

GT4 C Core Design

Design of WS-Resource Framework in C for GT 4.0

Table Of Contents

1 Web Service Implementation and Design... 2
2 Resource Discovery .. 2
3 Resource Factories .. 3
4 Associating a Resource with a Web Service... 3
5 Client API ... 3
6 Service API ... 3

6.1 Resource Properties ... 4
6.1.1 Client Handling of Resource Properties ... 5

7 Operation Providers .. 5
7.1 WS-ResourceProperties ... 5
7.2 WS-ResourceLifetime.. 6

8 Implementation Plan ... 6

1 WEB SERVICE IMPLEMENTATION AND DESIGN

In the Globus WS C architecture, a web service is represented on the server side as a
dynamically loadable module (AKA: shared object or library) that gets loaded by the
container (the umbrella process) as needed. This allows entire services to be added to a
container dynamically, and provides complete scope separation between services. See
the GT4 WS C Design Doc for further info.

The reusable operation provider design specified in the C architecture allows us to
implement a set of operation providers as components that provide WSRF base
functionality. The GetResourceProperty operation provider, for example, provides
service functionality for resources properties that implementers can derive from with
their own services.

2 RESOURCE DISCOVERY

Resources in C are maintained by the service module in a registry. This allows services
to control and limit access to resource instances from other services.

Because a service is invoked through interfaces defined by the service description, the
resource id taken from the properties field of the WS-Adressing component of the request
message cannot be passed directly to the service implementation. Instead, a service
module defines a variable global to the service module, which can be used as a key for
storage of the resource id. Globus provides an abstraction layer to thread-specific data
handling, which allows the service implementation to gain access to the resource id in
both threaded and nonthreaded environments. For example, a service might provide an
implementation of the ‘add’ operation, where the interface would look like:

int my_service_add(xsd_int value);

The service module calls this function during dispatching, which may need to access the
associated resource. To do so, it must first access the resource id using the function:

const char * globus_service_get_resource_id();

The resource id is set as thread specific data in the service module during dispatching of
the my_service_add service operation. Once the service operation has been invoked, the
resource id is determined from the service module’s global thread key (unique to that
thread), which has been set previously. The following function is responsible for
resolving the key to the actual Resource instance.

globus_result_t globus_resource_find(
const char * id,
globus_resource_t * resource);

Because a resource instance may be accessed by multiple operation invocations at once
(or at least, within the same request timeframe), each call to globus_resource_find
increments a reference counter on the actual globus_resource_t instance. This prevents

calls to globus_resource_destroy from destroying the instance while its still in use. The
reference counter is decremented for each call to globus_resource_find by the service
module once the service operation has returned.

3 RESOURCE FACTORIES

A WS-Resource must include a factory operation that creates the resource and responds
with the Endpoint Reference for the resource. The factory operation will need to call:

globus_result_t
globus_resource_create(
 const char * id,
 globus_resource_t * resource);

This function creates the resource instance, adds it to the resource registry keyed on id,
and returns the instance to the user. Additional resource specific internal data should be
added to the resource via a call to:

globus_result_t
globus_resource_set_resource_specific(
 globus_resource_t resource,
 void * data,
 globus_destroy_func_t destroy);

4 ASSOCIATING A RESOURCE WITH A WEB SERVICE

In C, all resource association is done through an implicit approach, in that the service
implementation must obtain a reference to the resource through the provided helper API.
The service does not maintain association with a particular resource from one call to the
next, instead, the resource is automatically returned to the resource bank or home once
the service call has completed.

5 CLIENT API

The client-programming model is similar to the programming model in GT3 and
designed to handle the complexities of interaction from the user. For example, the client
will be able to pass a WS-Addressing EndpointReferenceType instead of a Grid Service
Handle to the client stub and the stub will add the appropriate endpoint reference to the
SOAP header during serialization of the outbound message.

6 SERVICE API

The helper API available to the service consists of a set of functions that act on resource
instances:

typedef struct globus_resource_s globus_resource_t;

globus_result_t
globus_resource_create(

 const char * id,
 globus_resource_t * resource);

globus_result_t
globus_resource_find(
 const char * id,
 globus_resource_t * resource);

globus_result_t
globus_resource_delete(
 const char * id,
 globus_resource_t * resource);

globus_result_t
globus_resource_destroy(
 const char * id);

This API allows the service implementer to create new resources (using
globus_resource_create) and return the new resource identifier in a resource factory
response message. Also, the Destroy operation provider will likely call
globus_resource_destroy on the resource.

Internally, the resource properties are maintained as a hashtable keyed on the property’s
name. Users of the API (service implementers) only have access to the resource
properties through a resource property API, which is defined in the following sub-section.

6.1 Resource Properties

The resource properties for a resource instance can be access through the following API:

typedef struct globus_resource_property_s globus_resource_property_t;

globus_result_t
globus_resource_get_property(
 globus_resource_t resource,
 xsd_QName name,
 void ** property);

globus_result_t
globus_resource_set_property(
 globus_resource_t resource,
 xsd_QName name,
 void * property);

globus_result_t
globus_resource_create_property(
 globus_resource_t resource,
 xsd_QName qname,
 globus_serialize_func_t serialize,
 globus_deserialize_func_t deserialize,
 globus_initialize_func_t initialize,
 globus_destroy_func_t destroy,
 void * property);

globus_result_t
globus_resource_delete_property(
 globus_resource_t resource,
 xsd_QName qname,

 void * property);

globus_result_t
globus_resource_destroy_property(
 globus_resource_t resource,
 xsd_QName qname);

The service implmenter must add the resource property values defined in the WSDL of
the service with default values to each resource that they create. Service implementers
may also choose to add a resource property type to a service definition. Both of these are
done with the globus_resource_create_property function, which requires serialization and
intialization functions. Not adding the resource properties defined in WSDL to the newly
created resource invalidates the resource. If the type of the resource property is defined
in the WSDL schema, then these functions will be automatically generated, otherwise the
service implementer will have to implement the serialization and initialization functions
himself. The prototypes for these functions are as follows:

typedef void (* globus_xsd_type_destroy_func_t) (void *);

typedef globus_result_t (* globus_xsd_type_init_func_t) (void **);

typedef void (* globus_serialize_func_t) (
 xsd_QName name,
 void * instance,
 globus_message_handle_t message);

typedef void (* globus_deserialize_func_t) (
 xsd_QName name,
 xsd_QName type,
 void * instance,
 globus_message_handle_t message);

6.1.1 Client Handling of Resource Properties

On the client the list of resource properties returned in the response messages of
GetResourceProperty, GetMultipleResourceProperties, and QueryResourceProperties
include a sequence of xsd:any types. By default, the client bindings for a given portType
definition generate a table that maps resource property names to initialized
globus_xsd_any_info_t structures, which contain a globus_deserialize_func_t callback
for the given resource property. This mapping table must be passed in to the resource
properties operations to allow valid deserialization of the responses. Resource properties
that aren’t defined by the mapping table get deserialized with the default mapping, which
turns properties into DOM elements. Each mapping table can be modified at runtime to
specify the resource properties to expect, as well as allow the default mapping to be
overridden, so that deserialization of resource properties can be user defined.

7 OPERATION PROVIDERS

7.1 WS-ResourceProperties

The request message for the SetResourceProperties operation requires handling of the
xsd:any type. As described in the GT4 C WS Design Doc, Each service module provides
a mapping table for the resource properties defined on the associated resource. The
mapping table is initialized to contain default mappings from resource property name to
globus_serialize_info_t instances. Modification of the table happens either via a call to
globus_resource_create_property, or through the API provided. Resource Properties
which are added dynamically should be included in the Resource Properties document
service discovery queries.

The GetResourceProperty, GetMultipleResourceProperties, and
QueryResourceProperties operation providers should also support accessing the Endpoint
Reference as a resource property.

7.2 WS-ResourceLifetime

The SetTerminationTime operation provider is implemented using the globus event
handling API. Specifically, globus_callback_register_oneshot is called with a callback
that waits until the termination time has expired and then calls globus_resource_destroy
on the resource.

8 IMPLEMENTATION PLAN

A first-pass implementation of GT4 in C will only include the following features:

• xsd:any support
• WS-Addressing Handler
• Resource Properties support
• Resource Lifetime support
• NotificationConsumer operation provider

The following are specific components that will not be supported in GT4.0:

• Xpath querying of resource properties. Specifically, the QueryResourceProperties
operation will fault. (Although libxml provides an Xpath 1.0 compliant
implementation)

• Notification/Topics Support.

