use the asadmin generate-jvm-report
--type=thread command. The stack trace goes to the domain-dir/logs/server.log file and
also appears on the command prompt screen. For more information about the asadmin
generate-jvm-report command, see the GlassFish v3 Application Server Reference Manual.

Enabling Verbose Mode
To have the server logs and messages printed to System.out on your command prompt screen,
you can start the server in verbose mode. This makes it easy to do simple debugging using print
statements, without having to view the server.log file every time.

To start the server in verbose mode, use the --verbose option as follows:

asadmin start-domain --user adminuser --verbose [domain-name]

On Windows platforms, you must perform an extra preparation step if you want to use
Ctrl-Break to print a thread dump. In the as-install/asenv.bat file, change
AS_NATIVE_LAUNCHER="false" to AS_NATIVE_LAUNCHER="true".

When the server is in verbose mode, messages are logged to the console or terminal window in
addition to the log file. In addition, pressing Ctrl-C stops the server and pressing Ctrl-\ (on
UNIX platforms) or Ctrl-Break (on Windows platforms) prints a thread dump. On UNIX
platforms, you can also print a thread dump using the jstack command (see
http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jstack.html) or the command
kill -QUIT process_id.

Application Server Logging
You can use the Application Server’s log files to help debug your applications. Use the Admin
Console. In the developer profile, select the Application Server component. In the cluster
profile, select the Stand-Alone Instances component, and select the instance from the table.
Then click the View Log Files button in the General Information page.

To change logging settings in the developer profile, select the Logging tab. In the cluster profile,
select Logger Settings under the relevant configuration.

For details about logging, click the Help button in the Admin Console.

Application Server Logging

Chapter 3 • Debugging Applications 33

http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jstack.html

Profiling Tools
You can use a profiler to perform remote profiling on the Application Server to discover
bottlenecks in server-side performance. This section describes how to configure these profilers
for use with the Application Server:

■ “The NetBeans Profiler” on page 34
■ “The HPROF Profiler” on page 34
■ “The JProbe Profiler” on page 35

Information about comprehensive monitoring and management support in the JavaTM 2
Platform, Standard Edition (J2SETM platform) is available at
http://java.sun.com/j2se/1.5.0/docs/guide/management/index.html.

The NetBeans Profiler
For information on how to use the NetBeans profiler, see http://www.netbeans.org and
http://blogs.sun.com/

roller/page/bhavani?entry=analyzing_the_performance_of_java.

The HPROF Profiler
The Heap and CPU Profiling Agent (HPROF) is a simple profiler agent shipped with the Java 2
SDK. It is a dynamically linked library that interacts with the Java Virtual Machine Profiler
Interface (JVMPI) and writes out profiling information either to a file or to a socket in ASCII or
binary format.

HPROF can monitor CPU usage, heap allocation statistics, and contention profiles. In addition,
it can also report complete heap dumps and states of all the monitors and threads in the Java
virtual machine. For more details on the HPROF profiler, see the JDK documentation at
http://java.sun.com/j2se/1.5.0/docs/guide/jvmpi/jvmpi.html#hprof.

After HPROF is enabled using the following instructions, its libraries are loaded into the server
process.

▼ To Use HPROF Profiling on UNIX

Use the Admin Console. In the developer profile, select the Application Server component and
the JVM Settings tab. In the cluster profile, select the JVM Settings component under the
relevant configuration. Then select the Profiler tab.

Edit the following fields:

■ Profiler Name – hprof

1

2

Profiling Tools

GlassFish v3 Application Server Developer's Guide • May 200834

http://java.sun.com/j2se/1.5.0/docs/guide/management/index.html
http://www.netbeans.org
http://blogs.sun.com/roller/page/bhavani?entry=analyzing_the_performance_of_java
http://blogs.sun.com/roller/page/bhavani?entry=analyzing_the_performance_of_java
http://java.sun.com/j2se/1.5.0/docs/guide/jvmpi/jvmpi.html#hprof

■ Profiler Enabled – true

■ Classpath – (leave blank)
■ Native Library Path – (leave blank)
■ JVM Option – Select Add, type the HPROF JVM option in the Value field, then check its

box. The syntax of the HPROF JVM option is as follows:

-Xrunhprof[:help]|[:param=value,param2=value2, ...]

Here is an example of params you can use:

-Xrunhprof:file=log.txt,thread=y,depth=3

The file parameter determines where the stack dump is written.

Using help lists parameters that can be passed to HPROF. The output is as follows:

Hprof usage: -Xrunhprof[:help]|[:<option>=<value>, ...]

Option Name and Value Description Default

--------------------- ----------- -------

heap=dump|sites|all heap profiling all

cpu=samples|old CPU usage off

format=a|b ascii or binary output a

file=<file> write data to file java.hprof

(.txt for ascii)

net=<host>:<port> send data over a socket write to file

depth=<size> stack trace depth 4

cutoff=<value> output cutoff point 0.0001

lineno=y|n line number in traces? y

thread=y|n thread in traces? n

doe=y|n dump on exit? y

Note – Do not use help in the JVM Option field. This parameter prints text to the standard
output and then exits.

The help output refers to the parameters as options, but they are not the same thing as JVM
options.

Restart the Application Server.
This writes an HPROF stack dump to the file you specified using the file HPROF parameter.

The JProbe Profiler
Information about JProbeTM from Sitraka is available at http://www.quest.com/jprobe/.

3

Profiling Tools

Chapter 3 • Debugging Applications 35

http://www.quest.com/jprobe/

After JProbe is installed using the following instructions, its libraries are loaded into the server
process.

▼ To Enable Remote Profiling With JProbe

Install JProbe 3.0.1.1.

For details, see the JProbe documentation.

Configure Application Server using the Admin Console:

a. In the developer profile, select the Application Server component and the JVM Settings tab.
In the cluster profile, select the JVM Settings component under the relevant configuration.
Then select the Profiler tab.

b. Edit the following fields before selecting Save and restarting the server:

■ Profiler Name – jprobe

■ Profiler Enabled – true

■ Classpath – (leave blank)
■ Native Library Path – JProbe-dir/profiler
■ JVM Option – For each of these options, select Add, type the option in the Value field,

then check its box

-Xbootclasspath/p:JProbe-dir/profiler/jpagent.jar

-Xrunjprobeagent

-Xnoclassgc

Note – If any of the configuration options are missing or incorrect, the profiler might
experience problems that affect the performance of the Application Server.

When the server starts up with this configuration, you can attach the profiler.

Set the following environment variable:
JPROBE_ARGS_0=-jp_input=JPL-file-path

See Step 6 for instructions on how to create the JPL file.

Start the server instance.

Launch the jpprofiler and attach to Remote Session. The default port is 4444.

1

2

3

4

5

Profiling Tools

GlassFish v3 Application Server Developer's Guide • May 200836

Create the JPL file using the JProbe Launch Pad. Here are the required settings:

a. Select Server Side for the type of application.

b. On the Program tab, provide the following details:

■ Target Server – other-server
■ Server home Directory – as-install
■ Server class File – com.sun.enterprise.server.J2EERunner

■ Working Directory – as-install
■ Classpath – as-install/lib/appserv-rt.jar
■ Source File Path – source-code-dir (in case you want to get the line level details)
■ Server class arguments – (optional)
■ Main Package – com.sun.enterprise.server

You must also set VM, Attach, and Coverage tabs appropriately. For further details, see the
JProbe documentation. After you have created the JPL file, use this an input to
JPROBE_ARGS_0.

6

Profiling Tools

Chapter 3 • Debugging Applications 37

38

Developing Applications and Application
Components

P A R T I I

39

40

Securing Applications

This chapter describes how to write secure Java EE applications, which contain components
that perform user authentication and access authorization for the business logic of Java EE
components.

For information about administrative security for the Application Server, see Chapter 5,
“Administering System Security,” in GlassFish v3 Application Server Administration Guide.

For general information about Java EE security, see “Chapter 29: Introduction to Security in
Java EE” in the Java EE 5 Tutorial
(http://java.sun.com/javaee/5/docs/tutorial/doc/index.html).

This chapter contains the following sections:

■ “Security Goals” on page 41
■ “Container Security” on page 42
■ “Roles, Principals, and Principal to Role Mapping” on page 43
■ “Realm Configuration” on page 44
■ “JACC Support” on page 45
■ “The server.policy File” on page 46

Security Goals
In an enterprise computing environment, there are many security risks. The goal of the
GlassFish Application Server is to provide highly secure, interoperable, and distributed
component computing based on the Java EE security model. Security goals include:

■ Support for several underlying authentication realms.
■ Support for declarative security through Application Server specific XML-based role

mapping.

4C H A P T E R 4

41

http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html

■ Support for Java Authorization Contract for Containers (JACC) pluggable authorization as
included in the Java EE specification and defined by Java Specification Request (JSR) 115
(http://www.jcp.org/en/jsr/detail?id=115).

■ Support for JavaTM Authentication Service Provider Interface for Containers as included in
the Java EE specification and defined by JSR 196
(http://www.jcp.org/en/jsr/detail?id=196).

■ Support for Web Services Interoperability Technologies (WSIT) as described in The WSIT
Tutorial (https://wsit-docs.dev.java.net/releases/m5/).

Container Security
The component containers are responsible for providing Java EE application security. The
container provides two security forms:
■ “Declarative Security” on page 42
■ “Programmatic Security” on page 43

Annotations (also called metadata) enable a declarative style of programming, and so
encompass both the declarative and programmatic security concepts. Users can specify
information about security within a class file using annotations. When the application is
deployed, this information can either be used by or overridden by the application or module
deployment descriptor.

Declarative Security
Declarative security means that the security mechanism for an application is declared and
handled externally to the application. Deployment descriptors describe the Java EE
application’s security structure, including security roles, access control, and authentication
requirements.

The Application Server supports the deployment descriptors specified by Java EE and has
additional security elements included in its own deployment descriptors. Declarative security is
the application deployer’s responsibility. For more information about Sun-specific deployment
descriptors, see the GlassFish v3 Application Server Application Deployment Guide.

There are two levels of declarative security, as follows:
■ “Application Level Security” on page 42
■ “Component Level Security” on page 43

Application Level Security
For an application, roles used by any application container must be defined in @DeclareRoles

annotations in the code or role-name elements in the application deployment descriptor
(application.xml). The role names are scoped to the EJB XML deployment descriptors

Container Security

GlassFish v3 Application Server Developer's Guide • May 200842

http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=196
http://www.jcp.org/en/jsr/detail?id=196
https://wsit-docs.dev.java.net/releases/m5/
https://wsit-docs.dev.java.net/releases/m5/

(ejb-jar.xml and sun-ejb-jar.xml files) and to the servlet XML deployment descriptors
(web.xml and sun-web.xml files). For an individually deployed web or EJB module, you define
roles using @DeclareRoles annotations or role-name elements in the Java EE deployment
descriptor files web.xml or ejb-jar.xml.

To map roles to principals and groups, define matching security-role-mapping elements in
the sun-application.xml, sun-ejb-jar.xml, or sun-web.xml file for each role-name used by
the application. For more information, see “Roles, Principals, and Principal to Role Mapping”
on page 43.

Component Level Security
Component level security encompasses web components and EJB components.

A secure web container authenticates users and authorizes access to a servlet or JSP by using the
security policy laid out in the servlet XML deployment descriptors (web.xml and sun-web.xml

files).

The EJB container is responsible for authorizing access to a bean method by using the security
policy laid out in the EJB XML deployment descriptors (ejb-jar.xml and sun-ejb-jar.xml

files).

Programmatic Security
Programmatic security involves a servlet using method calls to the security API, as specified by
the Java EE security model, to make business logic decisions based on the caller or remote user’s
security role. Programmatic security should only be used when declarative security alone is
insufficient to meet the application’s security model.

The Java EE specification defines programmatic security as consisting of two methods of the
servlet HttpServletRequest interface. The Application Server supports these interfaces as
specified in the specification.

Roles, Principals, and Principal to Role Mapping
For applications, you define roles in @DeclareRoles annotations or the Java EE deployment
descriptor file application.xml. You define the corresponding role mappings in the
Application Server deployment descriptor file sun-application.xml. For individually
deployed web or EJB modules, you define roles in @DeclareRoles annotations or the Java EE
deployment descriptor files web.xml or ejb-jar.xml. You define the corresponding role
mappings in the Application Server deployment descriptor files sun-web.xml or
sun-ejb-jar.xml.

Roles, Principals, and Principal to Role Mapping

Chapter 4 • Securing Applications 43

For more information regarding Java EE deployment descriptors, see the Java EE Specification.
For more information regarding Application Server deployment descriptors, see Appendix A,
“Deployment Descriptor Files,” in GlassFish v3 Application Server Application Deployment
Guide.

Each security-role-mapping element in the sun-application.xml, sun-web.xml, or
sun-ejb-jar.xml file maps a role name permitted by the application or module to principals
and groups. For example, a sun-web.xml file for an individually deployed web module might
contain the following:

<sun-web-app>

<security-role-mapping>

<role-name>manager</role-name>

<principal-name>jgarcia</principal-name>

<principal-name>mwebster</principal-name>

<group-name>team-leads</group-name>

</security-role-mapping>

<security-role-mapping>

<role-name>administrator</role-name>

<principal-name>dsmith</principal-name>

</security-role-mapping>

</sun-web-app>

A role can be mapped to either specific principals or to groups (or both). The principal or group
names used must be valid principals or groups in the realm for the application or module. Note
that the role-name in this example must match the @DeclareRoles annotations or the
role-name in the security-role element of the corresponding web.xml file.

You can specify a default principal and a default principal to role mapping, each of which
applies to the entire Application Server instance. The default principal to role mapping maps
group principals to the same named roles. Web modules that omit the run-as element in
web.xml use the default principal. Applications and modules that omit the
security-role-mapping element use the default principal to role mapping. These defaults are
part of the Security Service, which you can access in the following ways:

■ In the Admin Console, select the Security component under the relevant configuration. For
details, click the Help button in the Admin Console.

Realm Configuration
This section covers the following topics:

■ “Supported Realms” on page 45
■ “How to Configure a Realm” on page 45
■ “How to Set a Realm for a Web Application” on page 45

Realm Configuration

GlassFish v3 Application Server Developer's Guide • May 200844

Supported Realms
The following realms are supported in the Application Server:

■ file – Stores user information in a file. This is the default realm when you first install the
Application Server.

■ jdbc – Stores user information in a database.
In the JDBC realm, the server gets user credentials from a database. The Application Server
uses the database information and the enabled JDBC realm option in the configuration file.
For digest authentication, a JDBC realm should be created with jdbcDigestRealm as the
JAAS context.

For information about configuring realms, see “How to Configure a Realm” on page 45.

How to Configure a Realm
You can configure a realm in one of these ways:

■ In the Admin Console, open the Security component under the relevant configuration and
go to the Realms page. For details, click the Help button in the Admin Console.

■ Use the asadmin create-auth-realm command to configure realms on local servers. For
details, see the GlassFish v3 Application Server Reference Manual.

How to Set a Realm for a Web Application
The web.xml deployment descriptor has an optional realm-name data subelement that
overrides the domain’s default realm.

For more information about the deployment descriptor files and elements, see Appendix A,
“Deployment Descriptor Files,” in GlassFish v3 Application Server Application Deployment
Guide.

JACC Support
JACC (Java Authorization Contract for Containers) is part of the Java EE specification and
defined by JSR 115 (http://www.jcp.org/en/jsr/detail?id=115). JACC defines an interface
for pluggable authorization providers. Specifically, JACC is used to plug in the Java policy
provider used by the container to perform Java EE caller access decisions. The Java policy
provider performs Java policy decisions during application execution. This provides third
parties with a mechanism to develop and plug in modules that are responsible for answering
authorization decisions during Java EE application execution. The interfaces and rules used for
developing JACC providers are defined in the JACC 1.0 specification.

JACC Support

Chapter 4 • Securing Applications 45

http://www.jcp.org/en/jsr/detail?id=115

The Application Server provides a simple file-based JACC-compliant authorization engine as a
default JACC provider. To configure an alternate provider using the Admin Console, open the
Security component under the relevant configuration, and select the JACC Providers
component. For details, click the Help button in the Admin Console.

The server.policy File
Each Application Server domain has its own global J2SE policy file, located in
domain-dir/config. The file is named server.policy.

The Application Server is a Java EE compliant application server. As such, it follows the
requirements of the Java EE specification, including the presence of the security manager (the
Java component that enforces the policy) and a limited permission set for Java EE application
code.

This section covers the following topics:

■ “Default Permissions” on page 46
■ “Changing Permissions for an Application” on page 46
■ “Enabling and Disabling the Security Manager” on page 48

Default Permissions
Internal server code is granted all permissions. These are covered by the AllPermission grant
blocks to various parts of the server infrastructure code. Do not modify these entries.

Application permissions are granted in the default grant block. These permissions apply to all
code not part of the internal server code listed previously. The Application Server does not
distinguish between EJB and web module permissions. All code is granted the minimal set of
web component permissions (which is a superset of the EJB minimal set). Do not modify these
entries.

A few permissions above the minimal set are also granted in the default server.policy file.
These are necessary due to various internal dependencies of the server implementation. Java EE
application developers must not rely on these additional permissions. In some cases, deleting
these permissions might be appropriate. For example, one additional permission is granted
specifically for using connectors. If connectors are not used in a particular domain, you should
remove this permission, because it is not otherwise necessary.

Changing Permissions for an Application
The default policy for each domain limits the permissions of Java EE deployed applications to
the minimal set of permissions required for these applications to operate correctly. Do not add

The server.policy File

GlassFish v3 Application Server Developer's Guide • May 200846

extra permissions to the default set (the grant block with no codebase, which applies to all code).
Instead, add a new grant block with a codebase specific to the applications requiring the extra
permissions, and only add the minimally necessary permissions in that block.

If you develop multiple applications that require more than this default set of permissions, you
can add the custom permissions that your applications need. The com.sun.aas.instanceRoot
variable refers to the domain-dir. For example:

grant "file:${com.sun.aas.instanceRoot}/applications/-" {

...

}

You can add permissions to stub code with the following grant block:

grant "file:${com.sun.aas.instanceRoot}/generated/-" {

...

}

In general, you should add extra permissions only to the applications or modules that require
them, not to all applications deployed to a domain. For example:

grant "file:${com.sun.aas.instanceRoot}/applications/MyApp/-" {

...

}

For a module:

grant "file:${com.sun.aas.instanceRoot}/applications/MyModule/-" {

...

}

An alternative way to add permissions to a specific application or module is to edit the
granted.policy file for that application or module. The granted.policy file is located in the
domain-dir/generated/policy/app-or-module-name directory. In this case, you add
permissions to the default grant block. Do not delete permissions from this file.

When the application server policy subsystem determines that a permission should not be
granted, it logs a server.policy message specifying the permission that was not granted and
the protection domains, with indicated code source and principals that failed the protection
check. For example, here is the first part of a typical message:

[#|2005-12-17T16:16:32.671-0200|INFO|sun-appserver-pe9.1|

javax.enterprise.system.core.security|_ThreadID=14;_ThreadName=Thread-31;|

JACC Policy Provider: PolicyWrapper.implies, context(null)-

permission((java.util.PropertyPermission java.security.manager write))

domain that failed(ProtectionDomain

(file:/E:/glassfish/domains/domain1/applications/cejug-clfds/ ...)

...

The server.policy File

Chapter 4 • Securing Applications 47

Granting the following permission eliminates the message:

grant "file:${com.sun.aas.instanceRoot}/applications/cejug-clfds/-" {

permission java.util.PropertyPermission "java.security.manager", "write";
}

Note – Do not add java.security.AllPermission to the server.policy file for application
code. Doing so completely defeats the purpose of the security manager, yet you still get the
performance overhead associated with it.

As noted in the Java EE specification, an application should provide documentation of the
additional permissions it needs. If an application requires extra permissions but does not
document the set it needs, contact the application author for details.

As a last resort, you can iteratively determine the permission set an application needs by
observing AccessControlException occurrences in the server log.

If this is not sufficient, you can add the -Djava.security.debug=failure JVM option to the
domain. Use the following asadmin create-jvm-options command, then restart the server:

asadmin create-jvm-options --user adminuser -Djava.security.debug=failure

For more information about the asadmin create-jvm-options command, see the GlassFish v3
Application Server Reference Manual.

You can use the J2SE standard policytool or any text editor to edit the server.policy file. For
more information, see
http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html.

For detailed information about policy file syntax, see
http://java.sun.com/j2se/1.5.0/docs/guide/security/PolicyFiles.html#FileSyntax.

For information about using system properties in the server.policy file, see
http://java.sun.com/

j2se/1.5.0/docs/guide/security/PolicyFiles.html#PropertyExp..

For detailed information about the permissions you can set in the server.policy file, see
http://java.sun.com/j2se/1.5.0/docs/guide/security/permissions.html.

The Javadoc for the Permission class is at
http://java.sun.com/j2se/1.5.0/docs/api/java/security/Permission.html.

Enabling and Disabling the Security Manager
The security manager is disabled by default.

The server.policy File

GlassFish v3 Application Server Developer's Guide • May 200848

http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/PolicyFiles.html#FileSyntax
http://java.sun.com/j2se/1.5.0/docs/guide/security/PolicyFiles.html#PropertyExp
http://java.sun.com/j2se/1.5.0/docs/guide/security/PolicyFiles.html#PropertyExp
http://java.sun.com/j2se/1.5.0/docs/guide/security/permissions.html
http://java.sun.com/j2se/1.5.0/docs/api/java/security/Permission.html

In a production environment, you may be able to safely disable the security manager if all of the
following are true:

■ Performance is critical
■ Deployment to the production server is carefully controlled
■ Only trusted applications are deployed
■ Applications don't need policy enforcement

Disabling the security manager may improve performance significantly for some types of
applications. To disable the security manager, do one of the following:

■ To use the Admin Console, open the Security component under the relevant configuration,
and uncheck the Security Manager Enabled box. Then restart the server. For details, click
the Help button in the Admin Console.

■ Use the following asadmin delete-jvm-options command, then restart the server:

asadmin delete-jvm-options --user adminuser -Djava.security.manager

To re-enable the security manager, use the corresponding create-jvm-options command.
For more information about the create-jvm-options and asadmin delete-jvm-options

commands, see the GlassFish v3 Application Server Reference Manual.

The server.policy File

Chapter 4 • Securing Applications 49

50

Developing Web Services

This chapter describes Application Server support for web services. JavaTM API for XML-Based
Web Services (JAX-WS) version 2.0 is supported. Java API for XML-Based Remote Procedure
Calls (JAX-RPC) version 1.1 is supported for backward compatibility. This chapter contains the
following sections:

■ “Creating Portable Web Service Artifacts” on page 52
■ “Deploying a Web Service” on page 52
■ “Web Services Registry” on page 53
■ “The Web Service URI, WSDL File, and Test Page” on page 54
■ “Using the Woodstox Parser” on page 55

Note – For GlassFish v3 Technology Preview 2, web services are not supported unless the
optional Metro module is downloaded from the Update Center. Without the Metro module, a
servlet cannot be a web service endpoint, and the sun-web.xml elements related to web services
are ignored. For information about the Update Center, see the GlassFish v3 Application Server
Quick Start Guide.

“Part Two: Web Services” in the Java EE 5 Tutorial
(http://java.sun.com/javaee/5/docs/tutorial/doc/index.html) shows how to deploy
simple web services to the Application Server. “Chapter 20: Java API for XML Registries”
explains how to set up a registry and create clients that access the registry.

For additional information about JAX-WS and web services, see Java Specification Request
(JSR) 224 (http://jcp.org/aboutJava/communityprocess/pfd/jsr224/index.html) and
JSR 109 (http://jcp.org/en/jsr/detail?id=109).

The Fast Infoset standard specifies a binary format based on the XML Information Set. This
format is an efficient alternative to XML. For information about using Fast Infoset, see the
following links:

5C H A P T E R 5

51

http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://jcp.org/aboutJava/communityprocess/pfd/jsr224/index.html
http://jcp.org/aboutJava/communityprocess/pfd/jsr224/index.html
http://jcp.org/en/jsr/detail?id=109

■ Java Web Services Developer Pack 1.6 Release Notes
(http://java.sun.com/webservices/docs/1.6/ReleaseNotes.html)

■ Fast Infoset in Java Web Services Developer Pack, Version 1.6
(http://java.sun.com/webservices/docs/1.6/jaxrpc/fastinfoset/manual.html)

■ Fast Infoset Project (http://fi.dev.java.net)

Creating Portable Web Service Artifacts
For a tutorial that shows how to use the wsimport and wsgen commands, see “Part Two: Web
Services” in the Java EE 5 Tutorial
(http://java.sun.com/javaee/5/docs/tutorial/doc/index.html). For reference
information on these commands, see the GlassFish v3 Application Server Reference Manual.

Deploying a Web Service
You deploy a web service endpoint to the Application Server just as you would any servlet. After
you deploy the web service, the next step is to publish it. For more information about publishing
a web service, see “Web Services Registry” on page 53.

You can use the autodeployment feature to deploy a simple JSR 181
(http://jcp.org/en/jsr/detail?id=181) annotated file. You can compile and deploy in one
step, as in the following example:

javac -cp javaee.jar -d domain-dir/autodeploy MyWSDemo.java

Note – For complex services with dependent classes, user specified WSDL files, or other
advanced features, autodeployment of an annotated file is not sufficient.

The Sun-specific deployment descriptor file sun-web.xml provides optional web service
enhancements in the webservice-endpoint and webservice-description elements,
including a debugging-enabled subelement that enables the creation of a test page. The test
page feature is enabled by default and described in “The Web Service URI, WSDL File, and Test
Page” on page 54.

For more information about deployment, autodeployment, and deployment descriptors, see
the GlassFish v3 Application Server Application Deployment Guide. For more information about
the asadmin deploy command, see the GlassFish v3 Application Server Reference Manual.

Creating Portable Web Service Artifacts

GlassFish v3 Application Server Developer's Guide • May 200852

http://java.sun.com/webservices/docs/1.6/ReleaseNotes.html
http://java.sun.com/webservices/docs/1.6/ReleaseNotes.html
http://java.sun.com/webservices/docs/1.6/jaxrpc/fastinfoset/manual.html
http://java.sun.com/webservices/docs/1.6/jaxrpc/fastinfoset/manual.html
http://fi.dev.java.net
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181

Web Services Registry
You deploy a registry to the Application Server just as you would any module, except that if you
are using the Admin Console, you must select a Registry Type value. After deployment, you can
configure a registry in one of the following ways:

■ In the Admin Console, open the Web Services component, and select the Registry tab. For
details, click the Help button in the Admin Console.

■ To configure a registry using the command line, use the following commands.
■ Set the registry type to com.sun.appserv.registry.ebxml or

com.sun.appserv.registry.uddi. Use a backslash before each period as an escape
character. For example:

asadmin create-resource-adapter-config --user adminuser

--property com\.sun\.appserv\.registry\.ebxml=true MyReg

■ Set any properties needed by the registry. For an ebXML registry, set the
LifeCycleManagerURL and QueryManagerURL properties. In the following example, the
system property REG_URL is set to
http\\:\\/\\/siroe.com\\:6789\\/soar\\/registry\\/soap.

asadmin create-connector-connection-pool --user adminuser --raname MyReg

--connectiondefinition javax.xml.registry.ConnectionFactory --property

LifeCycleManagerURL=${REG_URL}:QueryManagerURL=${REG_URL} MyRegCP

■ Set a JNDI name for the registry resource. For example:

asadmin create-connector-resource --user adminuser --poolname MyRegCP jndi-MyReg

For details on these commands, see the GlassFish v3 Application Server Reference Manual.

After you deploy a web service, you can publish it to a registry in one of the following ways:

■ In the Admin Console, open the Web Services component, select the web service in the
listing on the General tab, and select the Publish tab. For details, click the Help button in the
Admin Console.

■ Use the asadmin publish-to-registry command. For example:

asadmin publish-to-registry --user adminuser --registryjndinames jndi-MyReg --webservicename my-ws#simple

For details, see the GlassFish v3 Application Server Reference Manual.

The Sun Java Enterprise System (Java ES) includes a Sun-specific ebXML registry. For more
information about the Java ES registry and registries in general, see “Chapter 20: Java API for
XML Registries” in the Java EE 5 Tutorial
(http://java.sun.com/javaee/5/docs/tutorial/doc/index.html).

Web Services Registry

Chapter 5 • Developing Web Services 53

http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html

A module that accesses UDDI registries is provided with the Application Server in the
as-install/lib/install/applications/jaxr-ra directory.

You can also use the JWSDP registry available at
http://java.sun.com/webservices/jwsdp/index.jsp or the SOA registry available at
http://www.sun.com/products/soa/registry/index.html.

The Web Service URI, WSDL File, and Test Page
Clients can run a deployed web service by accessing its service endpoint address URI, which has
the following format:

http://host:port/context-root/servlet-mapping-url-pattern

The context-root is defined in the web.xml file, and can be overridden in the sun-web.xml file.
The servlet-mapping-url-pattern is defined in the web.xml file.

In the following example, the context-root is my-ws and the servlet-mapping-url-pattern is
/simple:

http://localhost:8080/my-ws/simple

You can view the WSDL file of the deployed service in a browser by adding ?WSDL to the end of
the URI. For example:

http://localhost:8080/my-ws/simple?WSDL

For debugging, you can run a test page for the deployed service in a browser by adding ?Tester
to the end of the URL. For example:

http://localhost:8080/my-ws/simple?Tester

You can also test a service using the Admin Console. Open the Web Services component, select
the web service in the listing on the General tab, and select Test. For details, click the Help
button in the Admin Console.

Note – The test page works only for WS-I compliant web services. This means that the tester
servlet does not work for services with WSDL files that use RPC/encoded binding.

Generation of the test page is enabled by default. You can disable the test page for a web service
by setting the value of the debugging-enabled element in the sun-web.xml deployment
descriptor to false. For more information, see the GlassFish v3 Application Server Application
Deployment Guide.

The Web Service URI, WSDL File, and Test Page

GlassFish v3 Application Server Developer's Guide • May 200854

http://java.sun.com/webservices/jwsdp/index.jsp
http://www.sun.com/products/soa/registry/index.html

Using the Woodstox Parser
The default XML parser in the Application Server is the GlassFish XML Parser (SJSXP). Using
the Woodstox parser, which is bundled with the Application Server, may improve performance.
Woodstox and SJSXP both provide implementations of the StAX API. To enable the Woodstox
parser, set the following system properties for the default server-config configuration in the
domain.xml file, then restart the server:

<config name=server-config>

...

<system-property name="javax.xml.stream.XMLEventFactory"
value="com.ctc.wstx.stax.WstxEventFactory"/>

<system-property name="javax.xml.stream.XMLInputFactory"
value="com.ctc.wstx.stax.WstxInputFactory"/>

<system-property name="javax.xml.stream.XMLOutputFactory"
value="com.ctc.wstx.stax.WstxOutputFactory"/>

</config>

In addition, set these properties for any other configurations referenced by server instances or
clusters on which you want to use the Woodstox parser.

Note – If you are using a stand-alone client, you must set these same properties for the client on
the java command line as follows:

-Djavax.xml.stream.XMLInputFactory=com.ctc.wstx.stax.WstxInputFactory

-Djavax.xml.stream.XMLOutputFactory=com.ctc.wstx.stax.WstxOutputFactory

-Djavax.xml.stream.XMLEventFactory=com.ctc.wstx.stax.WstxEventFactory

Setting these properties is not necessary if you are using an application client, which is
recommended and supported.

For more information about the Woodstox parser, see http://woodstox.codehaus.org/. For
more information about the StAX API, see Chapter 17: Streaming API for XML in the Java EE 5
Tutorial (http://java.sun.com/javaee/5/docs/tutorial/doc/index.html).

Using the Woodstox Parser

Chapter 5 • Developing Web Services 55

http://woodstox.codehaus.org/
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html

56

Using the Java Persistence API

GlassFish Application Server support for the Java Persistence API includes all required features
described in the Java Persistence Specification. Although officially part of the Enterprise
JavaBeans Specification v3.0, also known as JSR 220
(http://jcp.org/en/jsr/detail?id=220), the Java Persistence API can also be used with
non-EJB components outside the EJB container.

The Java Persistence API provides an object/relational mapping facility to Java developers for
managing relational data in Java applications. For basic information about the Java Persistence
API, see “Part Four: Persistence” in the Java EE 5 Tutorial
(http://java.sun.com/javaee/5/docs/tutorial/doc/index.html).

This chapter contains Application Server specific information on using the Java Persistence API
in the following topics:

■ “Specifying the Database” on page 58
■ “Additional Database Properties” on page 60
■ “Configuring the Cache” on page 60
■ “Setting the Logging Level” on page 60
■ “Using Lazy Loading” on page 60
■ “Primary Key Generation Defaults” on page 61
■ “Automatic Schema Generation” on page 61
■ “Query Hints” on page 63
■ “Changing the Persistence Provider” on page 63
■ “Database Restrictions and Optimizations” on page 64

Note – The default persistence provider in the Application Server is based on the EclipseLink
Java Persistence API implementation. All configuration options in EclipseLink are available to
applications that use the Application Server's default persistence provider.

6C H A P T E R 6

57

http://jcp.org/en/jsr/detail?id=220
http://jcp.org/en/jsr/detail?id=220
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html

Specifying the Database
The Application Server uses the bundled Java DB (Derby) database by default. If the
transaction-type element is omitted or specified as JTA and both the jta-data-source and
non-jta-data-source elements are omitted in the persistence.xml file, Java DB is used as a
JTA data source. If transaction-type is specified as RESOURCE_LOCAL and both
jta-data-source and non-jta-data-source are omitted, Java DB is used as a non-JTA data
source.

To use a non-default database, either specify a value for the jta-data-source element, or set
the transaction-type element to RESOURCE_LOCAL and specify a value for the
non-jta-data-source element.

If you are using the default persistence provider, the provider attempts to automatically detect
the database based on the connection metadata. You can specify the optional
eclipselink.target-database property to guarantee that the database is correct. For
example:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence">

<persistence-unit name ="em1">
<jta-data-source>jdbc/MyDB2DB</jta-data-source>

<properties>

<property name="eclipselink.target-database"
value="DB2"/>

</properties>

</persistence-unit>

</persistence>

The following eclipselink.target-database property values are allowed. Supported
platforms have been tested with the Application Server and are found to be Java EE compatible.

//Supported platforms

eclipselink.JavaDB

eclipselink.Derby

eclipselink.Oracle

eclipselink.SQLServer

eclipselink.DB2

eclipselink.Sybase

eclipselink.MySQL4

eclipselink.PostgreSQL

//Others available

eclipselink.Informix

eclipselink.TimesTen

eclipselink.Attunity

eclipselink.HSQL

Specifying the Database

GlassFish v3 Application Server Developer's Guide • May 200858

eclipselink.SQLAnyWhere

eclipselink.DBase

eclipselink.DB2Mainframe

eclipselink.Cloudscape

eclipselink.PointBase

For more information about the eclipselink.target-database property, see Using
EclipseLink JPA Extensions for Session, Target Database and Target Application Server in
(http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_%28ELUG%29).

To use the Java Persistence API in Java SE mode, do not specify the jta-data-source or
non-jta-data-source elements if the DataSource is not available. Instead, specify the
provider element and any additional properties required by the JDBC driver or the database.
For example:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">

<persistence-unit name ="em2">
<provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>

<class>ejb3.war.servlet.JpaBean</class>

<properties>

<property name="eclipselink.target-database"
value="Derby"/>

<!-- JDBC connection properties -->

<property name="eclipselink.jdbc.driver" value="org.apache.derby.jdbc.ClientDriver"/>
<property name="eclipselink.jdbc.url"

value="jdbc:derby://localhost:1527/testdb;retrieveMessagesFromServerOnGetMessage=true;create=true;"/>
<property name="eclipselink.jdbc.user" value="APP"/>
<property name="eclipselink.jdbc.password" value="APP"/>

</properties>

</persistence-unit>

</persistence>

For more information about eclipselink properties, see “Additional Database Properties” on
page 60.

For a list of the JDBC drivers currently supported by the Application Server, see the GlassFish v3
Application Server Release Notes. For configurations of supported and other drivers, see
“Configuration Specifics for JDBC Drivers” in GlassFish v3 Application Server Administration
Guide.

To change the persistence provider, see “Changing the Persistence Provider” on page 63.

Specifying the Database

Chapter 6 • Using the Java Persistence API 59

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_%28ELUG%29

Additional Database Properties
If you are using the default persistence provider, you can specify in the persistence.xml file
the database properties listed at Using EclipseLink JPA Extensions
(http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_%28ELUG%29).

For schema generation properties, see “Generation Options” on page 62. For query hints, see
“Query Hints” on page 63.

Configuring the Cache
If you are using the default persistence provider, you can configure whether caching occurs, the
type of caching, the size of the cache, and whether client sessions share the cache. Caching
properties for the default persistence provider are described in detail at Using EclipseLink JPA
Extensions for Entity Caching in Using EclipseLink JPA Extensions
(http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_%28ELUG%29).

Setting the Logging Level
One of the default persistence provider's properties that you can set in the persistence.xml file
is eclipselink.logging.level. For example, setting the logging level to FINE or higher logs all
SQL statements. For details about this property, see Using EclipseLink JPA Extensions for
Logging inUsing EclipseLink JPA Extensions
(http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_%28ELUG%29).

Using Lazy Loading
The default persistence provider treats only OneToOne, ManyToOne, OneToMany, and ManyToMany

mappings specially when they are annotated as LAZY. OneToMany and ManyToMany mappings are
loaded lazily by default in compliance with the Java Persistence Specification. Other mappings
are always loaded eagerly. For OneToOne and ManyToOne mappings, value holder indirection is
used. For OneToMany and ManyToMany mappings, transparent indirection is used.

For basic information about lazy loading, see What You May Need to Know About EclipseLink
JPA Lazy Loading in Using EclipseLink JPA Extensions
(http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_%28ELUG%29). For details
about indirection, see Configuring Indirection (Lazy Loading) in Configuring a Mapping
(http://wiki.eclipse.org/Configuring_a_Mapping_%28ELUG%29).

Additional Database Properties

GlassFish v3 Application Server Developer's Guide • May 200860

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_%28ELUG%29
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_%28ELUG%29
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_%28ELUG%29
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_%28ELUG%29
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_%28ELUG%29
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_%28ELUG%29
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_%28ELUG%29
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_%28ELUG%29
http://wiki.eclipse.org/Configuring_a_Mapping_%28ELUG%29
http://wiki.eclipse.org/Configuring_a_Mapping_%28ELUG%29

Primary Key Generation Defaults
In the descriptions of the @GeneratedValue, @SequenceGenerator, and @TableGenerator

annotations in the Java Persistence Specification, certain defaults are noted as specific to the
persistence provider. The default persistence provider's primary key generation defaults are
listed here.

@GeneratedValue defaults are as follows:
■ Using strategy=AUTO (or no strategy) creates a @TableGenerator named SEQ_GEN with

default settings. Specifying a generator has no effect.
■ Using strategy=TABLE without specifying a generator creates a @TableGenerator named

SEQ_GEN_TABLE with default settings. Specifying a generator but no @TableGenerator

creates and names a @TableGenerator with default settings.
■ Using strategy=IDENTITY or strategy=SEQUENCE produces the same results, which are

database-specific.
■ For Oracle databases, not specifying a generator creates a @SequenceGenerator named

SEQ_GEN_SEQUENCE with default settings. Specifying a generator but no
@SequenceGenerator creates and names a @SequenceGenerator with default settings.

■ For PostgreSQL databases, a SERIAL column named entity-table_pk-column_SEQ is
created.

■ For MySQL databases, an AUTO_INCREMENT column is created.
■ For other supported databases, an IDENTITY column is created.

The @SequenceGenerator annotation has one default specific to the default provider. The
default sequenceName is the specified name.

@TableGenerator defaults are as follows:
■ The default table is SEQUENCE.
■ The default pkColumnName is SEQ_NAME.
■ The default valueColumnName is SEQ_COUNT.
■ The default pkColumnValue is the specified name, or the default name if no name is specified.

Automatic Schema Generation
The automatic schema generation feature of the Application Server defines database tables
based on the fields or properties in entities and the relationships between the fields or
properties. This insulates developers from many of the database related aspects of development,
allowing them to focus on entity development. The resulting schema is usable as-is or can be
given to a database administrator for tuning with respect to performance, security, and so on.
This section covers the following topics:

Automatic Schema Generation

Chapter 6 • Using the Java Persistence API 61

■ “Annotations” on page 62
■ “Generation Options” on page 62

Note – Automatic schema generation is supported on an all-or-none basis: it expects that no
tables exist in the database before it is executed. It is not intended to be used as a tool to generate
extra tables or constraints.

Deployment won't fail if all tables are not created, and undeployment won't fail if not all tables
are dropped. Instead, an error is written to the server log. This is done to allow you to
investigate the problem and fix it manually. You should not rely on the partially created
database schema to be correct for running the application.

Annotations
The following annotations are used in automatic schema generation: @AssociationOverride,
@AssociationOverrides, @AttributeOverride, @AttributeOverrides, @Column,
@DiscriminatorColumn, @DiscriminatorValue, @Embedded, @EmbeddedId, @GeneratedValue,
@Id, @IdClass, @JoinColumn, @JoinColumns, @JoinTable, @Lob, @ManyToMany, @ManyToOne,
@OneToMany, @OneToOne, @PrimaryKeyJoinColumn, @PrimaryKeyJoinColumns,
@SecondaryTable, @SecondaryTables, @SequenceGenerator, @Table, @TableGenerator,
@UniqueConstraint, and @Version. For information about these annotations, see the Java
Persistence Specification.

For @Column annotations, the insertable and updatable elements are not used in automatic
schema generation.

For @OneToMany and @ManyToOne annotations, no ForeignKeyConstraint is created in the
resulting DDL files.

Generation Options
Optional schema generation properties control the automatic creation of database tables. You
can specify them in the persistence.xml file. For more information, see Using EclipseLink JPA
Extensions for Schema Generation in Using EclipseLink JPA Extensions
(http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_%28ELUG%29).

Automatic Schema Generation

GlassFish v3 Application Server Developer's Guide • May 200862

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_%28ELUG%29
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_%28ELUG%29

Query Hints
Query hints are additional, implementation-specific configuration settings. You can use hints
in your queries in the following format:

setHint("hint-name", hint-value)

For example:

Customer customer = (Customer)entityMgr.

createNamedQuery("findCustomerBySSN").
setParameter("SSN", "123-12-1234").
setHint("eclipselink.refresh", true).

getSingleResult();

For more information about the query hints available with the default provider, see How to Use
EclipseLink JPA Query Hints in Using EclipseLink JPA Extensions
(http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_%28ELUG%29).

Changing the Persistence Provider

Note – The previous sections in this chapter apply only to the default persistence provider. If you
change the provider for a module or application, the provider-specific database properties,
query hints, and schema generation features described in this chapter do not apply.

You can change the persistence provider for an application in the manner described in the Java
Persistence API Specification.

First, install the provider. Copy the provider JAR files to the domain-dir/lib directory, and
restart the Application Server. For more information about the domain-dir/lib directory, see
“Using the Application Server Parent Class Loader” on page 29. The new persistence provider is
now available to all modules and applications deployed on servers that share the same
configuration. However, the default provider remains the same.

In your persistence unit, specify the provider and any properties the provider requires in the
persistence.xml file. For example:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence">

<persistence-unit name ="em3">
<provider>com.company22.persistence.PersistenceProviderImpl</provider>

<properties>

<property name="company22.database.name" value="MyDB"/>

Changing the Persistence Provider

Chapter 6 • Using the Java Persistence API 63

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_%28ELUG%29
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_%28ELUG%29

</properties>

</persistence-unit>

</persistence>

To migrate from Oracle TopLink to EclipseLink, see Migrating from Oracle TopLink to
EclipseLink
(http://wiki.eclipse.org/EclipseLink/Examples/MigratingFromOracleTopLink).

Database Restrictions and Optimizations
This section discusses restrictions and performance optimizations that affect using the Java
Persistence API.

■ “Using @OrderBy with a Shared Session Cache” on page 64
■ “Using BLOB or CLOB Types with the Inet Oraxo JDBC Driver” on page 64
■ “Database Case Sensitivity” on page 65
■ “Sybase Finder Limitation” on page 66
■ “MySQL Database Restrictions” on page 66

Using @OrderBy with a Shared Session Cache
Setting @OrderBy on a ManyToMany or OneToMany relationship field in which a List represents
the Many side doesn't work if the session cache is shared. Use one of the following
workarounds:

■ Have the application maintain the order so the List is cached properly.
■ Refresh the session cache using EntityManager.refresh() if you don't want to maintain

the order during creation or modification of the List.
■ Disable session cache sharing in persistence.xml as follows:

<property name="eclipselink.cache.shared.default" value="false"/>

Using BLOB or CLOB Types with the Inet Oraxo JDBC
Driver
To use BLOB or CLOB data types larger than 4 KB for persistence using the Inet Oraxo JDBC
Driver for Oracle Databases, you must set the database's streamstolob property value to true.

Database Restrictions and Optimizations

GlassFish v3 Application Server Developer's Guide • May 200864

http://wiki.eclipse.org/EclipseLink/Examples/MigratingFromOracleTopLink
http://wiki.eclipse.org/EclipseLink/Examples/MigratingFromOracleTopLink
http://wiki.eclipse.org/EclipseLink/Examples/MigratingFromOracleTopLink

Database Case Sensitivity
Mapping references to column or table names must be in accordance with the expected column
or table name case, and ensuring this is the programmer's responsibility. If column or table
names are not explicitly specified for a field or entity, the Application Server uses upper case
column names by default, so any mapping references to the column or table names must be in
upper case. If column or table names are explicitly specified, the case of all mapping references
to the column or table names must be in accordance with the case used in the specified names.

The following are examples of how case sensitivity affects mapping elements that refer to
columns or tables. Programmers must keep case sensitivity in mind when writing these
mappings.

Unique Constraints
If column names are not explicitly specified on a field, unique constraints and foreign key
mappings must be specified using uppercase references. For example:

@Table(name="Department", uniqueConstraints={ @UniqueConstraint (columnNames= { "DEPTNAME" }) })

The other way to handle this is by specifying explicit column names for each field with the
required case. For example:

@Table(name="Department", uniqueConstraints={ @UniqueConstraint (columnNames= { "deptName" }) })

public class Department{ @Column(name="deptName") private String deptName; }

Otherwise, the ALTER TABLE statement generated by the Application Server uses the incorrect
case, and the creation of the unique constraint fails.

Foreign Key Mapping
Use @OneToMany(mappedBy="COMPANY") or specify an explicit column name for the Company
field on the Many side of the relationship.

SQL Result Set Mapping
Use the following elements:

<sql-result-set-mapping name="SRSMName" >

<entity-result entity-class="entities.someEntity" />

<column-result name="UPPERCASECOLUMNNAME" />

</sql-result-set-mapping>

Or specify an explicit column name for the upperCaseColumnName field.

Database Restrictions and Optimizations

Chapter 6 • Using the Java Persistence API 65

Named Native Queries and JDBC Queries
Column or table names specified in SQL queries must be in accordance with the expected case.
For example, MySQL requires column names in the SELECT clause of JDBC queries to be
uppercase, while PostgreSQL and Sybase require table names to be uppercase in all JDBC
queries.

PostgreSQL Case Sensitivity
PostgreSQL stores column and table names in lower case. JDBC queries on PostgreSQL retrieve
column or table names in lowercase unless the names are quoted. For example:

use aliases Select m.ID AS \"ID\" from Department m

Use the backslash as an escape character in the class file, but not in the persistence.xml file.

Sybase Finder Limitation
If a finder method with an input greater than 255 characters is executed and the primary key
column is mapped to a VARCHAR column, Sybase attempts to convert type VARCHAR to type
TEXT and generates the following error:

com.sybase.jdbc2.jdbc.SybSQLException: Implicit conversion from datatype

’TEXT’ to ’VARCHAR’ is not allowed. Use the CONVERT function to run this

query.

To avoid this error, make sure the finder method input is less than 255 characters.

MySQL Database Restrictions
The following restrictions apply when you use a MySQL database with the Application Server
for persistence.

■ MySQL treats int1 and int2 as reserved words. If you want to define int1 and int2 as fields
in your table, use ‘int1‘ and ‘int2‘ field names in your SQL file.

■ When VARCHAR fields get truncated, a warning is displayed instead of an error. To get an
error message, start the MySQL database in strict SQL mode.

■ The order of fields in a foreign key index must match the order in the explicitly created
index on the primary table.

■ The CREATE TABLE syntax in the SQL file must end with the following line.

) Engine=InnoDB;

InnoDB provides MySQL with a transaction-safe (ACID compliant) storage engine having
commit, rollback, and crash recovery capabilities.

Database Restrictions and Optimizations

GlassFish v3 Application Server Developer's Guide • May 200866

■ For a FLOAT type field, the correct precision must be defined. By default, MySQL uses four
bytes to store a FLOAT type that does not have an explicit precision definition. For example,
this causes a number such as 12345.67890123 to be rounded off to 12345.7 during an
INSERT. To prevent this, specify FLOAT(10,2) in the DDL file, which forces the database to
use an eight-byte double-precision column. For more information, see
http://dev.mysql.com/doc/mysql/en/numeric-types.html.

■ To use || as the string concatenation symbol, start the MySQL server with the
--sql-mode="PIPES_AS_CONCAT" option. For more information, see
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html and
http://dev.mysql.com/doc/mysql/en/ansi-mode.html.

■ MySQL always starts a new connection when autoCommit==true is set. This ensures that
each SQL statement forms a single transaction on its own. If you try to rollback or commit
an SQL statement, you get an error message.

javax.transaction.SystemException: java.sql.SQLException:

Can’t call rollback when autocommit=true

javax.transaction.SystemException: java.sql.SQLException:

Error open transaction is not closed

To resolve this issue, add relaxAutoCommit=true to the JDBC URL. For more information,
see http://forums.mysql.com/read.php?39,31326,31404.

■ MySQL does not allow a DELETE on a row that contains a reference to itself. Here is an
example that illustrates the issue.

create table EMPLOYEE (

empId int NOT NULL,

salary float(25,2) NULL,

mgrId int NULL,

PRIMARY KEY (empId),

FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)

) ENGINE=InnoDB;

insert into Employee values (1, 1234.34, 1);

delete from Employee where empId = 1;

This example fails with the following error message.

ERROR 1217 (23000): Cannot delete or update a parent row:

a foreign key constraint fails

To resolve this issue, change the table creation script to the following:

create table EMPLOYEE (

empId int NOT NULL,

salary float(25,2) NULL,

Database Restrictions and Optimizations

Chapter 6 • Using the Java Persistence API 67

http://dev.mysql.com/doc/mysql/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html
http://dev.mysql.com/doc/mysql/en/ansi-mode.html
http://forums.mysql.com/read.php?39,31326,31404

mgrId int NULL,

PRIMARY KEY (empId),

FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)

ON DELETE SET NULL

) ENGINE=InnoDB;

insert into Employee values (1, 1234.34, 1);

delete from Employee where empId = 1;

This can be done only if the foreign key field is allowed to be null. For more information, see
http://bugs.mysql.com/bug.php?id=12449 and
http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html.

Database Restrictions and Optimizations

GlassFish v3 Application Server Developer's Guide • May 200868

http://bugs.mysql.com/bug.php?id=12449
http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html

Developing Web Applications

This chapter describes how web applications are supported in the GlassFish Application Server
and includes the following sections:

■ “Packaging an EJB JAR File in a Web Application” on page 69
■ “Using Servlets” on page 70
■ “Using JavaServer Pages” on page 76
■ “Creating and Managing Sessions” on page 76
■ “Using the Grizzly Comet API” on page 78
■ “Advanced Web Application Features” on page 90

For general information about web applications, see “Part One: The Web Tier” in the Java EE 5
Tutorial (http://java.sun.com/javaee/5/docs/tutorial/doc/index.html).

Packaging an EJB JAR File in a Web Application
The Application Server supports the EJB 3.1 specification, which allows EJB JAR files to be
packaged in WAR files. EJB classes must reside under WEB-INF/classes. For example, the
structure of a hello.war file might look like this:

index.jsp

META-INF/

MANIFEST.MF

WEB-INF/

web.xml

classes/

com/

sun/

v3/

demo/

HelloEJB.class

HelloServlet.class

7C H A P T E R 7

69

http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html

For more information about EJB components, see Chapter 8, “Using Enterprise JavaBeans
Technology.”

Note – For GlassFish v3 Technology Preview 2, EJB modules are not supported unless the
optional EJB container module is downloaded from the Update Center. For information about
the Update Center, see the GlassFish v3 Application Server Quick Start Guide.

For GlassFish v3 Technology Preview 2, only stateless session beans with local interfaces and
entity beans that use the Java Persistence API are supported. Stateful, message-driven, and EJB
2.0 and 2.1 entity beans are not supported. Remote interfaces and remote business interfaces for
any of the bean types are not supported.

Using Servlets
Application Server supports the Java Servlet Specification version 2.5.

Note – Servlet API version 2.5 is fully backward compatible with versions 2.3 and 2.4, so all
existing servlets should work without modification or recompilation.

To develop servlets, use Sun Microsystems’ Java Servlet API. For information about using the
Java Servlet API, see the documentation provided by Sun Microsystems at
http://java.sun.com/products/servlet/index.html.

The Application Server provides the wscompile and wsdeploy tools to help you implement a
web service endpoint as a servlet. For more information about these tools, see the GlassFish v3
Application Server Reference Manual.

This section describes how to create effective servlets to control application interactions
running on an Application Server, including standard-based servlets. In addition, this section
describes the Application Server features to use to augment the standards.

This section contains the following topics:

■ “Invoking a Servlet With a URL” on page 70
■ “Servlet Output” on page 71
■ “Caching Servlet Results” on page 72
■ “About the Servlet Engine” on page 75

Invoking a Servlet With a URL
You can call a servlet deployed to the Application Server by using a URL in a browser or
embedded as a link in an HTML or JSP file. The format of a servlet invocation URL is as follows:

Using Servlets

GlassFish v3 Application Server Developer's Guide • May 200870

http://java.sun.com/products/servlet/index.html

http://server:port/context-root/servlet-mapping?name=value

The following table describes each URL section.

TABLE 7–1 URL Fields for Servlets Within an Application

URL element Description

server:port The IP address (or host name) and optional port number.

To access the default web module for a virtual server, specify only this URL section.
You do not need to specify the context-root or servlet-name unless you also wish to
specify name-value parameters.

context-root For an application, the context root is defined in the context-root element of the
application.xml, sun-application.xml, or sun-web.xml file. For an individually
deployed web module, the context root is specified during deployment.

For both applications and individually deployed web modules, the default context root
is the name of the WAR file minus the .war suffix.

servlet-mapping The servlet-mapping as configured in the web.xml file.

?name=value... Optional request parameters.

In this example, localhost is the host name, MortPages is the context root, and calcMortgage

is the servlet mapping:

http://localhost:8080/MortPages/calcMortgage?rate=8.0&per=360&bal=180000

When invoking a servlet from within a JSP file, you can use a relative path. For example:

<jsp:forward page="TestServlet"/>
<jsp:include page="TestServlet"/>

Servlet Output
ServletContext.log messages are sent to the server log.

By default, the System.out and System.err output of servlets are sent to the server log, and
during startup, server log messages are echoed to the System.err output. Also by default, there
is no Windows-only console for the System.err output.

You can change these defaults using the Admin Console. In the developer profile, select the
Application Server component and the Logging tab. In the cluster profile, select the Logger
Settings component under the relevant configuration. Then check or uncheck Write to System
Log. If this box is checked, System.out output is sent to the server log. If it is unchecked,
System.out output is sent to the system default location only.

Using Servlets

Chapter 7 • Developing Web Applications 71

For more information, click the Help button in the Admin Console from the Logging page.

Caching Servlet Results
The Application Server can cache the results of invoking a servlet, a JSP, or any URL pattern to
make subsequent invocations of the same servlet, JSP, or URL pattern faster. The Application
Server caches the request results for a specific amount of time. In this way, if another data call
occurs, the Application Server can return the cached data instead of performing the operation
again. For example, if your servlet returns a stock quote that updates every 5 minutes, you set
the cache to expire after 300 seconds.

Whether to cache results and how to cache them depends on the data involved. For example, it
makes no sense to cache the results of a quiz submission, because the input to the servlet is
different each time. However, it makes sense to cache a high level report showing demographic
data taken from quiz results that is updated once an hour.

To define how an Application Server web application handles response caching, you edit
specific fields in the sun-web.xml file.

Note – A servlet that uses caching is not portable.

For Javadoc tool pages relevant to caching servlet results, go to
http://glassfish.dev.java.net/nonav/javaee5/api/index.html and click on the
com.sun.appserv.web.cache package.

The rest of this section covers the following topics:

■ “Caching Features” on page 72
■ “Default Cache Configuration” on page 73
■ “Caching Example” on page 73
■ “The CacheKeyGenerator Interface” on page 75

Caching Features
The Application Server has the following web application response caching capabilities:

■ Caching is configurable based on the servlet name or the URI.
■ When caching is based on the URI, this includes user specified parameters in the query

string. For example, a response from /garden/catalog?category=roses is different from a
response from /garden/catalog?category=lilies. These responses are stored under
different keys in the cache.

■ Cache size, entry timeout, and other caching behaviors are configurable.
■ Entry timeout is measured from the time an entry is created or refreshed. To override this

timeout for an individual cache mapping, specify the cache-mapping subelement timeout.

Using Servlets

GlassFish v3 Application Server Developer's Guide • May 200872

http://glassfish.dev.java.net/nonav/javaee5/api/index.html

■ To determine caching criteria programmatically, write a class that implements the
com.sun.appserv.web.cache.CacheHelper interface. For example, if only a servlet knows
when a back end data source was last modified, you can write a helper class to retrieve the
last modified timestamp from the data source and decide whether to cache the response
based on that timestamp.

■ To determine cache key generation programmatically, write a class that implements the
com.sun.appserv.web.cache.CacheKeyGenerator interface. See “The
CacheKeyGenerator Interface” on page 75.

■ All non-ASCII request parameter values specified in cache key elements must be URL
encoded. The caching subsystem attempts to match the raw parameter values in the request
query string.

■ The following HttpServletRequest request attributes are exposed.
■ com.sun.appserv.web.cachedServletName, the cached servlet target
■ com.sun.appserv.web.cachedURLPattern, the URL pattern being cached

■ Results produced by resources that are the target of a RequestDispatcher.include() or
RequestDispatcher.forward() call are cached if caching has been enabled for those
resources. For details, see “cache-mapping” in GlassFish v3 Application Server Application
Deployment Guide and “dispatcher” in GlassFish v3 Application Server Application
Deployment Guide. These are elements in the sun-web.xml file.

Default Cache Configuration
If you enable caching but do not provide any special configuration for a servlet or JSP, the
default cache configuration is as follows:

■ The default cache timeout is 30 seconds.
■ Only the HTTP GET method is eligible for caching.
■ HTTP requests with cookies or sessions automatically disable caching.
■ No special consideration is given to Pragma:, Cache-control:, or Vary: headers.
■ The default key consists of the Servlet Path (minus pathInfo and the query string).
■ A “least recently used” list is maintained to evict cache entries if the maximum cache size is

exceeded.
■ Key generation concatenates the servlet path with key field values, if any are specified.
■ Results produced by resources that are the target of a RequestDispatcher.include() or

RequestDispatcher.forward() call are never cached.

Caching Example
Here is an example cache element in the sun-web.xml file:

Using Servlets

Chapter 7 • Developing Web Applications 73

<cache max-capacity="8192" timeout="60">
<cache-helper name="myHelper" class-name="MyCacheHelper"/>
<cache-mapping>

<servlet-name>myservlet</servlet-name>

<timeout name="timefield">120</timeout>
<http-method>GET</http-method>

<http-method>POST</http-method>

</cache-mapping>

<cache-mapping>

<url-pattern> /catalog/* </url-pattern>

<!-- cache the best selling category; cache the responses to

-- this resource only when the given parameters exist. Cache

-- only when the catalog parameter has ’lilies’ or ’roses’

-- but no other catalog varieties:

-- /orchard/catalog?best&category=’lilies’

-- /orchard/catalog?best&category=’roses’

-- but not the result of

-- /orchard/catalog?best&category=’wild’

-->

<constraint-field name=’best’ scope=’request.parameter’/>

<constraint-field name=’category’ scope=’request.parameter’>

<value> roses </value>

<value> lilies </value>

</constraint-field>

<!-- Specify that a particular field is of given range but the

-- field doesn’t need to be present in all the requests -->

<constraint-field name=’SKUnum’ scope=’request.parameter’>

<value match-expr=’in-range’> 1000 - 2000 </value>

</constraint-field>

<!-- cache when the category matches with any value other than

-- a specific value -->

<constraint-field name="category" scope="request.parameter>
<value match-expr="equals" cache-on-match-failure="true">
bogus

</value>

</constraint-field>

</cache-mapping>

<cache-mapping>

<servlet-name> InfoServlet </servlet-name>

<cache-helper-ref>myHelper</cache-helper-ref>

</cache-mapping>

</cache>

For more information about the sun-web.xml caching settings, see “cache” in GlassFish v3
Application Server Application Deployment Guide.

Using Servlets

GlassFish v3 Application Server Developer's Guide • May 200874

The CacheKeyGenerator Interface
The built-in default CacheHelper implementation allows web applications to customize the key
generation. An application component (in a servlet or JSP) can set up a custom
CacheKeyGenerator implementation as an attribute in the ServletContext.

The name of the context attribute is configurable as the value of the
cacheKeyGeneratorAttrName property in the default-helper element of the sun-web.xml
deployment descriptor. For more information, see “default-helper” in GlassFish v3 Application
Server Application Deployment Guide.

About the Servlet Engine
Servlets exist in and are managed by the servlet engine in the Application Server. The servlet
engine is an internal object that handles all servlet meta functions. These functions include
instantiation, initialization, destruction, access from other components, and configuration
management. This section covers the following topics:
■ “Instantiating and Removing Servlets” on page 75
■ “Request Handling” on page 75

Instantiating and Removing Servlets
After the servlet engine instantiates the servlet, the servlet engine calls the servlet’s init()
method to perform any necessary initialization. You can override this method to perform an
initialization function for the servlet’s life, such as initializing a counter.

When a servlet is removed from service, the servlet engine calls the destroy() method in the
servlet so that the servlet can perform any final tasks and deallocate resources. You can override
this method to write log messages or clean up any lingering connections that won’t be caught in
garbage collection.

Request Handling
When a request is made, the Application Server hands the incoming data to the servlet engine.
The servlet engine processes the request’s input data, such as form data, cookies, session
information, and URL name-value pairs, into an HttpServletRequestrequest object type.

The servlet engine also creates an HttpServletResponse response object type. The engine then
passes both as parameters to the servlet’s service() method.

In an HTTP servlet, the default service() method routes requests to another method based on
the HTTP transfer method: POST, GET, DELETE, HEAD, OPTIONS, PUT, or TRACE. For example,
HTTP POST requests are sent to the doPost() method, HTTP GET requests are sent to the
doGet() method, and so on. This enables the servlet to process request data differently,
depending on which transfer method is used. Since the routing takes place in the service

Using Servlets

Chapter 7 • Developing Web Applications 75

method, you generally do not override service() in an HTTP servlet. Instead, override
doGet(), doPost(), and so on, depending on the request type you expect.

To perform the tasks to answer a request, override the service() method for generic servlets,
and the doGet() or doPost() methods for HTTP servlets. Very often, this means accessing EJB
components to perform business transactions, then collating the information in the request
object or in a JDBC ResultSet object.

Using JavaServer Pages
The Application Server supports the following JSP features:
■ JavaServer Pages (JSP) Specification version 2.1
■ Precompilation of JSP files, which is especially useful for production servers
■ JSP tag libraries and standard portable tags

For information about creating JSP files, see Sun Microsystem’s JavaServer Pages web site at
http://java.sun.com/products/jsp/index.html.

For information about Java Beans, see Sun Microsystem’s JavaBeans web page at
http://java.sun.com/beans/index.html.

Application Server supports tag libraries and standard portable tags. For more information, see
the JavaServer Pages Standard Tag Library (JSTL) page at
http://java.sun.com/products/jsp/jstl/index.jsp.

Web applications don’t need to bundle copies of the jsf-impl.jar or appserv-jstl.jar JSP
tag libraries (in as-install/lib) to use JavaServerTM Faces technology or JSTL, respectively. These
tag libraries are automatically available to all web applications.

Creating and Managing Sessions
This chapter describes how to create and manage HTTP sessions that allows users and
transaction information to persist between interactions.

This chapter contains the following sections:
■ “Configuring Sessions” on page 76
■ “Session Managers” on page 77

Configuring Sessions
This section covers the following topics:

■ “HTTP Sessions, Cookies, and URL Rewriting” on page 77
■ “Coordinating Session Access” on page 77

Using JavaServer Pages

GlassFish v3 Application Server Developer's Guide • May 200876

http://java.sun.com/products/jsp/index.html
http://java.sun.com/beans/index.html
http://java.sun.com/products/jsp/jstl/index.jsp

HTTP Sessions, Cookies, and URL Rewriting
To configure whether and how HTTP sessions use cookies and URL rewriting, edit the
session-properties and cookie-properties elements in the sun-web.xml file for an
individual web application. For more about the properties you can configure, see
“session-properties” in GlassFish v3 Application Server Application Deployment Guide and
“cookie-properties” in GlassFish v3 Application Server Application Deployment Guide.

Coordinating Session Access
Make sure that multiple threads don’t simultaneously modify the same session object in
conflicting ways.

This is especially likely to occur in web applications that use HTML frames where multiple
servlets are executing simultaneously on behalf of the same client. A good solution is to ensure
that one of the servlets modifies the session and the others have read-only access.

Session Managers
A session manager automatically creates new session objects whenever a new session starts. In
some circumstances, clients do not join the session, for example, if the session manager uses
cookies and the client does not accept cookies.

Application Server offers these session management options, determined by the
session-manager element’s persistence-type attribute in the sun-web.xml file:

■ “The memory Persistence Type” on page 77, the default

Note – If the session manager configuration contains an error, the error is written to the server
log and the default (memory) configuration is used.

For more information, see “session-manager” in GlassFish v3 Application Server Application
Deployment Guide.

The memoryPersistence Type
This persistence type is not designed for a production environment that requires session
persistence. It provides no session persistence. However, you can configure it so that the session
state in memory is written to the file system prior to server shutdown.

To specify the memory persistence type for the entire web container, use the
configure-ha-persistence command. For details, see the GlassFish v3 Application Server
Reference Manual.

Creating and Managing Sessions

Chapter 7 • Developing Web Applications 77

To specify the memory persistence type for a specific web application, edit the sun-web.xml file
as in the following example. The persistence-type property is optional, but must be set to
memory if included. This overrides the web container availability settings for the web
application.

<sun-web-app>

...

<session-config>

<session-manager persistence-type="memory" />

<manager-properties>

<property name="sessionFilename" value="sessionstate" />

</manager-properties>

</session-manager>

...

</session-config>

...

</sun-web-app>

The only manager property that the memory persistence type supports is sessionFilename, which
is listed under “manager-properties” in GlassFish v3 Application Server Application Deployment
Guide.

For more information about the sun-web.xml file, see GlassFish v3 Application Server
Application Deployment Guide.

Using the Grizzly Comet API
This section explains the Comet programming technique and how to create and deploy a
Comet-enabled application with the GlassFish v3 Application Server.

Introduction to Comet
Comet is a programming technique that allows a web server to send updates to clients without
requiring the clients to explicitly request them.

This kind of programming technique is called server push, which means that the server pushes
data to the client. The opposite style is client pull, which means that the client must pull the data
from the server, usually through a user-initiated event, such as a button click.

Web applications that use the Comet technique can deliver updates to clients in a more timely
manner than those that use the client-pull style while avoiding the latency that results from
clients frequently polling the server.

One of the many use cases for Comet is a chat room application. When the server receives a
message from one of the chat clients, it needs to send the message to the other clients without

Using the Grizzly Comet API

GlassFish v3 Application Server Developer's Guide • May 200878

requiring them to ask for it. With Comet, the server can deliver messages to the clients as they
are posted rather than expecting them to poll the server for new messages.

To accomplish this scenario, Comet applications establish long-lived HTTP connections. This
kind of connection reduces the latency experienced by applications that need to periodically
poll the server for updates because it relieves them from having to frequently open and close
connections. By keeping a connection open, Comet applications can send data to clients at any
time over a single connection.

The Grizzly Implementation of Comet
One limitation of the Comet technique is that you must use it with a web server that supports
non-blocking connections in order to avoid poor performance. Non-blocking connections are
those that do not need to allocate one thread for each request. If the web server were to use
blocking connections then it might end up holding many thousands of threads, thereby
hindering its scalability.

The GlassFish server includes the Grizzly HTTP Engine, which enables asynchronous request
processing (ARP) by avoiding blocking connections. Grizzly's ARP implementation
accomplishes this by using the Java NIO API.

With Java NIO, Grizzly enables greater performance and scalability by avoiding the limitations
experienced by traditional web servers that must run a thread for each request. Instead,
Grizzly's ARP mechanism makes efficient use of a thread pool system and also keeps the state of
requests so that it can keep requests alive without holding a single thread for each of them.

Grizzly supports two different implementations of Comet:
■ Grizzly Comet
■ An implementation of the Bayeux protocol.

Grizzly Comet is based on the ARP and includes a set of APIs that you use from a web
component to enable Comet functionality in your web application.

The Bayeaux implementation is a Grizzly implementation of Cometd, which consists of the
JSON-based Bayeux message protocol, a set of Dojo libraries, and an event handler. The Grizzly
implementation of Cometd consists of a servlet that you reference from your web application.

This tutorial covers the Grizzly Comet implementation only. For more information on using
the Bayeux implementation, see Introducing the Cometd framework and its Bayeux protocol
support in Grizzly

The Grizzly Comet API
Grizzly's support for Comet includes a small set of APIs that make it easy to add Comet
functionality to your web applications. The Grizzly Comet APIs that developers will use most
often are the following:

Using the Grizzly Comet API

Chapter 7 • Developing Web Applications 79

http://cometd.com
http://weblogs.java.net/blog/jfarcand/archive/2007/02/gcometd_introdu_1.html
http://weblogs.java.net/blog/jfarcand/archive/2007/02/gcometd_introdu_1.html

■ CometContext: A Comet context, which is a shareable space to which applications subscribe
in order to receive updates.

■ CometEngine: The entry point to any component using Comet. Components can be servlets,
JavaServer PagesTM (JSPTM), JavaServer Faces components, or pure Java classes.

■ CometEvent: Contains the state of the CometContext object
■ CometHandler: The interface an application implements to be part of one or more Comet

contexts.

The way a developer would use this API in a web component is to perform the following tasks:

1. Register the context path of the application with the CometContext object:

CometEngine cometEngine =

CometEngine.getEngine();

CometContext cometContext =

cometEngine.register(contextPath)

2. Register the CometHandler implementation with the CometContext object:

cometContext.addCometHandler(handler)

3. Notify one or more CometHandler implementations when an event happens:

cometContext.notify((Object)(handler))

Client Technologies to Use With Comet
In addition to creating a web component that uses the Comet APIs, you need to enable your
client to accept asynchronous updates from the web component. To accomplish this, you can
use JavaScript, IFrames, or a framework, such as Dojo.

An IFrame is an HTML element that allows you to include other content in an HTML page. As
a result, the client can embed updated content in the IFrame without having to reload the page.

The example explained in this tutorial employs a combination of JavaScript and IFrames to
allow the client to accept asynchronous updates. A servlet included in the example writes out
JavaScript code to one of the IFrames. The JavaScript code contains the updated content and
invokes a function in the page that updates the appropriate elements in the page with the new
content.

The next section explains the two kinds of connections that you can make to the server. While
you can use any of the client technologies listed in this section with either kind of connection, it
is more difficult to use JavaScript with an HTTP-streaming connection.

Using the Grizzly Comet API

GlassFish v3 Application Server Developer's Guide • May 200880

http://dojotoolkit.org

Kinds of Comet Connections
When working with Comet, as implemented in Grizzly, you have two different ways to handle
client connections to the server:
■ HTTP Streaming
■ long-polling

HTTP Streaming

The HTTP Streaming technique keeps a connection open indefinitely. It never closes, even after
the server pushes data to the client.

In the case of HTTP streaming, the application sends a single request and receives responses as
they come, re-using the same connection forever. This technique significantly reduces the
network latency because the client and the server don't need to open and close the connection.

The basic life cycle of an application using HTTP-streaming is:

request --> suspend --> data available --> write response --> data available --> write response

The client makes an initial request and then suspends the request, meaning that it waits for a
response. Whenever data is available, the server writes it to the response.

Long Polling

The long-polling technique is a combination of server-push and client-pull because the client
needs to resume the connection after a certain amount of time or after the server pushes an
update to the client.

The basic life cycle of an application using long—polling is:

request -> suspend --> data available --> write response --> resume

The client makes an initial request and then suspends the request. When an update is available,
the server writes it to the response. The connection closes, and the client optionally resumes the
connection.

How to Choose the Kind of Connection

If you anticipate that your web application will need to send frequent updates to the client, you
should use the HTTP—streaming connection so that the client does not have to frequently
reestablish a connection. If you anticipate less frequent updates, you should use the long-polling
connection so that the web server does not need to keep a connection open when no updates are
occurring. One caveat to using the HTTP-streaming connection is that if you are streaming
through a proxy, the proxy can buffer the response from the server. So, be sure to test your
application if you plan to use HTTP-streaming behind a proxy.

Using the Grizzly Comet API

Chapter 7 • Developing Web Applications 81

The Hidden Example
This rest of this tutorial uses the Hidden example to explain how to develop Comet-enabled
web applications. You can download the example from grizzly.dev.java.net at,Hidden example
download. From there, you can download a pre-built WAR file as well as a JAR file containing
the servlet code.

The Hidden example is so called because it uses hidden IFrames. What the example does is it
allows multiple clients to increment a counter on the server. When a client increments the
counter, the server broadcasts the new count to the clients using the Comet technique.

The Hidden example uses the long-polling technique, but you can easily modify it to use
HTTP-streaming by removing two lines. See “Notifying the Comet Handler of an Event” on
page 85 and “Creating the HTML Page That Updates and Displays the Content” on page 87
for more information on converting the example to use the HTTP-streaming technique.

The client side of the example uses hidden IFrames with embedded JavaScript tags to connect to
the server and to asynchronously post content to and accept updates from the server.

The server side of the example consists of a single servlet that listens for updates from clients,
updates the counter, and writes JavaScript code to the client that allows it to update the counter
on its page.

See “Deploying and Running a Comet-Enabled Application” on page 89 for instructions on
how to deploy and run the example.

When you run the example, the following happens:

1. The index.html page opens.
2. The browser loads three frames: the first one accesses the servlet using an HTTP GET; the

second one loads the count.html page, which displays the current count; and the third one
loads the button.html page, which is used to send the POST request.

3. After clicking the button on the button.html page, the page submits a POST request to the
servlet.

4. The doPost method calls the onEvent method of the Comet handler and redirects the
incremented count along with some JavaScript to the count.html page on the client.

5. The updateCount JavaScript function on the count.html page updates the counter on the
page.

6. Because this example uses long-polling, the JavaScript code on count.html calls doGet
again to resume the connection after the servlet pushes the update.

Creating a Comet-Enabled Application
This section uses the Hidden example application to demonstrate how to develop a Comet
application. The main components of any simple Comet-enabled application are the following:

Using the Grizzly Comet API

GlassFish v3 Application Server Developer's Guide • May 200882

http://download.java.net/maven/2/com/sun/grizzly/samples/grizzly-comet-hidden/1.7.3.1/
http://download.java.net/maven/2/com/sun/grizzly/samples/grizzly-comet-hidden/1.7.3.1/

■ A web component, such as a servlet to support the Comet requests and a Comet handler to
send updates to the client

■ One or more HTML pages that include some client-side technology to open an
asynchronous connection to the server and to receive updates from the web component.

■ A deployment descriptor to configure the web component.

Developing the Web Component
This section shows you how to create a Comet-enabled web component by giving you
instructions for creating the servlet in the Hidden example.

Developing the web component involves performing the following steps:

1. Create a web component to support Comet requests.
2. Register the component with the Comet engine.
3. Define a Comet handler that sends updates to the client.
4. Add the Comet handler to the Comet context.
5. Notify the Comet handler of an event using the Comet context.

▼ Creating a Web Component to Support Comet

Create an empty servlet class, like the following:
import javax.servlet.*;

public class HiddenCometServlet extends HttpServlet {

private static final long serialVersionUID = 1L;

private String contextPath = null;

@Override

public void init(ServletConfig config) throws ServletException {}

@Override

protected void doGet(HttpServletRequest req,

HttpServletResponse res)

throws ServletException, IOException {}

@Override

protected void doPost(HttpServletRequest req,

HttpServletResponse res)

throws ServletException, IOException {);

}

Import the following Comet packages into the servlet class:
import com.sun.grizzly.comet.CometContext;

import com.sun.grizzly.comet.CometEngine;

import com.sun.grizzly.comet.CometEvent;

import com.sun.grizzly.comet.CometHandler;

1

2

Using the Grizzly Comet API

Chapter 7 • Developing Web Applications 83

Import these additional classes that you need for incrementing a counter and writing output to
the clients:
import java.io.IOException;

import java.io.PrintWriter;

import java.util.concurrent.atomic.AtomicInteger;

Add a private variable for the counter:
private final AtomicInteger counter = new AtomicInteger();

▼ Registering the Servlet with the Comet Engine

In the servlet's initmethod, add the following code to get the component's context path:
ServletContext context = config.getServletContext();

contextPath = context.getContextPath() + "/hidden_comet";

Get an instance of the Comet engine by adding this line after the lines from step 1:
CometEngine engine = CometEngine.getEngine();

Register the component with the Comet engine by adding the following lines after those from
step 2:
CometContext cometContext = engine.register(contextPath);

cometContext.setExpirationDelay(30 * 1000);

▼ Defining a Comet Handler to Send Updates to the Client

Create a private class that implements CometHandler and add it to the servlet class:
private class CounterHandler

implements CometHandler<HttpServletResponse> {

private HttpServletResponse response;

}

Add the following methods to the class:
public void onInitialize(CometEvent event)

throws IOException {}

public void onInterrupt(CometEvent event)

throws IOException {

removeThisFromContext();

}

public void onTerminate(CometEvent event)

throws IOException {

removeThisFromContext();

3

4

1

2

3

1

2

Using the Grizzly Comet API

GlassFish v3 Application Server Developer's Guide • May 200884

}

public void attach(HttpServletResponse attachment) {

this.response = attachment;

}

private void removeThisFromContext() throws IOException {

response.getWriter().close();

CometContext context =

CometEngine.getEngine().getCometContext(contextPath);

context.removeCometHandler(this);

}

You need to provide implementations of these methods when implementing CometHandler.
The onInterrupt and onTerminate methods execute when certain changes occur in the status
of the underlying TCP communication. The onInterrupt method executes when
communication is resumed. The onTerminate method executes when communication is
closed. Both methods call removeThisFromContext, which removes the CometHandler object
from the CometContext object.

▼ Adding the Comet Handler to the Comet Context

Get an instance of the Comet handler and attach the response to it by adding the following lines
to the doGetmethod:
CounterHandler handler = new CounterHandler();

handler.attach(res);

Get the Comet context by adding the following lines to doGet:
CometEngine engine = CometEngine.getEngine();

CometContext context = engine.getCometContext(contextPath);

Add the Comet handler to the Comet context by adding this line to doGet:
context.addCometHandler(handler);

▼ Notifying the Comet Handler of an Event

Add an onEventmethod to the CometHandler class to define what happens when an event
occurs:
public void onEvent(CometEvent event)

throws IOException {

if (CometEvent.NOTIFY == event.getType()) {

int count = counter.get();

PrintWriter writer = response.getWriter();

writer.write("<script type=’text/javascript’>" +

"parent.counter.updateCount(’" + count + "’)" +

1

2

3

1

Using the Grizzly Comet API

Chapter 7 • Developing Web Applications 85

"</script>\n");
writer.flush();

event.getCometContext().resumeCometHandler(this);

}

}

This method first checks if the event type is NOTIFY, which means that the web component is
notifying the CometHandler object that a client has incremented the count. If the event type is
NOTIFY, the onEvent method gets the updated count, and writes out JavaScript to the client. The
JavaScript includes a call to the updateCount function, which will update the count on the
clients' pages.

The last line resumes the Comet request and removes it from the list of active CometHandler
objects. By this line, you can tell that this application uses the long-polling technique. If you
were to delete this line, the application would use the HTTP-Streaming technique.

■ For HTTP-Streaming:
Add the same code as for long-polling, except do not include the following line:
event.getCometContext().resumeCometHandler(this);

You don't include this line because you do not want to resume the request. Instead, you want
the connection to remain open.

Increment the counter and forward the response by adding the following lines to the doPost
method:
counter.incrementAndGet();

CometEngine engine = CometEngine.getEngine();

CometContext<?> context =

engine.getCometContext(contextPath);

context.notify(null);

req.getRequestDispatcher("count.html").forward(req, res);

When a user clicks the button, the doPost method is called. The doPost method increments the
counter. It then obtains the current CometContext object and calls its notify method. By calling
context.notify, the doPost method triggers the onEvent method you created in the previous
step. After onEvent executes, doPost forwards the response to the clients.

Creating the Client Pages
Developing the HTML pages for the client involves performing these steps:

1. Create a welcome HTML page, called index.html, that contains: one hidden frame for
connecting to the servlet through an HTTP GET; one IFrame that embeds the count.html
page, which contains the updated content; and one IFrame that embeds the button.html
page, which is used for posting updates using HTTP POST.

2. Create the count.html page that contains an HTML element that displays the current count
and the JavaScript for updating the HTML element with the new count.

2

Using the Grizzly Comet API

GlassFish v3 Application Server Developer's Guide • May 200886

3. Create the button.html page that contains a button for the users to submit updates.

▼ Creating a Welcome HTML Page That Contains IFrames for Receiving
and Sending Updates

Create an HTML page called index.html.

Add the following content to the page:
<html>

<head>

<title>Comet Example: Counter with Hidden Frame</title>

</head>

<body>

</body>

</html>

Add IFrames for connecting to the server and receiving and sending updates to index.html in
between the body tags:

<frameset>

<iframe name="hidden" src="hidden_comet"
frameborder="0" height="0" width="100%"></iframe>

<iframe name="counter" src="count.html"
frameborder="0" height="100%" width="100%"></iframe>

<iframe name="button" src="button.html" frameborder="0" height="30%" widget="100%"></iframe>
</frameset>

The first frame, which is hidden, points to the servlet by referencing its context path. The
second frame displays the content from count.html, which displays the current count. The
second frame displays the content from button.html, which contains the submit button for
incrementing the counter.

▼ Creating the HTML Page That Updates and Displays the Content

Create an HTML page called count.html and add the following content to it:
<html>

<head>

</head>

<body>

<center>

<h3>Comet Example: Counter with Hidden Frame</h3>

<p>

<b id="count">
<p>

</center>

1

2

3

1

Using the Grizzly Comet API

Chapter 7 • Developing Web Applications 87

</body>

</html>

This page displays the current count.

Add JavaScript code that updates the count in the page . Add the following lines in between the
head tags of count.html:
<script type=’text/javascript’>

function updateCount(c) {

document.getElementById(’count’).innerHTML = c;

parent.hidden.location.href = "hidden_comet";
};

</script>

The JavaScript takes the updated count it receives from the servlet and updates the count
element in the page. The last line in the updateCount function invokes the servlet's doGet
method again to re-establish the connection.

■ For HTTP-Streaming:

Add the same code as for long-polling, except for the following line:
parent.hidden.location.href = “hidden_comet”

This line invokes the doGet method of CometServlet again, which would re-establish the
connection. In the case of HTTP-Streaming, you want the connection to remain open.
Therefore, you don't include this line of code.

▼ Creating the HTML Page That Allows Submitting Updates

Create an HTML page called button.html and add the following content to it:
<html>

<head>

</head>

<body>

<center>

<form method="post" action="hidden_comet">
<input type="submit" value="Click">

</form>

</center>

</body>

</html>

This page displays a form with a button that allows a user to update the count on the server. The
servlet will then broadcast the updated count to all clients.

2

●

Using the Grizzly Comet API

GlassFish v3 Application Server Developer's Guide • May 200888

Creating the Deployment Descriptor
This section describes how to create a deployment descriptor to specify how your
Comet-enabled web application should be deployed.

▼ Creating the Deployment Descriptor

Create a file called web.xml and put the following contents in it:
<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=

"http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd ">

<servlet>

<servlet-name>HiddenCometServlet</servlet-name>

<servlet-class>

com.sun.grizzly.samples.comet.HiddenCometServlet

</servlet-class>

<load-on-startup>0</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>HiddenCometServlet</servlet-name>

<url-pattern>/hidden_comet</url-pattern>

</servlet-mapping>

</web-app>

This deployment descriptor contains a servlet declaration and mapping for
HiddenCometServlet. The load-on-startup attribute must be set to 0 so that the
Comet-enabled servlet will not load until the client makes a request to it.

Deploying and Running a Comet-Enabled Application
Before running a Comet-enabled application in the Application Server, you need to enable
Comet in the server. Then you can deploy the application just as you would any other web
application.

When running the application, you need to connect to it from at least two different browsers to
experience the effect of the servlet updating all clients in response to one client posting an
update to the server.

●

Using the Grizzly Comet API

Chapter 7 • Developing Web Applications 89

▼ Enabling Comet in the Application Server
Before running a Comet-enabled application, you need to enable Comet in your application
server by adding a special property to the http-listener element of the domain.xml file.

The following steps tell you how to add this property.

Open as-install/domains/domain1/config/domain.xml in a text editor.

Add the following property in between the http-listener start and end tags:
<property name="cometSupport" value="true"/>

Save domain.xml.

▼ Deploying the Example
These instructions tell you how to deploy the Hidden example.

Downloadgrizzly-comet-hidden-1.7.3.1.war.

Download and install the GlassFish v3 Application Server.

Run the following command to deploy the example:
as-install/bin/asadmin deploy grizzly-comet-hidden-1.7.3.1.war

▼ Running the Example
These instructions tell you how to run the Hidden example.

Open two web browsers, preferably two different brands of web browser.

Enter the following URL in both browsers:
http://localhost:8080/grizzly-comet-hidden/index.html

When the first page loads in both browsers, click the button in one of the browsers and watch
the count change in the other browser window.

Advanced Web Application Features
This section includes summaries of the following topics:

■ “Internationalization Issues” on page 91
■ “Virtual Servers” on page 92
■ “Default Web Modules” on page 93

1

2

3

1

2

3

1

2

3

Advanced Web Application Features

GlassFish v3 Application Server Developer's Guide • May 200890

http://download.java.net/maven/2/com/sun/grizzly/samples/grizzly-comet-hidden/1.7.3.1/
https://glassfish.dev.java.net/downloads/v3-techPreview-2.html

■ “Class Loader Delegation” on page 93
■ “Using the default-web.xml File” on page 94
■ “Configuring Idempotent URL Requests” on page 94
■ “Header Management” on page 95
■ “Configuring Valves and Catalina Listeners” on page 96
■ “Alternate Document Roots” on page 96
■ “Redirecting URLs” on page 98
■ “Using a context.xml File” on page 98
■ “Enabling WebDav” on page 98
■ “Using mod_jk” on page 100

Internationalization Issues
This section covers internationalization as it applies to the following:

■ “The Server's Default Locale” on page 91
■ “Servlet Character Encoding” on page 91

The Server's Default Locale
To set the default locale of the entire Application Server, which determines the locale of the
Admin Console, the logs, and so on, use the Admin Console. In the developer profile, select the
Application Server component, the Advanced tab, and the Domain Attributes tab. In the cluster
profile, select the domain component. Then type a value in the Locale field. For details, click the
Help button in the Admin Console.

Servlet Character Encoding
This section explains how the Application Server determines the character encoding for the
servlet request and the servlet response. For encodings you can use, see
http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html.

Servlet Request

When processing a servlet request, the server uses the following order of precedence, first to
last, to determine the request character encoding:

■ The getCharacterEncoding() method
■ A hidden field in the form, specified by the form-hint-field attribute of the

parameter-encoding element in the sun-web.xml file
■ The default-charset attribute of the parameter-encoding element in the sun-web.xml

file
■ The default, which is ISO-8859-1

Advanced Web Application Features

Chapter 7 • Developing Web Applications 91

http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html

For details about the parameter-encoding element, see “parameter-encoding” in GlassFish v3
Application Server Application Deployment Guide.

Servlet Response

When processing a servlet response, the server uses the following order of precedence, first to
last, to determine the response character encoding:

■ The setCharacterEncoding() or setContentType() method
■ The setLocale() method
■ The default, which is ISO-8859-1

Virtual Servers
A virtual server, also called a virtual host, is a virtual web server that serves content targeted for
a specific URL. Multiple virtual servers can serve content using the same or different host
names, port numbers, or IP addresses. The HTTP service directs incoming web requests to
different virtual servers based on the URL.

When you first install the Application Server, a default virtual server is created. You can also
assign a default virtual server to each new HTTP listener you create.

Web applications and Java EE applications containing web components (web modules) can be
assigned to virtual servers during deployment. A web module can be assigned to more than one
virtual server, and a virtual server can have more than one web module assigned to it.

▼ To Assign a Default Virtual Server

In the Admin Console, open the HTTP Service component under the relevant configuration.

Open the HTTP Listeners component under the HTTP Service component.

Select or create a new HTTP listener.

Select from the Default Virtual Server drop-down list.

For more information, see “Default Web Modules” on page 93.

For details, click the Help button in the Admin Console from the HTTP Listeners page.

1

2

3

4

See Also

Advanced Web Application Features

GlassFish v3 Application Server Developer's Guide • May 200892

▼ To Assign Virtual Servers

Deploy the application or web module and assign the desired virtual servers to it.
For more information, see GlassFish v3 Application Server Application Deployment Guide.

In the Admin Console, open the HTTP Service component under the relevant configuration.

Open the Virtual Servers component under the HTTP Service component.

Select the virtual server to which you want to assign a default web module.

Select the application or web module from the Default Web Module drop-down list.
For more information, see “Default Web Modules” on page 93.

For details, click the Help button in the Admin Console from the Virtual Servers page.

Default Web Modules
A default web module can be assigned to the default virtual server and to each new virtual
server. For details, see “Virtual Servers” on page 92. To access the default web module for a
virtual server, point the browser to the URL for the virtual server, but do not supply a context
root. For example:

http://myvserver:3184/

A virtual server with no default web module assigned serves HTML or JavaServer Pages (JSP)
content from its document root, which is usually domain-dir/docroot. To access this HTML or
JSP content, point your browser to the URL for the virtual server, do not supply a context root,
but specify the target file.

For example:

http://myvserver:3184/hellothere.jsp

Class Loader Delegation
The Servlet specification recommends that the Web class loader look in the local class loader
before delegating to its parent. To make the Web class loader follow the delegation model in the
Servlet specification, set delegate="false" in the class-loader element of the sun-web.xml
file. It’s safe to do this only for a web module that does not interact with any other modules.

1

2

3

4

5

See Also

Advanced Web Application Features

Chapter 7 • Developing Web Applications 93

The default value is delegate="true", which causes the Web class loader to delegate in the same
manner as the other class loaders. Use delegate="true" for a web application that accesses EJB
components or that acts as a web service client or endpoint. For details about sun-web.xml, see
GlassFish v3 Application Server Application Deployment Guide.

Note – For Technology Preview 2, the delegate value is ignored and assumed to be set to true.

For general information about class loaders, see Chapter 2, “Class Loaders.”

Using the default-web.xml File
You can use the default-web.xml file to define features such as filters and security constraints
that apply to all web applications.

The mime-mapping elements in default-web.xml are global and inherited by all web
applications. You can override these mappings or define your own using mime-mapping
elements in your web application's web.xml file. For more information about mime-mapping
elements, see the Servlet specification.

You can use the Admin Console to edit the default-web.xml file. For details, click the Help
button in the Admin Console. As an alternative, you can edit the file directly using the following
steps.

▼ To Use the default-web.xml File

Place the JAR file for the filter, security constraint, or other feature in the domain-dir/lib
directory.

Edit the domain-dir/config/default-web.xml file to refer to the JAR file.

Restart the server.

Configuring Idempotent URL Requests
An idempotent request is one that does not cause any change or inconsistency in an application
when retried. To enhance the availability of your applications deployed on an Application
Server cluster, configure the load balancer to retry failed idempotent HTTP requests on all the
Application Server instances in a cluster. This option can be used for read-only requests, for
example, to retry a search request.

This section describes the following topics:

1

2

3

Advanced Web Application Features

GlassFish v3 Application Server Developer's Guide • May 200894

■ “Specifying an Idempotent URL” on page 95
■ “Characteristics of an Idempotent URL” on page 95

Specifying an Idempotent URL
To configure idempotent URL response, specify the URLs that can be safely retried in
idempotent-url-pattern elements in the sun-web.xml file. For example:

<idempotent-url-pattern url-pattern="sun_java/*" no-of-retries="10"/>

For details, see “idempotent-url-pattern” in GlassFish v3 Application Server Application
Deployment Guide.

If none of the server instances can successfully serve the request, an error page is returned.

Characteristics of an Idempotent URL
Since all requests for a given session are sent to the same application server instance, and if that
Application Server instance is unreachable, the load balancer returns an error message.
Normally, the request is not retried on another Application Server instance. However, if the
URL pattern matches that specified in the sun-web.xml file, the request is implicitly retried on
another Application Server instance in the cluster.

In HTTP, some methods (such as GET) are idempotent, while other methods (such as POST)
are not. In effect, retrying an idempotent URL should not cause values to change on the server
or in the database. The only difference should be a change in the response received by the user.

Examples of idempotent requests include search engine queries and database queries. The
underlying principle is that the retry does not cause an update or modification of data.

A search engine, for example, sends HTTP requests with the same URL pattern to the load
balancer. Specifying the URL pattern of the search request to the load balancer ensures that
HTTP requests with the specified URL pattern are implicitly retried on another Application
Server instance.

For example, if the request URL sent to the Application Server is of the type
/search/something.html, then the URL pattern can be specified as /search/*.

Examples of non-idempotent requests include banking transactions and online shopping. If
you retry such requests, money might be transferred twice from your account.

Header Management
In all Editions of the Application Server, the Enumeration from request.getHeaders()

contains multiple elements (one element per request header) instead of a single, aggregated
value.

Advanced Web Application Features

Chapter 7 • Developing Web Applications 95

The header names used in HttpServletResponse.addXXXHeader() and
HttpServletResponse.setXXXHeader() are returned as they were created.

Configuring Valves and Catalina Listeners
You can configure custom valves and Catalina listeners for web modules or virtual servers by
defining properties. In the domain.xml file, valve and listener properties look like this:

<web-module ...>

<property name="valve_1" value="org.glassfish.extension.Valve"/>
<property name="listener_1" value="org.glassfish.extension.MyLifecycleListener"/>

</web-module>

You can define these properties in one of the following ways, then restart the server:

■ You can define virtual server properties using the Admin Console. Select the HTTP Service
component under the relevant configuration, select Virtual Servers, and select the desired
virtual server. Select Add Property, enter the property name and value, check the enable box,
and select Save. For details, click the Help button in the Admin Console.

Alternate Document Roots
An alternate document root (docroot) allows a web application to serve requests for certain
resources from outside its own docroot, based on whether those requests match one (or more)
of the URI patterns of the web application's alternate docroots.

To specify an alternate docroot for a web application or a virtual server, use the
alternatedocroot_n property, where n is a positive integer that allows specification of more
than one. This property can be a subelement of a sun-web-app element in the sun-web.xml file
or a virtual-server element in the domain.xml file. For more information about these
elements, see “sun-web-app” in GlassFish v3 Application Server Application Deployment Guide.

A virtual server's alternate docroots are considered only if a request does not map to any of the
web modules deployed on that virtual server. A web module's alternate docroots are considered
only once a request has been mapped to that web module.

If a request matches an alternate docroot's URI pattern, it is mapped to the alternate docroot by
appending the request URI (minus the web application's context root) to the alternate docroot's
physical location (directory). If a request matches multiple URI patterns, the alternate docroot
is determined according to the following precedence order:

■ Exact match
■ Longest path match
■ Extension match

Advanced Web Application Features

GlassFish v3 Application Server Developer's Guide • May 200896

For example, the following properties specify three docroots. The URI pattern of the first
alternate docroot uses an exact match, whereas the URI patterns of the second and third
alternate docroots use extension and longest path prefix matches, respectively.

<property name="alternatedocroot_1" value="from=/my.jpg dir=/srv/images/jpg"/>
<property name="alternatedocroot_2" value="from=*.jpg dir=/srv/images/jpg"/>
<property name="alternatedocroot_3" value="from=/jpg/* dir=/src/images"/>

The value of each alternate docroot has two components: The first component, from, specifies
the alternate docroot's URI pattern, and the second component, dir, specifies the alternate
docroot's physical location (directory).

Suppose the above examples belong to a web application deployed at
http://company22.com/myapp. The first alternate docroot maps any requests with this URL:

http://company22.com/myapp/my.jpg

To this resource:

/svr/images/jpg/my.jpg

The second alternate docroot maps any requests with a *.jpg suffix, such as:

http://company22.com/myapp/*.jpg

To this physical location:

/svr/images/jpg

The third alternate docroot maps any requests whose URI starts with /myapp/jpg/, such as:

http://company22.com/myapp/jpg/*

To the same directory as the second alternate docroot.

For example, the second alternate docroot maps this request:

http://company22.com/myapp/abc/def/my.jpg

To:

/srv/images/jpg/abc/def/my.jpg

The third alternate docroot maps:

http://company22.com/myapp/jpg/abc/resource

To:

Advanced Web Application Features

Chapter 7 • Developing Web Applications 97

/srv/images/jpg/abc/resource

If a request does not match any of the target web application's alternate docroots, or if the target
web application does not specify any alternate docroots, the request is served from the web
application's standard docroot, as usual.

Redirecting URLs
You can specify that a request for an old URL is treated as a request for a new URL. This is called
redirecting a URL.

To specify a redirected URL for a virtual server, use the redirect_n property, where n is a
positive integer that allows specification of more than one. This property is a subelement of a
virtual-server element in the domain.xml file.. Each of these redirect_n properties is
inherited by all web applications deployed on the virtual server.

The value of each redirect_n property has two components, which may be specified in any
order:

The first component, from, specifies the prefix of the requested URI to match.

The second component, url-prefix, specifies the new URL prefix to return to the client. The
from prefix is simply replaced by this URL prefix.

For example:

<property name="redirect_1" value="from=/dummy url-prefix=http://etude"/>

Using a context.xml File
Use the contextXmlDefault property to specify the location, relative to domain-dir, of the
context.xml file for a virtual server. For more information about virtual servers, see “Virtual
Servers” on page 92. For more information about the context.xml file, see The Context
Container (http://tomcat.apache.org/tomcat-5.5-doc/config/context.html).

Enabling WebDav
To enable WebDav in the Application Server, you edit the web.xml and sun-web.xml files as
follows.

First, enable the WebDav servlet in your web.xml file:

<servlet>

<servlet-name>webdav</servlet-name>

<servlet-class>org.apache.catalina.servlets.WebdavServlet</servlet-class>

Advanced Web Application Features

GlassFish v3 Application Server Developer's Guide • May 200898

http://tomcat.apache.org/tomcat-5.5-doc/config/context.html
http://tomcat.apache.org/tomcat-5.5-doc/config/context.html

<init-param>

<param-name>debug</param-name>

<param-value>0</param-value>

</init-param>

<init-param>

<param-name>listings</param-name>

<param-value>true</param-value>

</init-param>

<init-param>

<param-name>readonly</param-name>

<param-value>false</param-value>

</init-param>

</servlet>

Then define the servlet mapping associated with your WebDav servlet in your web.xml file:

<servlet-mapping>

<servlet-name>webdav</servlet-name>

<url-pattern>/webdav/*</url-pattern>

</servlet-mapping>

To protect the WebDav servlet so other users can't modify it, add a security constraint in your
web.xml file:

<security-constraint>

<web-resource-collection>

<web-resource-name>Login Resources</web-resource-name>

<url-pattern>/webdav/*</url-pattern>

</web-resource-collection>

<auth-constraint>

<role-name>Admin</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>default</realm-name>

</login-config>

<security-role>

<role-name>Admin</role-name>

</security-role>

</security-constraint>

Then define a security role mapping in your sun-web.xml file:

<security-role-mapping>

<role-name>Admin</role-name>

Advanced Web Application Features

Chapter 7 • Developing Web Applications 99

<group-name>Admin</group-name>

</security-role-mapping>

If you are using the file realm, create a user and password. For example:

asadmin create-file-user --user admin --host localhost --port 4848 --terse=true

--groups Admin --authrealmname default admin

You can now use any WebDav client by connecting to the WebDav servlet URL, which has this
format:

http://host:port/context-root/webdav/file

For example:

http://localhost:80/glassfish-webdav/webdav/index.html

You can add the WebDav servlet to your default-web.xml file to enable it for all applications,
but you can't set up a security role mapping to protect it.

Using mod_jk
To set up mod_jk, follow these steps:

1. Obtain the following software:
■ Apache 2.0.x
■ Apache Tomcat Connectors

(http://www.apache.org/dist/tomcat/tomcat-connectors/jk/binaries/)
■ Apache Tomcat 5.5.16, needed for just one JAR file (http://archive.apache.org/

dist/tomcat/tomcat-5/v5.5.16/bin/apache-tomcat-5.5.16.tar.gz)
■ Apache Commons Logging 1.0.4 (http://archive.apache.org/

dist/jakarta/commons/logging/binaries/commons-logging-1.0.4.tar.gz)
■ Apache Commons Modeler 1.1 (http://archive.apache.org/

dist/jakarta/commons/modeler/binaries/modeler-1.1.tar.gz)
2. Install mod_jk as described at

http://tomcat.apache.org/connectors-doc/webserver_howto/apache.html.
3. Copy the following Tomcat and Jakarta Commons files to as-install/lib:

■ tomcat-ajp.jar

■ commons-logging.jar

■ commons-modeler.jar

4. Create and configure the following files:
■ /etc/httpd/conf/httpd.conf

Advanced Web Application Features

GlassFish v3 Application Server Developer's Guide • May 2008100

http://www.apache.org/dist/tomcat/tomcat-connectors/jk/binaries/
http://archive.apache.org/dist/tomcat/tomcat-5/v5.5.16/bin/apache-tomcat-5.5.16.tar.gz
http://archive.apache.org/dist/tomcat/tomcat-5/v5.5.16/bin/apache-tomcat-5.5.16.tar.gz
http://archive.apache.org/dist/jakarta/commons/logging/binaries/commons-logging-1.0.4.tar.gz
http://archive.apache.org/dist/jakarta/commons/logging/binaries/commons-logging-1.0.4.tar.gz
http://archive.apache.org/dist/jakarta/commons/modeler/binaries/modeler-1.1.tar.gz
http://archive.apache.org/dist/jakarta/commons/modeler/binaries/modeler-1.1.tar.gz
http://tomcat.apache.org/connectors-doc/webserver_howto/apache.html

■ /etc/httpd/conf/worker.properties or
domain-dir/config/glassfish-jk.properties (to use non-default values of attributes
described at http://tomcat.apache.org/tomcat-5.5-doc/config/ajp.html)

Examples of these files are shown after these steps. If you use both worker.properties and
glassfish-jk.properties files, the file referenced by httpd.conf, or referenced by
httpd.conf first, takes precedence.

5. Start httpd.
6. Enable mod_jk using the following command:

asadmin create-jvm-options -Dcom.sun.enterprise.web.connector.enableJK=8009

7. If you are using the glassfish-jk.properties file and not referencing it in httpd.conf,
point to it using the following command:

asadmin create-jvm-options

-Dcom.sun.enterprise.web.connector.enableJK.propertyFile=domain-dir/config/glassfish-jk.properties

8. Restart the Application Server.

Here is an example httpd.conf file:

LoadModule jk_module /usr/lib/httpd/modules/mod_jk.so

JkWorkersFile /etc/httpd/conf/worker.properties

Where to put jk logs

JkLogFile /var/log/httpd/mod_jk.log

Set the jk log level [debug/error/info]

JkLogLevel debug

Select the log format

JkLogStampFormat "[%a %b %d %H:%M:%S %Y] "
JkOptions indicate to send SSL KEY SIZE,

JkOptions +ForwardKeySize +ForwardURICompat -ForwardDirectories

JkRequestLogFormat set the request format

JkRequestLogFormat "%w %V %T"
Send all jsp requests to GlassFish

JkMount /*.jsp worker1

Send all glassfish-test requests to GlassFish

JkMount /glassfish-test/* worker1

Here is an example worker.properties or glassfish-jk.properties file:

Define 1 real worker using ajp13

worker.list=worker1

Set properties for worker1 (ajp13)

worker.worker1.type=ajp13

worker.worker1.host=localhost.localdomain

worker.worker1.port=8009

worker.worker1.lbfactor=50

Advanced Web Application Features

Chapter 7 • Developing Web Applications 101

http://tomcat.apache.org/tomcat-5.5-doc/config/ajp.html

worker.worker1.cachesize=10

worker.worker1.cache_timeout=600

worker.worker1.socket_keepalive=1

worker.worker1.socket_timeout=300

Advanced Web Application Features

GlassFish v3 Application Server Developer's Guide • May 2008102

Using Enterprise JavaBeans Technology

This chapter describes how Enterprise JavaBeansTM (EJBTM) technology is supported in the
GlassFish Application Server. This chapter addresses the following topics:

■ “Summary of EJB 3.1 Changes” on page 103
■ “Value Added Features” on page 104
■ “EJB Timer Service” on page 105
■ “Using Session Beans” on page 106
■ “Handling Transactions With Enterprise Beans” on page 107

For general information about enterprise beans, see “Part Three: Enterprise Beans” in the Java
EE 5 Tutorial (http://java.sun.com/javaee/5/docs/tutorial/doc/index.html).

Note – For GlassFish v3 Technology Preview 2, EJB modules are not supported unless the
optional EJB container module is downloaded from the Update Center. For information about
the Update Center, see the GlassFish v3 Application Server Quick Start Guide.

For GlassFish v3 Technology Preview 2, only stateless session beans with local interfaces and
entity beans that use the Java Persistence API are supported. Stateful, message-driven, and EJB
2.0 and 2.1 entity beans are not supported. Remote interfaces and remote business interfaces for
any of the bean types are not supported.

Summary of EJB 3.1 Changes
The Application Server supports and is compliant with the Sun Microsystems Enterprise
JavaBeans (EJB) architecture as defined by the Enterprise JavaBeans Specification, v3.1, also
known as JSR 318 (http://jcp.org/en/jsr/detail?id=318).

The main changes in the Enterprise JavaBeans Specification, v3.1 that impact enterprise beans
in the Application Server environment are as follows:

8C H A P T E R 8

103

http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://jcp.org/en/jsr/detail?id=318

■ An EJB component need not implement any interface as long as it contains one of the
component defining annotations or the XML equivalent. Essentially, the local business
interface is optional. For example, the following is a simple no-interface bean:

@Stateless

public class HelloBean {

public String sayHello(String msg) {

return "Hello " + msg;

}

}

Even though the bean doesn't implement any interface, the client can still inject (or look up)
a reference to the session bean. The client still has to perform a JNDI lookup or inject a
reference of the bean. More specifically, it cannot use the new operator to construct the
bean.

@EJB HelloBean h;

...

h.sayHello("bob");

■ EJB classes can be packaged inside WAR files. These classes must reside under
WEB-INF/classes. For example, the structure of a hello.war file might look like this:

index.jsp

META-INF/

MANIFEST.MF

WEB-INF/

web.xml

classes/

com/

sun/

v3/

demo/

HelloEJB.class

HelloServlet.class

For more information about web applications, see Chapter 7, “Developing Web
Applications.”

Value Added Features
The Application Server provides a number of value additions that relate to EJB development.
These capabilities are discussed in the following sections. References to more in-depth material
are included.

■ “Bean-Level Container-Managed Transaction Timeouts” on page 105

Value Added Features

GlassFish v3 Application Server Developer's Guide • May 2008104

Bean-Level Container-Managed Transaction Timeouts
The default transaction timeout for the domain is specified using the Transaction Timeout
setting of the Transaction Service. A transaction started by the container must commit (or
rollback) within this time, regardless of whether the transaction is suspended (and resumed), or
the transaction is marked for rollback.

To override this timeout for an individual bean, use the optional cmt-timeout-in-seconds
element in sun-ejb-jar.xml. The default value, 0, specifies that the default Transaction Service
timeout is used. The value of cmt-timeout-in-seconds is used for all methods in the bean that
start a new container-managed transaction. This value is not used if the bean joins a client
transaction.

EJB Timer Service
The EJB Timer Service uses a database to store persistent information about EJB timers.

The EJB Timer Service in Application Server is preconfigured to use an embedded version of
the Java DB database. In the Admin Console, open the Resources component and select JDBC
Resources. For details, click the Help button in the Admin Console. Change the connection
pool name for the JDBC resource named jdbc/__TimerPool to point to the same connection
pool as the one you are using for the rest of your data. Then start the database.

To enable the timer service, deploy the following application:

as-install/modules/ejb/ejb-timer-service-app-10.0-tp-2-SNAPSHOT.war

You can verify that it was deployed successfully by accessing the following URL:

http://localhost:8080/ejb-timer-service-app/timer

The EJB Timer Service configuration can store persistent timer information in any database
supported by the Application Server for persistence. For a list of the JDBC drivers currently
supported by the Application Server, see the GlassFish v3 Application Server Release Notes. For
configurations of supported and other drivers, see “Configuration Specifics for JDBC Drivers”
in GlassFish v3 Application Server Administration Guide.

To change the database used by the EJB Timer Service, set the EJB Timer Service’s Timer
DataSource setting to a valid JDBC resource. You must also create the timer database table.
DDL files are located in as-install/lib/install/databases.

Using the EJB Timer Service is equivalent to interacting with a single JDBC resource manager.
If an EJB component or application accesses a database either directly through JDBC or
indirectly (for example, through an entity bean’s persistence mechanism), and also interacts
with the EJB Timer Service, its data source must be configured with an XA JDBC driver.

EJB Timer Service

Chapter 8 • Using Enterprise JavaBeans Technology 105

You can change the following EJB Timer Service settings. You must restart the server for the
changes to take effect.

■ Minimum Delivery Interval - Specifies the minimum time in milliseconds before an
expiration for a particular timer can occur. This guards against extremely small timer
increments that can overload the server. The default is 7000.

■ Maximum Redeliveries - Specifies the maximum number of times the EJB timer service
attempts to redeliver a timer expiration due for exception or rollback. The default is 1.

■ Redelivery Interval - Specifies how long in milliseconds the EJB timer service waits after a
failed ejbTimeout delivery before attempting a redelivery. The default is 5000.

■ Timer DataSource - Specifies the database used by the EJB Timer Service. The default is
jdbc/__TimerPool.

Using Session Beans
This section provides guidelines for creating session beans in the Application Server
environment. This section addresses the following topics:

■ “About the Session Bean Containers” on page 106
■ “Session Bean Restrictions and Optimizations” on page 107

Information on session beans is contained in the Enterprise JavaBeans Specification, v3.1.

About the Session Bean Containers
Like an entity bean, a session bean can access a database through Java Database Connectivity
(JDBC) calls. A session bean can also provide transaction settings. These transaction settings
and JDBC calls are referenced by the session bean’s container, allowing it to participate in
transactions managed by the container.

Stateless Container
The stateless container manages stateless session beans, which, by definition, do not carry
client-specific states. All session beans (of a particular type) are considered equal.

A stateless session bean container uses a bean pool to service requests. The Application Server
specific deployment descriptor file, sun-ejb-jar.xml, contains the properties that define the
pool:

■ steady-pool-size

■ resize-quantity

■ max-pool-size

■ pool-idle-timeout-in-seconds

Using Session Beans

GlassFish v3 Application Server Developer's Guide • May 2008106

For more information about sun-ejb-jar.xml, see “The sun-ejb-jar.xml File” in GlassFish v3
Application Server Application Deployment Guide.

The Application Server provides the wscompile and wsdeploy tools to help you implement a
web service endpoint as a stateless session bean. For more information about these tools, see the
GlassFish v3 Application Server Reference Manual.

Session Bean Restrictions and Optimizations
This section discusses restrictions on developing session beans and provides some optimization
guidelines.

Restricting Transactions
The following restrictions on transactions are enforced by the container and must be observed
as session beans are developed:

■ A session bean can participate in, at most, a single transaction at a time.
■ If a session bean is participating in a transaction, a client cannot invoke a method on the

bean such that the trans-attribute element (or @TransactionAttribute annotation) in
the ejb-jar.xml file would cause the container to execute the method in a different or
unspecified transaction context or an exception is thrown.

■ If a session bean instance is participating in a transaction, a client cannot invoke the remove
method on the session object’s home or business interface object, or an exception is thrown.

Handling Transactions With Enterprise Beans
This section describes the transaction support built into the Enterprise JavaBeans programming
model for the Application Server.

This section provides overview information on the following topics:

■ “Flat Transactions” on page 107
■ “Local Transactions” on page 108
■ “Administration and Monitoring” on page 108

Flat Transactions
The Enterprise JavaBeans Specification, v3.0 requires support for flat (as opposed to nested)
transactions. In a flat transaction, each transaction is decoupled from and independent of other
transactions in the system. Another transaction cannot start in the same thread until the
current transaction ends.

Handling Transactions With Enterprise Beans

Chapter 8 • Using Enterprise JavaBeans Technology 107

Flat transactions are the most prevalent model and are supported by most commercial database
systems. Although nested transactions offer a finer granularity of control over transactions, they
are supported by far fewer commercial database systems.

Local Transactions
Understanding the distinction between global and local transactions is crucial in understanding
the Application Server support for transactions. See “Transaction Scope” on page 119. For
GlassFish v3 Technology Preview 2, only local transactions are supported.

Transactions are demarcated using the javax.transaction.UserTransaction interface,
which the client must use. For more information, see “The Transaction Manager, the
Transaction Synchronization Registry, and UserTransaction” on page 120.

Administration and Monitoring
The Transaction Timeout setting can be overridden by a bean. See “Bean-Level
Container-Managed Transaction Timeouts” on page 105.

In addition, the administrator can monitor transactions using statistics from the transaction
manager that provide information on such activities as the number of transactions completed,
rolled back, or recovered since server startup, and transactions presently being processed.

For information on administering and monitoring transactions, select the Transaction Service
component under the relevant configuration in the Admin Console and click the Help button.

Handling Transactions With Enterprise Beans

GlassFish v3 Application Server Developer's Guide • May 2008108

Using Services and APIs

P A R T I I I

109

110

Using the JDBC API for Database Access

This chapter describes how to use the JavaTM Database Connectivity (JDBCTM) API for database
access with the GlassFish Application Server. This chapter also provides high level JDBC
implementation instructions for servlets using the Application Server. If the JDK version 1.6 is
used, the Application Server supports the JDBC 4.0 API.

The JDBC specifications are available at
http://java.sun.com/products/jdbc/download.html.

A useful JDBC tutorial is located at
http://java.sun.com/docs/books/tutorial/jdbc/index.html.

Note – The Application Server does not support connection pooling or transactions for an
application’s database access if it does not use standard Java EE DataSource objects.

This chapter discusses the following topics:

■ “General Steps for Creating a JDBC Resource” on page 111
■ “Creating Web Applications That Use the JDBC API” on page 113
■ “Restrictions and Optimizations” on page 118

General Steps for Creating a JDBC Resource
To prepare a JDBC resource for use in Java EE applications deployed to the Application Server,
perform the following tasks:

■ “Integrating the JDBC Driver” on page 112
■ “Creating a Connection Pool” on page 112
■ “Testing a JDBC Connection Pool” on page 113
■ “Creating a JDBC Resource” on page 113

9C H A P T E R 9

111

http://java.sun.com/products/jdbc/download.html
http://java.sun.com/docs/books/tutorial/jdbc/index.html

For information about how to configure some specific JDBC drivers, see “Configuration
Specifics for JDBC Drivers” in GlassFish v3 Application Server Administration Guide.

Integrating the JDBC Driver
To use JDBC features, you must choose a JDBC driver to work with the Application Server, then
you must set up the driver. This section covers these topics:
■ “Supported Database Drivers” on page 112
■ “Making the JDBC Driver JAR Files Accessible” on page 112

Supported Database Drivers
Supported JDBC drivers are those that have been fully tested by Sun. For a list of the JDBC
drivers currently supported by the Application Server, see the GlassFish v3 Application Server
Release Notes. For configurations of supported and other drivers, see “Configuration Specifics
for JDBC Drivers” in GlassFish v3 Application Server Administration Guide.

Note – Because the drivers and databases supported by the Application Server are constantly
being updated, and because database vendors continue to upgrade their products, always check
with Sun technical support for the latest database support information.

Making the JDBC Driver JAR Files Accessible
To integrate the JDBC driver into a Application Server domain, copy the JAR files into the
domain-dir/lib directory, then restart the server. This makes classes accessible to all
applications or modules deployed on servers that share the same configuration. For more
information about Application Server class loaders, see Chapter 2, “Class Loaders.”

Creating a Connection Pool
When you create a connection pool that uses JDBC technology (a JDBC connection pool) in the
Application Server, you can define many of the characteristics of your database connections.

You can create a JDBC connection pool in one of these ways:
■ In the Admin Console, open the Resources component and select Connection Pools. For

details, click the Help button in the Admin Console.
■ Use the asadmin create-jdbc-connection-pool command. For details, see the GlassFish

v3 Application Server Reference Manual.

For a complete description of JDBC connection pool features, see the GlassFish v3 Application
Server Administration Guide

General Steps for Creating a JDBC Resource

GlassFish v3 Application Server Developer's Guide • May 2008112

Testing a JDBC Connection Pool
You can test a JDBC connection pool for usability in one of these ways:
■ In the Admin Console, open the Resources component select Connection Pools, and select

the connection pool you want to test. Then select the Ping button in the top right corner of
the page. For details, click the Help button in the Admin Console.

■ Use the asadmin ping-connection-pool command. For details, see the GlassFish v3
Application Server Reference Manual.

Both these commands fail and display an error message unless they successfully connect to the
connection pool.

Creating a JDBC Resource
A JDBC resource, also called a data source, lets you make connections to a database using
getConnection(). Create a JDBC resource in one of these ways:
■ In the Admin Console, open the Resources component and select JDBC Resources. For

details, click the Help button in the Admin Console.
■ Use the asadmin create-jdbc-resource command. For details, see the GlassFish v3

Application Server Reference Manual.

Creating Web Applications That Use the JDBC API
A web application that uses the JDBC API is an application that looks up and connects to one or
more databases. This section covers these topics:

■ “Sharing Connections” on page 113
■ “Obtaining a Physical Connection From a Wrapped Connection” on page 114
■ “Using the Connection.unwrap() Method” on page 114
■ “Marking Bad Connections” on page 115
■ “Using Non-Transactional Connections” on page 115
■ “Using JDBC Transaction Isolation Levels” on page 116
■ “Allowing Non-Component Callers” on page 117

Sharing Connections
When multiple connections acquired by an application use the same JDBC resource, the
connection pool provides connection sharing within the same transaction scope. For example,
suppose Bean A starts a transaction and obtains a connection, then calls a method in Bean B. If
Bean B acquires a connection to the same JDBC resource with the same sign-on information,
and if Bean A completes the transaction, the connection can be shared.

Creating Web Applications That Use the JDBC API

Chapter 9 • Using the JDBC API for Database Access 113

Connections obtained through a resource are shared only if the resource reference declared by
the Java EE component allows it to be shareable. This is specified in a component’s deployment
descriptor by setting the res-sharing-scope element to Shareable for the particular resource
reference. To turn off connection sharing, set res-sharing-scope to Unshareable.

For general information about connections and JDBC URLs, see Chapter 4, “Administering
Database Connectivity ,” in GlassFish v3 Application Server Administration Guide.

Obtaining a Physical Connection From a Wrapped
Connection
The DataSource implementation in the Application Server provides a getConnection method
that retrieves the JDBC driver’s SQLConnection from the Application Server’s Connection
wrapper. The method signature is as follows:

public java.sql.Connection getConnection(java.sql.Connection con)

throws java.sql.SQLException

For example:

InitialContext ctx = new InitialContext();

com.sun.appserv.jdbc.DataSource ds = (com.sun.appserv.jdbc.DataSource)

ctx.lookup("jdbc/MyBase");
Connection con = ds.getConnection();

Connection drivercon = ds.getConnection(con); //get physical connection from wrapper

// Do db operations.

// Do not close driver connection.

con.close(); // return wrapped connection to pool.

Using the Connection.unwrap()Method
If the JDK version 1.6 is used, the Application Server supports JDBC 4.0 if the JDBC driver is
JDBC 4.0 compliant. Using the Connection.unwrap() method on a vendor-provided interface
returns an object or a wrapper object implementing the vendor-provided interface, which the
application can make use of to do vendor-specific database operations. Use the
Connection.isWrapperFor() method on a vendor-provided interface to check whether the
connection can provide an implementation of the vendor-provided interface. Check the JDBC
driver vendor's documentation for information on these interfaces.

Creating Web Applications That Use the JDBC API

GlassFish v3 Application Server Developer's Guide • May 2008114

Marking Bad Connections
The DataSource implementation in the Application Server provides a markConnectionAsBad
method. A marked bad connection is removed from its connection pool when it is closed. The
method signature is as follows:

public void markConnectionAsBad(java.sql.Connection con)

For example:

com.sun.appserv.jdbc.DataSource ds=

(com.sun.appserv.jdbc.DataSource)context.lookup("dataSource");
Connection con = ds.getConnection();

Statement stmt = null;

try{

stmt = con.createStatement();

stmt.executeUpdate("Update");
}

catch (BadConnectionException e){

ds.markConnectionAsBad(con) //marking it as bad for removal

}

finally{

stmt.close();

con.close(); //Connection will be destroyed during close.

}

Using Non-Transactional Connections
You can specify a non-transactional database connection in any of these ways:

■ Check the Non-Transactional Connections box on the JDBC Connection Pools page in the
Admin Console. The default is unchecked. For more information, click the Help button in
the Admin Console.

■ Specify the --nontransactionalconnections option in the asadmin
create-jdbc-connection-pool command. For more information, see the GlassFish v3
Application Server Reference Manual.

■ Use the DataSource implementation in the Application Server, which provides a
getNonTxConnection method. This method retrieves a JDBC connection that is not in the
scope of any transaction. There are two variants.

public java.sql.Connection getNonTxConnection() throws java.sql.SQLException

public java.sql.Connection getNonTxConnection(String user, String password)

throws java.sql.SQLException

Creating Web Applications That Use the JDBC API

Chapter 9 • Using the JDBC API for Database Access 115

■ Create a resource with the JNDI name ending in __nontx. This forces all connections looked
up using this resource to be non transactional.

Typically, a connection is enlisted in the context of the transaction in which a getConnection
call is invoked. However, a non-transactional connection is not enlisted in a transaction context
even if a transaction is in progress.

The main advantage of using non-transactional connections is that the overhead incurred in
enlisting and delisting connections in transaction contexts is avoided. However, use such
connections carefully. For example, if a non-transactional connection is used to query the
database while a transaction is in progress that modifies the database, the query retrieves the
unmodified data in the database. This is because the in-progress transaction hasn’t committed.
For another example, if a non-transactional connection modifies the database and a transaction
that is running simultaneously rolls back, the changes made by the non-transactional
connection are not rolled back.

Here is a typical use case for a non-transactional connection: a component that is updating a
database in a transaction context spanning over several iterations of a loop can refresh cached
data by using a non-transactional connection to read data before the transaction commits.

Using JDBC Transaction Isolation Levels
For general information about transactions, see Chapter 10, “Using the Transaction Service.”

Not all database vendors support all transaction isolation levels available in the JDBC API. The
Application Server permits specifying any isolation level your database supports. The following
table defines transaction isolation levels.

TABLE 9–1 Transaction Isolation Levels

Transaction Isolation Level Description

TRANSACTION_READ_UNCOMMITTED Dirty reads, non-repeatable reads, and phantom reads can occur.

TRANSACTION_READ_COMMITTED Dirty reads are prevented; non-repeatable reads and phantom reads can occur.

TRANSACTION_REPEATABLE_READ Dirty reads and non-repeatable reads are prevented; phantom reads can occur.

TRANSACTION_SERIALIZABLE Dirty reads, non-repeatable reads and phantom reads are prevented.

You can specify the transaction isolation level in the following ways:

■ Select the value from the Transaction Isolation drop-down list on the JDBC Connection
Pools page in the Admin Console. For more information, click the Help button in the
Admin Console.

■ Specify the --isolationlevel option in the asadmin create-jdbc-connection-pool
command. For more information, see the GlassFish v3 Application Server Reference Manual.

Creating Web Applications That Use the JDBC API

GlassFish v3 Application Server Developer's Guide • May 2008116

Note that you cannot call setTransactionIsolation() during a transaction.

You can set the default transaction isolation level for a JDBC connection pool. For details, see
“Creating a Connection Pool” on page 112.

To verify that a level is supported by your database management system, test your database
programmatically using the supportsTransactionIsolationLevel() method in
java.sql.DatabaseMetaData, as shown in the following example:

InitialContext ctx = new InitialContext();

DataSource ds = (DataSource)

ctx.lookup("jdbc/MyBase");
Connection con = ds.getConnection();

DatabaseMetaData dbmd = con.getMetaData();

if (dbmd.supportsTransactionIsolationLevel(TRANSACTION_SERIALIZABLE)

{ Connection.setTransactionIsolation(TRANSACTION_SERIALIZABLE); }

For more information about these isolation levels and what they mean, see the JDBC API
specification.

Note – Applications that change the isolation level on a pooled connection programmatically
risk polluting the pool, which can lead to errors.

Allowing Non-Component Callers
You can allow non-Java-EE components, such as servlet filters and third party persistence
managers, to use this JDBC connection pool. The returned connection is automatically enlisted
with the transaction context obtained from the transaction manager. Standard Java EE
components can also use such pools. Connections obtained by non-component callers are not
automatically closed at the end of a transaction by the container. They must be explicitly closed
by the caller.

You can enable non-component callers in the following ways:

■ Check the Allow Non Component Callers box on the JDBC Connection Pools page in the
Admin Console. The default is false. For more information, click the Help button in the
Admin Console.

■ Specify the --allownoncomponentcallers option in the asadmin
create-jdbc-connection-pool command. For more information, see the GlassFish v3
Application Server Reference Manual.

■ Create a JDBC resource with a __pm suffix.

Creating Web Applications That Use the JDBC API

Chapter 9 • Using the JDBC API for Database Access 117

Restrictions and Optimizations
This section discusses restrictions and performance optimizations that affect using the JDBC
API.

Disabling Stored Procedure Creation on Sybase
By default, DataDirect and GlassFish JDBC drivers for Sybase databases create a stored
procedure for each parameterized PreparedStatement. On the Application Server, exceptions
are thrown when primary key identity generation is attempted. To disable the creation of these
stored procedures, set the property PrepareMethod=direct for the JDBC connection pool.

Restrictions and Optimizations

GlassFish v3 Application Server Developer's Guide • May 2008118

Using the Transaction Service

The Java EE platform provides several abstractions that simplify development of dependable
transaction processing for applications. This chapter discusses Java EE transactions and
transaction support in the GlassFish Application Server.

This chapter contains the following sections:

■ “Transaction Scope” on page 119
■ “The Transaction Manager, the Transaction Synchronization Registry, and

UserTransaction” on page 120

For more information about the JavaTM Transaction API (JTA) and Java Transaction Service
(JTS), see the following sites: http://java.sun.com/products/jta/ and
http://java.sun.com/products/jts/.

You might also want to read “Chapter 35: Transactions” in the Java EE 5 Tutorial
(http://java.sun.com/javaee/5/docs/tutorial/doc/index.html).

For information about JDBC transaction isolation levels, see “Using JDBC Transaction
Isolation Levels” on page 116.

Transaction Scope
A local transaction involves only one non-XA resource and requires that all participating
application components execute within one process. Local transaction optimization is specific
to the resource manager and is transparent to the Java EE application.

In the Application Server, a JDBC resource is non-XA if it meets any of the following criteria:

■ In the JDBC connection pool configuration, the DataSource class does not implement the
javax.sql.XADataSource interface.

■ The Global Transaction Support box is not checked, or the Resource Type setting does not
exist or is not set to javax.sql.XADataSource.

10C H A P T E R 1 0

119

http://java.sun.com/products/jta/
http://java.sun.com/products/jts/
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html

A transaction remains local if the following conditions remain true:

■ One and only one non-XA resource is used. If any additional non-XA resource is used, the
transaction is aborted.

■ No transaction importing or exporting occurs.

The Transaction Manager, the Transaction Synchronization
Registry, and UserTransaction

You can access the Application Server transaction manager, a javax.transaction.
TransactionManager implementation, using the JNDI subcontext java:comp/
TransactionManager or java:appserver/TransactionManager. You can access the
Application Server transaction synchronization registry, a javax.transaction.
TransactionSynchronizationRegistry implementation, using the JNDI subcontext
java:comp/TransactionSynchronizationRegistry or java:appserver/
TransactionSynchronizationRegistry. You can also request injection of a
TransactionManager or TransactionSynchronizationRegistry object using the @Resource
annotation. Accessing the transaction synchronization registry is recommended. For details,
see Java Specification Request (JSR) 907 (http://www.jcp.org/en/jsr/detail?id=907).

You can also access java:comp/UserTransaction.

The Transaction Manager, the Transaction Synchronization Registry, and UserTransaction

GlassFish v3 Application Server Developer's Guide • May 2008120

http://www.jcp.org/en/jsr/detail?id=907

Using the Java Naming and Directory Interface

A naming service maintains a set of bindings, which relate names to objects. The Java EE
naming service is based on the Java Naming and Directory InterfaceTM (JNDI) API. The JNDI
API allows application components and clients to look up distributed resources, services, and
EJB components. For general information about the JNDI API, see
http://java.sun.com/products/jndi/.

You can also see the JNDI tutorial at http://java.sun.com/products/jndi/tutorial/.

This chapter contains the following sections:

■ “Accessing the Naming Context” on page 121
■ “Mapping References” on page 122

Note – For GlassFish v3 Technology Preview 2, EJB modules are not supported unless the
optional EJB container module is downloaded from the Update Center. For information about
the Update Center, see the GlassFish v3 Application Server Quick Start Guide.

For GlassFish v3 Technology Preview 2, only stateless session beans with local interfaces and
entity beans that use the Java Persistence API are supported. Stateful, message-driven, and EJB
2.0 and 2.1 entity beans are not supported. Remote interfaces and remote business interfaces for
any of the bean types are not supported.

Accessing the Naming Context
The Application Server provides a naming environment, or context, which is compliant with
standard Java EE requirements. A Context object provides the methods for binding names to
objects, unbinding names from objects, renaming objects, and listing the bindings. The
InitialContext is the handle to the Java EE naming service that application components and
clients use for lookups.

11C H A P T E R 1 1

121

http://java.sun.com/products/jndi/
http://java.sun.com/products/jndi/tutorial/

The JNDI API also provides subcontext functionality. Much like a directory in a file system, a
subcontext is a context within a context. This hierarchical structure permits better organization
of information. For naming services that support subcontexts, the Context class also provides
methods for creating and destroying subcontexts.

Note – Each resource within a server instance must have a unique name. However, two resources
in different server instances or different domains can have the same name.

Global JNDI Names
Global JNDI names are assigned according to the following precedence rules:

1. A global JNDI name assigned in the sun-ejb-jar.xml, sun-web.xml deployment
descriptor file has the highest precedence. See “Mapping References” on page 122.

2. A global JNDI name assigned in a mapped-name element in the ejb-jar.xml, web.xml
deployment descriptor file has the second highest precedence. The following elements have
mapped-name subelements: resource-ref, resource-env-ref, ejb-ref, session, and
entity.

3. A global JNDI name assigned in a mappedName attribute of an annotation has the third
highest precedence. The following annotations have mappedName attributes:
@javax.annotation.Resource, @javax.ejb.EJB, @javax.ejb.Stateless.

4. A default global JNDI name is assigned in some cases if no name is assigned in deployment
descriptors or annotations.
■ For component dependencies that must be mapped to global JNDI names, the default is

the name of the dependency relative to java:comp/env. For example, in the
@Resource(name="jdbc/Foo") DataSource ds; annotation, the global JNDI name is
jdbc/Foo.

Mapping References
The following XML elements in the Application Server deployment descriptors map resource
references in EJB and web application components to JNDI names configured in the
Application Server:

■ resource-env-ref - Maps the @Resource or @Resources annotation (or the
resource-env-ref element in the corresponding Java EE XML file) to the absolute JNDI
name configured in the Application Server.

■ resource-ref - Maps the @Resource or @Resources annotation (or the resource-ref
element in the corresponding Java EE XML file) to the absolute JNDI name configured in
the Application Server.

Mapping References

GlassFish v3 Application Server Developer's Guide • May 2008122

■ ejb-ref - Maps the @EJB annotation (or the ejb-ref element in the corresponding Java EE
XML file) to the absolute JNDI name configured in the Application Server.
JNDI names for EJB components must be unique. For example, appending the application
name and the module name to the EJB name is one way to guarantee unique names. In this
case, mycompany.pkging.pkgingEJB.MyEJB would be the JNDI name for an EJB in the
module pkgingEJB.jar, which is packaged in the pkging.ear application.

These elements are part of the sun-web.xml and sun-ejb-ref.xml deployment descriptor files.
For more information about how these elements behave in each of the deployment descriptor
files, see Appendix A, “Deployment Descriptor Files,” in GlassFish v3 Application Server
Application Deployment Guide.

The rest of this section uses an example of a JDBC resource lookup to describe how to reference
resource factories.

The @Resource annotation in the application code looks like this:

@Resource(name="jdbc/helloDbDs") javax.sql.DataSource ds;

This references a resource with the JNDI name of java:comp/env/jdbc/helloDbDs. If this is
the JNDI name of the JDBC resource configured in the Application Server, the annotation alone
is enough to reference the resource.

However, you can use an Application Server specific deployment descriptor to override the
annotation. For example, the resource-ref element in the sun-web.xml file maps the
res-ref-name (the name specified in the annotation) to the JNDI name of another JDBC
resource configured in the Application Server.

<resource-ref>

<res-ref-name>jdbc/helloDbDs</res-ref-name>

<jndi-name>jdbc/helloDbDataSource</jndi-name>

</resource-ref>

Mapping References

Chapter 11 • Using the Java Naming and Directory Interface 123

124

Index

Numbers and Symbols
@OrderBy and session cache sharing, 64

A
Admin Console, 23

Debug Enabled field, 32
Default Virtual Server field, 92
HPROF configuration, 34
JACC Providers page, 46
JDBC Connection Pools page, 112

Allow Non Component Callers field, 117
Non-Transactional Connections field, 115
Ping button, 113
Transaction Isolation field, 116

JDBC Resources page, 113
JProbe configuration, 36
Libraries field, 28
Locale field, 91
Logging tab, 33
online help for, 23
Realms page, 45
role mapping configuration, 44
Security Manager Enabled field, 49
Virtual Servers page, 92, 93
Web Services page

Publish tab, 53
Registry tab, 53
Test button, 54

Write to System Log field, 71
alternate document roots, 96-98

annotation
JNDI names, 122
schema generation, 62
security, 42

Application Parent class loader, 26
Application Server Parent class loader, 26
applications, examples, 24
asadmin command, 23

create-auth-realm, 45
create-jdbc-connection-pool, 112

--allownoncomponentcallers option, 117
--isolationlevel option, 116
--nontransactionalconnections option, 115

create-jdbc-resource, 113
create-jvm-options

java.security.debug option, 48
delete-jvm-options

java.security.manager option, 49
deploy

--libraries option, 28
generate-jvm-report, 33
ping-connection-pool, 113
publish-to-registry, 53

authentication, realms, 45
authorization

JACC, 45
roles, 43-44

automatic schema generation, Java Persistence
options, 62

125

C
cache for servlets

default configuration, 73
example configuration, 73
helper class, 73, 75

cache sharing and @OrderBy, 64
CacheHelper interface, 75
cacheKeyGeneratorAttrName property, 75
caching

data using a non-transactional connection, 116
servlet results, 72-75

Catalina listeners, defining custom, 96
class-loader element, 27, 93-94
class loaders, 25-29

application-specific, 28-29
circumventing isolation, 29
delegation hierarchy, 26
isolation, 28

command-line server configuration, See asadmin
command

Common class loader, using to circumvent
isolation, 29

context, for JNDI naming, 121-122
context root, 71
context.xml file, 98
create-auth-realm command, 45
create-jdbc-connection-pool command, 112

--allownoncomponentcallers option, 117
--isolationlevel option, 116
--nontransactionalconnections option, 115

create-jdbc-resource command, 113
create-jvm-options command, java.security.debug

option, 48

D
database properties, 60
databases

properties, 60
specifying for Java Persistence, 58-59
supported, 112

debugging, 31-37
enabling, 31-32
generating a stack trace, 33

debugging (Continued)
JPDA options, 32

DeclareRoles annotation, 43-44
default virtual server, 92
default web module, 71, 93
default-web.xml file, 94
delegation, class loader, 27
delete-jvm-options command, java.security.manager

option, 49
deploy command, --libraries option, 28
deployment descriptor files, 123
destroy method, 75
development environment

creating, 21-24
tools for developers, 22-24

digest authentication, 45
document root, 92, 93
document roots, alternate, 96-98
doGet method, 75, 76
doPost method, 75, 76

E
EclipseLink, 57
eclipselink.target-database property, 58
EJB 3.0, Java Persistence, 57-68
EJB 3.1, summary of changes, 103
EJB components

pooling, 106
security, 43

ejb-ref element, 123
EJB Timer Service, 105-106
encoding, of servlets, 91-92
endorsed standards override mechanism, 28
example applications, 24

F
file realm, 45
finder limitation for Sybase, 66
flat transactions, 107-108

Index

GlassFish v3 Application Server Developer's Guide • May 2008126

G
generate-jvm-report command, 33
getCharacterEncoding method, 91
getConnection method, 114
getHeaders method, 95-96
GlassFish project, 22

H
handling requests, 75
header management, 95-96
help for Admin Console tasks, 23
high-availability database, See HADB
HPROF profiler, 34-35
HTTP sessions, 76-78

cookies, 77
session managers, 77-78
URL rewriting, 77

HttpServletRequest, 73

I
idempotent requests, 94
Inet Oracle JDBC driver, 64
init method, 75
InitialContext naming service handle, 121-122
installation, 21-22
instantiating servlets, 75
internationalization, 91
isolation of class loaders, 28, 29

J
JACC, 45
Java Authorization Contract for Containers, See JACC
Java Database Connectivity, See JDBC
Java DB database, 58-59
Java Debugger (jdb), 31
Java EE tutorial, 69
Java Naming and Directory Interface, See JNDI
Java optional package mechanism, 27
Java Persistence, 57-68

Java Persistence (Continued)
annotation for schema generation, 62
changing the provider, 63-64
database for, 58-59
restrictions, 64-68

Java Platform Debugger Architecture, See JPDA
Java Servlet API, 70
Java Transaction API (JTA), 119-120
Java Transaction Service (JTS), 119-120
JavaBeans, 76
JDBC

connection pool creation, 112
Connection wrapper, 114
creating resources, 113
integrating driver JAR files, 29, 112
non-component callers, 117
non-transactional connections, 115-116
restrictions, 118
sharing connections, 113-114
specification, 111
supported drivers, 112
transaction isolation levels, 116
tutorial, 111

jdbc realm, 45
JNDI

and EJB components, 123
defined, 121-123
global names, 122
mapping references, 122-123
tutorial, 121

JPDA debugging options, 32
JProbe profiler, 35-37
JSP Engine class loader, 26
JSP files, specification, 76
JSR 109, 51
JSR 115, 42, 45
JSR 181, 52
JSR 196, 42
JSR 220, 57
JSR 224, 51
JSR 318, 103
JSR 907, 120

Index

127

L
lib directory, and the Application Server Parent class

loader, 26
libraries, 28-29, 29
Link, See Oracle Link
listeners, Catalina, defining custom, 96
load balancing, and idempotent requests, 94
locale, setting default, 91
logging, 33

M
main.xml file, 24
mapping resource references, 122-123
markConnectionAsBad method, 115
Migration Tool, 23
mime-mapping element, 94
MySQL database restrictions, 66-68

N
naming service, 121-123
native library path

configuring for hprof, 35
configuring for JProbe, 36

nested transactions, 107-108
NetBeans

about, 23
profiler, 34

O
online help, 23
Oracle Inet JDBC driver, 64
Oracle TopLink, 64
output from servlets, 71-72

P
permissions

changing in server.policy, 46-48

permissions (Continued)
default in server.policy, 46

persistence.xml file, 58-59, 62
ping-connection-pool command, 113
profilers, 34-37
publish-to-registry command, 53

Q
query hints, 63

R
realms

application-specific, 45
configuring, 45
supported, 45

redirecting a URL, 98
removing servlets, 75
request object, 75
res-sharing-scope deployment descriptor

setting, 113-114
resource-env-ref element, 122
resource-ref element, 122
resource references, mapping, 122-123
roles, 43-44

S
sample applications, 24
schema generation, Java Persistence options for

automatic, 62
security, 41-49

annotations, 42
application level, 42-43
declarative, 42
EJB components, 43
goals, 41-42
JACC, 45
of containers, 42-43
programmatic, 43
roles, 43-44

Index

GlassFish v3 Application Server Developer's Guide • May 2008128

security (Continued)
server.policy file, 46-49
web applications, 43

security manager, enabling and disabling, 48-49
server

installation, 21-22
lib directory of, 26
optimizing for development, 21
value-added features, 104-105

server.policy file, 46-49
changing permissions, 46-48
default permissions, 46

service method, 75, 76
ServletContext.log messages, 71
servlets, 70-76

caching, 72-75
character encoding, 91-92
destroying, 75
engine, 75
instantiating, 75
invoking using a URL, 70-71
output, 71-72
removing, 75
request handling, 75
specification, 70

class loading, 93-94
mime-mapping, 94

session beans, 106
container for, 106-107
restrictions, 107

session cache sharing and @OrderBy, 64
session managers, 77-78
setCharacterEncoding method, 92
setContentType method, 92
setLocale method, 92
setTransactionIsolation method, 117
Sitraka web site, 35-37
SJSXP parser, 55
specification

EJB 3.1, 103
Java Persistence, 57
JavaBeans, 76
JDBC, 111
JSP, 76

specification (Continued)
programmatic security, 43
security manager, 46
servlet, 70

class loading, 27
stack trace, generating, 33
stateless session beans, 106-107
StAX API, 55
Sun Java Studio, 23
sun-web.xml file

and class loaders, 27, 93-94
supportsTransactionIsolationLevel method, 117
Sybase, finder limitation, 66

T
tools, for developers, 22-24
transactions, 119-120

administration and monitoring, 108
and EJB components, 107-108
flat, 107-108
global, 108
in the Java EE tutorial, 119-120
JDBC isolation levels, 116
local, 108
local or global scope of, 119-120
nested, 107-108
timeouts, 105
transaction manager, 120
transaction synchronization registry, 120
UserTransaction, 120

U
unwrap method, 114
URL, redirecting, 98
URL rewriting, 77
utility classes, 28-29, 29

V
valves, defining custom, 96

Index

129

verbose mode, 33
virtual servers, 92-93

default, 92

W
web applications, 69-102

default, 71, 93
security, 43

Web class loader, 26
changing delegation in, 27, 93-94

web services, 51-55
creating portable artifacts, 52
debugging, 52, 54
deployment, 52
in the Java EE tutorial, 51
registry, 53-54
test page, 54
URL, 54
WSDL file, 54

WebDav, 98-100
Woodstox parser, 55
WSIT, 42

X
XA resource, 119-120
XML parser, 55

Index

GlassFish v3 Application Server Developer's Guide • May 2008130

	GlassFish v3 Application Server Developer's Guide
	Preface
	Application Server Documentation Set
	Related Documentation
	Default Paths and File Names
	Typographic Conventions
	Symbol Conventions
	Documentation, Support, and Training
	Searching Sun Product Documentation
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Development Tasks and Tools
	Setting Up a Development Environment
	Installing and Preparing the Server for Development
	The GlassFish Project
	Development Tools
	The asadmin Command
	The Admin Console
	The NetBeans IDE
	The Migration Tool
	Debugging Tools
	Profiling Tools
	The Eclipse IDE

	Sample Applications

	Class Loaders
	The Class Loader Hierarchy
	Delegation
	Using the Java Optional Package Mechanism
	Using the Endorsed Standards Override Mechanism
	Class Loader Universes
	Application-Specific Class Loading
	Circumventing Class Loader Isolation
	Using the Application Server Parent Class Loader

	Debugging Applications
	Enabling Debugging
	To Set the Server to Automatically Start Up in Debug Mode

	JPDA Options
	Generating a Stack Trace for Debugging
	Enabling Verbose Mode
	Application Server Logging
	Profiling Tools
	The NetBeans Profiler
	The HPROF Profiler
	To Use HPROF Profiling on UNIX

	The JProbe Profiler
	To Enable Remote Profiling With JProbe

	Developing Applications and Application Components
	Securing Applications
	Security Goals
	Container Security
	Declarative Security
	Application Level Security
	Component Level Security

	Programmatic Security

	Roles, Principals, and Principal to Role Mapping
	Realm Configuration
	Supported Realms
	How to Configure a Realm
	How to Set a Realm for a Web Application

	JACC Support
	The server.policy File
	Default Permissions
	Changing Permissions for an Application
	Enabling and Disabling the Security Manager

	Developing Web Services
	Creating Portable Web Service Artifacts
	Deploying a Web Service
	Web Services Registry
	The Web Service URI, WSDL File, and Test Page
	Using the Woodstox Parser

	Using the Java Persistence API
	Specifying the Database
	Additional Database Properties
	Configuring the Cache
	Setting the Logging Level
	Using Lazy Loading
	Primary Key Generation Defaults
	Automatic Schema Generation
	Annotations
	Generation Options

	Query Hints
	Changing the Persistence Provider
	Database Restrictions and Optimizations
	Using @OrderBy with a Shared Session Cache
	Using BLOB or CLOB Types with the Inet Oraxo JDBC Driver
	Database Case Sensitivity
	Unique Constraints
	Foreign Key Mapping
	SQL Result Set Mapping
	Named Native Queries and JDBC Queries
	PostgreSQL Case Sensitivity

	Sybase Finder Limitation
	MySQL Database Restrictions

	Developing Web Applications
	Packaging an EJB JAR File in a Web Application
	Using Servlets
	Invoking a Servlet With a URL
	Servlet Output
	Caching Servlet Results
	Caching Features
	Default Cache Configuration
	Caching Example
	The CacheKeyGenerator Interface

	About the Servlet Engine
	Instantiating and Removing Servlets
	Request Handling

	Using JavaServer Pages
	Creating and Managing Sessions
	Configuring Sessions
	HTTP Sessions, Cookies, and URL Rewriting
	Coordinating Session Access

	Session Managers
	The memory Persistence Type

	Using the Grizzly Comet API
	Introduction to Comet
	The Grizzly Implementation of Comet
	The Grizzly Comet API
	Client Technologies to Use With Comet
	Kinds of Comet Connections
	HTTP Streaming
	Long Polling
	How to Choose the Kind of Connection

	The Hidden Example
	Creating a Comet-Enabled Application
	Developing the Web Component
	Creating a Web Component to Support Comet
	Registering the Servlet with the Comet Engine
	Defining a Comet Handler to Send Updates to the Client
	Adding the Comet Handler to the Comet Context
	Notifying the Comet Handler of an Event

	Creating the Client Pages
	Creating a Welcome HTML Page That Contains IFrames for Receiving and Sending Updates
	Creating the HTML Page That Updates and Displays the Content
	Creating the HTML Page That Allows Submitting Updates

	Creating the Deployment Descriptor
	Creating the Deployment Descriptor

	Deploying and Running a Comet-Enabled Application
	Enabling Comet in the Application Server
	Deploying the Example
	Running the Example

	Advanced Web Application Features
	Internationalization Issues
	The Server's Default Locale
	Servlet Character Encoding
	Servlet Request
	Servlet Response

	Virtual Servers
	To Assign a Default Virtual Server
	To Assign Virtual Servers

	Default Web Modules
	Class Loader Delegation
	Using the default-web.xml File
	To Use the default-web.xml File

	Configuring Idempotent URL Requests
	Specifying an Idempotent URL
	Characteristics of an Idempotent URL

	Header Management
	Configuring Valves and Catalina Listeners
	Alternate Document Roots
	Redirecting URLs
	Using a context.xml File
	Enabling WebDav
	Using mod_jk

	Using Enterprise JavaBeans Technology
	Summary of EJB 3.1 Changes
	Value Added Features
	Bean-Level Container-Managed Transaction Timeouts

	EJB Timer Service
	Using Session Beans
	About the Session Bean Containers
	Stateless Container

	Session Bean Restrictions and Optimizations
	Restricting Transactions

	Handling Transactions With Enterprise Beans
	Flat Transactions
	Local Transactions
	Administration and Monitoring

	Using Services and APIs
	Using the JDBC API for Database Access
	General Steps for Creating a JDBC Resource
	Integrating the JDBC Driver
	Supported Database Drivers
	Making the JDBC Driver JAR Files Accessible

	Creating a Connection Pool
	Testing a JDBC Connection Pool
	Creating a JDBC Resource

	Creating Web Applications That Use the JDBC API
	Sharing Connections
	Obtaining a Physical Connection From a Wrapped Connection
	Using the Connection.unwrap() Method
	Marking Bad Connections
	Using Non-Transactional Connections
	Using JDBC Transaction Isolation Levels
	Allowing Non-Component Callers

	Restrictions and Optimizations
	Disabling Stored Procedure Creation on Sybase

	Using the Transaction Service
	Transaction Scope
	The Transaction Manager, the Transaction Synchronization Registry, and UserTransaction

	Using the Java Naming and Directory Interface
	Accessing the Naming Context
	Global JNDI Names

	Mapping References

	Index

