Scientific Computing using Octave:
a working experience

Paola Gervasio
DICATAM, University of Brescia (Italy)

Milano
June, 24-26 2013

OctConf2013

Paola Gervasio DICATAM - UNIBS (IT)

@ Personal teaching experience: Scientific Computing course.
Lesson/laboratory for graduate students,

Dept. of Computer Science and Engineering, University of Brescia
= _ = E |

: mumEn amm
REcE

AL HT

@ Co-authoring experience: A. Quarteroni, F. Saleri, P. Gervasio, 2010-2012,
Springer

s

CALCULO CIENTIFICO
com MATLAB e Octave

Scientific Computing

with MATLAB and
Octave

These books collect teaching experiences at Polimi (Milano), EPFL
(Lausanne) and UniBS (Brescia).

Paola Gervasio

Personal teaching experience

@ Scientific Computing (SC) course

o

¢ ¢ ¢

1st year of master degree in “Computer Science and Engineering”
class of about 50-60 students

lessons: 40 hours

exercises with octave/matlab: 40 hours

@ Students’ background:

Paola Gervasio

o

<
b J
o
o .

This course offers the first approach to both numerical analysis and scientific
computing

Programming languages: C, C++4, Java, Html
web design

software engineering

operating systems and computing infrastructures

DICATAM - UNIBS (IT)

SC Program

@ ‘“Initialization step”

@ basic instructions in matlab/octave
@ machine arithmetic

@ errors in computations = %oh
@ costs of computations o A

@ Solving nonlinear equations =
@ Approximation of data and functions we <= [Toce - |
@ Linear systems . NP

@ Numerical integration and differentiation t x":ijqb(rk)ak “
@ Ordinary differential equations

@ Partial differential equations (very simple problems with FD)

Paola Gervasio DICATAM - UNIBS (IT)

Motivations in using Octave

-l 1,

to get in touch with machine arithmetic

convergence, accuracy, ...

to take advantage of built-in functions

results

006 606 o6 ¢

||

to learn cost-effective programming techniques

to support theoretical explanations by graphics

to better understand basic concepts of numerical analysis: errors, stability,

to compare methods by measuring time effort, accuracy, reliability of the

10
%20 4000 6000 8000 10000 12000 e e e w0°

Paola Gervasio

DICATAM - UNIBS (IT)

Octave support

@ built-in functions
linspace, meshgrid, plot, mesh, surf, contour,
det, rank, eig, cond, norm,
\, lu, chol, luinc, qr, pcg, bicgstab,
fzero, fsolve,
polyfit, polyval, interpl, interp2, spline, mkpp, ppval,
trapz, quad, quadl,
ode23, odeéb, ...

@ programming language

@ hand made functions:
Newton, Broyden, fixed point iterations,
adaptive Simpson rule,
LU factorization without pivoting, Gaussian elimination, Jacobi, Gauss-Seidel,
Richardson,
Euler, Crank-Nicolson, AB-AM predictor correctors, fixed step RK methods,
2D finite difference approximation of Laplace and heat equation.

Paola Gervasio DICATAM - UNIBS (IT)

Machine arithmetic

Exercise 1. Load the matrix A and the r.h.s. b stored in ex1.mat.

Analyze both structure and properties of the matrix and then solve Ax = b with
the most appropriate direct method among them presented during the course.
Solution

Student:

octave:5> load exl

octave:6> whos

Variables in the current scope:

Attr Name Size Bytes Class
A 100x100 80000 double
b 100x1 800 double

Total is 10100 elements using 80800 bytes
octave:7> d=det(A)
d=0

The matrix is singular!!!!

[It is not possible, you are wrong, compute the rank, please 1

octave:8> r=rank(A)
r = 100

Surprise... What happens?

[Let us compute the eigenvalues of A 1

Paola Gervasio 7

Machine arithmetic (continued)

octave:9> v=eig(A)
v =
1.0000e-02
9.1116e-03
8.3022e-03

1.2045e-06
1.3219e-06
1.4508e-06
1.5923e-06
1.7475e-06
1.9179e-06

All eigenvalues are strictly positive....

[OK: let us consider this sub-exercise 1

Sub-exercise: Load the matrix A € R100%100 gtored in exl.mat.

Explain why it results det (A)=0 while rank (A)=100.

Paola Gervasio

Machine arithmetic (continued)

Solution Let \x denote the eigenvalues of A.

n
For n=1,...,100, compute and print p, = H Ak
k=1

load exl; v=eig(A);
p=v(1);
for n=2:100
p=p*v(n) ; I
fprintf (’product of first ¥%d eigenval = %13.6e \n’,n, p)
end

product of first 2 eigenval = 9.111628e-05
product of first 10 eigenval 1.519911e-22 107
product of first 70 eigenval = 2.656088e-238
product of first 86 eigenval = 2.104720e-320
product of first 87 eigenval 0.000000e+00 107

pse < realmin?? 107

pa7 = 077

This is a way of exploring the floating-point set F(2, 53, —1021, 1024),
realmin and realmax, underflow and overflow, normal and denormal
floating-point numbers.

Machine arithmetic (continued)

1 n
Exercise 2. We know that lim (1 + —) =e.
n— oo n

By evalutating and plotting a, = (1 + %)n (for
n=1,...,10%), the graph on the right is produced.

Explain the behaviour of the sequence aj.

Solution

N=1.e20; n=1; an=[]; nn=[];

while n< N

al=(1+1/n) "n;

an=[an;all; nn=[nn;n]; n=n%5;

end

semilogx(nn,an,’.’,’Markersize’,24);

hold on

semilogx([1,N], [exp(1),exp(1)],’r--’, ’Linewidth’,3);

Machine precision in practice:

1
when n > 9.3260e + 15 = — < 1.0723e — 16 < ey
n

1
and then1+ — =1 inF.
n

Paola Gervasio

Built-in functions & cost-effective programming

The aim is to experience benefits of the pivoting in solving linear systems by LU factorization,
but at the same time we realize high performance of built-in functions.

Call the 1u function (which uses pivoting by default) and write lu_nopiv function (without

pivoting).
n=100; A=rand(n); function A=lu_nopiv(A)
xex=ones(n,1); b=Axxex; %A=1u_nopiv(A)
tl=cputime; [n,m]=size(A);
A1=1u_nopiv(A); if n"=m
Li=tril(A1,-1)+eye(n); Ul=triu(Al); disp(’non-square matrix’); return
t2=cputime; end
z=L1\b; x=Ul\z; for k=1:n
err=norm(x-xex) /norm(xex) ; if A(k,k)==0
)) disp(’Singular submatrix’);
t3=cputime; [L,U,P]=1u(A); t4=cputime; return
z=L\(P*b) ; x=U\z; end
err=norm(x-xex)/norm(xex) ; for i=k+1l:n
y
AGL,K)=AG,k) /AGk, k) ;
for j=k+1l:n
AG,§)=AG,)-AG,K)*ACk, §);
Output end
lu_nopiv cputime= 5.08e+00, err= 1.783394e-12 gnd
1u cputime= 2.00e-03, err= 1.130656e-13 en b
My function is low performing !!! = vector instructions

[http ://wuw.gnu.org/software/octave/doc/interpreter/Basic-Vectorization.html 1

... continued

@ Basic Vectorization - GNU Octave - Mozilla Firefox [)[a)(x]
File Edit View History Bookmarks Tools Help
| % Basic Vectorization - GNU Oct.... | 4 |

$ i S [@ www.gnu.org/software/octave/doc/interpre

-Vector v| [gv G
{"}Orario S1 7 Calendario /. Appelii [EjGoogle Leonardo [Google Calendar

.NORD 2 ¢ Doodle {idm_users »

@Disablev & Cookiesv , CSSv [JFormsv [@imagesv @ Informationv [G Miscellaneousv ZOutlinev s Resizev
‘_\
Next: Broadcasting, Up: Vectorization and Faster Code Execution

19.1 Basic Vectorization

[

To a very good first approximation, the goal in vectorization is to write code that avoids loops and uses
whole-array operations. As a trivial example, consider
for i = 1in
=1m
c(1,3) = a(i,3) + b(i,3);
endfor
endfor

compared to the much simpler

c=a+b;

This isn't merely easier to write; it is also internally much easier to optimize. Octave delegates this operation
to an underlying implementation which, among other optimizations, may use special vector hardware
instructions or could conceivably even perform the additions in parallel. In general, if the code is vectorized,
the underlying implementation has more freedom about the assumptions it can make in order to achieve
faster execution.

This is especially important for loops with “cheap” bodies. Often it suffices to vectorize just the innermost
loop to get acceptable performance. A general rule of thumb is that the "order" of the vectorized body
should be greater or equal to the "order" of the enclosing loop.

Paola Gervasio 12

... continued

[First attempt: modify the main loop in lunopiv 1

function A=lu_nopiv_v(A)
%A=1u_nopiv_v(A)
[n,m]=size(A);
if n"=m
disp(’non-square matrix’)
return
end
for k=1:n
if A(k,k)==
disp(’Singular submatrix, pivoting is required’)
return
end
A(k+1:n,k)=A(k+1:n,k) /A(k,k);
A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-A(k+1:n,k)*A(k,k+1:n);

end
New output
scalar function cputime= 4.97e+00, err= 3.907288e-13
vector function cputime= 1.40e-02, err= 3.907288e-13
built-in function cputime= 3.00e-03, err= 5.015366e-14

The new code is not the best one, but it is better than the scalar one!
Try to improve performance by swapping loops

Stability, convergence, accuracy

Spherical pendulum

The motion of a point x(t) = (x1(t), xa(t), x3(t))7
with mass m subject to the gravity force F =
(0,0,—gm)T (with g = 9.8 m/s?) and constrained
to move on the spherical surface of equation ®(x) =
Xl2 + x22 + x:f — 1 = 0 is described by the following
system of ordinary differential equations

1 (F mx' Hx +x+ VoTF

Vo | fort>0.
&) o

To numerically solve the system, let us transform it into a system of differential equations of
order 1 in the new variable y = [x1, x2, X3, X1, X2, 3], and apply Euler, Runge-Kutta (etc...)
methods to the system

y(0) = ey, te(o.7]
y(to) = yo

When stability is satisfied, we can have an idea of the accuracy by noticing that the solution
satisfies r(y) = |y12 + y22 + y32 — 1| = 0 and by consequently measuring the maximal value of the
residual r(yn) when n varies, y, being the approximation of the exact solution generated at time
th.

Paola Gervasio

Stability, convergence, accuracy (continued)

function [t,u]=feuler(odefun,tspan,yo0,... function [f]=fpendulum(t,y)
Nh,varargin) f=zeros(size(y)); H=2*eye(3);
h=(tspan(2)- tspa_n(l))/Nh' xpunto=zeros(3,1);
y=y0(:); w=y; u=y. xpunto=y (4:6) ;
tt= llnspace(tspa_n(l) tspan(2) ,Nh+1) ; mass=1; F=[0;0;-mass*9.8];
for t = tt(1:end-1) G=zeros(3,1); G=2*y(1:3);
w=w+h*odefun(t,w,varargin{:}); lambda=(mass*xpunto’ *H*xpunto+F’*G) / (G’ *G) ;
= [u; w.’]; £(1:3)=y(4:6);
end for k=1:3;
t=tt’; £ (k+3)=(F (k) -1lambda*G (k)) /mass;
* end
y

y0=[0,1,0,.8,0,1.2]; tspan=[0,25]; In the 1st run the solution blows up. Accuracy
nt=1.e3; [t0,u0]=feuler(@fpendulum,tspan,y0,nt); and cputime:
nt=1.e4; [t1,ull=feuler(@fpendulum,tspan,y0,nt); nt residual cputime
ri=abs(ul(end, 1) “2+ul(end,2) “2+ul(end,3)"2-1); 10000 1.0578 .
nt=1.e5; [t2,u2]=feuler(@fpendulum,tspan,y0,nt); 100000 0.1111 229.31
r2=abs(u2(end, 1) “2+u2(end,2) "2+u2(end, 3) "2-1); Theory confirmed. Euler is time consuming

g for small h. Residuals are large, then more

accurate schemes are right
y

Forward Euler nt=1000 Forward Euler nt=10000 Forward Euler nt=100000

Paola Gervasio

Stability, convergence, accuracy, efficiency

We consider 4th-order RK schemes with both constant steplenghts (hand
made function rk4) and adaptive steplenghts (ode45 function of odepkg).
We compare accuracy and computational costs:

[t1,ul]=o0de45(@fpendulum,tspan,y0) ;
ri=abs(ul(end,1) “2+ul(end,2) “2+ul(end,3)"2-1)

y0=[0,1,0,.8,0,1.2]; tspan=[0,25]; J

[ode45 requires 648 steps and yields r1 = 3.7866e-04 l

[t2,u2]=rk4 (@fpendulum,tspan,y0,648) ;
r2=abs(u2(end, 1) “2+u2(end,2) "2+u2(end,3) "2-1);

rk4 yields r2 = 0.10906.
rk4 requires 3000 steps to yield residual~ 10~*

[t3,u3]=rk4 (efpendulum, tspan,y0,3000) ;
r3=abs(u3(end, 1) "2+u3(end,2) "2+u3(end,3) "2-1);
r3 = 2.3444e-04

scheme (nt) residual cputime

ode45 (648) 3.7866e-04

rk4 (648) 0.10906 0.45 .
rk4 (3000) 2.3444e-.04 2.14

rk4 (1500) 3.7450e-03 [IO7

Paola Gervasio

Graphic support to theoretical lessons

Octave and Matlab are very useful in showing the behaviour of numerical methods.
This is the case of numerical optimization.

Paola Gervasio DICATAM - UNIBS (IT)

Graphic support to theoretical lessons

Graphics functions provide fundamental support when teaching: to analyse output
of scientific computing, but also to create movies for the lessons (mathematical
analysis in this case).

4——

funzione integranda f(t)=sin()/t

S
35 N
N

25| ! 2
2| limite sx=»%

I
|
> 15} |
|

|
|
\L|
|
I

I s S S
t
1 nmnecx=>“ funzione integrale F(x)

F
05| 1B
Ik

Paola Gervasio

A few (known) suggestions

@ Some times the help does not report which algorithm is implemented inside a
function.

@ To make immediate the use of octave for new users, examples inside the help
would be very useful.

@ Compatibility with Matlab is very appreciated on basic graphic instructions as
well as for string/functions manipulation.

@ On linux platform (fedora), installation of the latest release of Octave by
source file is not always easy, it depends on OS, installed sw,

Paola Gervasio DICATAM - UNIBS (IT)

A remark t the command vi

The command octave:18> view([79,21]) yields

view B9.0000, 79.0000 scale: L.00000, 100000

It seems that view([az,el]) actually yields view position = [90-el,az]

Paola Gervasio

Paola Gervasio DICATAM - UNIBS (IT)

