

GT4.0 C WS Design

Design of Web Services in C for the Globus Toolkit

1 TABLE OF CONTENTS

1 Table Of Contents ... 1
2 Introduction... 1
3 Service Engine .. 1

3.1 State Diagram... 2
3.2 Service Engine API.. 5
3.3 Service Container... 5
3.4 Application-Embedded Services.. 5

4 Service Modules.. 6
4.1 Operation Dispatching ... 6

5 Operation Providers .. 7
5.1 Implementation .. 7

6 Handlers .. 8
7 Wildcards .. 8

7.1 Deserialization ... 10
7.2 Type Registry... 11
7.3 Serialization ... 11

2 INTRODUCTION

This document provides a description of the design and organization of the C web
services components of the Globus Toolkit. The primary motivation for these
components is the emergence of the Web Services Resource Framework, and the need for
a stable, high performance C implentation of the Web Services protocols on which
WSRF is based. The main components discussed here are the service engine, which
manages service invocations and routes the invocations to the appropriate services;
operation providers which allow generic implementations to be defined and added to
many services at runtime; message handlers which allow dynamic control of how
message headers are serialized and deserialized; and some of the details of XSD wildcard
handling in C.

3 SERVICE ENGINE

The entire invocation made by a service request passes through a number of basic steps.
Figure 1 depicts each of these steps:

• Transport – This component is responsible for the I/O (listening, reading, writing)
and specific transport protocol handling (http, httpg, etc.), and from this,
producing or consuming generic SOAP messages.

• Handler Chain – The handlers perform service generic pre processing of the
SOAP request message before it gets de-serialized by the service module, and
generic post-processing after the response message gets serialized by the service
module.

• Service Module – This provides the (de)serialization of the SOAP message body,
dispatching of the appropriate operation, and finally calling the actual service
implementation

Figure 1: Basic Flow Diagram of the Service Engine

3.1 State Diagram
The service engine passes through a number of states from accepting a new request, to
sending the response and closing the connection. The following state diagrams provide
the different states that are taking place from starting the service engine, to stopping it.
The service engine state machine is separated into two diagrams, one for the service
engine accepting new sessions and one for processing a session.

Figure 2: The state machine for new service sessions
Notice that the state machine registers for a new session before processing the current
one. This is done using the globus asynchronous event handling API. This allows for a
new session to be accepted (and eventually processed) even while the current session is
being processed.

The next diagram demonstrates the entire session processing state machine. Its an
expansion of the ‘Session Processed’ node in the above diagram.

Figure 3: State machine for session processing
The diagram in figure 3 shows the state machine used for processing a service session.
This consists of parsing the SOAP message, invoking the appropriate handlers, finding
the operation specified in the message, and invoking it. Once the invocation completes,
the response handlers are invoked and the response message is sent. The colored boxes
separate the service engine from the actual service module containing the service

skeletons and service implementation. All errors are handled by converting the error to a
fault of some form, serializing that fault and writing it as the response.

3.2 Service Engine API

The service engine is represented to the user as an API that provides an abstraction of all
the different components that it includes. The API provides the following features:

• Provides a simple abstraction of the underlying transport protocols, marshalling,
and handler message processing, so that the engine API is clean and simple.

• The service engine is built on Globus event handling API to allow asynchronous
handling of each session (with or without threads) so that implementers (such as
for stand-alone services) can perform other processing tasks without waiting for a
particular operation’s session to finish.

• A convenient start/stop API for the service engine with asynchronous handling of
sessions. This allows embedded containers to be run in the background of a
process.

The service engine API provides the level of abstraction that enables different usage
scenarios. The two primary uses of the API in GT 4.0 are the stand-alone service
container and the application-embeddable service engine. We describe these in the next
sections.

3.3 Service Container

The service container is a process that accepts incoming invocations and routes the
requests to the appropriate service skeletons. It allows multiple asynchronous service
requests for different services to be processed, or just a single service, based on the
installed service modules available. The service container can be built threaded, which
will allow multiple services to run simultaneously. This may increase the responsiveness
of the service container for services that perform time consuming computations,
essentially blocking other service calls from being executed. If a service implementer
does need to block in their implementation, this is best handled using calls to
globus_poll_periodic().

3.4 Application-Embedded Services

Application-embedded services are easy to setup with the C WS Core.
globus_service_engine_t handle, and call the globus_service_engine_register_start
function to begin processing service requests and a call to the
globus_service_engine_register_stop function to stop inbound requests from being
processed. New sessions are driven with the globus event polling functions, such as
globus_cond_wait or globus_poll. Just as with the service container, the service
invocations of an embedded service engine will be processed asynchronously. If the
application is built with a threaded flavor, the service invocations will be be processed
simultaneously.

4 SERVICE MODULES

In C, a web service is represented on the server side as a dynamically loadable module
(AKA: shared library) that gets loaded by the container (the umbrella process) as needed.
The module provides operation dispatching, de-marshalling and marshalling of the
service’s messages (generated binding code from a WSDL schema), and the
implementation of the service itself (added by the service implementer). The service
module is loaded based on the URL passed in from the transport. It gets invoked from
the container via a standard interface that must be part of the service module (its
implementation is generated for each service by the WSDL to C tool). Pushing all the
code for a specific service into a separate module allows the services to be added to a
container dynamically without recompiling. It also allows services to be managed by the
container through dynamic loading, which allows the container to remain small.

The service module manages operations for a service, performing operation dispatching
once a service is invoked. It also keeps track of XSD types defined for that service in a
registry, which allows xsd:any types to be handled appropriately.

4.1 Operation Dispatching

Operations dispatching is implemented within the service module. The following
requirements for operation dispatching in the GT WS architecture exist:

1. Operation dispatching from the service must conform to the WS-I Basic Profile,
which requires that the child element of the SOAP body for a message be unique
for a document/literal service, so that it can be used to map from element name to
operation.

2. References to service implementation functions must be dynamic, in order to
provide operation provider functionality.

The first of these requirements is handled by providing a mapping from element QName
to operation name. This mapping is generated at service binding generation.
In order to support the second requirement, instead of hardcoding the operations as the
service bindings are generated, a table of operation names to function pointers (actual
service functions) is used. This works by providing a hashtable to each generated service
module that keeps the operation name to implementation mapping. The table gets
initialized and filled (for the operations defined in the schema) as the service module is
initialized. The table is able to maintain all the function pointers by storing void pointers
and casting the void pointer back to the operation’s defined interface once the operation
is ready to be dispatched.

The steps of operation dispatching are:

1. Map child element QName of SOAP Body to operation skeleton

2. Call de-marshalling function for operation – This step initializes the parameters
that are passed to the service implementation of the operation.

3. Map the operation name to the function pointer that points to the service
implementation of the operation

4. Call the function pointer with the parameters from 2.
5. Perform any necessary destruction of parameters created in 2.

5 OPERATION PROVIDERS

Operation providers are implementations of a service operation that provide common
functionality (operations) to a service. Such implementations can be useful for two
services which require similar/same functionality, but don’t want to duplicate each
other’s work. The motivation for operation providers is based on the Web Services
Resource Framework (WSRF), which (among many other things) provides a base set of
operations for managing stateful resources. For example, the WS-ResourceProperty.wsdl
schema defines the GetResourceProperty operation in the GetResourceProperty
portType. Someone implementing a WSRF enabled web service would write a schema
that defines portTypes that implement (in the WSRF sense) the GetResourceProperty
portType. The service implementation must then somehow provide an implementation of
the GetResourceProperty operation, but since this operation provides the same
functionality to any web service, its implementation can be reused.

5.1 Implementation

The implementation of operation providers in C is built on the Globus C extension
framework, which allows a module to be placed in a registry for later access.
An operation provider is added to a service module by including the header of the
operation provider and adding a dependency to the operation provider package. This
must be done by the service implementer. The operation provider does not provide any
(de)marshalling or dispatching for its operations, it contains only the service
implementation(s) of the operation(s) it provides. The (de)marshalling and dispatching
mechanisms of the service provider are expected to be included in the generated bindings
for the service module.

A service implementer must specify the operation providers they want programmatically.
The C architecture does not allow an operation provider to be added to a service at run
time through dynamic deployment. The service implementer must take the following
steps to use an operation provider:

• Add the operation provider’s header to the service implementation source file
• Add a dependency on the operation provider package for the service module

package
• Use the following function to specify which operation providers should be used:

globus_result_t
globus_service_set_operation_provider(
 const char * operation_name,

void * operation_impl);

This function can be called anywhere from within the service implementation, but in
general it should be called during service activation so that the operations an operation
provider implements will be available to service requestors.

6 HANDLERS

Normally, a request message is received from the transport layer and passed directly to
the service. This limits the functionality of the service container. For example,
developers may want to do pre-processing on the request message or post-processing on
the response message at a global level (for all services in the container). Also, such
generic processing of messages may need to be specified for some services and not
others. Handlers are a way of adding this functionality to the service engine.

From an implementation standpoint, a handler is simply a function that implements a
standard interface accepting a message context (an abstract representation of the
message) as input, and returning one as output. Handlers are called before de-
marshalling for inbound messages, and after marshalling for outbound messages, so that
they can modify the message right before being sent, or directly after being received.
Each inbound and outbound message has an associated handler chain, which contains a
user-defined set of handlers in a specified order. As the message is processed, the
handlers in the chain are invoked in turn.

Handlers can also be implemented as dynamic modules, loadable at runtime. The module
includes the function for the handler, as well as code for loading and managing the
module. The global handlers and service specific handlers added to a chain for a given
message are defined programmatically through the stub interfaces.

7 WILDCARDS

XML Schema allows the xsd:any type to represent an arbitrary XML blob as a typed
element or other XML content. This is useful where an element must be represented, but
the exact type of the element is unknown in advance (at compile time). In order for the C
SOAP engine to be able to handle this xsd:any type, the following structure is used:

struct globus_xsd_type_info_s
{
 xsd_QName * type;
 globus_xsd_serialize_func_t serialize;
 globus_xsd_deserialize_func_t deserialize;
 globus_xsd_init_func_t initialize;
 globus_xsd_destroy_func_t destroy;
 globus_xsd_copy_func_t copy;
 globus_xsd_init_contents_func_t initialize_contents;
 globus_xsd_destroy_contents_func_t destroy_contents;
 globus_xsd_copy_contents_func_t copy_contents;
 size_t type_size;
 globus_xsd_array_push_func_t push;
 globus_xsd_type_info_t contents_info;
 globus_xsd_type_info_t array_info;
};

The first field of this struct points to another global variable generated for the given type
and statically initialized. This is the QName of the given type, and is used as the key
entry into the type registry. The other fields consist primarily of function pointers that
define how the type is to be serialized and deserialized, as well as initialized, copied and
destroyed. The any type is represented in C as the following structure:

typedef struct xsd_any_s
{
 globus_xsd_type_registry_t registry;
 globus_xsd_type_info_t any_info;
 xsd_QName * element;
 void * value;
} xsd_any;

This type allows us to represent the C form of a type that is unknown until runtime, using
the void pointer value field. This acts as a placeholder for any other variable that can be
cast to a void pointer (all other pointers). Each of the fields of this type are defined here:

 registry – a reference to a type registry used only to deserialize this
particular any variable.

 any_info – a reference to the type information used to deserialize this type
 element – the outermost element used for serializing this variable. If the

variable is expected to be serialized, the element must be set by the user.
If the variable is a going to be filled in by deserialization, the element will
be set by the deserialization code.

 value – this is the void pointer holding the actual deserialized content of
this any variable.

Notice the value member of globus_xsd_any_s struct is a void pointer. Using void
pointers allows us to represent any possible pointer type, as pointers can be cast to void
pointers and back to their original type. The different function pointers provide
information about how to handle the any type.

7.1 Deserialization

For both services and clients, an xsd:any type in an inbound message must be
deserialized appropriately. This is done using a type registry, which maps type QNames
and element QNames to type info structures. Once an element is reached during
deserialization which is known from schema to be a wildcard, the xsd_any_deserialize
function is called with an instance of the xsd_any type. The deserialize function performs
a search for a valid type info structure to deserialize the any variable. The search is done
as follows:

1) Instance Type Info - The any_info field of the xsd_any instance is used if it gets
initialized (non-null) before the deserialize function is called.

2) Element QName - The element QName is used first as the key to lookup the type
info in a registry. If the first registry lookup fails, the next registry in the search is
used. The order of the registries used to perform the lookups are as follows:

a) Instance Registry – If the xsd_any instance’s registry is non-null, this
registry is used to lookup the type info. If the lookup with the element
QName succeeds in finding a valid type info from this registry, that type
info is used, and the search is aborted.

b) Message Registry – The message handle passed to each deserialize
function also maintains its own reference to a type registry. If this registry
is non-null and the lookup with the element QName succeeds, the found
type info is used, and the search is aborted.

c) Global Registry – The global registry is the last registry used to lookup
the type info. If the element QName is a valid key in the registry, the
found type info is used and the search is aborted.

3) xsi:type Attribute – The element may contain an xsi:type attribute which defines
the QName to use for deserialization. If such an attribute exists, the QName value
is used as the key for each of the lookups in the following type registries:

a) Instance Registry – If the xsd_any instance’s registry is non-null, this
registry is used to lookup the type info. If the lookup with the value of the
xsi:type attribute succeeds in finding a valid type info from this registry,
that type info is used, and the search is aborted.

b) Message Registry – The message handle passed to each deserialize
function also maintains its own reference to a type registry. If this registry
is non-null and the lookup with the value of the xsi:type attribute
succeeds, the found type info is used, and the search is aborted.

c) Global Registry – The global registry is the last registry used to lookup
the type info. If the xsi:type attribute is a valid key in the registry, the
found type info is used and the search is aborted.

4) If no valid type info has been found in any of the previous searches, the type info
is set to the globus_xml_buffer_info, which essentially places the wildcard
element and all its children into a buffer. This allows the deserialization of the
wildcard to be handled by the user.

7.2 Type Registry

A type registry maintains a mapping of QNames for types and elements to type info
structures, allowing deserialization of wildcards to take place at runtime. There are
different type registries that can be used in different contexts. We describe each of them
here:

 Global Registry – A global registry for the entire process, contains
mappings for every linked in element and type QName. So all the top
level element and type definitions defined in the XML Schemas that are
referenced by a service definition will have entries in this registry. The
element and type definitions are added at runtime during module
activation, so when the client module is activated, or the service module is
loaded, the registry will be populated.

 Message Registry – A per-message registry that allows the message
handlers and operation init functions to modify the behavior of
deserialization parameters for an individual message. Entries found in the
message registry will override entries in the global registry. By default
this registry is empty. In order to setup a special entry in this registry for a
particular element or type, the globus_soap_message_handle_set_registry

 Instance Registry – A registry contained within the wildcard instance, to
allow the deserialization behavior of each wildcard to be controlled.

7.3 Serialization

At serialization, the xsd_any structure must contain a valid any_info field which points to
the globus_xsd_any_info_t containing the serialization functions to use for this particular
wildcard. The value and element fields must also contain valid values for the content to
be serialized and the outer element to use for serialization. Once these parameters are set
the serialization functions take care of the rest.

