

Mapping WSDL and XSD Schema to C
Globus Toolkit 4.0

Table of Contents

Table of Contents...1
Introduction ..2
XML Namespace Mapping ...2
Canonicalization Rules..5
Types ...5

Generated Files ..5
Generated Structures..6

ComplexType Definitions ..6
SimpleType Definitions...8
Optional Types ..9
Array Types ..10
Restrictions, Extensions and Choice ..10

Generated Functions ...10
Initialization ..10
Destruction ...12
Duplication..13
Serialization ..14
Deserialization...15

Global Type Variables..18
Primitive Types...22
Elements..27

Client Bindings ..29
Generated Files ..30
Client Module ...30
Client Handle..31
Client Stubs ...33

Blocking Operation ..33
Asynchronous Operation ..36
Asynchronous Request/Response ..38
Asynchronous Request ...39
Asynchronous Response...40
EndpointReference Stubs ...41

Service Bindings ..42
Service Module ...43
Service Source Files..43
Service Implementation ..43

Service Init ...44
Service Finalize ...45

Operation Init..46
Operation Impl ..47

Faults ..49
Errors ..50

Introduction

This document defines the structure and format of the C bindings generated
from WSDL and XSD schema in the Globus Toolkit 4.0. This document will
be of interest if you want to use the C bindings to write web services and
clients. It contains information as to the structure and formatting of the
types, client bindings, and service bindings generated in C, as well as how we
address a number of bindings related issues with mapping an abstract
schema language like WSDL and XSD to the C programming language. This
document’s scope only includes the generated code that makes up the C
bindings as public interfaces to the user. As such the tools used for code
generation, and the exact implementation details of API functions are not
discussed here. This is NOT a normative reference. The normative reference
for the C bindings are the bindings generation templates themselves. This
version of the document only provides mappings for the document/literal
style of WSDL, so it is assumed that there will only be at most one input and
output element for each operation.

XML Namespace Mapping

In WSDL and XML Schema, XML namespaces are used to provide global
resolution for types, elements and operations. In order to prevent clashes
between local names when mapping to C, each target namespace can have
an associated string defined that is prefixed to the types, variables, and
filenames generated within that namespace. The format for the mapping is
as follows:

Definition: Namespace to Prefix Mapping Format

<namespace URI> = <prefix>

<namespace URI> must be a valid XML namespace.

<prefix> needs to be a string, conforming to the valid ANSI-C typename
restrictions. As an example, the XML Schema in both Figure 1 and Figure 2
contains the MyType type definition.

For each global structure, union, type and function definition generated from
the XML schema binding to C within that namespace, the defined prefix will

be pre-pended to the definition.

As an example, we define the following segment of XML schema:

<xsd:schema … xmlns:targetNamespace=”http://foo.com/FooTypes”>
 …

 <complexType name=”MyType”>
 <sequence>
 <xsd:element name=”MyInt” type=”xsd:int”/>
 <xsd:element name=”MyString” type=”xsd:string”/>
 </sequence>
 </complexType>

 …
</xsd:schema>

Figure 1: Example XML Schema type definition with a target namespace

<xsd:schema … xmlns:targetNamespace=”http://bar.com/BarTypes”>
 …

 <complextType name=”MyType”>
 <sequence>
 <xsd:element name=”MyQN” type=”xsd:QName”/>
 </sequence>
 </complexType>

 …
</xsd:schema>

Figure 2: Example XML Schema type definition with a different target namespace

If the C bindings were generated without namespace to prefix mappings, the
structures would look like this:

typedef struct MyType_s
{
 xsd_int MyInt;
 xsd_string MyString;
} MyType;

Figure 3: Snippet of C binding from XSD Schema in Figure 1

typedef struct MyType_s
{
 xsd_QName MyQN;
} MyType;

Figure 4: Snippet of C binding from XSD Schema in Figure 2

Although the generated bindings in Figure 3 and Figure 4 will be defined in
different header files, there will be obvious name clashes if both are included
into the same source file, or when the linker attempts to link two object files
with these types defined. In order to prevent these clashes when binding to
C, a mapping table must be provided:

http://bar.com/BarTypes=bar_
http://foo.com/FooTypes=foo_

When this table is provided to the binding generator, the resulting bindings
will look like this:

typedef struct foo_MyType_s
{
 xsd_int MyInt;
 xsd_string MyString;
} foo_MyType;

Figure 5: C bindings for the Foo Namespace with Namespace to Prefix mapping

typedef struct bar_MyType_s
{
 xsd_QName MyQN;
} bar_MyType;

Figure 6: C bindings for the BarType namespace with Namespace to Prefix mapping

The prefixes that are pre-pended to the type definitions in Figure 5 and Figure 6
prevent name clashes during compilation or object linking.

Canonicalization Rules

XML Schema allows for characters in name definitions that will cause C
compilers to break. For example, an XML Schema type element definition
may have the name=”Foo-BarType”, but mapping this to C would result in a
compiler error, since in C, ‘-‘ is the mathematical symbol for subtraction. We
dictate the following rules when mapping names from XML schema to C:

• Hyphens: All instances of ‘-‘ become ‘_’
• Spaces: All instances of ‘ ‘ become ‘_’
• Restricted Names: All restricted names in C and C++ are capitalized.

i.e. register becomes Register
• Attributes: Names of attribute definitions in types get prefixed with ‘_’ to

prevent conflicts with other elements of the same name.

Types

In the binding generation model we’ve chosen, each type defined in XML
Schema gets a number of structures, functions and files generated for it. In
each of the following sub-sections, we explain the different components of
generated bindings for a XML schema type.

Generated Files
Each XML Schema type will generate a header file, a header file for the array
of that type, and a source file. This breakdown allows us to include the
generated type in other header and source files as appropriate. The format
of the files is as follows:

• Header: <nsprefix><typename>.h
• Header Array: <nsprefix><typename>_array.h
• Source: <nsprefix><typename>.c

In the above, <nsprefix> refers to the namespace prefix mapped from the
namespace for that type in the Namespace to Prefix mapping file.
<typename> refers to the local name of the type.

As an example, the type MyType with namespace prefix bar_ will generate the
files: bar_MyType.h, bar_MyType_array.h, and bar_MyType.c

Generated Structures
Types in XML Schema are defined using complexType or simpleType elements.
The structures and types generated in C for each defined schema type varies
based on the content of the schema type. In general though, a typedef
exists for each XML schema type, defining a type in C that maps directly to
the type in XML schema. This is done for convenience and consistency with
other types. The format of the typedef is the typename as a canonicalized
and prefixed form of the XML Schema type name. The general format of the
typedef is:

typedef … <nsprefix><typename>;

The content of the generated type varies based on the parameters of the
XML schema type. Some of the types are structs, some are just typedefs
from other types, while some are more complex combinations of structs and
unions. The rules for generation of the structures are described in the next
sub-sections.

ComplexType Definitions
For complexType definitions, a struct is defined containing the complexType’s
contents. The format of the generated struct is as follows:

struct <nsprefix><typename>_s
{
 <field1_type>[_(o|array)] <field1_element>;
 <field2_type>[_(o|array)] <field2_element>;
 …
}

typedef <nsprefix><typename>_s <nsprefx><typename>;

Where in the above, the field elements are expanded to:

<field?_type> = <type?_nsprefix><type?_localname>
<field?_element> = <element?_nsprefix><element?_localname>

For example, the following complexType definition in XML Schema:

<complexType name=”Foo-BarType”>
 <sequence>
 <element name=”Foo” type=”xsd:string”/>
 <element name=”Bar” type=”xsd:int”/>
 </sequence>
</complexType>

gets mapped to the following struct definition in C:

struct Foo_BarType_s
{
 xsd_string Foo;
 xsd_int Bar;
};

typedef Foo_BarType_s Foo_BarType;

Each field element type definition of the generated struct also contains
optional _o or _array suffixes. If an element field within a type definition
contains minOccurs = 0 and maxOccurs = 1, then the element is considered
optional, and is given the _o suffix. If the element field contains minOccurs
> 1, then the element is considered an array, and is given the _array suffix.
For example, we modify the above complexType definition to this:

<complexType name=”Foo-BarType”>
 <sequence>
 <element name=”Foo” type=”xsd:string” minOccurs=”0” maxOccurs=”1”/>
 <element name=”Bar” type=”xsd:int”
 minOccurs=”1” maxOccurs=”unbounded”/>
 </sequence>
</complexType>

The generated struct now becomes:

struct Foo_BarType_s
{
 xsd_string_o Foo;
 xsd_int_array Bar;
};

typedef Foo_BarType_s Foo_BarType;

For descriptions on what these optional and array types look like, see the
following subsections on Optional Types and Arrays.

SimpleType Definitions
For simpleType definitions, if the simpleType contains no attribute definitions,
then the typedef of the XML Schema type is generated from the base
primitive type that the simpleType represents.

typedef <base_nsprefix><base_typename> <nsprefix><typename>;

For example, with the following simpleType definition:

<simpleType name=”BazType”>
 <restriction base=”xsd:base64Binary”/>
</simpleType>

The typedef in this case would be:

typedef xsd_base64Binary BazType;

If the simpleType contains attribute definitions, then the type must be
mapped to a C struct, so that the attributes can be maintained as well. In
this case the struct contains a base_value field, which is an instance of the
primitive type of simpleType’s restriction base. For example, the simpleType
can be:

<simpleType name=”FozType”>
 <restriction base=”xsd:base64Binary”/>
 <attribute name=”Boz” type=”xsd:string”/>
 <attribute name=”Coz” type=”xsd:int”/>
 <attribute name=”Doz” type=”xsd:string”/>
</simpleType>

This type definition gets mapped to the following C structure and typedef:

struct FozType_s
{
 xsd_base64Binary base_value;
 xsd_string Boz;
 xsd_int Coz;
 xsd_string Doz;
}

typedef FozType_s FozType;

Optional Types
For each type, independent of how it is defined, a type that represents an
optional instance is also defined:

typedef Foo_BarType * Foo_BarType_o;

This allows for values of instances to be optional, by either setting the value
of such an instance to null, or initializing it to be non-null. This is useful for
members of other types that are declared to have minOccurs=0.

Array Types
For each type, independent of how it is defined, a type that represents
an array of that type is also defined:

typedef Foo_BarType_array_s
{
 struct Foo_BarType_s * elements;
 int length;
} Foo_BarType_array;

This allows for multiple values to exist as a single instance for a given
member of a type. This is useful for members that have maxOccurs > 1.
This type is defined in the Foo_BarType_array.h header.

Note that each of these different generated types will be defined in their
assocated header files: Foo_BarType.h, BazType, FozType.

Restrictions, Extensions and Choice

Generated Functions

For the generated C structures defined for a given type, a set of utility
functions are also generated. These functions are:

Initialization
The following generated functions perform initialization of a generated type:

Initialize Contents

globus_result_t
<nsprefix><typename>_init_contents(
 <typename> * instance);

Parameters:

 instance – the pointer to the variable to be initialized

Return Value:

 globus_result_t – a globus return value. If this initialize succeeds,
the value will be GLOBUS_SUCCESS, otherwise an error object
reference will be returned. See the globus error API for further
info.

This function allows variable instances of types to be defined, and initializes
the contents of those variables to null values. This is useful for local variable
definitions, such as those that might be passed as input parameters to
operations. For the Foo-BarType defined in the previous sub-section, the init
contents function will be:

globus_result_t
Foo_BarType_init_contents(
 Foo_BarType * instance);

Initialize Pointer

globus_result_t
<nsprefix><typename>_init(
 <typename> ** instance);

Parameters:

 instance – the reference to the pointer to be initialized

Return Value:

 globus_result_t – a globus return value. If this initialize succeeds,
the value will be GLOBUS_SUCCESS, otherwise an error object
reference will be returned. See the globus error API for further
info.

This function allows variable instances of pointers-to-types to be allocated
without using C memory allocation functions directly. This is useful for
variables that must exist outside the scope where they are defined, or for
optional instances or array elements. The example _init declaration for the
Foo-BarType is:

globus_result_t
Foo_BarType_init(
 Foo_BarType ** instance);

Destruction
The following generated functions perform destruction of a generated type:

Destroy Contents

void
<nsprefix><typename>_destroy_contents(
 <typename> * instance);

Parameters:

 instance – the pointer to instance whose members are to be
destroyed

Return Value:
 None

The destroy_contents function provides a convenient method of destruction
for all the members of an instance. This function steps through the members
of <typename> and calls the associated destruction functions for those
members. An associated init_contents function will likely have been called
previously. The example declaration is:

void
Foo_BarType_destroy_contents(
 Foo_BarType * instance);

This function can be called for locally declared variable instances that you
want to be sure don’t have any memory allocated members.

Destroy Pointer

void
<nsprefix><typename>_destroy(
 <typename> * instance);

Parameters:
 instance – the pointer to be destroyed. The members of the

instance pointed to are destroyed first

Return Value:

 None

This function allows a pointer-to-type instance to be deallocated
conveniently. Most of the time, this will be called on an instance that was
previously allocated with the associated init function. This function does the
same thing as destroy_contents function defined above, but also deallocates
the memory associated with the pointer.

Duplication
The following generated functions perform duplication of a generated type:

Copy Contents

globus_result_t
<nsprefix><typename>_copy_contents(
 <typename> * dest,
 <typename> * src);

Parameters:

 dest – the destination instance that contains the copied contents
 src – the instance to copy from

Return Value:

 globus_result_t – a globus return value. If this copy succeeds, the
value will be GLOBUS_SUCCESS, otherwise an error object
reference will be returned. See the globus error API for further
info.

This function copies the contents of src to the contents of dest using the
associated copy function for each member. The Foo-BarType example
declaration is:

globus_result_t
Foo_BarType_copy_contents(
 Foo_BarType * dest,
 Foo_BarType * src);

Copy Pointer

globus_result_t
<nsprefix><typename>_copy(
 <typename> ** dest,
 <typename> * src);

Parameters:

 dest – the reference to the pointer to be initialized and copied to
 src – the pointer to copy from

Return Value:

 globus_result_t – a globus return value. If this copy succeeds, the
value will be GLOBUS_SUCCESS, otherwise an error object
reference will be returned. See the globus error API for further
info.

This function first allocates a pointer for the new instance, and then copies
the contents of src over to the new pointer instance. dest is dereferenced
and set to that new pointer.

Serialization
The following generated functions perform serialization of the generated
type:

Serialize Contents

globus_result_t
<nsprefix><typename>_serialize_contents(
 xsd_QName * element_name,
 <typename> * instance,
 globus_soap_message_handle_t message,
 globus_xsd_element_options_t options);

Parameters:

 element_name – because only the contents are being serialized,
this parameter is ignored, but kept as part of the function
signature for consistency. It should be NULL.

 instance – the instance whose contents (fields) are to be
serialized

 message – the soap message handle to serialize the instance to
 options – options that control the behavior of serialization

Return Value:

 globus_result_t – a globus return value. If this serialization

succeeds, the value will be GLOBUS_SUCCESS, otherwise an
error object reference will be returned. See the globus error API
for further info.

This function serializes the contents of instance to the message handle. In
this function, the element_name parameter is ignored, but is included in the
function declaration for consistency. The message must be refer to a valid
soap message handle, with optional values set in options to modify the
behavior of the serialization.

Serialize

globus_result_t
<nsprefix><typename>_serialize(
 xsd_QName * element_name,
 <typename> * instance,
 globus_soap_message_handle_t message,
 globus_xsd_element_options_t options);

Parameters:

 element_name – the QName of the outtermose element of the
serialized instance. This can be any valid QName.

 instance – the instance whose contents (fields) are to be
serialized

 message – the soap message handle to serialize the instance to
 options – options that control the behavior of serialization

Return Value:

 globus_result_t – a globus return value. If this serialization
succeeds, the value will be GLOBUS_SUCCESS, otherwise an
error object reference will be returned. See the globus error API
for further info.

This function serializes the instance to the message handle.

Deserialization
These generated functions perform deserialization of the generated type:

Deserailize Contents

globus_result_t
<nsprefix><typename>_deserialize_contents(
 xsd_QName * element_name,
 <typename> * instance,
 globus_soap_message_handle_t message,
 globus_xsd_element_options_t options);

Parameters:

 element_name – because only the contents are being deserialized,
this parameter is ignored, but kept as part of the function
signature for consistency. It should be NULL.

 instance – the instance whose contents (fields) are to be
deserialized. This parameter is filled in, so the previous values
of the members are overwritten. A valid instance should
probably only be passed in directly after being initialized with
init_contents or init. If this function succeeds, the contents of
this field must be destroyed by the caller.

 message – the soap message handle to deserialize the instance
to

 options – options that control the behavior of deserialization

Return Value:

 globus_result_t – a globus return value. If this deserialization
succeeds, the value will be GLOBUS_SUCCESS, otherwise an
error object reference will be returned. See the globus error API
for further info.

This function deserializes the contents of the type <typename> from the
message handle into the instance. In this function, the element_name is
ignored, but is included in the function declaration for consistency.

Deserialize

globus_result_t
<nsprefix><typename>_deserialize(
 xsd_QName * element_name,
 <typename> * instance,
 globus_soap_message_handle_t message,
 globus_xsd_element_options_t options);

Parameters:

 element_name – this is a QName instance that should be the
expected value for the outermost element of the XML serialized
content for this instance. If this value does not match that
outermost error, the return value will be an error object
reference. The value of this field can be NULL, in which case,
the outermost element can be anything.

 instance – the instance whose contents (fields) are to be
deserialized. This parameter is filled in, so the previous values
of the members are overwritten. A valid instance should
probably only be passed in directly after being initialized with
init_contents or init. If this function succeeds, the contents of
this field must be destroyed by the caller.

 message – the soap message handle to deserialize the instance
to

 options – options that control the behavior of deserialization

Return Value:

 globus_result_t – a globus return value. If this deserialization
succeeds, the value will be GLOBUS_SUCCESS, otherwise an
error object reference will be returned. See the globus error API
for further info.

This function deserializes the type <typename> from the message handle
into the instance. The element_name is the expected value of the outermost
element for the XML component of this message.

Deserialize Pointer

globus_result_t
<nsprefix><typename>_deserialize_pointer(
 xsd_QName * element_name,
 <typename> ** instance,
 globus_soap_message_handle_t message,
 globus_xsd_element_options_t options);

Parameters:

 element_name – this is a QName instance that should be the
expected value for the outermost element of the XML serialized
content for this instance. If this value does not match that
outermost error, the return value will be an error object
reference. The value of this field can be NULL, in which case,
the outermost element can be anything.

 instance – the reference to pointer whose contents (fields) are to
be deserialized. A valid pointer is first allocated, then filled in.
This field is dereferenced and set to that pointer. If this function
succeeds, the instance this field points to may be NULL
(signifying the serialized content for this type did not exist in the
message). If it is non-null, it must be destroyed by the caller.

 message – the soap message handle to deserialize the instance
to

 options – options that control the behavior of deserialization

Return Value:

 globus_result_t – a globus return value. If this deserialization
succeeds, the value will be GLOBUS_SUCCESS, otherwise an
error object reference will be returned. See the globus error API
for further info.

This function allows for deserialization of elements that are optionally
supplied in the serialized form of the XML message (usually only useful for
arrays and optional fields: _o). If the outermost element exists, the
deserialization of this type takes place, and the instance pointed to will be
filled in. If the outermost element doesn’t exist, the instance pointed to will
be set to NULL, and the function will return successfully.

Global Type Variables

Each generated type in the C bindings includes generated global variables
that provide information about that type. These global variables are useful
primarily for marshalling and demarshalling of extensibility elements. The
type information provided by each type’s global variable allows for direct

comparison at runtime of the type info to determine the actual type of an
extensibility element. Also, the QName global variable is also used as a key
into a registry of types maintained by the process. This allows the type
lookup for extensibility elements to happen naturally. The format of the two
global variables defined for each type are:

QName – an instance of type xsd_QName defining the qualified name for the
type (the definition of the xsd_QName type is defined in the next section). It
contains the XML Schema namespace and local name for the type.

xsd_QName <nsprefix><typename>_qname =
{
 “<Namespace of type>”,
 “<local name of type>”
};

For example, if the Foo-BarType were defined in the “http://foobar” namespace,
the generated QName variable would be:

xsd_QName Foo_BarType_qname =
{
 “http://foobar”,
 “Foo-BarType”
};

Type Info – an instance of the type globus_xsd_type_info_t defining the
functions used to perform initialization, copying, and marshalling. The
definition of the globus_xsd_type_info_t type is (taken from
globus_xsd_type_info.h):

struct globus_xsd_type_info_s
{
 xsd_QName * type;
 globus_xsd_serialize_func_t serialize;
 globus_xsd_deserialize_func_t deserialize;
 globus_xsd_init_func_t initialize;
 globus_xsd_destroy_func_t destroy;
 globus_xsd_copy_func_t copy;
 globus_xsd_init_contents_func_t initialize_contents;
 globus_xsd_destroy_contents_func_t destroy_contents;
 globus_xsd_copy_contents_func_t copy_contents;
 size_t type_size;
 globus_xsd_array_push_func_t push;
 globus_xsd_type_info_t contents_info;
 globus_xsd_type_info_t array_info;
};

This is similar to virtual tables in C++, except the type information is held
outside the actual type definition. The format of the global type info variable
for a given type is:

struct globus_xsd_type_info_s <nsprefix><typename>_info =
{
 &<nsprefix><typename>,
 <nsprefix><typename>_serialize_wrapper,
 <nsprefix><typename>_deserialize_wrapper,
 <nsprefix><typename>_init_wrapper,
 <nsprefix><typename>_destroy_wrapper,
 <nsprefix><typename>_copy_wrapper,
 <nsprefix><typename>_init_contents_wrapper,
 <nsprefix><typename>_destroy_contents_wrapper,
 <nsprefix><typename>_copy_contents_wrapper,
 sizeof(<nsprefix><typename>),
 <nsprefix><typename>_array_push_wrapper,
 &<nsprefix><typename>_contents_info,
 &<nsprefix><typename>_array_info
};

The _wrapper function pointers are nearly identical to the non-wrapper
versions, except that void * is used in place of the actual type pointer to
allow the function signatures to match. In other words, the wrapper form of

deserialize is:

<nsprefix><typename>_deserialize_wrapper(
 xsd_QName * element,
 void * value,
 globus_soap_message_handle_t message,
 globus_xsd_element_options_t options);

Following with our Foo-BarType example, the info variable definition would
be:

globus_xsd_type_info_t Foo_BarType_info =
{
 &Foo_BarType_qname,
 Foo_BarType_serialize_wrapper,
 Foo_BarType_deserialize_wrapper,
 Foo_BarType_init_wrapper,
 Foo_BarType_destroy_wrapper,
 Foo_BarType_copy_wrapper,
 …
}

Primitive Types

XML Schema defines a set of primitive types to represent different data
formats. In order to maintain consistency, we define mappings to C primitive
types, and include typedefs of the XSD primitives in C form. The same
initialization and serialization functions we defined in the previous section
exist for each of the XSD primitives defined below. The following typedefs
are defined in associated xsd_<typename>.h header files:

Type: any

typedef struct xsd_any_s
{
 globus_xsd_type_registry_t registry;
 globus_xsd_type_info_t any_info;
 xsd_QName * element;
 void * value;
} xsd_any;

Header File: xsd_any.h

Type: anyAttributes

typedef globus_hashtable_t xsd_anyAttributes;

Header File: xsd_anyAttributes.h

Type: anyType

typedef struct xsd_anyType_s
{
 globus_xsd_type_registry_t registry;
 globus_xsd_type_info_t any_info;
 void * value;
} xsd_anyType;

Header File: xsd_anyType.h

Type: anyURI

typedef char * xsd_anyURI;

Header File: xsd_anyURI.h

Type: base64Binary

typedef struct
{
 char * value;
 size_t length;
} xsd_base64Binary;

Header File: xsd_base64Binary.h

Base64 is a frequently used type for converting generic (non-ascii) byte
arrays into content that fits within the XML utf-8 encoding. The value field of
this type can be set to any byte array and the length to the length of that
byte array. The conversion to base64 happens when the type is serialized.

Type: boolean

typedef int xsd_boolean;

Header File: xsd_boolean.h

Type: byte

typedef char xsd_byte;

Header File: xsd_byte.h

Type: date

typedef struct tm xsd_date;

Header File: xsd_date.h

The struct tm type is a frequently used type for Unix systems to hold date
and time information. There are a number of standard Unix functions for
creating and manipulating instances of struct tm.

Type: dateTime

typedef struct tm xsd_dateTime;

Header File: xsd_dateTime.h

Type: decimal

typedef float xsd_decimal;

Header File: xsd_decimal.h

Type: double

typedef double xsd_double;

Header File: xsd_double.h

Type: duration

typedef struct tm xsd_duration;

Header File: xsd_duration.h

Type: float

typedef float xsd_float;

Header File: xsd_float.h

Type: hexBinary

typedef struct
{
 char * value;
 size_t length;
} xsd_hexBinary;

Header File: xsd_hexBinary.h

Type: ID

typedef char * xsd_ID;

Header File: xsd_ID.h

Type: int

typedef int32_t xsd_int;

Header File: xsd_int.h

Type: integer

typedef BIGNUM * xsd_integer;

Header File: xsd_integer.h

For unbounded integers, the BIGNUM type from the openssl package is used.
This allows for infinitely large numbers (or at least limited by the memory on
the system).

Type: language

typedef char * xsd_language;

Header File: xsd_language.h

Type: long

typedef int64_t xsd_long;

Header File: xsd_long.h

Type: negativeInteger

typedef BIGNUM * xsd_negativeInteger;

Header File: xsd_negativeInteger.h

Type: NCName

typedef char * xsd_NCName;

Header File: xsd_NCName.h

Type: nonNegativeInteger

typedef BIGNUM * xsd_nonNegativeInteger;

Header File: xsd_nonNegativeInteger.h

Type: nonPositiveInteger

typedef BIGNUM * xsd_nonPositiveInteger;

Header File: xsd_nonPositiveInteger.h

Type: positiveInteger

typedef BIGNUM * xsd_positiveInteger;

Header File: xsd_positiveInteger.h

Type: QName

typedef struct
{
 char * Namespace;
 char * local;
} xsd_QName;

Header File: xsd_QName.h

Type: short

typedef int16_t xsd_short;

Header File: xsd_short.h

Type: string

typedef char * xsd_string;

Header File: xsd_string.h

Type: time

typedef struct tm xsd_time;

Header File: xsd_time.h

Type: unsignedByte

typedef unsigned char xsd_unsignedByte;

Header File: xsd_unsignedByte.h

Type: unsignedInt

typedef uint32_t xsd_unsignedInt;

Header File: xsd_unsignedInt.h

Type: unsignedLong

typedef uint64_t xsd_unsignedLong;

Header File: xsd_unsignedLong.h

Type: unsignedShort

typedef uint16_t xsd_unsignedShort;

Header File: xsd_unsignedShort.h

Elements

In XML Schema, top-level elements are declared that provide a QName
useful for serializing types. While no structures or new types are generated
by the bindings for elements (as they are for types), we do generate files for
each element containing global variables that provide runtime information
about the element. The files generated for each element are:

• Header: <nsprefix><elementname>.h
• Source: <nsprefix><elementname>.c

So for the following XML schema with a namespace to prefix mapping of
“http://foobar=foo_”:

<schema … xmlns:foo=”http://foobar”
 xmlns:targetNamespace=”http://foobar”>

<element name=”Bar” type=”foo:Foo-BarType”/>

The files generated for element Bar would be foo_Bar.h and foo_Bar.c. The
contents of element’s header file include the QName and type info defined for
that element. Defining these global variables for each element allows us to
insert elements into the type registry as a method for runtime deserialization
of unknown types (wildcards). We describe the format of these two global
variables:

QName - an instance of type xsd_QName defining the qualified name for the
type. It contains the XML Schema namespace and local name for the type.

xsd_QName <nsprefix><elementname>_qname =
{
 “<Namespace of element>”,
 “<local name of element>”
};

For example, if the Foo element were defined in the “http://foobar” namespace,
the generated QName variable would be:

xsd_QName foo_Bar_qname =
{
 “http://foobar”,
 “Bar”
};

Type Info – an instance of the type globus_xsd_type_info_t defining the
functions used to perform initialization, copying, and marshalling for the
element. The type info for elements contains the same function pointers as
those of the element’s type, but it contains the QName of the element
instead of the type. So he format of the type info variable for a given type
is:

struct globus_xsd_type_info_s <nsprefix><elementname>_info =
{
 &<nsprefix><elementname>,
 <nsprefix><typename>_serialize_wrapper,
 <nsprefix><typename>_deserialize_wrapper,
 <nsprefix><typename>_init_wrapper,
 <nsprefix><typename>_destroy_wrapper,
 <nsprefix><typename>_copy_wrapper,
 <nsprefix><typename>_init_contents_wrapper,
 <nsprefix><typename>_destroy_contents_wrapper,
 <nsprefix><typename>_copy_contents_wrapper,
 sizeof(<nsprefix><typename>),
 <nsprefix><typename>_array_push_wrapper,
 &<nsprefix><typename>_contents_info,
 &<nsprefix><typename>_array_info
};

So the example type info global variable definition for the Bar element in
foo_Bar.h would be:

struct globus_xsd_type_info_s foo_Bar_info =
{
 &foo_Bar_qname,
 foo_Foo_BarType_serialize_wrapper,
 foo_Foo_BarType_deserialize_wrapper,
 foo_Foo_BarType_init_wrapper,
 foo_Foo_BarType_destroy_wrapper,
 …
};

Client Bindings

WSDL provides the operation definition as the method for message passing
from client to web service. Mapping the operation to C naturally includes a
stub function that will perform the operation invocation. In this bindings
specification, we provide such a function definition, allowing the client-side
developer to easily interact with a service.
The bindings specification also provides asynchronous stub functions for each
operation as well. These are functions that allow the client to take

advantage of the Globus Toolkit’s asynchronous event handling architecture,
and make many client invocations asynchronously.

Generated Files
The client-side bindings containing the stubs to allow invocation of service
operations are generated in a set of source and header files, which are
compiled into C static and dynamic libraries for linkage with client programs.
For each service definition in WSDL, the following client interface files are
generated:

 Header: <service_prefix><service_name>_client.h
 Library:

<libprefix><service_prefix><service_name>_client_bindings_<flavor>.<libsuffix>

Note that for the client library, the format of the library name greatly
depends on the platform being used, the flavor type compiled with the
Globus Toolkit, and other user-defined parameters. Example headers and
libraries from the CounterService would be:

 Header: CounterService_client.h
 Library: libCounterService_client_bindings_gcc32dbg.so

Client Module
The client bindings include a module definition that must be activated before
client binding functions can be called, and deactivated once all client bindings
functions have completed. The module name for a client is:

<SERVICE_NAME>_MODULE

So the module activation and deactivation for the CounterService would look
like this:

rc = globus_module_activate(COUNTERSERVICE_MODULE);
if(rc != GLOBUS_SUCCESS)
{
 …
}

rc = globus_module_deactivate(COUNTERSERVICE_MODULE);
if(rc != GLOBUS_SUCCESS)
{
 …
}

Client Handle
Each of the stub functions defined takes as its first parameter the client
handle, which is an abstraction of the configuration and message properties
of the service. This reduces the overall number of parameters passed to the
stub, and provides abstraction and containment of configurable parameters
for a service. The client handle is generated for each service definition in
WSDL. The format of the handle is as follows:

typedef <service_prefix><service_name>_client_handle_s *
 <service_prefix><service_name>_client_handle_t;

Notice that the handle is actually a pointer to an internally defined struct,
and as such can be set to NULL. A set of functions are also generated as
part of the client bindings to manage the lifetime of the client handle:

Client Handle Initialize

globus_result_t
<service_prefix><service_name>_client_handle_init(
 <service_prefix><service_name>_client_handle_t * handle,
 globus_soap_message_attr_t attrs,
 globus_handler_chain_t handlers);

Parameters:

 handle – the client handle to be initialized. The pointed to
handle must be freed by the caller

 attrs – the attributes to set on the handle. The attributes are
copied to the handle, so the caller may destroy this parameter
at any time after the invocation. May be NULL.

 handlers – a handler chain for user-defined management and
control of message marshalling. The chain is copied to the
client handle. May be NULL.

Return value: globus_result_t – a globus return value. If this deserialization
succeeds, the value will be GLOBUS_SUCCESS, otherwise an error object
reference will be returned. See the globus error API for further info.

Client Handle Destroy

void
<service_prefix><service_name>_client_handle_destroy(
 <service_prefix><service_name>_client_handle_t handle);

Parameters:

 handle – the client handle to be destroyed.

Return value: NONE

The same client handle can be used for multiple service invocations (stub
calls), but only sequentially. The client handle maintains state about the
connection for the receiving the response from the service, so if using any of
the asynchronous stubs, then you should use a new client handle for each
operation invocation. For asynchronous request/response stubs, the same
client handle should be passed to the register_response stub that was used
for the request. The client handle must not be freed until either the blocking
call returns (in the blocking case) or the asynchronous call’s callback is called
(for the asynchronous case).

Client Stubs
The client bindings generated from WSDL include stub functions for each
operation that can be called by clients to invoke operations on services. This
section defines the format of the generated bindings as well as how they are
used. For each operation defined in a service, four groups of stub functions
are generated. The four are: blocking, asynchronous request/response,
asynchronous request, and asynchronous response. For each of these four
functions, there are EPR counterparts that allow an operation to invoked
based on an EndpointReference instead of an endpoint URI. We detail the
EPR counterparts at the end of this section.

Blocking Operation

globus_result_t
<portType_name>_<operation_name>(
 <service_name>_client_handle_t handle,
 const char * endpoint,
 <operation_input_type> * <input_name> [,
 <operation_output_type> ** <output_name>,
 <operation_fault_type> * fault_type,
 xsd_any ** fault]);

Parameters:

 handle – the client handle to use for the invocation
 endpoint – This is a URI string that specifies the endpoint of the

service.
 <input_name> – the operation’s input parameter defined in

WSDL. This parameter has to be a pointer
to<operation_input_type>, which is the type defined in WSDL
by the input message part. The input parameter should already
be initialized and filled in with appropriate values for
marshalling.

 <output_name> [OPTIONAL] – the operation’s output parameter
defined in WSDL. This parameter has to be a referenced pointer
to <operation_output_type>, which is the type defined in WSDL
by the output message part. This parameter will only exist in
the function if the operation is request-response. One-way
operations do not have output parameters. If the return value
is GLOBUS_SUCCESS, this parameter will be filled in by the
function based on the values returned in the response from the
service, and the allocated pointer to <operation_output_type>
must be destroyed with a call to
<operation_output_type>_destroy(). If a non-zero value is
returned by this function, the value of this parameter is
undefined.

 fault_type [OPTIONAL] – the operation’s fault type defined in
WSDL. This parameter will only exist in the function declaration
for request-response operations. One-way operations do not
have faults. See the Faults section for possible values of this
parameter. If the response from the service is not a fault
message, the value of this parameter will be zero (NOFAULT).
If the response from the service is a fault, the value of this
parameter will be appropriate enumerated value of the fault
type.

 fault [OPTIONAL] – a reference to the extensibility element
containing the deserialized fault. This parameter will only exist
in the function declaration for request-response operations.
One-way operations do not have faults. The value of this
parameter is either NULL (if the response message is not a
fault), or the deserialized contents of the fault message. See
the Wildcards section for how to examine xsd_any types. If a
fault message was returned in the response from the service,
this parameter will be non-null, and must be freed by the caller
with a call to xsd_any_destroy().

Return value: globus_result_t – a globus return value. If this operation
invocation succeeds, the value will be GLOBUS_SUCCESS, otherwise an error
object reference will be returned. An error object can either be caused by a
fault message from the service, or by a client side error in the marshalling
and transport of the message. See the globus error API for further info.

The blocking function serializes the input to a soap message, sends the
invocation of the operation request to the service, and waits for the response
message. Once the response message is received, it deserializes it into the
output parameter and returns. If the return value is GLOBUS_SUCCESS, the
response parameter pointed to must be destroyed. If the return value is
non-zero, the response may have been a fault, and can be checked with the
fault_type and fault parameters. If fault is non-null, it must be freed with
xsd_any_destroy once the caller is finished with it. If the return value is
non-zero, but the fault_type is NOFAULT, then a client error occurred during
message invocation.

As an example, we define the CounterService with the following operation:

<xsd:types>
 <xsd:element name="add" type="xsd:int"/>
 <xsd:element name="addResponse" type="xsd:int"/>
</xsd:types>

<wsdl:message name="AddInputMessage">
 <wsdl:part name="parameters" element="tns:add"/>
</wsdl:message>
<wsdl:message name="AddOutputMessage">
 <wsdl:part name="parameters" element="tns:addResponse"/>
</wsdl:message>
<wsdl:portType name="CounterPortType"
wsrp:ResourceProperties="tns:CounterRP">

<wsdl:portType name=”Counter”>
 <wsdl:operation name="add">
 <wsdl:input message="tns:AddInputMessage"/>
 <wsdl:output message="tns:AddOutputMessage"/>
 </wsdl:operation>
</wsdl:portType>

The generated blocking function for the add operation is:

globus_result_t
Counter_add(
 CounterService_client_handle_t handle,
 const char * endpoint,
 xsd_int * add,
 xsd_int ** addResponse,
 Counter_fault_type_t fault_type,
 xsd_any * fault);

Asynchronous Operation

Here we define the functions for making asynchronous invocations to a web
service. These functions use the globus callback event handling code to
register events that trigger callbacks on completion. The events in this case
are a request being sent, or a response being received. We define two
callbacks to match these events.

Request Callback Template

void
(* <portType_name>_<operation_name>_request_callback_func_t) (
 <service_prefix><service_name>_client_handle_t handle,
 void * user_args,
 globus_result_t result);

Parameters:

 handle – the client handle used to make the invocation. If this
handle was only used for this invocation, it can be freed once
this callback is called. Multiple invocations with the same
handle will require reference counting.

 user_args – a pointer containing the user arguments passed in
during the register call.

 result - the result of the completed request. If an error
occurred during marshalling or sending of the request, this
result will be non-zero. Otherwise it will be GLOBUS_SUCCESS.

Return value: NONE

This callback template gives the signature of the function that must be
defined by the user. This fuction is passed as the third argument to the
<portType>_<operation_name>_register_request function. Once the request

has been sent, this callback gets called.

Response Callback Template

void
(* <portType_name>_<operation_name>_response_callback_func_t) (
<service_name>_client_handle_t handle,
 void * user_args,
 globus_result_t result,
 const <operation_output_type> * <operation_output_name>,
 <portType_name>_<operation_name>_fault_t fault_type,
 const xsd_any * fault);

Parameters:

 handle – the client handle used to make the invocation. If this
handle was only used for this invocation, it can be freed once
this callback is called. Multiple invocations with the same
handle will require reference counting.

 user_args – a pointer containing the user arguments passed in
during the register call.

 result - the result of the completed request. If an error
occurred during marshalling or sending of the request, this
result will be non-zero. Otherwise it will be GLOBUS_SUCCESS.

 <operation_output_name> - the output parameter of the
operation filled in once the response is received and
deserialized. This needs to be copied if the user wants to
reference it outside of the callback’s scope.

 fault_type - the fault type of the fault sent back in the response.
This will be _NOFAULT if the fault type was a

Return value: NONE

This callback template gives the signature of the function that must be
defined by the user. This fuction is passed as the third argument to the
<portType>_<operation_name>_register function. Once the response has
been received and deserialized, this callback gets called.

Asynchronous Request/Response

globus_result_t
<portType_name>_<operation_name>_register(
 <service_name>_client_handle_t handle,
 const char * endpoint,
 <operation_input_type> * <operation_input_name>,
 <portType_name>_<operation_name>_response_callback_func_t
 response_callback,
 void * user_args);

Parameters:

 handle – The client handle to register the client operation
invocation on

 endpoint – The URI of the service to contact
 <operation_input_name> - The operation input pointer that

contains the structure to be serialized as the request to the
operation

 response_callback – The callback to be called once the response
is received and deserialized. This function callback must match
the template
<portType>_<operation_name>_response_callback_func_t.

 user_args – The user arguments passed directly to the callback

Return value: globus_result_t – a globus return value. If this operation
invocation succeeds, the value will be GLOBUS_SUCCESS, otherwise an error
object reference will be returned. An error object can either be caused by a
fault message from the service, or by a client side error in the marshalling
and transport of the message. See the globus error API for further info.

The asynchronous function allows a client to register an operation invocation,
so that other computation can take place while the response is being
received. Once the response is received, the callback is called. In
environments where the client bindings are installed with a non-threaded
flavor, the user must poll for events to allow the message invocation to be
processed. This is done with functions like globus_poll() or
globus_cond_wait(). As an example, the asynchronous binding declaration
for the CounterService_add operation and the response callback template is:

globus_result_t
CounterPortType_add_register(
 CounterService_client_handle_t handle,
 const char * endpoint,
 xsd_int * add,
 CounterPortType_add_response_callback_t callback,
 void * user_args);

Asynchronous Request

globus_result_t
<portType_name>_<operation_name>_register_request(
 <service_name>_client_handle_t handle,
 const char * endpoint,
 <operation_input_type> * <operation_input_name>,
 <portType_name>_<operation_name>_request_callback_func_t
 request_callback,
 void * user_args);

Parameters:

 handle – The client handle to register the client operation
invocation on

 endpoint – The URI of the service to invoke.
 <operation_input_name> - The operation input pointer that

contains the structure to be serialized as the request to the
operation

 request_callback – The callback to be called once the response is
received and deserialized. This function callback must match
the template
<portType>_<operation_name>_request_callback_func_t.

 user_args – The user arguments passed directly to the callback

Return value: globus_result_t – a globus return value. If this operation
invocation succeeds, the value will be GLOBUS_SUCCESS, otherwise an error
object reference will be returned. An error object can either be caused by a
fault message from the service, or by a client side error in the marshalling
and transport of the message. See the globus error API for further info.

The asynchronous request function allows a client to register an operation
invocation, so that other computation can take place while the request is

being serialized and sent. Once the request is fully sent, the callback is
called. In environments where the client bindings are installed with a non-
threaded flavor, the user must poll for events to allow the message request
to be processed. This is done with functions like globus_poll() or
globus_cond_wait(). For the CounterService client, the declaration of the
asynchronous request function for the add operation is:

globus_result_t
CounterPortType_add_register_request(
 CounterService_client_handle_t handle,
 const char * endpoint,
 xsd_int * add,
 CounterPortType_add_request_callback_t callback,
 void * user_args);

Asynchronous Response

globus_result_t
<portType_name>_<operation_name>_register_response(
 <service_name>_client_handle_t handle,
 <portType_name>_<operation_name>_response_callback_func_t
 response_callback,
 void * user_args);

Parameters:

 handle – The client handle to register the client operation
invocation on

 response_callback – The callback to be called once the response
is received and deserialized. This function callback must match
the template
<portType>_<operation_name>_response_callback_func_t.

 user_args – The user arguments passed directly to the callback

Return value: globus_result_t – a globus return value. If this operation
invocation succeeds, the value will be GLOBUS_SUCCESS, otherwise an error
object reference will be returned. An error object can either be caused by a
fault message from the service, or by a client side error in the marshalling
and transport of the message. See the globus error API for further info.

The asynchronous response function allows a client to register a callback to
be triggered when the response of a message invocation has been received
and deserialized and is ready for processing. This allows other computation

can take place while the response is being received. Once the response is
received, the callback is called. In environments where the client bindings
are installed with a non-threaded flavor, the user must poll for events to
allow the message invocation to be processed. This is done with functions
like globus_poll() or globus_cond_wait(). For the CounterService client, the
declaration of the asynchronous response function that receives the response
from the add operation is:

CounterPortType_add_register_response(
 CounterService_client_handle_t handle,
 CounterPortType_add_response_callback_t callback,
 void * user_args);

EndpointReference Stubs
As mentioned previously, each of the above stub functions also has an EPR
counterpart. This allows a client to invoke a service operation based on an
EndpointReference (actually a C representation of it) instead of an endpoint
URI. This can be useful for clients that have received an EndpointReference
from a previous operation, such as a resource factory call. We only provide
the stub templates for the three EPR functions that will be generated for each
operation, the parameters and behavior of these functions is the same as
their non-EPR counterparts.

globus_result_t
<portType_name>_<operation_name>_epr(
 <service_name>_client_handle_t handle,
 wsa_EndpointReferenceType * endpoint_reference,
 <operation_input_type> * <input_name> [,
 <operation_output_type> ** <output_name>,
 <operation_fault_type> * fault_type,
 xsd_any ** fault]);

globus_result_t
<portType_name>_<operation_name>_epr_register(
 <service_name>_client_handle_t handle,
 wsa_EndpointReferenceType * endpoint_reference,
 <operation_input_type> * <operation_input_name>,
 <portType_name>_<operation_name>_response_callback_func_t
 response_callback,
 void * user_args);

globus_result_t
<portType_name>_<operation_name>_epr_register_request(
 <service_name>_client_handle_t handle,
 wsa_EndpointReferenceType * endpoint_reference
 <operation_input_type> * <operation_input_name>,
 <portType_name>_<operation_name>_request_callback_func_t
 request_callback,
 void * user_args);

Notice that the _register_response stub function does not have an EPR
counterpart, because that stub just receives the response from the service
after the request has been invoked. The only difference between these
templates and the non-EPR versions is in the second parameter, where a
pointer to a wsa_EndpointReferenceType is passed in instead of an endpoint
URI string of the service. In most scenarios, the user won’t have to create
the endpoint_reference by hand. Instead, the endpoint_reference will likely
be returned from a previous service invocation.

Service Bindings

The implementation of a service consists of the parsing and operation
invocation code that is often called the skeletons, as well as the service
implementation itself. Because the input and output parameters are defined
only by the particular service definition, and not necessarily known in

advance, the parsing of all the types and subtypes of the input and output
parameters must be contained with the service bindings themselves. This
allows us to separate the generated code that is the service bindings from
the state machine that handles transport, basic message handling (SOAP),
and service invocations (the service container). The generated code for a
service can then easily be contained in a module, which we describe in the
following section.

Service Module
In C, the functionality of a service as defined by WSDL and the user’s
implementation is contained within a dynamic module, that gets loaded and
used as needed by the service container. The service module is created from
parsing/invocation code (the generated skeletons) for the service, and the
actual service implementation. It gets compiled into a dynamic library to be
loaded at runtime. The default name of the library is:

lib<service_name>_<flavor>.<suffix>

This will get installed in a library sub-directory within the Globus Toolkit’s
install directory. The sub-directory will match the directory prefix of the
endpoint for the service defined in the WSDL.

Service Source Files
The files generated for the service module from a WSDL service definition
are:

 <service_name>.h - contains fault type definitions for each
operation used by both client and service, as well as QName
declarations for each operation.

 <service_name>_internal_skeleton.h – contains error and
debugging macro definitions for the service implementation, to
be used by the service implementer for debugging and returning
errors.

 <service_name>_skeleton.h – contains the service impl function
declarations that get implemented by the service implementer.

 <service_name>_module.c – contains the routing, marshalling,
and invocation code that make up the service-side skeletons.

 <service_name>_skeleton.c – contains empty service
implementation functions that must be filled in by the service
implementer. NOTE: this file is poorly named. The ‘skeletons’
are really contained within the <service_name>_module.c file,
while this function contains the service implementation
functions.

Service Implementation
A service definition in WSDL contains operations that are expected to
perform some application-specific functionality. This functionality is defined

by the service implementer in the service implementation functions. The
functions themselves have the following template:

Service Init

globus_result_t
<service_name>_init(
 globus_service_descriptor_t * service_desc);

Parameters:

 service_desc – The global service descriptor variable containing
attributes about the service, such as the service’s handler chain.
Any fields that the implementer expects to be setup during
service invocation should be initialized here.

Return value: globus_result_t – a globus return value. If this operation
invocation succeeds, the value will be GLOBUS_SUCCESS, otherwise an error
object reference will be returned. An error object can either be caused by a
fault message from the service, or by a client side error in the marshalling
and transport of the message. See the globus error API for further info.

The service init function is called once when the service module is activated.
This is done before any service invocations. A common use for this function
is loading any operation providers for the service. An empty function is
generated by default (returning GLOBUS_SUCCESS), and should be filled in if
the service implementer wishes to do something before any service
invocations. An example service init function for the CounterService is:

globus_result_t
CounterService_init(
 globus_service_descriptor_t * service_desc);

Service Finalize

globus_result_t
CounterService_finalize(
 globus_service_descriptor_t * service_desc);

Parameters:

 service_desc – The global service descriptor variable containing
attributes about the service, such as the service’s handler chain.
Any fields that the implementer initialized in service init should
be destroyed here.

Return value: globus_result_t – a globus return value. If this operation
invocation succeeds, the value will be GLOBUS_SUCCESS, otherwise an error
object reference will be returned. An error object can either be caused by a
fault message from the service, or by a client side error in the marshalling
and transport of the message. See the globus error API for further info.

The service finalize function is called once after all service invocations have
completed, and the service container is shutting down. Any
initialization/setup that takes place in the service init function should be
cleaned up here.

Operation Init

globus_result_t
<portType_name>_<operation_name>_init(
 globus_service_engine_t engine,
 globus_soap_message_handle_t message,
 <operation_input_type> * <input_name>);

Parameters:

 engine – The service engine that processes the service invocations
and manages the services modules. This parameter can be useful
for accessing attributes on the service engine, or contacting other
services.

 message – The soap message handle contains attributes and
parameters associated with the current message request. Also,
attributes associated with the message response can be set on the
handle as well.

 <input_name> - The input parameter to be initialized before
deserialization into this field takes place. This allows fine-
grained control of deserialization of certain fields in the input
parameter such as wildcards.

Return value: globus_result_t – a globus return value. If this operation init
succeeds, the value returned must be GLOBUS_SUCCESS, otherwise an error
object reference must be returned. The service implementer should use
either <service_name>_<operation_name>_error() or
<service_name>_<operation_name>_chain_error() to create the error result. If
the return value is not GLOBUS_SUCCESS, a fault will be returned to the
client.

The operation init function allows the service implementer to perform actions
before deserialization of the soap message takes place. An empty function
that returns GLOBUS_SUCCESS is generated by default. If the user wishes
to override the default, he should replace that empty function with his own
implementation.

Operation Impl

globus_result_t
<portType_name>_<operation_name>_impl(
 globus_service_engine_t engine,
 globus_soap_message_handle_t message,
 globus_service_descriptor_t * descriptor,
 <operation_input_type> * <input_name>,
 <operation_output_type> * <output_name>,
 const char ** fault_name,
 void ** fault);

Parameters:
 engine – The service engine that processes the service invocations

and manages the services modules. This parameter can be useful
for accessing attributes on the service engine, or contacting other
services.

 message – The soap message handle contains attributes and
parameters associated with the current message request. Also,
attributes associated with the message response can be set on the
handle as well.

 descriptor – The service descriptor containing information about
the service, such as the base path of the service, and the table
of operation ids to function pointers for operation providers.

 <input_name> - The input parameter that the client serialized
and sent. This parameter has been deserialized by the service

 engine and is ready for processing to compute the next
parameter.

 <output_name> - The output parameter to be filled in by this
function. The service implementer should assume that this
parameter will be serialized and passed back to the client, so it
must be filled in appropriately. The service skeleton code will
call <operation_output_type>_destroy_contents on this
parameter once the function returns and the output parameter
is no longer needed.

 fault_name – Allow a fault to be passed back to the client
instead of filling in the <output_name>. The fault name should
be set with the
<portType_name><operation_name>FaultString() macro and
the fault enum value. If a fault is returned, the
<output_name> parameter is expected to be undefined and its
contents will not be destroyed. This dereferenced string pointed
to by this parameter should be set to NULL if no fault occurs.

 fault – The allocated and filled in fault structure. If the
fault_name element is non-null, this parameter should point to
an allocated instance of they fault type, filled in with the values
of the fault. This parameter is expected to be non-null if
fault_name is non-null, but will not cause an error if only the
fault_name is set to the fault string of the fault.

Return value: globus_result_t – a globus return value. If this operation
invocation succeeds, the value must be GLOBUS_SUCCESS, otherwise an
error object reference must be returned. The service implementer should use
either <service_name>_<operation_name>_error() or
<service_name>_<operation_name>_chain_error() to create the error result. If
the return value is not GLOBUS_SUCCESS, a fault will be returned to the
client.

The operation impl function is the meat and potatoes of the service. The

service implementer should fill in this function with the code that performs
the appropriate transactions for the service operation, and set the output
parameter or fault parameters as appropriate. If an unrecoverable error
occurs, the result returned should be non-null (GLOBUS_SUCCESS). In this
case a fault will be returned.

Faults
Each operation defined in WSDL can also have a set of associated fault types
that may be returned from the service. The service implementer may choose
to return faults either due to invalid processing of the input parameter or due
to failures in computation for the operation. The generated bindings in C
include an enum type of the valid fault types available for the operation, as
well as strings of the fault typenames. The bindings also provide a mapping
table from enum value to fault typename string. The enum type for a
particular service operation looks like this:

typedef enum
{
 <PORTTYPE_NAME>_<OPERATION_NAME>_NOFAULT,
 <PORTTYPE_NAME>_<OPERATION_NAME>_UNKNOWN_FAULT,
 <PORTTYPE_NAME>_<OPERATION_NAME>_<FAULT1_NAME>,
 …
 <PORTTYPE_NAME>_<OPERATION_NAME>_<FAULTN_NAME>

} <portType_name>_<operation_name>_fault_t;

This type is used in the client stubs as a parameter in which to return the
fault type. The enum values can also be used by the service to access the
fault typename strings which must be returned by the service impl function if
a fault has occurred. In order to access the fault typename string based on
the fault type enum value, the following macro is defined for each operation:

<portType_name>_<operation_name>FaultString(FAULT_TYPE)

This macro can be called with the enum value of the appropriate fault type to
get the fault typename as a string as the result. As an example of the fault
type generated for a service operation, we list the fault type definition for the
CounterService’s Destroy operation:

typedef enum
{
 COUNTERPORTTYPE_DESTROY_NOFAULT = 0,
 COUNTERPORTTYPE_DESTROY_UNKNOWN_FAULT = 1,
 COUNTERPORTTYPE_DESTROY_RESOURCEUNKNOWNFAULT,
 COUNTERPORTTYPE_DESTROY_RESOURCENOTDESTROYEDFAULT

} CounterPortType_Destroy_fault_t;

Errors
The bindings generated for each operation include macro definitions for the
creation of globus_result_t error instances, which can returned from service
implementation functions. These should be used when the operation’s
service implementation is unable to proceed due to invalid input parameters
or some other failure specific to the service. The two macros defined and
made available in the service implementation file are as follows:

Root Error

globus_result_t
<portType_name>_<operation_name>_error(MESSAGE);

The MESSAGE parameter passed to this macro must be a null-terminated
string containing a description of the error.

Non-Root Error

globus_result_t
<portType_name>_<operation_name>_chain_error(RESULT, MESSAGE);

The RESULT parameter passed as the first argument to this macro must be a
valid globus_result_t error reference, created by some other globus API
function. The MESSAGE parameter must be a null-terminated string
containing a description of the error. This macro is useful in scenarios where
a globus API function is called and it returns a faulure result (not equal to
GLOBUS_SUCCESS). This allows that error reference to be chained and
returned by the service implementation.

