

A Globus Primer
Or, Everything You Wanted to Know about Globus,

but Were Afraid To Ask
Describing Globus Toolkit Version 4

An Early and Incomplete Draft

Please send comments, criticisms, and suggestions to: foster@mcs.anl.gov

Preface
The Globus Toolkit (GT) has been developed since the late 1990s to support the development of
service-oriented distributed computing applications and infrastructures. Core GT components
address basic issues relating to security, resource access and management, data movement and
management, resource discovery, and so forth. A broader “Globus universe” comprises numerous
tools and components that build on core GT4 functionality to provide many useful application-
level functions. These tools have been used to develop many Grid systems and applications.

Version 4 of the Globus Toolkit, GT4, released in April 2005, represents a significant advance
relative to the GT3 implementation of Web services functionality in terms of the range of
components provided, functionality, standards conformance, usability, and quality of
documentation. This document is intended to provide a first introduction to key features of both
GT4 and associated tools, and the ways in which these components can be used to develop Grid
infrastructures and applications. Its focus is on the user’s view of the technology and its
application, and the practical techniques that should be employed to develop GT4-based
applications.

We discuss in turn the applications that motivate the development of GT4 and related tools; the
four tasks involved in building Grids: design, deployment, application, operations; GT4 structure,
including its Web services (WS) and pre-WS components; the Globus universe and its various
components; GT4 performance, scalability, and functionality testing; porting to GT4 from earlier
versions of GT; who’s using GT4; likely future directions, and a few words of history.

This document is a work in progress and will be expanded significantly in the near future. In the
meantime, please send comments on content and suggestions for additional material to the author.

A Globus Primer 2

 Draft of 5/8/2005

Table of Contents

Index of Tables..5
Index of Figures ..6
Chapter 1 Goals and Principles ...7

1.1 Motivating Examples ..7
1.1.1 Enterprise Workload Management...7
1.1.2 High Performance Data Capture ..8
1.1.3 Network for Earthquake Engineering Simulation..8
1.1.4 Earth System Grid...8
1.1.5 Open Science Grid ..9
1.1.6 Biomedical Informatics Research Network ...9

1.2 Requirements and Architectural Overview ..9
1.2.1 Standardized Mechanisms and Interfaces ..9
1.2.2 Infrastructure...10
1.2.3 Monitoring and Discovery..10
1.2.4 Security ...11
1.2.5 Data ...11
1.2.6 Choreography..12

1.3 Globus Architecture Summary ...12
1.4 Opportunities to Contribute ..12
1.5 Further Reading...13

Chapter 2 Service Oriented Architectures..14
2.1 GT4, Distributed Systems, and Web Services..14
2.2 Service Oriented Applications and Infrastructure ..14
2.3 Web Services Implementation ..15
2.4 Web Services Specifications...15

2.4.1 XML, SOAP, WSDL..16
2.4.2 WS-Security and Friends..16
2.4.3 WS-Addressing, WSRF, and WS-Notification..16
2.4.4 Other Relevant Specifications ..17

2.5 Service Oriented Architecture...17
2.6 Further Reading...18

Chapter 3 GT4 Architecture ...20
3.1 Architecture Overview..20
3.2 Predefined GT4 Services ...20
3.3 GT4 Command Line Programs...21
3.4 GT4 Security ...22
3.5 GT4 Containers ...22
3.6 Deploying GT4 Web Services ..23
3.7 Developing GT4 Web Services: Java Specifics ...24

3.7.1 Interface: WSDL...25
3.7.2 Implementation: Java..25
3.7.3 Deployment Descriptor: WSDD ..25

3.8 Further Reading...25
Chapter 4 Execution Management ..26

4.1 Context ..28

Comment [ITF1]: Other potential
sources of information: the ClusterWOrld
columns that we have done.

Publication Date ... [1]

A Globus Primer 3

 Draft of 5/8/2005

4.2 GRAM Overview ..28
4.3 The globusrun-ws Command Line Client ..29

4.3.1 Basic Job Submission ...29
4.3.2 Interacting with a Submitted Job..30
4.3.3 Job Status and Lifecycle ...31
4.3.4 File Staging and Other Features ...31
4.3.5 Credential Delegation ...33
4.3.6 The Primary globusrun-ws Options, and Other Details...34
4.3.7 Further Job Description Language Details...35

4.4 GRAM Client APIs ...37
4.5 GRAM Configuration and Administration...39
4.6 Related Software and Tools ..39

4.6.1 DAGman, Condor-G, and GriPhyN Virtual Data System...39
4.6.2 Nimrod-G: Managing Parameter Studies on the Grid ...39
4.6.3 MPICH-G2: Message Passing on the Grid ..40
4.6.4 Ninf-G: Remote Procedure Call on the Grid ...40

4.7 Case Studies ..40
4.7.1 Execution Management Case Study 1..40
4.7.2 Execution Management Case Study 2..40

4.8 How GRAM Works ..40
4.8.1 Use of WS-Resource Mechanisms ...41
4.8.2 Security Issues ..41
4.8.3 Data Operations ..42

4.9 Execution Management Futures ...42
4.10 Further Reading...42

Chapter 5 Data Management..43
5.1 GridFTP...44
5.2 Reliable File Transfer Service ..44
5.3 Replica Location Service ..44
5.4 Data Access and Integration ...44
5.5 Related Software and Tools ..44
5.6 Case Studies ..44

5.6.1 Data Case Study 1...44
5.6.2 Data Case Study 2...44

5.7 How it Works ..44
5.8 Further Reading...44

Chapter 6 Monitoring and Discovery ..45
6.1 MDS4...46

6.1.1 Aggregators and Information Sources..46
6.1.2 Information Sources and Registration..47
6.1.3 The Three Types of Aggregator ...47
6.1.4 Built-In Information Sources and MDS-Index Services ...47
6.1.5 MDS4 and MDS2 Compared ...48

6.2 Related Software and Tools ..48
6.3 Case Studies ..48

6.3.1 Earth System Grid Monitor ..48
6.3.2 Example 2 ...48

6.4 How it Works ..48
6.5 Further Reading...48

A Globus Primer 4

 Draft of 5/8/2005

Chapter 7 Security ..49
7.1 Security Principles...50
7.2 Supporting Infrastructure ..50
7.3 Web Services Authentication and Authorization ...50

7.3.1 Community Authorization Service...50
7.3.2 Delegation Service..50
7.3.3 Authorization Framework...50
7.3.4 Message/Transport-level Security..50

7.4 Credential Services..51
7.4.1 MyProxy..51
7.4.2 SimpleCA..51

7.5 GSI-OpenSSH ...51
7.6 Related Software and Tools ..51
7.7 Case Studies ..51

7.7.1 The Earth System Grid Portal...52
7.7.2 A Second Example..52

7.8 How it Works ..52
7.9 Further Reading...52

Chapter 8 User Interfaces...53
Chapter 9 Packaging and Distribution ..54
Chapter 10 Miscellaneous but Important Tools ...55

10.1 The eXtensible I/O Library ...55
10.2 Grid TeleControl Protocol ..56
10.3 Handle System...56
10.4 GT4IDE ...56

Acknowledgements ..60
Glossary 61
References 62
Index 66

A Globus Primer 5

 Draft of 5/8/2005

Index of Tables

Table 1: GT4 command line programs. Each line represents a set of programs and gives the
number of programs in the set, a brief description, and a pointer to a section with more details. .21
Table 2: Globus and related execution management tools ..27
Table 3: GRAM job states ..31
Table 4: The primary globusrun-ws options ..34
Table 5: Job description elements, with their cardinality (blank=[0..1], *=[0..*]), whether or not
they support substitution, and their description. ..35
Table 6: Managed Job Factory Resource Properties..38
Table 7: Managed Job Resource Properties and those additional Resource Properties associated
with Managed Executable Job and Managed Multi Job Resources ..38
Table 8: Globus and related data management tools ...43
Table 9: Globus and related monitoring and discovery tools ..45
Table 10: Globus and related security tools ...49
Table 11: GT4 and related user interface tools ...53
Table 12: XIO drivers included in GT4 ...55

A Globus Primer 6

 Draft of 5/8/2005

Index of Figures

Figure 1: Grid technologies can be used to federate resource pools across two departments either
to reduce total cost of ownership (Strategy A) or to increase available peak capacity (Strategy B).
...8

Figure 2: An abstract view of the various specifications that define the Web services architecture
...14

Figure 3: High-level picture of functional components commonly encountered in Web service
implementations, showing the path taken by requests and responses. ..15

Figure 4: Schematic view of GT4.0 components...20

Figure 5: GT4 containers incorporate services and tools (shaded) that allow them to host different
services, including optional GT4 WSRF Web services, and support discovery and administration.
...23

Figure 6: Four different GT4 container configurations. ..23

Figure 7: A Java Web service and the various components (shaded) that Axis uses to implement
its interface and describe its configuration...25

Figure 8: State transition diagram for GRAM jobs..31

Figure 9: From bottom to top, the four WS-Resources (shaded) associated with GRAM, the four
interfaces used to operate on those WS-Resoures, and the operations that those interfaces support.
...37

Figure 10: GRAM implementation structure ...40

Figure 11: Evolution of Grid technology ...59

Figure 12: Evolution of Globus Toolkit components (see text for details).....................................59

A Globus Primer 7

 Draft of 5/8/2005

Chapter 1 Goals and Principles

This document is intended as an introduction to the Globus Toolkit and related tools, and to the
use of those tools in building distributed system infrastructure and applications. Our intention is
to present how Globus and related software are structured, and how that software can be used
most effectively to build applications. To this end, we examine in turn the requirements that
motivate Globus design, the various Globus Toolkit components, relevant technical specifications,
related software that can be used in conjunction with Globus to address application requirements,
and case studies that illustrate how this software has been and can be applied in practical settings.
The result is a guide, not a complete reference: in most sections, we point the reader to other
sources for further technical information. In particular, while we provide the technical concepts
required to develop Globus applications, and describe command line programs, we do not provide
any programming examples. Instead, we refer the reader to Borja Sotamayor’s excellent tutorial
[73] and to other documents on the Globus Web.

Our intention in this document is to speak to the practice, not the theory, of Globus software and
its deployments and applications. We speak a little here in this introduction, and at somewhat
greater length in a final “Future Directions” section, about the distributed computing vision that
has motivated Globus Toolkit design. However, this document is about what Globus and Grid are
today, not what they might be tomorrow.

1.1 Motivating Examples
We use six examples to illustrate the infrastructures and applications that have motivated the
development of the technologies we describe here.

1.1.1 Enterprise Workload Management
SAP AG recently demonstrated three applications from its flagship R/3 product line that had been
modified to use a Globus-based Grid. These demonstrations showed how an enterprise Grid can
use Globus technologies to adapt to changing workload demands, reducing hardware
requirements (or, alternatively, increasing achievable throughput: see Figure 1) relative to a
configuration in which each application runs on dedicated hardware.

Internet Pricing and Configurator (IPC) and Workforce Management (WFM) form part of SAP’s
Customer Relationship Management (CRM) application suite, while the third, Advanced Planner
and Optimizer (APO), is from their Supply Chain Management (SCM) suite. Each application is
designed to support large numbers of requests generated by interactive clients using Web
browsers or from batch processes, dispatching each request to one of a number of worker
processes. In this work, SAP modified each of these applications so that it could (a) dynamically
adjust the number of worker processes used to meet computational demands, and (b) use Globus
components to discover and reserve the resources used to host those worker processes, and to
execute, monitor, and remove the worker processes on those resources.

A Globus Primer 8

 Draft of 5/8/2005

A

1 2

B

1 2

A

1

A

1 2

B

1 2

B

1

1

7

9

1

14

Strategy A:
Reduce TCO

Strategy B:
Improve

Performance

18 Servers 11 Servers

9 Servers Each 16 Servers Each

9

Figure 1: Grid technologies can be used to federate resource pools across two departments either to

reduce total cost of ownership (Strategy A) or to increase available peak capacity (Strategy B).

1.1.2 High Performance Data Capture
A company faced the requirement to capture large amounts of data that are received at high
sustained rates (5 to10 Gigabits per second). After accurate capture, the solution must perform
initial processing of the data and extraction of metadata, reliably store resulting data, make that
data available from the storage facility to a distributed community of clients at high rates (10 to
40 Gigabits per second aggregate), and provide the platform on which to perform analysis and
data mining jobs against that data.

The platform constructed to address these requirements for a range of customers makes heavy use
of Globus components, including GridFTP for reliable data capture and for data movement
between data capture and data storage/distribution clusters, between storage/distribution clusters
and secondary data systems such as archival and remote storage, and between storage/distribution
clusters and clients; and Globus execution management components for job management. The
benefit of Globus is that commodity hardware and software can be used. Previously, the company
would build such systems using custom hardware and software, resulting in systems that were
expensive, difficult to support, inflexible to changing demands, and requiring substantial elapsed
time for completion.

1.1.3 Network for Earthquake Engineering Simulation
The U.S. National Science Foundation’s Network for Earthquake Engineering Simulation
(NEES) links earthquake engineers across the U.S. with each other and with a variety of different
resource types, including data repositories, computers used for numerical simulations, and above
all experimental facilities such as shake tables and wave tanks [70, 74]. The NEES software
builds on Globus security, data access, compute access, and service implementation components
to enable secure and reliable remote access to these diverse components, enabling remote users to
participate in the design, execution, monitoring, and post mortem analysis of hybrid physical-
numerical experiments involving apparatus at multiple sites.

1.1.4 Earth System Grid
The Earth System Grid (ESG) has deployed services across several laboratories to enable remote
access to many tens of terabytes of climate simulation data produced by climate change
researchers [45]. Registered users pose requests via a Web portal, which may in turn trigger the
reading, subsetting, and/or transfer of potentially large quantities of data from ESG data servers.

A Globus Primer 9

 Draft of 5/8/2005

Globus and related services are used for authentication, authorization, data access, data
movement, and system monitoring.

1.1.5 Open Science Grid
The Open Science Grid (initially named Grid2003 [54]) has deployed a multi-virtual organization,
application-driven grid laboratory for that has sustained for several months the production-level
services required by physics experiments of the Large Hadron Collider at CERN (ATLAS and
CMS), the Sloan Digital Sky Survey project, the gravitational wave search experiment LIGO, the
BTeV experiment at Fermilab, as well as applications in molecular structure analysis and genome
analysis, and computer science research projects in such areas as job and data scheduling. This
infrastructure has been operating for well over a year with 30 sites, 3000 processors, work loads
from 10 different applications exceeding 1300 simultaneous jobs, and data transfers among sites
of greater than 2 TB/day. Globus services are used in conjunction with other Grid software to
provide VO management, authentication, resource access, data movement, and other related
functions.

1.1.6 Biomedical Informatics Research Network
The Biomedical Informatics Research Network (BIRN) [41] is a National Institutes of Health
project that is establishing an information technology (IT) infrastructure for collaborative data
sharing to enable fundamentally new capabilities in large-scale studies of human disease. The
BIRN consortium currently spans 12 universities and 16 research groups [63]. Standard hardware
comprising a compute-storage cluster has been deployed at each of these sites. This hardware
runs a standard BIRN software suite based on Globus and related technologies for authentication,
resource discovery, executable staging and computation management, and secure and uniform
access to (and management of) data storage resources.

1.2 Requirements and Architectural Overview
Six examples cannot do justice to the many applications in which Globus has been used, but these
examples do capture some important characteristics that tend to reoccur. For example, we note a
frequent need to coordinate the use of multiple resources distributed across different computer
systems, work units, departments, or even organizations. In this section, we review important
characteristics and introduce architectural constructs that Globus uses to address associated
requirements.

1.2.1 Standardized Mechanisms and Interfaces
In each of our six examples, a range of software components must interact via message exchanges
over a network to perform some task. While such distributed systems can be constructed in many
different ways, there are significant practical advantages to standardizing the mechanisms used
for such common tasks as describing component interfaces, exchanging messages, validating
permission to send messages, and requesting that specific tasks be performed. Such
standardization can facilitate the construction and understanding of individual components,
interoperability among different implementations of the same interface, the sharing of
components, and the development of reusable tooling to help with application development.

Motivated by these considerations, GT4 makes heavy use of Web services mechanisms (see
 Chapter 2) to define its interfaces and structure its components. Web services provide flexible,
extensible, and widely adopted XML-based mechanisms for describing, discovering, and
invoking network services; in addition, its document-oriented protocols are well suited to the
loosely coupled interactions that many argue are preferable for robust distributed systems [62]

Comment [ITF2]: Need to expand
this out, I believe: I don’t think that
covering everything in the next chapter
really works.

Comment [ITF3]: Need to add
forward references.

A Globus Primer 10

 Draft of 5/8/2005

(see § 2.5). GT4 defines Web services interfaces to most (not yet all) of its major components,
thus allowing the use of standardized Web services mechanisms to describe GT4 service
interfaces and to invoke GT4 service operations.

A wide range of enabling software has been developed in the past few years to support the
development of distributed system components that implement Web services interfaces. This
software deals with such issues as message handling, resource management, and security, thus
allowing the developer to focus their attention on implementing application logic. GT4 packages
such software with additional GT4-specific components to provide GT4 Web services containers
for deploying and managing GT4 services written in Java, C, and Python.

One disadvantage of Web services is the relatively low performance of current implementations.
Thus, we may in some cases need to use other protocols for performance-critical operations (e.g.,
for high-performance data movement). Eventually, we expect faster implementations to emerge.

1.2.2 Infrastructure
While end-user applications will typically be concerned with more abstract operations such as
pricing a portfolio or analyzing a gene sequence, computing ultimately requires the manipulation
and management of infrastructure: physical devices such as computers, storage systems, and
instrumentation. The service-oriented concepts and Web services mechanisms used to build end-
user applications can also be used to access and manage such infrastructure elements, as long as
appropriate interfaces are defined.

GT4 implements Web services interfaces for management of computational elements and
activities executing on those elements (Grid Resource Allocation and Management service, or
GRAM), to instrumentation (Grid TeleControl Protocol, or GTCP), and for managing data
transfers (Reliable File Transfer service, or RFT). It also provides GridFTP, a data transfer
service for which no Web service interface has yet been defined. These various components
enable reliable, secure, and managed interactions with individual resources, and thus provide a
basis for building larger infrastructures.

With the exception of GridFTP, the interfaces implemented by these various GT4 components
have not yet been standardized in any standards development organization. However, we hope to
see progress in each area in the near future.

1.2.3 Monitoring and Discovery
Monitoring and discovery are two vital functions in a distributed system, particularly when that
system spans multiple locations as in that context no one person is likely to have detailed
knowledge of all components. Monitoring allows us to detect and diagnose the many problems
that can arise in such contexts, while discovery allows us to identify resources or services with
desired properties. Both tasks require the ability to collect information from multiple, perhaps
distributed, information sources.

In recognition of the importance of these functions, monitoring and discovery mechanisms are
built in to GT4 at a fundamental level, as follows.

First, GT4 provides standardized mechanisms for associating XML-based resource properties
with network entities and for accessing those properties via either pull mode (query) or push
mode (subscription). These mechanisms—basically implementations of the WSRF and WS-
Notification specifications—are built into every GT4 service and container, and can also be
incorporated easily into any user-developed service.

Second, GT4 provides three aggregator services that collect recent state information from
registered information sources. Recognizing that not all interesting information sources will

A Globus Primer 11

 Draft of 5/8/2005

support WSRF/WS-notification interfaces, these aggregators can be configured to collect data
from any arbitrary information source, whether XML-based or otherwise. The three aggregators
implement a registry (MDS-Index), archiver (MDS-Archive), and event-driven data filter (MDS-
Trigger), respectively.

Third, GT4 provides a range of browser-based interfaces, command line tools, and Web service
interfaces that allow users to query and access the collected information.

These different mechanisms provide a powerful framework for monitoring diverse collections of
distributed components and for obtaining information about components for purposes of
discovery.

1.2.4 Security
While “security” is important in any computer system, security concerns are particularly
important and challenging in distributed systems with resources and/or users that span multiple
locations. A range of players may want to exert control over who can do what, including the
owners of individual resources, the users who initiate computations, and the “virtual
organizations” established to manage resource sharing. “Exerting control” may include variously
enforcing policy and auditing behavior. When designing mechanisms to address these
requirements, we must work not only to protect communications but also to limit the impact of
break ins at end system computers. A complete security “solution” in any given solution must
always be a system that combines components concerned with establishing identity, applying
policy, tracking actions, etc., to meet specific security goals. GT4 and related tools provide
powerful building blocks that can be used to construct a range of such systems.

At the lowest level, GT4’s highly standards-based security components implement credential
formats and protocols that address message protection, authentication, delegation, and
authorization. In GT4’s default configuration, each user and service is assumed to have a X.509
public key credential. Protocols are implemented that allow two entities to validate each other’s
credentials, to use those credentials to establish a secure channel for purposes of message
protection, and to create and transport delegated credentials that allow a remote component to act
on a user’s behalf for a limited period of time. Authorization call outs associated with GT4
services can be used to determine whether specific requested operations should be allowed.

Supporting tools, some in GT4 proper and some available from other sources, support the
generation, storage, and retrieval of the credentials that GT4 uses for authentication, and address
related issues concerning group membership and the like.

1.2.5 Data
A common theme in Globus applications is the need to manage, provide access to, and/or
integrate large quantities of data at one or many sites. This “data” problem is tremendously broad
and complex, and no single piece of software can claim to “solve” it in any comprehensive sense.
However, several GT4 components implement useful enabling mechanisms that can be used
individually and in conjunction with other components to develop interesting solutions.

GridFTP provides both libraries and tools for reliable, secure, high-performance memory-to-
memory and disk-to-disk data movement. It implements the GridFTP extensions to the popular
FTP data transfer protocol, and can interoperate with conventional FTP clients and servers.

The Globus replica location service (RLS) is a highly scalable and robust system for maintaining
and providing access to information about the location of replicated files and datasets.

The Globus Data Access and Integration (DAI) tools developed by the UK eScience program
provides access to relational and XML data.

Comment [ITF4]: Limitations:
particularly in enterprise settings.
Interfaces to commercial identity
management systems. Firewalls …

Comment [ITF5]: Surely not every
service?

A Globus Primer 12

 Draft of 5/8/2005

1.2.6 Choreography
A final common theme within Globus applications is the need to coordinate activities at different
locations. The “activities” to be coordinated may be computational tasks, data transfers,
instrument operations, or monitoring or control operations on services and/or physical resources.
As this brief list shows, the notion of “coordination” is broad and multifaceted, and thus no single
coordination solution is likely to suffice for all purposes.

GT4 provides only limited direct support for coordination itself, but the uniformity of interface
and mechanism enabled by GT4 facilitates the development of higher-level coordination tools
such as DAGman (for loosely coupled directed acyclic graphs, or DAGs) and MPICH-G2 (for
tightly coupled concurrent computations. We discuss these tools in Chapter 4.

1.3 Globus Architecture Summary
We summarize here the principal GT4 elements introduced in this section, each of which is
covered in more detail in subsequent chapters.

Service-oriented architecture. GT4 software is designed to support applications in which sets of
services interact via standard protocols. The software includes both complete services and
libraries implementing useful protocols. Developers can use these services and libraries, plus
other related software, to build both simple and complex systems relatively quickly.

Infrastructure services. GT4 includes built in services for accessing, monitoring, managing, and
controlling access to such infrastructure elements as computational and data resources.

Web services. GT4 makes heavy use of industry-standard Web services protocols and
mechanisms for service description, discovery, access, authentication, authorization, and the like.

GT4 containers. The GT4 software includes components that can be used to construct GT4
containers for hosting Web services written in Java, C, and Python.

Security. A highly standards-based security subsystem addresses message protection,
authentication, delegation, and authorization.

Standards. Wherever possible, Globus implements standards or other broadly adopted
specifications, so as to facilitate the construction of operable and reusable components and the
use of standard tools.

Related tools. GT4 components do not, in general, address end-user needs directly: most are more
akin to a TCP/IP library or Web server implementation than a Web browser. Instead, GT4
enables a range of end-user components and tools that provide the higher-level capabilities
needed by specific user communities. These components and tools constitute, together with GT4
itself, the “Globus universe.”

Limitations. While the Globus software has proved useful in many settings, it is far from
complete in terms of its capabilities, and much room remains for improvement in terms of
performance, usability, and robustness. We attempt to identify key limitations in the rest of this
document.

1.4 Opportunities to Contribute
A large and diverse Globus community is working hard to improve the scope and quality of the
Globus software. We hope that you, the reader, will feel inspired to contribute also. There are
many ways in which you can do so.

Comment [ITF6]: Maybe illustrate
some example deployments in terms of
the services that are involved? All six
from above?

A Globus Primer 13

 Draft of 5/8/2005

Use the software and report your experiences. Simply using the software and reporting back on
your experiences, positive or negative, can be immensely helpful. Reports of problems
encountered, particularly when carefully documented, can help guide bug fixes and/or prioritize
work on new features. Reports of successful deployments and applications can help justify
continued support for the development of the software.

Develop documentation and examples. Despite considerable progress, we remain in desperate
need of code examples and associated documentation that can help other users to start work with
Globus software or related tools. Take the time to document your successful application, and you
will be amply repaid in gratitude from other users and perhaps enhance your reputation also.

Contribute to the development of the software. The list of new features wanted by users is always
far greater than Globus developers can handle. You can help by contributing bug fixes, test cases,
new modules, or even entirely new subsystems. Depending on the component in question, this
may involve working on software under the management of the Apache Software Foundation
(www.apache.org) or Globus (www.globus.org).

1.5 Further Reading
The book The Grid: Blueprint for a New Computing Infrastructure (2nd Edition) [49] includes
chapters on many topics touched upon in this chapter, including applications, technologies, and
research challenges. However, few details are provided on Globus or other specific technologies.

The article “The Grid: Computing without Bounds” [44] provides a high-level introduction to the
Grid vision and the state of the art in terms of technology and applications in early 2004.

The book Grid Computing: Making the Global Infrastructure a Reality [28] collects many
research papers on Grid computing and its applications in the sciences.

The article “The Anatomy of the Grid” [53] introduces the concept of a virtual organization and
presents an architectural picture that distinguishes between different protocols required in Grid
deployments and applications.

A Globus Primer 14

 Draft of 5/8/2005

Chapter 2 Service Oriented Architectures

We introduce basic concepts relating to Web services and their use and implementation within
GT4, in particular within the “WS Core” components.

2.1 GT4, Distributed Systems, and Web Services
GT4 is a set of software components for building distributed systems: systems in which diverse
and discrete software agents interact via message exchanges over a network to perform some
tasks. Distributed systems face particular challenges relating to sometimes high and unpredictable
network latencies, the possibility of partial failure, and issues of concurrency [62]. In addition,
system components may be located within distinct administrative domains, thus introducing
issues of decentralized control and negotiation [53].

GT4 is, more specifically, a set of software components that (with some exceptions) implement
Web services mechanisms for building distributed systems. Web services provide a standard
means of interoperating between different software applications running on a variety of platforms
and/or frameworks:

A Web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web service in
a manner prescribed by its description using SOAP messages, typically conveyed using
HTTP with an XML serialization in conjunction with other Web-related standards [29].

Web services standardize the messages that entities in a distributed system must exchange in
order to perform various operations. At the lowest level, this standardization concerns the
protocol used to transport messages (typically HTTP), message encoding (SOAP), and interface
description (WSDL). A client interacts with a Web service by sending it a SOAP message; the
client may subsequently receive response message(s) in reply. At higher levels, other
specifications define conventions for securing message exchanges (e.g., WS-Security), for
management (e.g., WSDM), and for higher-level functions such as discovery and choreography.
Figure 2 presents a view of these different component technologies; we discuss specific
specifications in § 2.4.

Transport (HTTP or SMTP or …)

Messaging (SOAP + extensions)

Description (WSDL)

Process (discovery, …)Security

M
anagem

ent

Figure 2: An abstract view of the various specifications that define the Web services architecture

2.2 Service Oriented Applications and Infrastructure
Web services technologies, and GT4 in particular, can be used to build both service-oriented
applications and service-oriented infrastructure. Deferring discussion of the sometimes
controversial term “service-oriented” to § 2.5, we note that a service-oriented application is
constructed via the composition of components defined by service interfaces (in the current

A Globus Primer 15

 Draft of 5/8/2005

context, Web services): for example, a financial or biological database, an options pricing routine,
or a biological sequence analyzer. Many descriptions of Web services and SOA focus on the task
of defining interfaces to such components, often illustrating their discussion with examples such
as a “stock quote service” (the “hello world” of Web services).

Particularly when servicing many such requests from a distributed community, we face the
related problem of orchestrating and managing numerous distributed hardware and software
components. Web services can be used for this purpose also, and thus we introduce the term
service-oriented infrastructure to denote the resource management and provisioning mechanisms
used to meet quality of service goals for components and applications. Many GT4 features are
concerned with enabling the construction of service-oriented infrastructure.

2.3 Web Services Implementation
From the client perspective, a Web service is simply a network-accessible entity that processes
SOAP messages. Things are somewhat more complex under the covers. To simplify service
implementation, it is common for a Web services implementation to distinguish between:

1. the hosting environment (or container), the (domain-independent) logic used to
receive a SOAP message and identify and invoke the appropriate code to handle the
message, and potentially also to provide related administration functions, and:

2. the Web service implementation, the (domain-specific) code that handles the message.

This separation of concerns means that the developer need only provide the domain-specific
message handling code to implement a new service.

It is also common to further partition the hosting environment logic into that concerned with
transporting the SOAP message (typically via HTTP, thus an “HTTP engine” or “Web server”—
sometimes termed an “application server”) and that concerned with processing SOAP messages
(the “SOAP engine” or “SOAP processor”). Figure 3 illustrates these various components.

SOAP
engine

HTTP engine/Web server

SOAP
ProcessingTransport

WS Container

Service
dispatcher

Web Service

Request

Response
Administration & registry services

Figure 3: High-level picture of functional components commonly encountered in Web service

implementations, showing the path taken by requests and responses.

Many different containers exist, with different performance properties, supported Web services
implementation languages, security support, and so forth. We mention below those used in GT4.

2.4 Web Services Specifications
We provide pointers to the Web services specifications that underlie GT4. These comprise the
core specifications that define the Web services architecture (XML, SOAP, WSDL); WS-Security

A Globus Primer 16

 Draft of 5/8/2005

and other specifications relating to security; and the WS-Addressing, WSRF, and WS-
Notification specifications used to define, name, and interact with stateful resources. We also
speak briefly to emerging specifications that are likely to be important in future GT evolution. An
important source of information on the requirements that motivate the use and development of
these specifications is the Open Grid Services Architecture [46].

2.4.1 XML, SOAP, WSDL
XML is used extensively within Web services as a standard, flexible, and extensible data format.
In addition to XML syntax, other important specifications are XML Schema [15] and XML
Namespaces [32]. Note that while current Web services tools typically adopt a textual
serialization, a binary encoding is also possible and may provide higher efficiency.

SOAP 1.2 [14] provides a standard, extensible, composable framework for packaging and
exchanging XML messages between a service provider and a service requestor. SOAP is
independent of the underlying transport protocol, but is most commonly carried on HTTP.

WSDL 1.1 [38] is an XML document for describing Web services. Standardized binding
conventions define how to use WSDL in conjunction with SOAP and other messaging substrates.
As discussed in § 3.7, WSDL interfaces can be compiled to generate proxy code that constructs
messages and manages communications on behalf of the client application. The proxy
automatically maps the XML message structures into native language objects that can be directly
manipulated by the application. The proxy frees the developer from having to understand and
manipulate XML.

2.4.2 WS-Security and Friends
The WS-Security family of specifications addresses a range of issues relating to authentication,
authorization, policy representation, and trust negotiation in a Web services context [71]. GT4
uses a number of these specifications plus other related specifications, notably Security
Authorization Markup Language (SAML) [59], to address message protection, authentication,
delegation, and authorization, as follows [3]:

• TLS (transport-level) or WS-Security and WS-SecureConversation (message level) are
used as message protection mechanisms in combination with SOAP.

• X.509 End Entity Certificates or Username and Password are used as authentication
credentials.

• X.509 Proxy Certificates and WS-Trust are used for delegation.

• SAML assertions are used for authorization.

2.4.3 WS-Addressing, WSRF, and WS-Notification
A number of related specifications provide functionality important for service oriented
infrastructure in which we need to be able to represent and manipulate stateful entities such as
physical resources of various kinds, logical components such as software licenses, and transient
activities such as tasks and workflows.

The WS-Addressing [30] specification defines transport-neutral mechanisms to address Web
services and messages. Specifically, this specification defines XML elements to identify Web
service endpoints and to secure end-to-end endpoint identification in messages.

The WS Resource Framework (WSRF) specifications define a generic and open framework for
modeling and accessing stateful resources using Web services [10, 47]. This framework
comprises mechanisms to describe views on the state (WS-ResourceProperties), to support

A Globus Primer 17

 Draft of 5/8/2005

management of the state through properties associated with the Web service (WS-
ResourceLifetime), to describe how these mechanisms are extensible to groups of Web services
(WS-ServiceGroup), and to deal with faults (WS-BaseFaults).

The WS-Notification family of specifications define a pattern-based approach to allowing Web
services to disseminate information to one another [9, 56]. This framework comprises
mechanisms for basic notification (WS-Notification), topic-based notification (WS-Topics), and
brokered notification (WS-BrokeredNotification).

We note that the Web services standards space is in some turmoil due to competing proposed
specifications. In particular, Microsoft and others recently proposed WS-Transfer [19], WS-
Eventing [31], and WS-Management [23], which define similar functionality to WSRF, WS-
Notification, and WSDM (discussed below), respectively, but using different syntax. We hope
that these differences will be resolved in the future.

2.4.4 Other Relevant Specifications
GT4 includes an implementation of the GridFTP extensions to FTP recently finalized within
GGF [20] and the DAIS implementation of the GGF OGSA-DAI specification under
development within GGF .

The WS-Interoperability (WS-I) organization [24] has produced a number of profiles that define
ways in which existing Web services specifications can be used to promote interoperability
among different implementations. The WS-I Basic Profile speaks to messaging and service
description: primarily XML, SOAP, and WSDL. The WS-I Basic Security Profile speaks to
basic security mechanisms. Other profiles are under development.

Web services distributed management (WSDM) specifications under development within OASIS
[16] are likely to play a role in future GT implementations as a means of managing GT
components.

WS-CIM specifications under development within DMTF [8] are likely to play a role in future
GT implementations as a means of representing physical and virtual resources.

The Global Grid Forum’s Open Grid Services Architecture (OGSA) working group has
completed a document that provides a high-level description of the functionality required for
future service-oriented infrastructure and applications, and a framework that suggests how this
functionality can be factored into distinct specifications [1]. The OGSA working group is now
proceeding to define OGSA Profiles that, like WS-I profiles, will identify technical specifications
that can be used to address specific Grid scenarios.

2.5 Service Oriented Architecture
We provide some additional discussion concerning the term service oriented architecture (SOA),
which is used widely but not necessarily consistently within the Web services community. One
common usage is simply to indicate the use of Web services technologies. However, the intention
of those who coined the term seems to be rather to contrast two different styles of building
distributed systems. Distributed object systems are [46]:

distributed systems in which the semantics of object initialization and method invocation
are exposed to remote systems by means of a proprietary or standardized mechanism to
broker requests across system boundaries, marshall and unmarshall method argument data,
etc. Distributed objects systems typically (albeit not necessarily) are characterized by
objects maintaining a fairly complex internal state required to support their methods, a fine
grained or "chatty" interaction between an object and a program using it, and a focus on a

A Globus Primer 18

 Draft of 5/8/2005

shared implementation type system and interface hierarchy between the object and the
program that uses it.

In contrast, a Service Oriented Architecture (SOA) is [29]:

a form of distributed systems architecture that is typically characterized by the following
properties:

• Logical view: The service is an abstracted, logical view of actual programs, databases,
business processes, etc., defined in terms of what it does, typically carrying out a
business-level operation.

• Message orientation: The service is formally defined in terms of the messages
exchanged between provider agents and requester agents, and not the properties of
the agents themselves. The internal structure of an agent, including features such as
its implementation language, process structure and even database structure, are
deliberately abstracted away in the SOA: using the SOA discipline one does not and
should not need to know how an agent implementing a service is constructed. A key
benefit of this concerns so-called legacy systems. By avoiding any knowledge of the
internal structure of an agent, one can incorporate any software component or
application that can be “wrapped” in message handling code that allows it to adhere
to the formal service definition.

• Description orientation: A service is described by machine-processable metadata.
The description supports the public nature of the SOA: only those details that are
exposed to the public and important for the use of the service should be included in
the description. The semantics of a service should be documented, either directly or
indirectly, by its description.

• Granularity: Services tend to use a small number of operations with relatively large
and complex messages.

• Network orientation: Services tend to be oriented toward use over a network, though
this is not an absolute requirement.

• Platform neutral: Messages are sent in a platform-neutral, standardized format
delivered through the interfaces. XML is the most obvious format that meets this
constraint.

It is argued that these features can allow service-oriented architectures to cope more effectively
with issues that arise in distributed systems, such as problems introduced by latency and
unreliability of the underlying transport, the lack of shared memory between the caller and object,
problems introduced by partial failure scenarios, the challenges of concurrent access to remote
resources, and the fragility of distributed systems if incompatible updates are introduced to any
participant [29, 62].

Web services technologies in general, and GT4 in particular, can be used to build both distributed
object systems and service-oriented architectures. The specific design principles to be followed in
a particular setting will depend on a variety of issues, including target environment, scale,
platform heterogeneity, and expected future evolution.

2.6 Further Reading
The document “Web Services Architecture” [29] provides a good introduction to the concepts
and technologies that underlie Web services.

A Globus Primer 19

 Draft of 5/8/2005

The article “A Note on Distributed Computing” [29] motivates and describes the distinction
between service-oriented architectures and distributed object systems.

The article “Grid Services for Distributed System Integration” [62] (a longer version is available
as “The Physiology of the Grid” [51]) motivates and introduces the concepts that underlie what is
now called the Web services resource framework, which is described in more detail in the article
“Modeling Stateful Resources with Web Services” [50].

A Globus Primer 20

 Draft of 5/8/2005

Chapter 3 GT4 Architecture

XX.

3.1 Architecture Overview
As shown in Figure 4, GT4 comprises both a set of service implementations (“server” code) and
associated “client” libraries. GT4 provides both Web services (WS) components (on the left) and
non-WS components (on the right). The white boxes in the “client” domain denote custom
applications and/or third-party tools that access GT4 services or GT4-enabled services.

Note that all GT4 WS components use WS-Interoperability-compliant transport and security
mechanisms, and can thus interoperate with each other and with other WS components. In
addition, all GT4 components, both WS and non-WS, support X.509 end entity certificates and
proxy certificates. Thus a client can use the same credentials to authenticate with any GT4 WS or
non-WS component.

This figure doesn’t show all GT4 components: some (e.g., various security and communication
libraries) are introduced later. All components are described in more detail below.

Java Services in Apache Axis
Plus GT Libraries and Handlers

Your
Java

Service

Your
Python
Service

Your
Java

Service R
FT

G
R

A
M

D
el

eg
at

io
n

In
de

x
A

gg
re

ga
to

r
Tr

ig
ge

r

pyGlobus
WS Core

Your
C

Service

C WS
Core

R
LS

P
re

-W
S

 M
D

S

C
AS

Pr
e-

W
S

G
R

AM

S
im

pl
eC

A

M
yP

ro
xy

O
G

S
A

-D
A

I
N

TC
P

G
rid

FT
P

C Services using GT
Libraries and HandlersSERVER

CLIENT

WS-I-compliant
SOAP messaging

WS-Security
authentication

with GSI

Your
Java
Client

Your
C

Client

Your
Python
Client

Your
Java
Client

Your
C

Client

Your
Python
Client

Your
Java
Client

Your
C

Client

Your
Python
Client

Your
Java
Client

Your
C

Client

Your
Python
Client

Various
protocols

GSI
authentication

Figure 4: Schematic view of GT4.0 components

3.2 Predefined GT4 Services
GT4 provides a set of predefined services, which we list briefly here and describe in more detail
in Chapter 4.

Nine GT4 services implement Web services (WS) interfaces: job management (GRAM: § 4.2);
reliable file transfer (RFT: § 5.2); delegation (§ 7.3.2); MDS-Index, MDS-Trigger, and MDS-
Archive (collectively termed the Monitoring and Discovery System, or MDS: § 6.1); community
authorization (CAS: § 7.3.1); OGSA-DAI data access and integration (§ 5.4); and GTCP Grid

Comment [ITF7]: Old text, perhaps
to be reused:
For the purposes of this presentation, we
assign each Globus universe component
to one of the following classes.
Execution management tools are
concerned with the initiation, monitoring,
management, scheduling, and/or
coordination of remote computations.
Data management tools are concerned
with data location, transfer, and
management.
Interface tools are concerned with
providing or supporting the development
of graphical user interfaces for end-user
or system administration applications.
Security tools are concerned with such
issues as mapping between Grid
credentials and other forms of credential
and managing authorization policies.
Monitoring and discovery tools are
concerned with monitoring various
aspects of system behavior, managing
monitoring data, discovering services, etc.
In practice, many tools fit multiple
classes. For example, the GriPhyN virtual
data system addresses both execution and
data management, while the OGCE portal
toolkit encompasses elements of all
classes.

Comment [ITF8]: mention command-
line clients

Comment [ITF9]: Have a table of
command line client programs.

A Globus Primer 21

 Draft of 5/8/2005

TeleControl Protocol for online control of instrumentation (§ 10.2). Of these, MDS-Archive,
GTCP, and OGSA-DAI are “tech previews,” meaning that their interface and implementation
may change in the future.

For two of those services, GRAM and MDS-Index, pre-WS “legacy” implementations are also
provided. These pre-WS implementations will be deprecated at some future time as experience is
gained with WS implementations.

For three additional GT4 services, WS interfaces are not yet provided (but will be in the future):
GridFTP data transport (§ 5.1), replica location service (RLS: § 5.3), and MyProxy online
credential repository (§ 7.4.1).

Other libraries provide powerful authentication and authorization mechanisms (§XX), while the
eXtensible I/O (XIO) library provides convenient access to a variety of underlying transport
protocols (§ 10.1). SimpleCA is a lightweight certification authority (§ 7.4.2).

3.3 GT4 Command Line Programs
As our focus in this document is primarily on the user view of Grids and GT4, it is natural to
approach GT4 from the perspective of its command line programs. Table 1 summarizes the
command line programs included with GT4. We describe each of these programs at least briefly
in this document.

Needless to say this table does not provide a complete picture of the functionality that GT4 makes
available to users. In particular, it does not capture the client APIs, libraries, and containers that
GT4 provides, or the powerful capabilities provided by related tools.

• Client APIs: Most GT4 components also provide client APIs that allow components to be
invoked directly from programs written in Java, C, and Python.

• Libraries and containers: Some GT4 XX

• Other … XX
Table 1: GT4 command line programs. Each line represents a set of programs and gives the number

of programs in the set, a brief description, and a pointer to a section with more details.

Command # Description §
cas-* 14 Community authorization service 7.2.1
globus-credential-* 2 Install and refresh credentials in Delegation service. 7.2.2
myproxy-* 10 Store credentials in, and administer, a MyProxy service. 7.4.1
grid-ca-sign 1 SimpleCA for generating X.509 credentials. 7.4.2
gsi* 3 GSI-enabled OpenSSH, with ssh, scp, and sftp clients. 7.5
grid-* 10 Manage X.509 proxy credentials and gridmap files. XX
globus-url-copy 1 GridFTP client. 5.1
rft* 2 Reliable file transfer client. 5.2
globus-rls-* 3 RLS client, administration, server. 5.3
globusrun-ws 1 GRAM client. 4.2
mds-servicegroup-add 1 Add an entry to a MDS servicegroup. 6.1
globus-*-container 2 Start and stop a Globus container. XX
wsrf-* 8 Interact with WSRF resource properties. XX
wsn-* 4 Create and manage WS-Notification subscriptions. XX

Comment [ITF10]:

Complete list: cas-proxy-init
cas-wrap
cas-enroll
cas-remove
cas-action
cas-group-admin
cas-group-add-entry
cas-group-remove-entry
cas-rights-admin
cas-whoami
cas-list-object
cas-get-object
cas-group-list-entries
cas-find-policies

globus-credential-delegate
globus-credential-refresh

myproxy-init
myproxy-info
myproxy-get-delegation
myproxy-destroy
myproxy-change-pass-phrase
myproxy-admin-adduser
myproxy-admin-change-pass
myproxy-admin-query
myproxy-admin-load-credential
myproxy-server

grid-ca-sign

gsissh
gsiscp
gsisftp

(pre-WS A&A)
grid-cert-info
grid-cert-request
grid-default-ca
grid-change-pass-phrase
grid-proxy-init
grid-proxy-destroy
grid-proxy-info
grid-mapfile-add-entry
grid-mapfile-check-consistency
grid-mapfile-delete-entry

globus-url-copy

rft
rft-delete

globus-rls-server
globus-rls-admin
globus-rls-cli

globusrun-ws

mds-servicegroup-add

Comment [ITF11]: But note no
trigger client, archive client, OGSA-DAI,
pyGLobus.

Comment [ITF12]: Should reorder
presumably at some point.

Comment [ITF13]: Should be part of
grid-*?

... [2]

A Globus Primer 22

 Draft of 5/8/2005

3.4 GT4 Security
XX.

3.5 GT4 Containers
The GT4 source code includes implementations of a set of Web services specifications important
for Grid applications. Some of these specifications are, or can be expected to become, “standards”
(e.g., WSRF, WS-Notification) while others are currently unique to Globus (e.g., GRAM, RFT).

These implementations can be combined with other components (Web servers, SOAP engines,
implementations of other Web services specifications, etc.) to produce a variety of different GT4
containers (the white boxes in Figure 4) a term that we introduce to denote Web service
containers with a set of common features. A GT container:

• implements SOAP over HTTP as a message transport protocol, and both transport-level
and WS-Security message-level security for all communications;

• implements WS-Addressing, WSRF, and WS-Notification functionality;

• supports logging via Log4j [47], which implements the Jakarta Commons Logging API;
and

• defines WSRF WS-Resources with properties providing access to information about
services deployed in the container and container properties such as version and start time.

Thus, any GT4 container can (see Figure 5):

1. host services whose client interfaces are defined in terms of only basic WS specifications
(“custom Web services”) and

2. host services whose client interfaces make use of WSRF and related mechanisms
(“custom WSRF Web services”).

If appropriate software is installed, then a GT4 Java container can also:

3. host advanced services provided by GT4, such as GRAM, MDS, and RFT (“GT4 WSRF
Web services”).

Regardless of what services are deployed, application clients can:

4. use GT4 container registry interfaces to determine which services are hosted in a
particular GT4 container, and GT4 container administration interfaces to perform basic
administration functions.

We note that all GT4 container interfaces are compliant with the WS-I Basic Profile, and can be
configured to be compliant with the WS-I Basic Security Profile (see § 2.4.4).

Comment [ITF14]: Includes Von’s
picture.

A Globus Primer 23

 Draft of 5/8/2005

Custom
Web

Services WS-Addressing, WSRF,
WS-Notification

Custom
WSRF Web

Services

GT4
WSRF Web

Services

WSDL, SOAP, WS-Security

User Applications

R
eg

is
try

Ad
m

in
is

tra
tio

n

G
T4

 C
on

ta
in

er

Figure 5: GT4 containers incorporate services and tools (shaded) that allow them to host different
services, including optional GT4 WSRF Web services, and support discovery and administration.

The GT4 distribution includes software and instructions to construct GT4 containers (Figure 6)
for three different Web service implementation languages (Java, C, and Python).

GT4 Java Containers. GT4 support for Web services implemented in Java comprises the GT4
Java WS Core code, which implements WSRF and WS-Notification as well as supporting code
for security and management. This code is designed to be used with Apache Axis as a SOAP
engine plus other relevant Apache components such as the WS-Addressing and WS-Security
implementations. To produce a complete GT4 Java container, we can host the GT4 Java WS Core
+ Axis combination either in a “simple Java container” provided by GT4 or alternatively in a
more featureful but complex servlet container such as Tomcat. The former approach provides for
easier installation and administration and is recommended unless a site or resource already runs
Tomcat for other purposes. Such a GT4 Java container can also host various GT4 services
implemented in Java, such as GRAM, RFT, MDS-Index, MDS-Trigger, and MDS-Archive.

Tomcat or similar

Axis

Web
service

Web
service

Java Web
service

Simple Java container

Axis

Simple C container

Web
service

Web
service

Java Web
service

Twisted container

Zolera SOAP Inf.

Web
service

Web
service

Python Web
service

libxml2

Web
service

Web
service

C Web
service

Figure 6: Four different GT4 container configurations.

GT4 C Container. GT4 support for Web services written in C comprises the GT4 C WS Core,
which implements WSRF and WS-Notification as well as supporting code for security and
management.

Python Web services. GT4 support for Web services written in Python comprises the GT4
Python WS Core, which implements WSRF and WS-Notification as well as supporting code for
security and management. To produce a complete GT4 Java container, we combine this code with
the Zolera SOAP Infrastructure and Twisted container.

3.6 Deploying GT4 Web Services
The term “deploy” refers to the task of installing, and initiating the execution of, a Web service
on a particular computer. Depending on the environment into which the service must be deployed,
we may need first to install and configure a GT4 container. We discuss here the general
techniques that are used to deploy both GT4 predefined services (e.g., GRAM, RFT) and other
Web services into GT4 containers.

A Globus Primer 24

 Draft of 5/8/2005

A Web service container can host zero or more Web services that each may make use of different
container functions. Thus, depending on context, “deploying a Web service” may involve:

1. Deploying the Web service into an already deployed GT4 container;

2. First loading additional libraries (e.g., WSRF) to “GT4-enable” an already deployed
non-GT4 container, and then deploying the service into that container;

3. First deploying a new GT4 container, into which the Web service is then deployed; or

4. Deploying the combination of GT4 container and Web service at the same time.

A GT4 distribution will typically provide convenient packages to facilitate various of these tasks
in different environments, so that the user is not forced to execute many installation and
configuration steps to produce a system capable of running a specific service. For example, if
faced with the task of deploying GT4 GRAM (written in Java) on a computer, then:

• If a GT4 Java container is already installed, we can deploy the GRAM service into
that directly.

• If a site already has Tomcat installed, but no Globus-specific code, then we need to
deploy WSRF, WS-Notification, and GRAM.

• For a deployment “from scratch,” we might be provided with a complete distribution
that comprises the GT4 Java container and GRAM Web service. This distribution can
simply be installed, configured, and run (approach #4).

3.7 Developing GT4 Web Services: Java Specifics
We make a few additional comments concerning the specific mechanisms used to develop and
deploy Java services with Apache Axis. The primary steps involved are depicted in Figure 7 and
described in the following:

1. Define the service’s interface. Here, we write a Web Service Description Language
(WSDL) file describing the service’s abstract interface.

2. Implement the service. Here, we develop Java routines for the service implementation
and, if WSRF mechanisms are used, for associated resource properties.

3. Define deployment parameters. Here, we write a Web Services Deployment
Descriptor (WSDD) file that describes various aspects of the service’s configuration.

4. Compile everything and generate a GAR file. Compilation generates application-
specific interface routines that handle the demarshalling/marshalling of the Web
service’s arguments from/to SOAP messages.

5. Deploy the service.

Borja Sotamayor’s excellent tutorial [6] provides details on these various steps; here we provide
just a few notes what is involved in each of the first three stages.

Comment [ITF15]: To Do: Provide
here details on what specific deployment
packages we provide for GT4.

Comment [ITF16]: What about
JNDI? GT4 also requires a Java Naming
and Directory Interface (JNDI) file, that
provides deployment information about
the resource home, the class that
implements the resource and the ID data
type of the resources;
http://www-
unix.globus.org/toolkit/docs/development
/3.9.4/execution/wsgram/user/globusrun-
ws.html

A Globus Primer 25

 Draft of 5/8/2005

Mine.wsdl
Service
interface

Mine.java
Service

implementation

Mine.wsdd
Deployment
descriptor

Ant
GT3
Build
Files

GT3
Build
Files

GT3
Build
files

build.xml
Ant

build file

GAR File
Service implementation
plus interface routines

Provided by
developer

Provided by
system

Output from
build process

1 2 3

4

Figure 7: A Java Web service and the various components (shaded)

that Axis uses to implement its interface and describe its configuration.

We note that Axis also provides tools that can generate WSDL directly from either the Java
source code (if the service’s arguments are simple Java types) or from the WSDD file. However,
WSDL generated automatically from service code often contain language-specific or
implementation-specific types that may not interoperate with other implementations of the same
service. Thus, GT4 requires that the developer supply WSDL.

3.7.1 Interface: WSDL
A WSDL document describes a Web service, providing information that a client needs to connect
and communicate with the service. Specifically, it defines via its portType component the Web
service’s abstract interface, specifying the operations that the service supports and, for each
operation, the format of the messages that the service sends and receives. If the service
implements operations on WSRF resource properties, then the WSDL will include components
that define and deal with resource properties: see, for example, the Sotamayor tutorial [73].

A complete WSDL document must also include a binding component to specify how the abstract
interface maps to concrete protocol messages. GT4 generates this component automatically.

3.7.2 Implementation: Java
The service implementation proper provides the Java code for the various service operations. If a
service uses WSRF mechanisms, then the service implementation must also include code for the
resource implementation and the resource home. Again, see the Sotamayor tutorial [73] for
details.

3.7.3 Deployment Descriptor: WSDD
The deployment descriptor file tells the web server how it should publish our Web service, by
specifying, for example, our service’s URI. The deployment descriptor is written in WSDD (Web
Service Deployment Descriptor) format.

3.8 Further Reading
We have already referred to The Globus Toolkit 4 Programmer’s Tutorial [73], the single most
important text for those wanting to learn to write GT4 programs.

A Globus Primer 26

 Draft of 5/8/2005

Chapter 4 Execution Management

“Nothing focuses the mind like the prospect of imminent execution.” (Anonymous.)

So you want to:

• Make a program available as a network service (with size varying)

• Dispatch

• Run an executable on a remote computer.

• Run an parallel program across multiple distributed computers.

• Run a set of loosely coupled tasks

• Steer a computation (?)

These tasks all fall within the purview of execution management.

…

Execution management tools are concerned with the initiation, monitoring, management,
scheduling, and/or coordination of remote computations. GT4 supports the Grid Resource
Allocation and Management (GRAM) interface as a basic mechanism for these purposes. The
GT4 GRAM server is typically deployed in conjunction with Delegation and RFT servers to
address data staging, delegation of proxy credentials, and computation monitoring and
management in an integrated manner.

Associated tools fall into three main classes. First, we have GRAM-enabled schedulers for
clusters or other computers on a local area network (Condor [73], OpenPBS, Torque, PBSPro,
SGE, LSF). Second, we have systems that provide different interfaces to remote computers
(OpenSSH) or that implement various parallel programming models in Grid environments by
using GRAM to dispatch tasks to remote computers (Condor-G [64], DAGman, MPICH-G2 [55],
GriPhyN VDS, Nimrod-G [60]). Third, we have various “meta-schedulers” that map different
tasks to different clusters (CSF, Maui).

In this chapter, and those that follow, we summarize Globus and related tools in tabular form.
Table 2 provides this summary for execution management tools. In this list, we identify GT4
components by using italics. In addition to a brief description of each component, we provide a
rough gauge of its estimated maturity (“M”). This field indicates whether a component is a staple
of many Grid deployments (3); has some amount of promising deployment (2); or is research
software and/or has not been widely deployed (1). The “G” column indicates, for GT4
components, whether the component is a core toolkit component (T) or alternatively a contributed
component (C), and for other components, whether they are already compatible with the GT4
release (Y) or is expected to be soon (N).

The Globus Toolkit provides a suite of Web services with which clients can interact to submit,
monitor, and cancel jobs on local or remote computing resources. This system is termed
collectively “GRAM” or sometimes “WS_GRAM” to distinguish it from the pre-Web services
system that offers similar functionality. We describe here only the Web services-based system, as
this offers more functionality.

Comment [ITF17]: 1.The world is
but a large prison, out of which
some are daily selected for
execution.
Sir Walter Raleigh (1552 - 1618)
English navigator, historian, courtier
In The Ultimate Success Quotations
Library, 1997.
=F Found in: one/2473.htm

2.You don't beat people with
surprises, but with execution.
John McKay (1552 - 1618) English
navigator, historian, courtier
In "The Book of Football Wisdom," ed.
by Criswell Freeman, 1996.
=A Found in: one/853.htm

Comment [ITF18]: Maybe have
some symbol that comes after tools for
which we provide a description.

A Globus Primer 27

 Draft of 5/8/2005

GT4 provides both a GRAM command line client and Java, C, and Python client APIs. We
describe the command line functionality here; the APIs provide access to essentially the same
functionality.

GRAM is also interesting as an example of how to use WSRF and WS-Notification mechanisms
to structure a Web services management interface. Thus, we spend some time describing the
GRAM implementation.

GRAM is likely to evolve significantly in the future both to exploit emerging standards and to
encompass additional resource management functions, including virtualization. We comment
briefly on this work also.

Table 2: Globus and related execution management tools

Name Purpose M G

Grid Resource
Allocation &
Management
service

GRAM service supports submission, monitoring, and control of jobs
on computers. Interfaces to Unix shell (“fork”), Platform LSF, PBS,
and Condor schedulers; others may be developed. Includes support
for MPICH-G2 jobs: multi-job submission, process coordination in
a job, sub-job coordination in a multi-job.

3 T

Java CoG Kit
Workflow

Uses the Karajan workflow engine that supports DAGs, conditions,
& loops; directs tasks to GRAM servers for execution. 1 C

Community
Scheduler
Framework

CSF is an open source meta-scheduler based on the WS-Agreement
specification. 1 C

Condor-G [18] Manage the execution of jobs on remote GRAM-enabled computers,
addressing job monitoring, logging, notification, policy
enforcement, fault tolerance, and credential management.

3 Y

DAGman Manage the execution of directed acyclic graphs (DAGs) of tasks
that communicate by writing/reading files; works with Condor-G. 3 Y

MPICH-G2 [55] Execute parallel Message Passing Interface (MPI) programs over
one or more distributed computers. 3 Y

Nimrod-G [60] Declarative specification of parameter studies, and management of
their execution on distributed computers. Scheduler based on
computational economy provides soft real-time deadlines. User
interaction via command line or web portal.

3 Y

Ninf-G An implementation of the GridRPC remote procedure call
specification, for accessing remote services. 3 Y

GriPhyN Virtual
Data System

Tools for defining, scheduling, and managing complex data-
intensive workflows. Workflows can be defined via a high-level
virtual data language; a virtual data catalog is used to track current
and past executions. Includes heuristics for job and data placement.
Uses DAGman/Condor-G for execution management.

2 Y

Condor,
OpenPBS,
Torque, PBSPro,
Sun Grid

Schedulers to which GSI-authenticated access is provided via a
GRAM interface. The open source Condor is specialized for
managing pools of desktop systems. OpenPBS and Torque are open
source versions of the Portable Batch System (PBS) cluster

3 Y

Comment [ITF19]: Include dynamic
account work in table above and in the
description below.

A Globus Primer 28

 Draft of 5/8/2005

Engine, Load
Sharing Facility

scheduler; PBSPro is a commercial version produced by Altair. SGE
is also available in both open source and commercial versions. LSF
is a commercial system produced by Platform.

Maui Scheduler An advanced job scheduler for use on clusters and supercomputers,
with support for meta-scheduling. 3 ?

4.1 Context
XX

4.2 GRAM Overview
Imagine that you want to allow remote users to execute a program. One approach is to make this
program accessible as a Web service. To do this, you define and implement a Web service
operation that executes your program. Then, for example, a client might simply call “foo(a,b)” to
request that “foo” be executed on a local or remote computer with “a” as input and returning “b.”

This simple approach to enabling remote access to programs can be quite appropriate in many
settings. However, there are also requirements that this simple approach does not address:

• State. The computational task that is to be run (the “job”) may perform input/output
operations while running that affect the state of the computational resource on which the
job runs, and/or its associated filesystems. Thus, “exactly once” execution semantics are
important: a user cannot simply resubmit a request if no acknowledgement was received,
as the job may have completed but the acknowledgement message was lost.

• User executables. We may wish to allow users to supply the programs to be executed.

• Staging of input and output. Executables, input data, and output data may be large,
remote, and/or shared between different invocations. The ability to manage staging of this
data can be important.

• Streaming output. Some users, particularly interactive ones, benefit from accessing
output data files as the job is running.

• Control. A user may require the ability to terminate a job that consumes many resources.

• Schedulers. Larger computing resources are typically operated under the control of a
scheduler that implements allocation and prioritization policies while optimizing the
execution of all submitted jobs for efficiency and performance.

• Monitoring. Data staging and schedulers introduce the potential for more complex job
state transitions: a job may not simply be running, completed, or failed, but may be
pending, suspended, staging, and so forth. Some users require the ability to query and/or
subscribe to determine job state.

The GRAM system and its client software have been developed to address these issues. GRAM is
meant to be used in situations where the ability to run arbitrary programs, achieve reliable
operation, perform stateful monitoring, manage credentials, stage files, and interact with
schedulers are important. If these capabilities are not required, then GRAM may not be
appropriate. If an application has only modest input and output data, operates in a stateless
manner (i.e., all that matters is the result data or fault signal), and will be invoked many times, it
may be a good candidate for exposure as an application-specific Web service.

Comment [ITF20]: Start off with a
discussion of what you might want to do.
The mandate of execution management.
Issues:
•Reserving resources
•Initializing those resources
(virtualization)
•Launching and managing computation
on those resources
•Managing that computation
•Moving data to/from that computation
Nesting notions (Condor glideins).

Comment [ITF21]: The user can
select several tool behaviors following
submission. In batch mode, the tool prints
the resulting ManagedJob EPR as the sole
standard output (unless in quiet mode)
and exits. In interactive mode, the tool
keeps running in order to monitor job
status. Interactive mode is qualitatively
equivalent to a batch-mode submission
immediately followed a second
invocation of globusrun-ws using the -
monitor command. In interactive
streaming mode, job output files are
fetched and output from globusrun-ws.
All GRAM submission options are
supported transparently through the
embedded request document input.
globusrun-ws offers additional features to
fetch job output files incrementally
during the run as well as to automatically
delegate credentials needed for certain
optional GRAM features. Online and
batch submission modes are supported
with reattachment (recovery) for jobs
whether they were started with this client
or another GRAM client application.
A client may delegate some of its rights
to GRAM services in order to facilitate
the above functions, e.g. rights for
GRAM to access data on a remote storage
element as part of the job execution.
Additionally, the client may delegate
rights for use by the job process itself.
With pre-web service GRAM, these two
uses of rights are inseparable, while
WS_GRAM provides separate control for
each purpose (while still allowing rights
to be shared if that is desired).
Rather than consisting of a monolithic
solution, GRAM is based on a component
architecture at both the protocol and
software implementation levels. This
component approach serves as an ideal
which shapes the implementation as well
as the abstract design and features.

A Globus Primer 29

 Draft of 5/8/2005

As we shall see, the GRAM interface addresses this need for advance management functionality
by creating for each successful job submission a stateful entity—a ManagedJob—on the compute
host, with lifetime similar to that of the associated job. (In fact, the lifetime is typically somewhat
longer, so that a client can determine a job’s state even after it has terminated.) A successful
GRAM “submit” operation returns a handle—specifically, a WS-Addressing endpoint reference,
or EPR—for the new ManagedJob. A client can then use this handle to query the job’s status, kill
the job, and/or “attach” to the job to obtain notifications of changes in job status and output
produced by the job. The client can also communicate this handle to other clients, who can
perform the same operations if authorized. It is this ManagedJob construct that allows GRAM to
support many of the advanced features mentioned in the preceding subsection.

We will also describe GRAM from the perspective of the system administrator. A key notion here
is that GRAM is not a resource scheduler, but rather a protocol engine for communicating with a
range of different local resource schedulers using a standard message format. The GT4 GRAM
implementation includes interfaces to Condor, LSF, SGE, and PBS schedulers, as well as a “fork
scheduler” that simply forks a new Unix process for each request. The system administrator must
perform appropriate local configuration operations for these local scheduler interfaces.

Finally, we describe various aspects of the GRAM implementation. As we shall see, the GRAM
implementation makes use of various other GT4 components to achieve a modular
implementation that provides substantial functionality.

4.3 The globusrun-ws Command Line Client
As we will see, globusrun-ws is a powerful tool. It supports not only basic job submission,
monitoring, and management functions, but also more sophisticated capabilities such as file
staging, credential delegation, exactly-once job submission, timeouts, message privacy, and
authorization, as we describe in the following. We will introduce these various features in stages.

4.3.1 Basic Job Submission
As a first example, we present the globusrun-ws command that would be used to execute a
program “/bin/touch” with argument “touched_it.”

% globusrun-ws -submit -job-command /bin/touch touched_it

The components of this command provide in turn the command name, the -submit flag to indicate
that this is a job submission, the -job-command flag to indicate that the remainder of the
command line comprises a command, the program name, and (in this case) the program’s single
argument. Assuming no errors, the program will be submitted and will run. The globusrun-ws
command prints some status information and then terminates.

% globusrun-ws -submit -job-command /bin/touch touched_it
Submitting job...Done.
Job ID: uuid:c51fe35a-4fa3-11d9-9cfc-000874404099
Termination time: 12/17/2004 20:47 GMT
Current job state: Active
Current job state: CleanUp
Current job state: Done
Destroying job...Done.

GT4 GRAM also supports the use of an XML-based job description language to describe job
submissions. We will examine this language in more detail later, and thus we simply show here
how the preceding example is expressed in this language. We first display (“cat”) the file and
then execute the program, using the -job-description-file option on the command line.

A Globus Primer 30

 Draft of 5/8/2005

% cat touch.xml
<job>
 <executable>/bin/touch</executable>
 <argument>touched_it</argument>
</job>
% globusrun-ws -submit -job-description-file touch.xml

We have not yet specified where our program is to execute. In the general case, the target GRAM
server is specified by an EPR provided in a file named in the command. For example:

% cat gram.epr
<factoryEndpoint xmlns:gram="http://www.globus.org/namespaces/2004/10/gram/job"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing">
 <wsa:Address>
 https://viz-login.isi.edu:9000/wsrf/services/ManagedJobFactoryService
 </wsa:Address>
 <wsa:ReferenceProperties>
 <gram:ResourceID>PBS</gram:ResourceID>
 </wsa:ReferenceProperties>
</factoryEndpoint>
% globusrun-ws -submit -job-description-file touch.xml -factory-epr-file gram.epr

Clearly, providing such an EPR can be unwieldy, and thus globusrun-ws also provides the option
of constructing an EPR automatically from a specified GRAM service URL (-factory) and type (-
factory-type). Thus, instead of providing the EPR as above, I can write:
% globusrun-ws -submit \
 -factory https://viz-login.isi.edu:9000/wsrf/services/ManagedJobFactoryService \
 -factory-type PBS -job-command /bin/touch touched_it

The globusrun-ws command follows a convention for constructing an EPR from a URL and a
type. This convention is not standardized, so the globusrun-ws command might not work against
an implementation of GRAM provided by someone else.

Recall that the first two examples in this section did not specify a target GRAM server. In the
absence of any specification, -factory and -factory-type default to localhost and fork, respectively,
and thus the first example command is equivalent to a request to submit the specified program to
a fork GRAM server running on the local computer.

% globusrun-ws -submit -factory localhost -factory-type fork \
 -job-command /bin/touch touched_it

4.3.2 Interacting with a Submitted Job
In globusrun-ws’s default submission mode, used in the examples above, the globusrun-ws client
remains running after the job is submitted. This persistent connection to the job serves two
purposes. First, as shown in the example above, globusrun-ws can display status information
about the job. Second, globusrun-ws can propagate kill signals to the submitted job: killing
globusrun-ws results in an attempt to kill the submitted job.

This interactive mode is useful in many circumstances. However, a client may also want to have
globusrun-ws submit a job and return immediately (batch mode: -batch). If a job is submitted in
batch mode, or if network connectivity is lost following an interactive mode submission, then a
user may wish to query to determine the status of a job. To support this GRAM allows a user to
request that an EPR to the new ManagedJob resource created for a new job be returned following
job submission. This is done by using the -job-epr-output-file flag to specify a file in which this
EPR should be placed:

A Globus Primer 31

 Draft of 5/8/2005

% globusrun-ws -submit -job-epr-output-file mj.epr -job-command /bin/touch touched_it

A client that obtains such a ManagedJob EPR can use it to enquire as to the job’s status, as
follows:

% globusrun-ws -status -job-epr-file mj.epr

or to (re)attach to the job:
% globusrun-ws -monitor -job-epr-file mj.epr

or to terminate the job:
% globusrun-ws -monitor -job-epr-file mj.epr

4.3.3 Job Status and Lifecycle
We referred to job status. As detailed in Table 3 and Figure 8, GRAM assumes a job execution
model by which a job proceeds through a series of states, from initially Unsubmitted to eventually
Done or Failed.

Table 3: GRAM job states

State Description

Unsubmitted Job has not yet been submitted.

StageIn Job is waiting for stage in of executable or input files to complete.

Pending The local scheduler has not yet scheduled the job for execution.

Active Job is executing.

Suspended Job execution has been suspended.

StageOut Job execution has completed; output files are being staged out.

CleanUp Job execution and stage out have completed; clean up tasks are underway.

Done Job has completed successfully.

Failed Job failed.

StageIn

Pending

ActiveUnsubmitted
StageOut

Suspended

Done

Failed CleanUp

Figure 8: State transition diagram for GRAM jobs.

4.3.4 File Staging and Other Features
In all examples so far, the executable has been assumed to be located on the target computer,
input data is passed as arguments, and output data has been written to files on the target computer.
However, there will also be cases in which the executable or other files need to be staged in to the
target computer and/or output files must be staged out. We specify file staging by adding file
transfer directives to the job description. These directives follow the RFT syntax, which enables
third-party transfers. Each file transfer must therefore specify a source URL and a destination

Comment [ITF22]: What is the
meaning of “unsubmitted”?

Comment [ITF23]: If I request that a
job be terminated, what is its eventual
status? Failed? Should there not be a
Killed status?

Comment [ITF24]: Need to check:
e.g., additional transitions to FAILED?

A Globus Primer 32

 Draft of 5/8/2005

URL. URLs are specified as GridFTP URLs (for remote files) or as file URLs (for local files).
For example, in the following example of a stage-in request, the source URL is a GridFTP URL
(here, gsiftp://job.submitting.host:2888/tmp/mySourceFile) that resolves to a source document
accessible on the file system of the job submission machine (here, /tmp/mySourceFile). At run-
time, the Reliable File Transfer service used by the GRAM service on the remote machine fetches
the remote file using GridFTP and writes this file to the specified local file (here,
file:///$expanded /my_file, which resolves to ~/my_file).

<fileStageIn>
 <transfer>
 <sourceUrl>gsiftp://submit.host:2888/tmp/mySourceFile</sourceUrl>
 <destinationUrl>file:///${GLOBUS_USER_HOME}/my_file</destinationUrl>
 </transfer>
</fileStageIn>

Note: additional RFT-defined quality of service requirements can be specified for each transfer.
See the RFT documentation for more information.

The symbol ${GLOBUS_USER_HOME} is one of four that the GRAM server will substitute at
run time, as follows:

• GLOBUS_USER_HOME: The path to the home directory for the local account/user

• GLOBUS_USER_NAME: The local account the job is running under

• GLOBUS_SCRATCH_DIR: An alternative directory where a file system is shared with
the compute nodes that a user might want to use. Typically it will provide more space
than the users default HOME dir. This directory's value may contain
${GLOBUS_USER_HOME}, which will be replaced with value of that substitution.

• GLOBUS_LOCATION: Path to the Globus Toolkit installation

We use the job description below to illustrate not only job staging but also a range of further job
description language features. The submission of this job to the GRAM services causes the
following sequence of actions:

• The /bin/echo executable is transferred from the submission machine to the GRAM host
file system. The destination location is the HOME directory of the user on behalf of
whom the job is executed by the GRAM services (see <fileStageIn>).

• The transferred executable is used to print a test string (see <executable>, <directory>
and the <argument> elements) on the standard output, which is redirected to a local file
(see <stdout>).

• The standard output file is transferred to the submission machine (see <fileStageOut>).

• The file that was initially transferred during the stage-in phase is removed from the file
system of the GRAM installation (see <fileCleanup>).

 1 <job>
 2 <executable>my_echo</executable>
 3 <directory>${GLOBUS_USER_HOME}</directory>
 4 <argument>Hello world!</argument>
 5 <stdout>${GLOBUS_USER_HOME}/stdout</stdout>
 6 <stderr>${GLOBUS_USER_HOME}/stderr</stderr>
 7 <fileStageIn>
 8 <transfer>
 9 <sourceUrl>gsiftp://submit.host:2888/bin/echo</sourceUrl>
10 <destinationUrl>file:///${GLOBUS_USER_HOME}/my_echo</destinationUrl>
11 </transfer>

A Globus Primer 33

 Draft of 5/8/2005

12 </fileStageIn>
13 <fileStageOut>
14 <transfer>
15 <sourceUrl>file://${GLOBUS_USER_HOME}/stdout</sourceUrl>
16 <destinationUrl>gsiftp://submit.host:2888/tmp/stdout</destinationUrl>
17 </transfer>
18 </fileStageOut>
19 <fileCleanUp>
20 <deletion> <file>file://${GLOBUS_USER_HOME}/my_echo</file> </deletion>
21 </fileCleanUp>
22 </job>

In more detail, and referring to line numbers:

2. The executable is /bin/echo

3. The working directory is that specified by $GLOBUS_USER_HOME.

4. A single argument is provided, the string “Hello World!”

5. Standard output is to be written to the file ${GLOBUS_USER_HOME}/stdout

6. Standard error is to be written to the file ${GLOBUS_USER_HOME}/stderr

7-12. A single file is to be staged in, namely the executable.

13-18. A single file is to be staged out, namely the standard output.

20. The executable should be deleted when execution is complete.

4.3.5 Credential Delegation
A job submitted to a GRAM server may require delegated user credentials if it is going either to
(a) perform additional remote operations, such as further GRAM job submissions or other Web
service calls, in which case it requires a job credential; or (b) engage in staging operations, in
which it requires a staging credential. GT4 allows credentials to be supplied in two different
ways. In the first approach, the user passes the required credential(s) with the job submit request.
These credentials are then available for use by the job and are discarded following use. In the
second, potentially more efficient, approach, the user uploads the credential(s) to a Delegation
service associated with the GRAM server, so that they can be accessed directly by subsequent job
requests.

The GT4 job description language and command line tools support these two modes of use as
follows:

• A client can use the command line client program globus-credential-delegate to delegate
one or both credentials to a GRAM server. This command returns an EPR to the newly
delegated credential. (A client can also use globus-credential-refresh to renew a delegated
credential.)

• Having delegated credentials in this way, the client can then communicate that they are to
be used in subsequent request by providing such EPR(s) in a job description, via the
jobCredential, stagingCredential, and/or transferCredential elements (Table 5).

• Alternatively, the client always has the option of using the -job-delegate and -staging-
delegate flags to globusrun-ws to request that credentials be transferred for a single job.

The flags mentioned in the third bullet are interpreted as follows:

Comment [ITF25]: What happens to
stderr afterwards?

Comment [ITF26]: Should there be a
security subsection too?

A Globus Primer 34

 Draft of 5/8/2005

• -job-delegate: If supplied and the job description does not already provide a jobCredential
element, globusrun-ws delegates the client credential to GRAM and introduces the
corresponding element to the submitted job description.

• -staging-delegate: If supplied and the job description includes staging or cleanup
directives and the job description does not already provide the necessary
stagingCredential or transferCredential element(s), globusrun-ws delegates the client
credential to GRAM (and thus to RFT), and introduces the corresponding elements to the
submitted job description.

4.3.6 The Primary globusrun-ws Options, and Other Details
We list in Table 4 the primary globusrun-ws options. The flags -submit -stream request
interactive streaming mode (-stream), in which not only status updates but also standard output
produced by the remote program is returned to the globusrun-ws client incrementally.

Table 4: The primary globusrun-ws options

Option Description

-submit Submit a job in interactive mode, meaning globusrun-ws returns only when
job finishes or fails; status changes are communicated back to the client; and
killing globusrun-ws also kills the job.

-submit -stream Submit a job in interactive streaming mode, which is equivalent to interactive
mode except that the job’s standard output is made available to the client as
the standard output of the globusrun-ws call.

-submit -batch Submit a job in batch mode, which means that the globusrun-ws call returns
immediately upon job submission.

-monitor EPR Attach to a running job. A globusrun-ws -submit -batch followed by a
globusrun-ws -monitor is equivalent to an interactive mode submission, i.e., a
simple globusrun-ws -submit.

-status EPR Return the current status of the job at the specified EPR.

-kill EPR Terminate the job at the specified EPR.

-validate Verify the valdidity of the globusrun-ws call represented by the other
arguments.

-version Return the version number of this implementation of globusrun-ws.

-help Return verbose help information

-usage Return usage information for the various command options.

Modify timeout values. Unreliable computers and networks can cause requests and
acknowledgements to be lost or delayed. Thus, globusrun-ws returns with failure if a request to a
GRAM server does not return within a timeout period. By default, this period is two minutes; the
client can modify it via the -http-timeout argument.

Job resubmission for exactly-once job submission semantics. If a job submission request times
out, then the client cannot know whether or not the job was successfully submitted: perhaps the
request succeeded, but the acknowledgement was lost. If this is a concern, then the client can
obtain (or supply) a submission identifier for a job, and then, if a timeout occurs, resubmit the job
with the same identifier. GRAM then ensures that the job is not submitted more than once.

A Globus Primer 35

 Draft of 5/8/2005

Lifetime management. A GRAM server will destroy a job after its lifetime has expired. By default,
a job’s lifetime is infinite, which means that the job only terminates if the program that it is
executing terminates or if the client or server explicitly terminate the job for some reason. A
client can use the -termination option on a submit request to request a specific lifetime.

Parallel jobs. A user can use globusrun-ws to submit a job description with a count attribute
greater than the default value of one. Such a description requests that multiple copies of the
specified executable be created on the target computer.

Multijobs. GRAM also supports “multijobs,” i.e., job descriptions that specify not a request to
execute N copies of F, but rather a request to execute different programs: say F, G, and H. (Each
of those requests can be itself a parallel job, but not a multijob.) The GT4 documentation provides
details on how this feature is used.

Job and process rendezvous. GRAM offers a mechanism to perform synchronization between
processes in a multiprocess job and between subjobs in a multijob. The job application can in fact
register binary information, for instance process information or subjob information, and get
notified when all the other processes or subjobs have registered their own information. This is for
instance useful for parallel jobs which need to rendezvous at a "barrier" before proceeding with
computations, in the case when no native application API is available to help do the rendezvous.

4.3.7 Further Job Description Language Details
The more complex example in Figure X introduces some additional features that we discuss in
the following. First, we present in Table 5 a list of the job description elements that GRAM
supports. Those identified by a “Y” in the third column support substitution.
Table 5: Job description elements, with their cardinality (blank=[0..1], *=[0..*]), whether or not they

support substitution, and their description.

Element name C S Description

argument * Y A command line argument for the executable. Spaces and quotes
within an argument are preserved.

count Number of executions of the executable. Default = 1 if empty/missing.

directory Y The path of the default directory the jobmanager should use for the job.

dryRun (Unimplemented) If “true” then the jobmanager will not submit the job
for execution and will return success.

environment * Y The environment variables that will be defined for the executable in
addition to default set that is given to the job by the jobmanager.

executable Y The name of the executable file to run on the remote machine.

extensions Currently used only to specify client-specific data which the client
wishes to associate with the job it is controlling.

Factory
Endpoint

 The Managed Job Factory service endpoint to which this job
description should be submitted.

fileCleanUp Y A file local to the job that should be removed following job
termination via a GridFTP-compatible file server.

fileStageIn Y A ("remote URL" "local file") pair that should be staged to the node(s)
that will run the job, prior to job execution.

Comment [ITF27]: For how long is a
job EPR valid after the job completes?

Comment [ITF28]: Can I modify the
lifetime after the initial submission?

A Globus Primer 36

 Draft of 5/8/2005

fileStageOut Y A ("local file" "remote URL") pair that should be staged from the
node(s) running the job following job completion, to a GridFTP-
compatible file server.

hostCount Only applies to clusters of SMP computers, such as Linux clusters.
Defines the number of nodes to distribute the "count" processes across.

jobCredential
Endpoint

 An EPR that points to the delegated credential resource.

jobType How the jobmanager should start the job: one of mpi, single, multiple,
condor.

libraryPath * Y A path to be appended to system-specific library path environment
variables.

maxCpuTime Explicitly set the maximum cputime, in minutes, for a single execution
of the executable. If the scheduler cannot set cputime, then an error
will be returned.

maxMemory Explicitly set the maximum amount of memory, in megabytes, for a
single execution of the executable. If the GRAM scheduler cannot set
maxMemory, then an error will be returned.

maxTime The maximum walltime or cputime, in minutes, for a single execution
of the executable. Walltime or cputime is selected by the GRAM
scheduler being interfaced.

maxWallTime Explicitly set the maximum walltime, in minutes, for a single
execution of the executable. If the GRAM scheduler cannot set
walltime, then an error will be returned.

minMemory Explicitly set the minimum amount of memory, in megabytes, for a
single execution of the executable. If the GRAM scheduler cannot set
minMemory, then an error will be returned.

project Target the job to be allocated to a project account as defined by the
scheduler at the defined (remote) resource.

queue Target the job to a queue (class) name as defined by the scheduler at
the defined (remote) resource.

remoteIoUrl Writes the given value (a URL base string) to a file, and adds the path
to that file to the environment through the
GLOBUS_REMOTE_IO_URL environment variable. If this is
specified as part of a job restart RSL, the job manager will update the
file's contents. This is intended for jobs that want to access files via
GASS, but the URL of the GASS server has changed due to a GASS
server restart.

Staging
Credential
Endpoint

 An EPR which points to the delegated credential resource used to
make remote calls to RFT.

stderr

 and

 Y Each stderr or stdout element specifies a file name or URL in which
the job’s standard error or standard output, respectively, are to be
stored. The standard error (output) from the job is staged after the
execution to the specifies path(s) or URL(s). Values that are local

A Globus Primer 37

 Draft of 5/8/2005

stdout paths are staged relative to the user’s home directory. Values that are
absolute paths are staged as if 'file://' were prepended to the path.

stdin Y The name of the file to be used as standard input for the executable on
the remote machine.

4.4 GRAM Client APIs
The GRAM server’s client interface is simple. As illustrated in Figure 9, four portTypes are
provided that define operations on four WS-Resources, which represent the state of the GRAM
server, the state of a single job, the certificate chain associated with a delegation factory, and a
credential, respectively. Those operations include both job- and delegation-specific functions
(CreateManagedJob, Release, RequestSecurityToken, Refresh) as well as various WSRF and
WS-Notification operations on the WS-Resources. GT4 includes Java, Python, and C bindings for
these four portTypes.

Managed
Job Factory

Managed Job

MJF
Resource

Managed Job
Resource

Managed Job
Resource

Managed Job
Resource

Delegation
Factory

Delegation

DF
Resource

Managed Job
Resource

Managed Job
Resource

Delegation
Resource

Create Create

CreateManagedJob
WS-ResourceProperties

Release
WS-ResourceProperties
WS-ResourceLifetime
WS-BaseNotification

RequestSecurityToken
WS-ResourceProperties

Refresh
WS-ResourceLifetime

Figure 9: From bottom to top, the four WS-Resources (shaded) associated with GRAM, the four

interfaces used to operate on those WS-Resoures, and the operations that those interfaces support.

In more detail, the ManagedJobFactory Managed Job Factory portType portType supports WS-
ResourceProperties query operations on the managed job factory resource that is used to maintain
information about GRAM server state (see Table 6). It also defines a createManagedJob operation,
which takes as input a job description, an optional initial termination time for the job resource,
and an optional state notification subscription request. Successful execution of this operation
results in the creation of a ManagedJob WS-Resource and the return of an EPR for the new
ManagedJob. If subscription is requested, then the client is subscribed for notifications and a
second EPR is returned for the new subscription. The globusrun-ws command line client uses this
operation to implement much of its functionality, generating (or passing along) an appropriate job
description and in the case of interactive or streaming interactive mode job submissions,
requesting a subscription.

The Managed Job portType (MJPT) defines operations on the ManagedJob WS-Resource. It
supports WS-ResourceProperties query operations for accessing information about job state
(Table 7), WS-ResourceLifetime lifetime management operations for managing job lifetime, and
WS-BaseNotification operations to enable clients to request notifications of changes. It also
defines an operation release used to release a hold placed on a state through the use of the
holdState field in the job description. This operation takes no parameters and returns nothing.

A ManagedJob WS-Resource may represent either an executable or a multijob. Somewhat
different resource properties are defined in each case.

A Globus Primer 38

 Draft of 5/8/2005

The Delegation Factory portType supports WS-ResourceProperties query operations on the
delegation factory resource that is used to maintain information about the certificate chain
associated with the delegation factory. It also defines a RequestSecurityToken operation, which
requests the upload of a security token to the delegation service and the return of an EPR to the
new WS-Resource.

The Delegation portType supports WS-ResourceLifetime operations on a security token WS-
Resource. It also defines a refresh operation, which a client can use to upload a new credential.

Table 6: Managed Job Factory Resource Properties

Resource Property Description

localResourceManager Local resource manager type: e.g., Condor, Fork, LSF,
Multi, PBS.

globusLocation The location of the Globus Toolkit installation that these
services are running under.

hostCPUType The job host CPU architecture (i686, x86_64, etc...)

hostManufacturer The host manufacturer name. May be “unknown.”

hostOSName The host OS name (Linux, Solaris, etc...)

hostOSVersion The host OS version.

scratchBaseDirectory The directory recommended by the system administrator to
be used for temporary job data.

delegationFactoryEndpoint The endpoint reference to the delegation factory used to
delegate credentials to the job.

stagingDelegationFactoryEndpoint The endpoint reference to the delegation factory used to
delegate credentials to the staging service (RFT).

condorArchitecture Condor architecture label (for Condor schedulers).

condorOS Condor OS label (for Condor schedulers).

GLUECE GLUE data (data in GLUE schema format [18]).

GLUECESummary GLUE data summary.

Table 7: Managed Job Resource Properties and those additional Resource Properties associated with

Managed Executable Job and Managed Multi Job Resources

Resource Property Description

serviceLevelAgreement A wrapper around fields containing the single-job and multi-job
descriptions or RSLs. Only one sub-field shall have a non-null value.

state The current state of the job.

fault The fault (if generated) indicating the reason the job did not complete.

localUserId The job owner’s local user account name.

userSubject The job owner’s GSI certificate DN.

holding Indicates whether a hold has been placed on this job.

A Globus Primer 39

 Draft of 5/8/2005

Managed Executable Job Resource only

stdoutURL A GridFTP URL to the file generated by the job that contains the
stdout.

stderrURL A GridFTP URL to the file generated by the job that contains the
stderr.

credentialPath The path (relative to the job process) to the file containing the user
proxy used by the job to authenticate to other services.

exitCode The exit code generated by the job process.

Managed Multi Job Resource only

subJobEndpoint A set of endpoint references to the sub-jobs created by this multi-job

4.5 GRAM Configuration and Administration
We install a GRAM server to enable Web services access to a compute resource. Installation
involves two principal configuration steps. Defaults are defined in both cases.

• Local scheduler interface. GRAM depends on a local mechanism for starting and
controlling jobs. If the fork-based GRAM mode is to be used, no special software is
required. For batch scheduling mechanisms, such as Condor, SGE, PBS, and LSF, the
local scheduler must be installed and configured for local job submission prior to
deploying and operating GRAM.

• Authorization to user mapping. GRAM depends on an authorization callout to determine
both whether a specific request should be allowed and the local user as which an
authorized request should be executed. By default, GRAM looks for the file
/etc/grid-security/grid-mapfile, which is assumed to contain a set of one-line
entries, each specifying the DN of an authorized user and the local user as which they are
to execute. For example:

 "/O=Grid/OU=GlobusTest/OU=simpleCA-foo.bar.com/OU=bar.com/CN=John" john

GRAM can also be configured to access other sources for authorization and mapping
information: see §XX.

4.6 Related Software and Tools
Table XX …

4.6.1 DAGman, Condor-G, and GriPhyN Virtual Data System
You have a large number of jobs to run.

Difficulty is managing them all and the inevitable failures: what has run, where is your output?

Condor-G

4.6.2 Nimrod-G: Managing Parameter Studies on the Grid
A particularly simple class of parallel …

XX.

Comment [ITF29]: Something about
logging?
Logging.
Do we have something here about how
we monitor a GRAM server? (maybe
under APIs above)

A Globus Primer 40

 Draft of 5/8/2005

4.6.3 MPICH-G2: Message Passing on the Grid
XX.

4.6.4 Ninf-G: Remote Procedure Call on the Grid
XX.

4.7 Case Studies
How many? What? Here or attached to earlier sections?

4.7.1 Execution Management Case Study 1
XX

4.7.2 Execution Management Case Study 2
XX

4.8 How GRAM Works
We review briefly the GRAM implementation. This information should be of interest as
background to the discussion of GRAM configuration (§ 4.5) and also to users who want some
insight into how GRAM works and to developers as an example of a WSRF/WSN-based service.

GRAM
services

GT4 Java Container

GRAM
services

Delegation

RFT File
Transfer

Transfer
request

GridFTP
Remote
storage
element(s)

Local
scheduler

User
job

Compute element

GridFTP

sudo

GRAM
adapter

FTP
control

Local job
control

Delegate

FTP data

C
lie

nt

Job

functions

Delegate

Service host(s) and compute element(s)

Figure 10: GRAM implementation structure

As illustrated in Figure 10, the primary elements of a GRAM deployment are as follows:

• A set of services running in a GT4 Java container, as follows:

o GRAM-specific services for creating, monitoring, and managing jobs

o A general-purpose delegation service, used to manage delegated credentials

Comment [ITF30]: What about
authorization callouts?

A Globus Primer 41

 Draft of 5/8/2005

o A general-purpose reliable file transfer (RFT) service, used to manage data
staging operations.

• A scheduler-specific GRAM adapter, used to map GRAM requests into appropriate
requests to a local scheduler.

• A GridFTP server used to execute data staging commands.

The client view of this ensemble is precisely those interfaces defined by the GRAM and
Delegation services. As discussed in § 4.3, those interfaces allow the user to submit, monitor, and
manage jobs, and to install and refresh delegated credentials.

4.8.1 Use of WS-Resource Mechanisms
The Web services within the GT4 Java container use WS-Resources to represent state associated
with jobs (“ManagedJobs”), delegated credentials, and transfers in progress. This representation
allows for the use of WSRF and WS-Notification mechanisms to access state, manage lifetime,
perform notification, and so forth. This reuse of existing machinery, and the use of general-
purpose Delegation and RFT services, means that relatively little GRAM-specific code had to be
developed for the GRAM implementation.

The state associated with each submitted job is just the WS-Resource used to represents its
current state: perhaps a few thousands of bytes, depending on the size of job arguments. Thus,
GRAM can in principle scale to extremely large numbers of submitted jobs. In practice, features
of current Java hosting environments can limit scalability: see § 12.3.

4.8.2 Security Issues
An incoming job management request is subject to multiple levels of security checks:

1. WS-Security mechanisms are used to validate the credentials associated with the
request and thus to authenticate the requestor.

2. Authorization is performed via an authorization callout. Depending on configuration,
this callout may consult a gridmapfile, a SAML server, or other mechanism.

3. If authorization succeeds, then it also yields the local identity under which the job is
to execute. The Unix utility sudo is used to invoke local resource management
mechanisms under this user id, thus enabling the application of site authorization
mechanisms.

GRAM has been designed to minimize the privileges required and to minimize the risks of
service malfunction or compromise. Services operating in the GT4 Java container do not require
special privileges to perform their operations: privileged operations are performed exclusively via
sudo functions.

To protect users from each other, jobs submitted by different users are typically executed in
separate local security contexts: e.g., under specific Unix user IDs based on details of the job
request and authorization policies. (Dynamic account management mechanisms can be used to
generate such security contexts in an on-demand manner: see § 4.9.)

To assist with normal accounting functions as well as to further mitigate risks from abuse or
malfunction, GRAM uses a range of audit and logging techniques to record a history of job
submissions and critical system operations.

A Globus Primer 42

 Draft of 5/8/2005

4.8.3 Data Operations
GRAM services hand off data staging operations to the RFT service that is associated with any
GRAM deployment. This strategy permits reuse of the general-purpose RFT code and also means
that job submissions that do not require staging do not incur any data management costs. Upon
receiving a data staging request, the RFT service initiates a GridFTP transfer between the
specified source and destination.

In addition to conventional data staging operations, GRAM supports a mechanism for
incrementally transferring output file contents from the computation resource while the job is
running. This mechanism (incorporated in GridFTP) allow arbitrary numbers of files to be
transferred in this fashion.

4.9 Execution Management Futures
XX

4.10 Further Reading
XX

Comment [ITF31]: As noted in the
introduction,
Dynamic accounts.
Virtualization.
Reservation, agreement.

Comment [ITF32]: VMs?
(virtualization paper that needs to be
written

A Globus Primer 43

 Draft of 5/8/2005

Chapter 5 Data Management

Data management tools are concerned with the location, transfer, and management of distributed
data. GT4 provides various basic tools, including GridFTP for high-performance and reliable data
transport, RFT for managing multiple transfers, RLS for maintaining location information for
replicated files, and OGSA-DAI for accessing and integrated structured and semistructured data.

Associated tools enhance GT4 components by addressing storage reservation (NeST), providing a
command-line client for GridFTP (UberFTP), providing a uniform interface to distributed data
(SRB), and supporting distributed data processing pipelines (DataCutter, STORM).

Other interesting systems include the LBNL Storage Resource Manager (SRM), which provides
for GSI-authenticated GridFTP access to managed storage, and GridNFS, a GSI-enabled
implementation of NSFv4 being developed at U.Michigan.

See also: GriPhyN VDS (Execution).
Table 8: Globus and related data management tools

Name Purpose M G

GridFTP server Enhanced FTP server supporting GSI authentication and
high-performance throughput. Iinterfaces to Unix POSIX,
HPSS, GFPS, and Unitree provided; others can be developed.

3 I
 5.1

globus-url-copy Non-interactive command-line client for GridFTP. 3 I

Replica Location
Service

RLS is a decentralized service for registering and discovering
information about replicated files. 3 I

Reliable File
Transfer service

RFT controls and monitors third-party, multi-file transfers
using GridFTP. Features exponential back-off on failure, all
or none transfers of multi-file sets, optional use of parallel
streams and TCP buffer size tuning, and recursive directory
transfer.

1 I

Lightweight Data
Replicator

LDR is a tool for replicating data to a set of sites. It builds on
GridFTP, RLS, and pyGlobus. 1 P

OGSA Data
Access &
Integration

OGSA-DAI is an extensible framework for accessing and
integrating data resources, including relational and XML
databases and semistructured files.

2 P

Network Storage
[4]

NeST allows GridFTP clients to negotiate reservations for
disk space, which then apply to subsequent transfers. 1 Y

UberFTP [27] Interactive command-line client for GridFTP. 3 Y

Storage Resource
Broker [12, 13]

Client-server middleware that provides a uniform interface for
connecting to heterogeneous, distributed data resources. GSI
authentication and GridFTP transport.

3 ?

DataCutter &
STORM

DataCutter supports processing of large datasets via the
execution of distributed pipelines of application-specific
processing modules; STORM supports relational data.

2 Y
?

A Globus Primer 44

 Draft of 5/8/2005

5.1 GridFTP
XX.

5.2 Reliable File Transfer Service
XX.

5.3 Replica Location Service
The Globus Toolkit’s replica location service (RLS)

RLS does not currently support a Web services interface.

XX

5.4 Data Access and Integration
XX.

5.5 Related Software and Tools
XX.

5.6 Case Studies
XX.

5.6.1 Data Case Study 1
XX

5.6.2 Data Case Study 2
XX

5.7 How it Works
XX.

5.8 Further Reading
The article “The Data Grid: Towards an Architecture for the Distributed Management and
Analysis of Large Scientific Data Sets” [26] is a somewhat dated introduction to topics relating to
data management.

The book chapter “Data Access, Integration, and Management” [37] provides a comprehensive
introduction to topics discussed here.

A Globus Primer 45

 Draft of 5/8/2005

Chapter 6 Monitoring and Discovery

The unexamined life is not worth living – Socrates

Monitoring and discovery mechanisms are concerned with obtaining, distributing, indexing,
archiving, and otherwise processing information about the configuration and state of services and
resources. In some cases, the motivation for collecting this information is to enable discovery of
services or resources; in other cases, it is to enable monitoring of system status.

GT4’s support in its Java, C, and Python WS Core for WSRF and WS-Notification interfaces
provides useful building blocks for monitoring and discovery, enabling the definition of
properties for which monitoring and discovery is be provided, and subsequent pull- and push-
mode access. GT4 services such as GRAM and RFT define appropriate resource properties,
providing a basis for service discovery and monitoring. Other GT4 services are designed to
enable discovery and monitoring, providing for indexing (MDS-Index), archiving (MDS-
Archive), and analysis of data for significant events (MDS-Trigger). Every GT4 container
incorporates a built-in MDS-Index service for discovery of services within the container; these
MDS-Index services can be linked to build Grid-wide indices.

Associated tools include those that monitor individual entities (e.g., Ganglia and Hawkeye for
clusters, NetLogger for individual components) or that coordinate the invocation of tests at
multiple locations (Inca, Nagios).

See also: WebMDS (interface).
Table 9: Globus and related monitoring and discovery tools

Name Purpose M G

Java, C, and
Python WS
Cores

Implements WSRF and WS-Notification specifications, thus allowing
Web services to define, and allow access to, resource properties.
Container incorporates a local index, enabling discovery of services.

3 T

MDS-Index Collects live monitoring information from services and enable queries
against that information. 2 T

MDS-
Trigger

Compares live monitoring information against rules to detect fault
conditions, and notifies operators (for example, by email) 2 T

MDS-
Archive

Store historical monitoring data data and enable queries against that
data. 2 T

Aggregator
framework

The aggregator framework facilitates the building of aggregating
services (for example the index, trigger and archive services). 2 T

Hawkeye Monitor individual clusters, using Condor as a base. GT4 includes data
provider that makes status information available in GLUE schema. 3 Y

Ganglia [24,
43]

Monitor individual clusters and sets of clusters. GT4 includes data
provider that makes status information available in GLUE schema. 3 Y

Nagios [2] A widely used open source system for monitoring networks, computers,
and services in distributed systems. 3 Y

A Globus Primer 46

 Draft of 5/8/2005

Inca [7] Monitor services in a distributed system by performing a set of specified
tests at specified intervals; publish results of these tests. 2 N

NetLogger Generate, collect, and analyze high frequency data from distributed
system components. 3 N

6.1 MDS4
The Monitoring and Discovery System (MDS4) component of GT4 can streamline the tasks of
monitoring and discovering services and resources in a distributed system.

Monitoring is the process of observing resources or services (e.g., computers and schedulers), for
such purposes as fixing problems and tracking usage. A user might use a monitoring system to
identify resources that are running low on disk space, in order to take corrective action.

Discovery is the process of finding a suitable resource to perform a task: for example, finding a
compute host on which to run a job. This process may involve both finding which resources are
suitable (e.g., have the correct CPU architecture) and choosing a suitable member from that set
(e.g., the one with the shortest submission queue).

Both monitoring and discovery applications require the ability to collect information from
multiple, perhaps distributed, information sources. To meet this need, MDS4 provides so-called
aggregator services that collect recent state information from registered information sources; and
browser-based interfaces, command line tools, and Web service interfaces that allow users to
query and access the collected information.

MDS4 provides three different aggregator services with different interfaces and behaviors
(although all built on a common framework): MDS-Index, which supports Xpath queries on the
latest values obtained from the information sources; MDS-Trigger, which performs user-specified
actions (such as send email or generate a log-file entry) whenever collected information matches
user determined criteria; and MDS-Archiver, which stores information source values in a
persistent database that a client can then query for historical information.

MDS4 makes heavy use of XML and Web service interfaces to simplify the tasks of registering
information sources and locating and accessing information of interest. In particular, all
information collected by aggregator services is maintained as XML, and can be queried via Xpath
queries (as well as other Web services mechanisms).

6.1.1 Aggregators and Information Sources
The key to understanding MDS4 is the aggregator-information source framework. The basic ideas
are as follows:

• Information sources for which discovery or access is required are explicitly registered
with an aggregator service.

• Registrations have a lifetime: if not renewed periodically, they expire. (Thus, an
aggregator is self-cleaning: outdated entries disappear automatically when they cease to
renew their registrations.)

• The aggregator periodically collects up-to-date state or status information from all
registered information sources, by using an information-source-specific access
mechanism.

• The aggregator then makes all information obtained from registered information sources
available via an aggregator-specific Web services interface.

A Globus Primer 47

 Draft of 5/8/2005

MDS4 aggregators are distinguished from a traditional static registry such as UDDI by their soft-
state registration of information sources and periodic refresh of the information source values that
they store. This dynamic behavior enables scalable discovery, by allowing users to access
“recent” information without accessing the information sources directly.

6.1.2 Information Sources and Registration
An information source can be essentially any entity from which an aggregator service can obtain
information: for example, a file, a program, a Web service, or another network-enabled service.

As noted above, information sources must be registered periodically with any aggregator service
that is to provide access to its data values. Registration is performed via a Web service (WS-
ServiceGroup) Add operation. Two registration modes are supported; each also defines the
mechanism to be used to access the associated information source.

The more general registration mode allows information to be obtained from an arbitrary source.
In this mode, an information source is registered by providing a user-supplied program that is run
periodically to obtain up-to-date data. This user program can either generate the information
locally or use a source-specific protocol to access the information remotely. The program must
convert non-XML data into an appropriate XML representation.

A more streamlined form of registration is supported for WSRF-compliant Web services. Such
services need simply to make status and state information available as WSRF resource properties.
At registration time, the user specifies whether the aggregator should use either pull resource
properties, using the WSRF “get resource property” interface, or to subscribe to resource property
changes so that values are pushed via WS-Notification subscription methods.

6.1.3 The Three Types of Aggregator
The MDS-Index service makes data collected from information sources available as XML
documents. More specifically, the data is maintained as WSRF resource properties. Thus:

• Users can write their own applications that collect information using standard Web
services interfaces, namely the WSRF get-property and WS-Notification subscribe
operations, for which GT4 provides C, Java, and Python APIs.

• The command line tool wsrf-get-property can be used to retrieve resource properties,
with the desired resource property specified via an XPath expression.

• A tool called WebMDS presents MDS-Index information in a standard web browser.
WebMDS is highly configurable, using XLST transformations to describe how MDS-
Index resource properties are converted to HTML. Standard transformations included in
GT4 provide an interface that displays overview information, with hyperlinks giving the
ability to drill down and view more detailed information about each monitored resource.

The MDS-Trigger service defines a Web service interface that allows a client to register an Xpath
query and a program to be executed whenever a new value matches a user-supplied matching rule.

The MDS-Archive service stores all values received from information sources in persistent
storage. Client requests can then specify a time range for which data values are required.

6.1.4 Built-In Information Sources and MDS-Index Services
Every GT4 Web services container includes a default MDS-Index service with which any GT4
services running in that container (e.g., GRAM, CAS, RFT) are automatically registered. Thus,
each installation on a platform has an index that allows one to discover what services are
available.

A Globus Primer 48

 Draft of 5/8/2005

In addition, Grids often need to keep track of all available WS-Resources. To accommodate this
common case, GT4 also provides a simple method for specifying one or more default indexes to
be a Grid-wide MDS-Index so that each WS-Resource registered to a default MDS-Index is also
registered in the Grid MDS-Index.

GT4 is configured to use MDS4 mechanisms to good effect itself, for discovery and monitoring
of GT4 services. Every GT4 Web service supports a minimal set of resource properties (an
informal service name and a service startup time) and thus can be registered easily into one or
more aggregators for monitoring and discovery. Further, two GT4 Web services, GRAM and
RFT, also publish a larger set of service-specific information, as described in the documentation
for the service in question. Finally, the GT4 distribution also includes information source
executables to enable registering GridFTP and RLS into aggregators.

6.1.5 MDS4 and MDS2 Compared
MDS4 has similar features to, but does not interoperate with, previous versions of MDS (MDS2
and MDS3). Important differences include a more powerful query language (Xpath instead of
LDAP); a simpler and therefore more robust implementation, due to fewer components; simpler
(indeed, in simple cases, totally automated) configuration, due to fewer components and tight
integration with the GT4 implementation; convenient interface to arbitrary information sources
due to extensible architecture; no requirement for pre-defined schema in information providers;
and lower performance due to use of XML protocols.

6.2 Related Software and Tools

6.3 Case Studies

6.3.1 Earth System Grid Monitor

6.3.2 Example 2

6.4 How it Works

6.5 Further Reading
The article “Grid Information Services for Distributed Resource Sharing” [72], while somewhat
dated, still provides a good introduction to some key architectural concepts adopted in MDS4.

The article “A Performance Study of Monitoring and Information Services for Distributed
Systems” [39] introduces important performance issues that arise in Grid information services,
and quantifies the impact of such techniques as caching.

A Globus Primer 49

 Draft of 5/8/2005

Chapter 7 Security

Security tools are concerned with establishing the identity of users or services (authentication),
protecting communications, and determining who is allowed to perform what actions
(authorization), as well as with supporting functions such as managing user credentials and
maintaining group membership information.

GT4 provides distinct WS and pre-WS authentication and authorization capabilities. Both build
on the same base, namely standard X.509 end entity certificates and proxy certificates, which are
used to identify persistent entities such as users and servers and to support the temporary
delegation of privileges to other entities, respectively.

GT4’s WS security [78] comprises (a) Message-Level Security mechanisms, which implement the
WS-Security standard and the WS-SecureConversation specification to provide message
protection for GT4’s SOAP messages, (b) Transport-Level Security mechanisms, which uses
transport-level security (TLS) mechanisms; and (c) an Authorization Framework that allows for a
variety of authorization schemes, including a “grid-mapfile” access control list, an access control list
defined by a service, a custom authorization handler, and access to an authorization service via
the SAML protocol. For non-WS components, GT4 provides similar authentication, delegation,
and authorization mechanisms, although with fewer authorization options.

Associated security tools provide variously for the storage of X.509 credentials (MyProxy [3] and
Delegation services), the mapping between GSI and other authentication mechanisms (e.g.,
KX509 and PKINIT for Kerberos, MyProxy for one-time passwords), and maintenance of
information used for authorization (VOMS, GUMS, PERMIS [68]). Likely also to be of interest
in the future is work underway in the UK and US to integrate Grid security with Shibboleth [36,
42], enabling access to campus directories.

See also: PURSe (Interface).
Table 10: Globus and related security tools

Name Purpose M G

Message-Level
Security

Implements WS-Security standard and WS-SecureConversation
specification to provide message protection for SOAP messages.

3 T

Authorization
Framework

Allows for a variety of authorization schemes, including file- and
service-based access control lists, custom handles, SAML protocol.

3 T

Pre-WS A&A Authentication, delegation, authorization for non-WS components. 3 T

Delegation
Service

Enable storage and subsequent (authorized) retrieval of proxy
credentials, thus enabling delegation when using WS protocols.

 T

Community
Authorization
Service

Issues assertions to users granting fine-grained access rights to
resources. Servers recognize and enforce the assertions. CAS is
currently supported by the GridFTP server.

2 T

Simple CA A simplified certification authority for issuing X.509 credentials. 3 T

MyProxy [76]
service

Allow federation of X509 and other authentication mechanisms (e.g.,
username/password, one-time passwords) via SASL/PAM.

3 T

GSI-OpenSSH Version of OpenSSH that supports GSI authentication. Provides 3 C

A Globus Primer 50

 Draft of 5/8/2005

remote terminal (SSH), file copy (SCP), and FTP (SFTP) functions.

VOMS Database of user roles and capabilities, and user client interface that
supports retrieval of attribute certificates for presentation to VOMS-
enabled services.

2 Y

VOX &
VOMRS

Extends VOMS to provide Web registration capabilities, rather like
PURSe. 2 Y

PERMIS [68] Authorization service accessible via SAML protocol. 2 Y

GUMS Grid User Management System: an alternative to grid map files.

KX509 &
KCA

KX509 is a “Kerberized” client that generates and stores proxy
credentials, so users authenticated via Kerberos can access the Grid;
KCA is a Kerberized certification authority used to support KX509.

3

PKINIT A service that allows users with Grid credentials to authenticate to a
Kerberos domain. 3

Shibboleth
[36]

XXX

7.1 Security Principles
XX.

7.2 Supporting Infrastructure
grid-proxy-init, etc. XX.

7.3 Web Services Authentication and Authorization
XX.

7.3.1 Community Authorization Service
XX.

7.3.2 Delegation Service
XX.

7.3.3 Authorization Framework
XX.

7.3.4 Message/Transport-level Security
XX.

A Globus Primer 51

 Draft of 5/8/2005

7.4 Credential Services
GT4 provides two components relating to credential management: MyProxy, an online credential
repository, and SimpleCA, a package for generating credentials. (SimpleCA is not a service, but a
program that you install and run to generate credentials..)

7.4.1 MyProxy
MyProxy is an online credential repository. While this may sound daunting, the concept (and
practice) is straightforward: it’s a service into which you can store X.509 proxy credentials,
protected by a passphrase, for later retrieval over the network. Storing credentials in a MyProxy
repository eliminates the need for manually copying private key and certificate files between
machines. A credential stored in MyProxy can also be accessed at times when the user’s
credential would not otherwise be accessible: for example, when the user wants to authenticate to
a grid portal from a Web browser, or if a job manager wants to renew the user’s credential and the
user is not available.

MyProxy does not currently provide a Web services interface, although it will eventually.

XX.

New developments: OTP support.

7.4.2 SimpleCA
The SimpleCA package provides a simple certification authority that a user can install and use to
issue credentials to Globus Toolkit users and services. This package is meant for use in situations
where the user wants public key credentials, for example in order to test GT’s operation, but does
not have access to a proper certification authority.

7.5 GSI-OpenSSH
GSI-OpenSSH is a modified version of the OpenSSH secure shell server that adds support for
X.509 proxy certificate authentication and delegation, providing a single sign-on remote login
and file transfer service. GSI-OpenSSH can be used to login to remote systems and transfer files
between systems without entering a password, relying instead on a valid proxy credential for
authentication. GSI-OpenSSH forwards proxy credentials to the remote system on login, so
commands requiring proxy credentials (including GSI-OpenSSH commands) can be used on the
remote system without the need to manually create a new proxy credential on that system.

The GSI-OpenSSH distribution provides gsissh, gsiscp, and gsiftp clients that function
equivalently to ssh (secure shell), scp (secure copy), and sftp (secure FTP) clients except for the
addition of X.509 authentication and delegation.

7.6 Related Software and Tools
Not clear that a list is what is wanted here, but rather some details on the whole set.

Mention integration with VOMS?

7.7 Case Studies
XX.

Comment [ITF33]: Should we say
something about Globus Certificate
Service??
http://gcs.globus.org:8080/gcs/index.html

Comment [ITF34]: Q: Where does
OpenCVS go?

A Globus Primer 52

 Draft of 5/8/2005

7.7.1 The Earth System Grid Portal
XX.

7.7.2 A Second Example
XX.

7.8 How it Works
Details of PKI, etc.

7.9 Further Reading
Chapter 8 of the book Handbook of Applied Cryptography [42] deals exclusively with public key
cryptography.

The article “A Security Architecture for Computational Grids” [66], while somewhat dated, still
provides a good introduction to some key architectural concepts adopted in Globus security.

The article “Globus Toolkit Version 4 Grid Security Infrastructure: A Standards Perspective”
[52] provides an excellent introduction to GT4’s implementation of security standards.

The wonderful book Security Engineering [3] has not direct connection to Grid security, but is an
absolute must read for anyone considering building secure systems.

A Globus Primer 53

 Draft of 5/8/2005

Chapter 8 User Interfaces

Grid portal and user interface tools support the construction of graphical user interfaces for
invoking, monitoring, and/or managing activities involving Grid resources.

Many (but not all) of these tools are concerned with enabling access to Grid systems from Web
browsers. Many (but not all) of such Web browser-oriented systems are based on a three-tier
architecture, in which a middle-tier portal server (e.g., uPortal with Tomcat, or GridSphere) hosts
JSR 168-compliant portlets [22] that both (a) generate the various elements of the first-tier Web
interface with which users interact and (b) interact with third-tier Grid resources and services.

Table 11: GT4 and related user interface tools

Name Purpose E G

Java CoG
Desktop

Java application that provides a “desktop” interface to a Grid, so that
for example a job is run, and a file copied, by dragging and dropping its
description to a computer and storage system, respectively.

1 Y

WebMDS Uses XSLT to generate custom displays of monitoring data, whether
from active services or archives. 1 Y

Portal User
Registration
Service

PURSe provides for the Web-based registration of users and the
subsequent generation and management of their GSI credentials, thus
allowing easy access to Grid resources by large user communities.

1 Y

Open Grid
Computing
Environment

OGCE packages a range of components, including JSR 158-compliant
portlets for proxy management, remote command execution, remote file
management, and GPIR-based information services.

3 Y

GridPort XX 3 ?

Sakai JSR 168-compatible system for distributed learning and collaborative
work, with tools for chat, shared documents, etc. 2 ?

A Globus Primer 54

 Draft of 5/8/2005

Chapter 9 Packaging and Distribution

Name Purpose M G

Grid Packaging
Toolkit

GPT is an RPM-like tool providing relocatability, and multi-flavor
(e.g., threaded vs. non-threaded) support.

2 T

NSF Middleware
Initiative

The NMI software release of Globus bundled with other useful
Grid components for the general user community.

3 ?

Virtual Data
Toolkit

Based on NMI, VDT packages a variety of tools for data-intensive
applications.

3 ?

Rocks “Grid Roll” Uses the NSF Middleware Initiative (NMI) Release to provide
Globus connectivity for Rocks clusters.

2 N

PACman A package manager that allows transparent fetch, install, and
management of software packages.

2 ?

Cluster on
Demand

XXX

A Globus Primer 55

 Draft of 5/8/2005

Chapter 10 Miscellaneous but Important
Tools

As the title of this chapter implies, we describe here a set of unrelated tools that each provides
considerable valuable functionality in its specific domain.

Name Purpose E G

eXtensible I/O
library

XIO is a pluggable communication library enabling convenient
access to a variety of underlying transport protocols. 3 T

Grid TeleControl
Protocol service

GTCP enables secure and reliable telecontrol of remote
instrumentation. 2 T

Handle System Scalable and secure directory service. 3 Y

GT4IDE Eclipse-based Interactive Development Environment for GT4. 1 Y

10.1 The eXtensible I/O Library
The GT4 eXtensible I/O (XIO) library [17] is used within various GT4 components, particularly
GridFTP, to implement file I/O and communication functions. It should also be of interest to
developers of other similar systems.

XIO provides a single POSIX-like API (open/close/read/write) that supports multiple wire
protocols, with protocol implementations encapsulated as drivers. This structure facilitates the

The XIO drivers distributed with GT4 are listed in Table 12.
Table 12: XIO drivers included in GT4

Driver Name Description

TCP

UDP

File

HTTP

GSI

GSSAPI_FTP

Telnet

Queuing

In addition, Globus XIO provides a driver development interface for use by protocol developers.
This interface allows the developer to concentrate on writing protocol code rather than
infrastructure, as XIO provides a framework for error handling, asynchronous message delivery,
timeouts, etc.

Comment [ITF35]: Is
GSI OpenCVS

Comment [ITF36]: Is there a
ClusterWorld column?

... [3]

A Globus Primer 56

 Draft of 5/8/2005

The XIO driver-based approach maximizes the reuse of code by supporting the notion of a driver
stack. XIO drivers can be written as atomic units and stacked on top of one another. This
modularization provides maximum flexibility and simplifies the design and evaluation of
individual protocols.

10.2 Grid TeleControl Protocol
XX.

10.3 Handle System
The Handle system [21] is a scalable and secure directory service developed and supported by the
Corporation for National Research Initiatives (CNRI). In brief, Handle allows for the distributed
definition and maintenance of a hierarchical name space, the binding of arbitrary key-value pairs
to names in that name space, and client workloads with a read-mostly, write-not-too-often
character. Security is incorporated in a nice way, so that users can control their own part(s) of the
name space. CNRI runs root servers, and any other organization can run subsidiary servers. The
Handle server software supports replication and failover. The various servers route queries and
perform caching. The system is being deployed on a large scale in various interesting contexts.

The Handle system has recently been released as open source software, and a number of
interesting ideas are being developed for integration with GT4: for example, recording of
resource properties in the directory, name resolution for services whose address may change, and
as a basis for WS-ServiceGroup implementations.

10.4 GT4IDE

A Globus Primer 57

 Draft of 5/8/2005

Comment [ITF37]: I have material
on this in a separate draft document.

A Globus Primer 58

 Draft of 5/8/2005

Comment [ITF38]: Do we include
here, or elsewhere, material on managing
GT installations? What about firewalls?
See Von/Olle's nice ClusterWorld column.
(I’ve pasted it into Other Stuff.)

Comment [ITF39]: Provide a
complete list? Table?

Comment [ITF40]: An early MDS
comment: We only have preliminary
performance data at this time. These data
suggest that MDS4 aggregators can
support query rates of the order of tens of
queries per second (depending on data
sizes) and a few hundred information
sources, depending on registration and
information update rates. We emphasize
that these are not accurate data. We
welcome feedback on application
requirements.

A Globus Primer 59

 Draft of 5/8/2005

Comment [ITF41]: Should a version
of this go at the beginning of the
document?

A Globus Primer 60

 Draft of 5/8/2005

Acknowledgements

GT4 is the culmination of many years of effort by many people, who have in turn benefited from
many years of financial support from a variety of sources. My poor memory will certainly have
led me to omit some contributors in the following. Thus, if your name is missing, please do not
feel annoyed but instead let us know.

The Globus Alliance comprises individuals at Argonne National Laboratory, the University of
Chicago, the University of Southern California’s Information Sciences Institute, the University of
Edinburgh, the Swedish Center for Parallel Computers, and the National Center for
Supercomputing Applications. Staff at these institutions have been responsible for much but
certainly not all Globus research, design, and development. Other significant contributors include
the Condor team at the University of Wisconsin, the pyGlobus and NetLogger groups at
Lawrence Berkeley National Laboratory, the EU DataGrid group at CERN, the Grid and Web
services groups at IBM and HP, and Univa Corporation. Many other people have contributed by
deploying, applying, and using the software, by proposing requirements, and by working on
relevant technical specifications. It is the support of this community that has made the work
worthwhile.

Financial support has been provided first and foremost by several U.S. federal agencies, in
particular the Department of Energy, National Science Foundation, National Aeronautics and
Space Administration, and Defense Advanced Research Projects Agency. The DOE National
Collaboratories program and the NSF Middleware Initiative program have been particularly
supportive. Los Alamos National Laboratory provided support for GridFTP development. IBM
supported much of the work on the Java WS Core. Microsoft, Sun, and Cisco have also made
contributions. In the U.K., funding for the development of DAIS has been provided by the UK
eScience program, while work in Sweden has been supported by XXX.

GT4 builds extensively on other open source software systems. We gratefully acknowledge, in
particular, our considerable debt to Apache software, such as Axis, Web services core, security,
and WS-Addressing—to some of which Globus Alliance members have made substantial
contributions.

This document has borrowed heavily from other sources, in particular the Globus online
documentation. We are grateful to the authors of that material for allowing us to paraphrase their
material.

Comment [ITF42]: List names of
Globus team? Supporters?

A Globus Primer 61

 Draft of 5/8/2005

Glossary

Endpoint reference

WS-Addressing

WSRF

WS-Notification

DN

Handle

WS-Transfer

SOAP

WSDL

WS-Eventing

WSDM

WS-Management

A Globus Primer 62

 Draft of 5/8/2005

References

1. DMTF Common Information Model (CIM) Standards, 2004. www.dmtf.org/standards/cim.
2. The Ganglia Project, 2004. http://ganglia.sourceforge.net.
3. Globus Toolkit Version 4 Grid Security Infrastructure: A Standards Perspective, 2004.

http://www-unix.globus.org/toolkit/docs/development/4.0-drafts/security/GT4-GSI-
Overview.pdf.

4. GLUE Schemas Activity and Specifications, 2004. www.cnaf.infn.it/~sergio/datatag/glue.
5. Handle System, 2004. www.handle.net.
6. Log4j Logging Services, 2004. http://logging.apache.org/log4j.
7. Nagios Web Site, 2004. www.nagios.org.
8. OASIS Web Services Distributed Management (WSDM) Technical Committee, 2004.

www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm.
9. OASIS WS-Notification Technical Committee, 2004. www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsn.
10. OASIS WS Resource Framework Technical Committee, 2004. www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsrf.
11. Open Grid Services Architecture Data Access and Integration (OGSA-DAI) Project.

www.ogsa-dai.org.uk.
12. Storage Resource Broker (SRB), 2004. www.npaci.edu/DICE/SRB/.
13. UberFTP GridFTP-Enabled FTP Client, 2004. http://dims.ncsa.uiuc.edu/set/uberftp.
14. W3C SOAP Activity, 2002. www.w3.org/TR/SOAP.
15. W3C XML Schema Activity, 2001. www.w3.org/XML/Schema.
16. Web Services Interoperability Organization, 2004. www.ws-i.org.
17. Abdelnur, A. and Hepper, S. Portlet API Specification Version 1.0. Java Community Process,

JSR-000168, 2003.
18. Abramson, D., Giddy, J. and Kotler, L., High Performance Parametric Modeling with

Nimrod/G: Killer Application for the Global Grid? Proceedings of the International Parallel
and Distributed Processing Symposium (IPDPS), Cancun, Mexico, 2000, 520-528.

19. Alexander, J., Box, D., Cabrera, L.F., Chappell, D., Daniels, G., Geller, A., Janecek, R.,
Kaler, C., Lovering, B., Orchard, D., Schlimmer, J., Sedukhin, I. and Shewchuk, J. Web
Services Transfer (WS-Transfer), 2004.

20. Allcock, W. GridFTP: Protocol Extensions to FTP for the Grid. Global Grid ForumGFD-R-
P.020, 2003.

21. Allcock, W., Bresnahan, J., Kettimuthu, R. and Link, J., The Globus eXtensible Input/Output
System (XIO): A Protocol-Independent I/O System for the Grid. Joint Workshop on High-
Performance Grid Computing and High-Level Parallel Programming Models in conjunction
with International Parallel and Distributed Processing Symposium, 2005.

22. Anderson, R. Security Engineering. Wiley, 2001.
23. Arora, A., Geller, A., He, J., Kaler, C., McCollum, R., Milenkovic, M., Montgomery, P.,

Saiyed, J. and Suen, E. Web Services for Management (WS-Management), 2004.
www.intel.com/technology/manage/downloads/ws_management.pdf.

24. Atkinson, M., Chervenak, A., Kunszt, P., Narang, I., Paton, N., Pearson, D., Shoshani, A.
and Watson, P. Data Access, Integration, and Management. The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, 2004.

25. Baratloo, A., Karaul, M., Kedem, Z. and Wyckoff, P., Charlotte: Metacomputing on the Web.
9th International Conference on Parallel and Distributed Computing Systems, 1996.

A Globus Primer 63

 Draft of 5/8/2005

26. Baru, C., Moore, R., Rajasekar, A. and Wan, M., The SDSC Storage Resource Broker. 8th
Annual IBM Centers for Advanced Studies Conference, Toronto, Canada, 1998.

27. Bent, J., Venkataramani, V., LeRoy, N., Roy, A., Stanley, J., Arpaci-Dusseau, A.C., Arpaci-
Dusseau, R.H. and Livny, M., Flexibility, Manageability, and Performance in a Grid Storage
Appliance. 11th IEEE International Symposium on High Performance Distributed
Computing, 2002, IEEE Computer Society Press.

28. Berman, F., Fox, G. and Hey, T. (eds.). Grid Computing: Making the Global Infrastructure a
Reality. John Wiley & Sons, 2003.

29. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C. and Orchard, D.
Web Services Architecture. W3C, Working Draft http://www.w3.org/TR/2003/WD-ws-arch-
20030808/, 2003.

30. Bosworth, A., Box, D., Christensen, E., Curbera, F., Ferguson, D., Frey, J., Kaler, C.,
Langworthy, D., Leymann, F., Lucco, S., Millet, S., Mukhi, N., Nottingham, M., Orchard, D.,
Shewchuk, J., Storey, T. and Weerawarana, S. Web Services Addressing (WS-Addressing).
2003.

31. Box, D., Cabrera, L.F., Critchley, C., Curbera, F., Ferguson, D., Geller, A., Graham, S., Hull,
D., Kakivaya, G., Lewis, A., Lovering, B., Mihic, M., Niblett, P., Orchard, D., Saiyed, J.,
Samdarshi, S., Schlimmer, J., Sedukhin, I., Shewchuk, J., Smith, B., Weerawarana, S. and
Wortendyke, D. Web Services Eventing (WS-Eventing), 2004. www-
106.ibm.com/developerworks/webservices/library/specification/ws-eventing/.

32. Bray, T., Hollander, D., Layman, A. and Tobin, R. Namespaces in XML 1.1. W3C, 2004.
www.w3.org/TR/xml-names11.

33. Brecht, T., Sandhu, H., Shan, M. and Talbot, J. ParaWeb: Towards World-Wide
Supercomputing. Proc. Seventh ACM SIGOPS European Workshop on System Support for
Worldwide Applications, 1996.

34. Catlett, C. In Search of Gigabit Applications. IEEE Communications Magazine (April). 42-
51. 1992.

35. Catlett, C. and Smarr, L. Metacomputing. Communications of the ACM, 35 (6). 44-52. 1992.
36. Chadwick, D.W. and Otenko, A., The PERMIS X.509 Role Based Privilege Management

Infrastructure. 7th ACM Symposium on Access Control Models and Technologies, 2002.
37. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C. and Tuecke, S. The Data Grid:

Towards an Architecture for the Distributed Management and Analysis of Large Scientific
Data Sets. J. Network and Computer Applications, 23 (3). 187-200. 2000.

38. Christensen, E., Curbera, F., Meredith, G. and Weerawarana., S. Web Services Description
Language (WSDL) 1.1. W3C, Note 15, 2001. www.w3.org/TR/wsdl.

39. Czajkowski, K., Fitzgerald, S., Foster, I. and Kesselman, C., Grid Information Services for
Distributed Resource Sharing. 10th IEEE International Symposium on High Performance
Distributed Computing, 2001, IEEE Computer Society Press, 181-184.

40. Eickermann, T. and Hommes, F. Metacomputing in a Gigabit Testbed West. Workshop on
Wide Area Networks and High Performance Computing, Springer-Verlag, 1999, 119-129.

41. Ellisman, M. and Peltier, S. Medical Data Federation: The Biomedical Informatics Research
Network. The Grid: Blueprint for a New Computing Infrastructure (2nd Edition), Morgan
Kaufmann, 2004.

42. Erdos, M. and Cantor, S. Shibboleth Architecture. Internet 2, 2002.
http://shibboleth.internet2.edu/docs/draft-internet2-shibboleth-arch-v05.pdf.

43. Federico, D., Sacerdoti, M.J.K., Massie, M.L. and Culler, D.E., Wide Area Cluster
Monitoring with Ganglia. IEEE International Conference on Cluster Computing, 2003, IEEE
Press.

44. Foster, I. The Grid: Computing without Bounds. Scientific American, 288 (4). 78-85. 2003.

A Globus Primer 64

 Draft of 5/8/2005

45. Foster, I., Alpert, E., Chervenak, A., Drach, B., Kesselman, C., Nefedova, V., Middleton, D.,
Shoshani, A., Sim, A. and Williams, D., The Earth System Grid II: Turning Climate Datasets
Into Community Resources. Annual Meeting of the American Meteorological Society, 2002.

46. Foster, I., Berry, D., Djaoui, A., Grimshaw, A., Horn, B., Kishimoto, H., Maciel, F., Savva,
A., Siebenlist, F., Subramaniam, R., Treadwell, J. and Reich, J.V. Open Grid Services
Architecture V1. 2004.

47. Foster, I., Frey, J., Graham, S., Tuecke, S., Czajkowski, K., Ferguson, D., Leymann, F.,
Nally, M., Sedukhin, I., Snelling, D., Storey, T., Vambenepe, W. and Weerawarana, S.
Modeling Stateful Resources with Web Services, www.globus.org/wsrf, 2004.

48. Foster, I. and Kesselman, C. Globus: A Metacomputing Infrastructure Toolkit. International
Journal of Supercomputer Applications, 11 (2). 115-129. 1998.

49. Foster, I. and Kesselman, C. (eds.). The Grid: Blueprint for a New Computing Infrastructure
(2nd Edition). Morgan Kaufmann, 2004.

50. Foster, I., Kesselman, C., Nick, J. and Tuecke, S. The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration, Open Grid Service Infrastructure
WG, Global Grid Forum, 2002.

51. Foster, I., Kesselman, C., Nick, J.M. and Tuecke, S. Grid Services for Distributed Systems
Integration. IEEE Computer, 35 (6). 37-46. 2002.

52. Foster, I., Kesselman, C., Tsudik, G. and Tuecke, S., A Security Architecture for
Computational Grids. 5th ACM Conference on Computer and Communications Security,
1998, 83-91.

53. Foster, I., Kesselman, C. and Tuecke, S. The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International Journal of Supercomputer Applications, 15 (3). 200-222. 2001.

54. Foster, I. and others, The Grid2003 Production Grid: Principles and Practice. IEEE
International Symposium on High Performance Distributed Computing, 2004, IEEE
Computer Science Press.

55. Frey, J., Tannenbaum, T., Foster, I., Livny, M. and Tuecke, S. Condor-G: A Computation
Management Agent for Multi-Institutional Grids. Cluster Computing, 5 (3). 237-246. 2002.

56. Graham, S., Niblett, P., Chappell, D., Lewis, A., Nagaratnam, N., Parikh, J., Patil, S.,
Samdarshi, S., Sedukhin, I., Snelling, D., Tuecke, S., Vambenepe, W. and Weihl, B. Publish-
Subscribe Notification for Web Services, 2004. www-
106.ibm.com/developerworks/library/ws-pubsub.

57. Grimshaw, A., Weissman, J., West, E. and E. Lyot, J. Metasystems: An Approach
Combining Parallel Processing and Heterogeneous Distributed Computing Systems. Journal
of Parallel and Distributed Computing, 21 (3). 257-270. 1994.

58. Grimshaw, A.S. and Wulf, W.A. The Legion Vision of a Worldwide Virtual Computer.
Communications of the ACM, 40 (1). 39-45. 1997.

59. Hughes, J. and Maler, E. Technical Overview of the OASIS Security Assertion Markup
Language (SAML) v1.1, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=security, 2004.

60. Karonis, N., Toonen, B. and Foster, I. MPICH-G2: A Grid-Enabled Implementation of the
Message Passing Interface. Journal of Parallel and Distributed Computing, 63 (5). 551-563.
2003.

61. Keahey, K., Fredian, T., Peng, Q., Schissel, D.P., Thompson, M., Foster, I., Greenwald, M.
and McCune, D. Computational Grids in Action: The National Fusion Collaboratory. Future
Generation Computer Systems, 18 (8). 1005-1015. 2002.

62. Kendall, S.C., Waldo, J., Wollrath, A. and Wyant, G. A Note on Distributed Computing. Sun
MicrosystemsTR-94-29, 1994.

63. Lin, A., Maas, P., Peltier, S. and Ellisman, M. Harnessing the Power of the Globus Toolkit.
Cluster World, 2 (1). 2004.

A Globus Primer 65

 Draft of 5/8/2005

64. Litzkow, M. and Livny, M. Experience with the Condor Distributed Batch System. IEEE
Workshop on Experimental Distributed Systems, 1990.

65. Litzkow, M.J., Livny, M. and Mutka, M.W. Condor - A Hunter of Idle Workstations. 8th
International Conference on Distributed Computing Systems, 1988, 104-111.

66. Menezes, A., Oorschot, P.v. and Vanstone, S. Handbook of Applied Cryptography. CRC
Press, 1996.

67. Messina, P. Distributed Supercomputing Applications. The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, 1999, 55-73.

68. Novotny, J., Tuecke, S. and Welch, V., An Online Credential Repository for the Grid:
MyProxy. 10th IEEE International Symposium on High Performance Distributed Computing,
San Francisco, 2001, IEEE Computer Society Press.

69. Paton, N.W., Atkinson, M.P., Dialani, V., Pearson, D., Storey, T. and Watson, P. Database
Access and Integration Services on the Grid. U.K. National eScience Center, 2002.
www.nesc.ac.uk.

70. Pearlman, L., Kesselman, C., Gullapalli, S., Spencer, B.F., Futrelle, J., Ricker, K., Foster, I.,
Hubbard, P. and Severance, C., Distributed Hybrid Earthquake Engineering Experiments:
Experiences with a Ground-Shaking Grid Application. 13th IEEE International Symposium
on High Performance Distributed Computing, 2004.

71. Rosenberg, J. and Remy, D. Securing Web Services with WS-Security. Sams, 2004.
72. Smallen, S., Olschanowsky, C., Ericson, K., Beckman, P. and Schopf, J.M., The Inca Test

Harness and Reporting Framework. SC'2004 High Performance Computing, Networking,
and Storage Conference, 2004.

73. Sotamayor, B. The Globus Toolkit 4 Programmer's Tutorial, 2005. www.casa-
sotomayor.net/gt4-tutorial.

74. Spencer, B., Finholt, T., Foster, I., Kesselman, C., Beldica, C., Futrelle, J., Gullapalli, S.,
Hubbard, P., Liming, L., Marcusiu, D., Pearlman, L., Severance, C. and Yang, G.,
NEESgrid: A Distributed Collaboratory for Advanced Earthquake Engineering Experiment
and Simulation. 13th World Conference on Earthquake Engineering, Vancouver, B.C.,
Canada, 2004, Paper No. 1674.

75. Vahdat, A., Belani, E., Eastham, P., Yoshikawa, C., Anderson, T., Culler, D. and Dahlin, M.,
WebOS: Operating System Services For Wide Area Applications. 7th IEEE International
Symposium on High Performance Distributed Computing, 1998, IEEE Computer Society
Press.

76. Welch, V., Barton, T., Keahey, K. and Siebenlist, F., Attributes, Anonymity, and Access:
Shibboleth and Globus Integration to Facilitate Grid Collaboration. 2004.

77. Welch, V., Siebenlist, F., Foster, I., Bresnahan, J., Czajkowski, K., Gawor, J., Kesselman, C.,
Meder, S., Pearlman, L. and Tuecke, S., Security for Grid Services. 12th IEEE International
Symposium on High Performance Distributed Computing, 2003.

78. Zhang, X., Freschl, J.L. and Schopf, J.M., A Performance Study of Monitoring and
Information Services for Distributed Systems. 12th IEEE International Symposium on High
Performance Distributed Computing, 2003, IEEE Computer Society Press.

A Globus Primer 66

 Draft of 5/8/2005

Index

Earth System Grid, 2, 5, 32, 39
Grid2003. See Open Science Grid

Open Science Grid, 5, 32
SAP AG, 4

Page 2: [1] Comment [ITF1] Ian Foster 1/12/2005 11:45:00 PM
Other potential sources of information: the ClusterWOrld columns that we have done.

Publication
Date

Title Author(s)
PDF
Available

December
2003

Globus Toolkit: Infrastructure for
Resource Sharing

Tom Garritano March 2004

January 2004 The Grid Ian Foster March 2004

January 2004
Security and Credential Management on
the Grid

Sam Lang and Sam
Meder

March 2004

February
2004

So You Want to Set Up a Grid
Jenny Schopf and Keith
Jackson

April 2004

March 2004 Using the Globus Toolkit with Firewalls
Olle Mulmo and Von
Welch

May 2004

April 2004
Standardizing the Grid: Evolution and
Convergence (includes WSRF)

Lee Liming, Tom
Garritano, Steve
Tuecke

June 2004

May 2004 Globus XIO
Bill Allcock, John
Bresnahan

July 2004

June 2004 Testing in a Grid Environment Charles Bacon August 2004

July 2004 Grid Packaging Software Scott Gose
September
2004

August 2004 Monitoring Clusters and Grids
Jenny Schopf and Ben
Clifford

October
2004

September
2004

Maximizing Your Globus Toolkit™
GridFTP Server

William Allcock and
John Bresnahan

November
2004

October 2004
Programming with the GridFTP Client
Library

William Allcock
January
2005

November 2004 MPICH-G2: An MPI for Grids Nicholas T. Karonis January 2005

December 2004 Is the Grid Delivering for Business? Mark Parsons and Paul Graham January 2005

Page 21: [2] Comment [ITF10] Ian Foster 1/12/2005 10:04:00 PM

Complete list: cas-proxy-init
cas-wrap
cas-enroll
cas-remove
cas-action
cas-group-admin
cas-group-add-entry
cas-group-remove-entry
cas-rights-admin
cas-whoami
cas-list-object
cas-get-object
cas-group-list-entries

cas-find-policies

globus-credential-delegate
globus-credential-refresh

myproxy-init
myproxy-info
myproxy-get-delegation
myproxy-destroy
myproxy-change-pass-phrase
myproxy-admin-adduser
myproxy-admin-change-pass
myproxy-admin-query
myproxy-admin-load-credential
myproxy-server

grid-ca-sign

gsissh
gsiscp
gsisftp

(pre-WS A&A)
grid-cert-info
grid-cert-request
grid-default-ca
grid-change-pass-phrase
grid-proxy-init
grid-proxy-destroy
grid-proxy-info
grid-mapfile-add-entry
grid-mapfile-check-consistency
grid-mapfile-delete-entry

globus-url-copy

rft
rft-delete

globus-rls-server
globus-rls-admin
globus-rls-cli

globusrun-ws

mds-servicegroup-add

trigger service tool??

globus-start-container
globus-stop-container
wsrf-destroy
wsrf-set-termination-time
wsrf-query
wsrf-get-property
wsrf-get-properties
wsrf-insert-property
wsrf-delete-property
wsrf-update-property
wsn-get-current-message
wsn-pause-subscription
wsn-resume-subscription
wsn-subscribe

Page 55: [3] Comment [ITF35] Ian Foster 1/12/2005 11:04:00 PM
Is
GSI OpenCVS Version of OpenCVS that supports GSI authentication. Provides

version management of source code (and other text documents).

to be mentioned?

