Scientific Computing using Octave: a working experience

Paola Gervasio

DICATAM, University of Brescia (Italy)

OctConf2013

Milano June, 24-26 2013 Personal teaching experience: Scientific Computing course.
 Lesson/laboratory for graduate students,
 Dept. of Computer Science and Engineering, University of Brescia

 Co-authoring experience: A. Quarteroni, F. Saleri, P. Gervasio, 2010-2012, Springer

These books collect teaching experiences at Polimi (Milano), EPFL (Lausanne) and UniBS (Brescia).

Personal teaching experience

- Scientific Computing (SC) course
 - 1st year of master degree in "Computer Science and Engineering"
 - class of about 50-60 students
 - lessons: 40 hours
 - exercises with octave/matlab: 40 hours
- Students' background:
 - Programming languages: C, C++, Java, Html
 - web design
 - software engineering
 - operating systems and computing infrastructures
 -

This course offers the first approach to both numerical analysis and scientific computing

SC Program

- "Initialization step"
 - basic instructions in matlab/octave
 - machine arithmetic
 - errors in computations
 - costs of computations
- Solving nonlinear equations
- Approximation of data and functions
- Linear systems
- Numerical integration and differentiation
- Ordinary differential equations
- Partial differential equations (very simple problems with FD)

Paola Gervasio 4 DICATAM - UNIBS (IT)

Motivations in using Octave

• to get in touch with machine arithmetic

 $\frac{|x-fl(x)|}{|x|} \leq \frac{1}{2}\epsilon_M$

- to better understand basic concepts of numerical analysis: errors, stability, convergence, accuracy, ...
- to take advantage of built-in functions
- to compare methods by measuring time effort, accuracy, reliability of the results
- to learn cost-effective programming techniques
- to support theoretical explanations by graphics

Octave support

built-in functions:

```
linspace, meshgrid, plot, mesh, surf, contour,
det, rank, eig, cond, norm,
\, lu, chol, luinc, qr, pcg, bicgstab,
fzero, fsolve,
polyfit, polyval, interp1, interp2, spline, mkpp, ppval,
trapz, quad, quadl,
ode23, ode45,...
```

- programming language
- hand made functions:

Newton, Broyden, fixed point iterations, adaptive Simpson rule,

LU factorization without pivoting, Gaussian elimination, Jacobi, Gauss-Seidel, Richardson.

Euler, Crank-Nicolson, AB-AM predictor correctors, fixed step RK methods, 2D finite difference approximation of Laplace and heat equation.

Machine arithmetic

Exercise 1. Load the matrix A and the r.h.s. **b** stored in ex1.mat.

Analyze both structure and properties of the matrix and then solve $A\mathbf{x} = \mathbf{b}$ with the most appropriate direct method among them presented during the course.

Solution

```
Student:
octave:5> load ex1
octave:6> whos
Variables in the current scope:
   Attr Name
                                                      Class
                    Size
                                               Bytes
                 100x100
                                                      double
                                               80000
                  100x1
                                                 800 double
Total is 10100 elements using 80800 bytes
octave:7> d=det(A)
d = 0
The matrix is singular!!!!
```

It is not possible, you are wrong, compute the rank, please

```
octave:8> r=rank(A)
r = 100
Surprise... What happens?
```

Let us compute the eigenvalues of A

Machine arithmetic (continued)

```
octave:9> v=eig(A)

v =

1.0000e-02

9.1116e-03

8.3022e-03

.

1.2045e-06

1.3219e-06

1.4508e-06

1.5923e-06

1.7475e-06

1.9179e-06

All eigenvalues are strictly positive....
```

OK: let us consider this sub-exercise

Sub-exercise: Load the matrix $A \in \mathbb{R}^{100 \times 100}$ stored in ex1.mat. Explain why it results $\det(A)=0$ while $\operatorname{rank}(A)=100$.

Paola Gervasio 8 DICATAM - UNIBS (IT)

Machine arithmetic (continued)

Solution

Let λ_k denote the eigenvalues of A. For $n=1,\ldots,100$, compute and print $p_n=\prod_{k=1}^n\lambda_k$.

```
load ex1; v=eig(A);
p=v(1);
for n=2:100
p=p*v(n);
fprintf('product of first %d eigenval = %13.6e \n',n, p)
end
....
product of first 2 eigenval = 9.111628e-05
product of first 10 eigenval = 1.519911e-22
product of first 70 eigenval = 2.656088e-238
product of first 86 eigenval = 2.104720e-320
product of first 87 eigenval = 0.0000000e+00
pode < realmin??</pre>
p87 = 0??
```


This is a way of exploring the floating-point set $\mathbb{F}(2,53,-1021,1024)$, realmin and realmax, underflow and overflow, normal and denormal floating-point numbers.

Machine arithmetic (continued)

Exercise 2. We know that $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$. By evalutating and plotting $a_n = \left(1+\frac{1}{n}\right)^n$ (for

 $n = 1, \dots, 10^{20}$), the graph on the right is produced.

Explain the behaviour of the sequence a_n .

Solution

```
N=1.e20; n=1; an=[]; nn=[];
while n< N
al=(1+1/n)^n;
an=[an;a1]; nn=[nn;n]; n=n*5;
end
semilogx(nn,an,'.','Markersize',24);
hold on
semilogx([1,N],[exp(1),exp(1)],'r--', 'Linewidth',3);</pre>
```

Machine precision in practice: when $n \gtrsim 9.3260e + 15 \Rightarrow \frac{1}{n} \lesssim 1.0723e - 16 < \epsilon_M$ and then $1 + \frac{1}{n} = 1$ in \mathbb{F} .

Built-in functions & cost-effective programming

The aim is to experience benefits of the pivoting in solving linear systems by LU factorization, but at the same time we realize high performance of built-in functions.

Call the lu function (which uses pivoting by default) and write lu_nopiv function (without pivoting).

```
n=100; A=rand(n);
xex=ones(n,1); b=A*xex;
t1=cputime;
A1=lu_nopiv(A);
L1=tril(A1,-1)+eye(n); U1=triu(A1);
t2=cputime;
z=L1\b; x=U1\z;
err=norm(x-xex)/norm(xex);
t3=cputime; [L,U,P]=lu(A); t4=cputime;
z=L\(P*b); x=U\z;
err=norm(x-xex)/norm(xex);
```

```
        Output

        lu_nopiv cputime=
        5.08e+00, err=
        1.783394e-12

        lu cputime=
        2.00e-03, err=
        1.130656e-13

        My function is low performing !!!
        ⇒ vector instructions
```

```
function A=lu nopiv(A)
%A=lu_nopiv(A)
[n.m]=size(A):
if n~= m
  disp('non-square matrix'); return
end
for k=1:n
  if A(k,k)==0
    disp('Singular submatrix');
    return
  end
 for i=k+1:n
    A(i,k)=A(i,k)/A(k,k):
    for i=k+1:n
      A(i,j)=A(i,j)-A(i,k)*A(k,j);
    end
  end
end
```

http://www.gnu.org/software/octave/doc/interpreter/Basic-Vectorization.html

... continued

should be greater or equal to the "order" of the enclosing loop.

... continued

First attempt: modify the main loop in lu_nopiv

```
function A=lu_nopiv_v(A)
%A=lu_nopiv_v(A)
[n,m]=size(A);
if n~= m
    disp('non-square matrix')
    return
end
for k=1:n
    if A(k,k)==0
    disp('Singular submatrix, pivoting is required')
    return
end
A(k+1:n,k)=A(k+1:n,k)/A(k,k);
A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-A(k+1:n,k)*A(k,k+1:n);
end
```

```
New output
scalar function cputime= 4.97e+00, err= 3.907288e-13
vector function cputime= 1.40e-02, err= 3.907288e-13
built-in function cputime= 3.00e-03, err= 5.015366e-14
```

The new code is not the best one, but it is better than the scalar one! Try to improve performance by swapping loops

Stability, convergence, accuracy

Spherical pendulum

The motion of a point $\mathbf{x}(t) = (x_1(t), x_2(t), x_3(t))^T$ with mass m subject to the gravity force $\mathbf{F} = (0, 0, -gm)^T$ (with $g = 9.8 \text{ m/s}^2$) and constrained to move on the spherical surface of equation $\Phi(\mathbf{x}) = x_1^2 + x_2^2 + x_3^2 - 1 = 0$ is described by the following system of ordinary differential equations

$$\ddot{\mathbf{x}} = \frac{1}{m} \left(\mathbf{F} - \frac{m \,\dot{\mathbf{x}}^T \, \mathbf{H} \,\dot{\mathbf{x}} + \mathbf{x} + \nabla \Phi^T \mathbf{F}}{|\nabla \Phi|^2} \nabla \Phi \right) \text{ for } t > 0.$$

To numerically solve the system, let us transform it into a system of differential equations of order 1 in the new variable $\mathbf{y} = [x_1, x_2, x_3, \dot{x}_1, \dot{x}_2, \dot{x}_3]$, and apply Euler, Runge-Kutta (etc...) methods to the system

$$\begin{cases} \mathbf{y}'(t) = \mathbf{f}(t, \mathbf{y}(t)), & t \in (t_0, T] \\ \mathbf{y}(t_0) = \mathbf{y}_0 \end{cases}$$

When stability is satisfied, we can have an idea of the accuracy by noticing that the solution satisfies $r(\mathbf{y}) \equiv |y_1^2 + y_2^2 + y_3^2 - 1| = 0$ and by consequently measuring the maximal value of the residual $r(\mathbf{y}_n)$ when n varies, \mathbf{y}_n being the approximation of the exact solution generated at time t_n .

Stability, convergence, accuracy (continued)

```
function [f]=fpendulum(t,y)
f=zeros(size(y)); H=2*eye(3);
xpunto=zeros(3,1);
xpunto=y(4:6);
mass=1; F=[0;0;-mass*9.8];
G=zeros(3,1); G=2*y(1:3);
lambda=(mass*xpunto'*H*xpunto+F'*G)/(G'*G);
f(1:3)=y(4:6);
for k=1:3;
   f(k+3)=(F(k)-lambda*G(k))/mass;
end
```

```
y0=[0,1,0,.8,0,1.2]; tspan=[0,25];
nt=1.e3; [t0,u0]=feuler(@fpendulum,tspan,y0,nt);
nt=1.e4; [t1,u1]=feuler(@fpendulum,tspan,y0,nt);
r1=abs(u1(end,1)^2+u1(end,2)^2+u1(end,3)^2-1);
nt=1.e5; [t2,u2]=feuler(@fpendulum,tspan,y0,nt);
r2=abs(u2(end,1)^2+u2(end,2)^2+u2(end,3)^2-1);
```

```
In the 1st run the solution blows up. Accuracy and cputime:
```

nt	residual	cputime
10000	1.0578	2.69
100000	0.1111	229.31

Theory confirmed. Euler is time consuming for small *h*. Residuals are large, then more accurate schemes are right

Stability, convergence, accuracy, efficiency

We consider 4th-order RK schemes with both constant steplenghts (hand made function $\mathtt{rk4}$) and adaptive steplenghts (ode45 function of odepkg). We compare accuracy and computational costs:

```
y0=[0,1,0,.8,0,1.2]; tspan=[0,25];
[t1,u1]=ode45(@fpendulum,tspan,y0);
r1=abs(u1(end,1)^2+u1(end,2)^2+u1(end,3)^2-1)
```

ode45 requires 648 steps and yields r1 = 3.7866e-04

```
[t2,u2]=rk4(@fpendulum,tspan,y0,648);
r2=abs(u2(end,1)^2+u2(end,2)^2+u2(end,3)^2-1);
```

```
rk4 yields r2 = 0.10906.
rk4 requires 3000 steps to yield residual\simeq 10^{-4}
```

```
[t3,u3]=rk4(@fpendulum,tspan,y0,3000);
r3=abs(u3(end,1)^2+u3(end,2)^2+u3(end,3)^2-1);
r3 = 2.3444e-04
```

scheme (nt)	residual	cputime
ode45 (648)	3.7866e-04	0.98
rk4 (648)	0.10906	0.45
rk4 (3000)	2.3444e-04	2.14
rk4 (1500)	3.7459e-03	1.07

Graphic support to theoretical lessons

Octave and Matlab are very useful in showing the behaviour of numerical methods. This is the case of numerical optimization.

Graphic support to theoretical lessons

Graphics functions provide fundamental support when teaching: to analyse output of scientific computing, but also to create movies for the lessons (mathematical analysis in this case).

A few (known) suggestions

- Some times the help does not report which algorithm is implemented inside a function.
- To make immediate the use of octave for new users, examples inside the help would be very useful.
- Compatibility with Matlab is very appreciated on basic graphic instructions as well as for string/functions manipulation.
- On linux platform (fedora), installation of the latest release of Octave by source file is not always easy, it depends on OS, installed sw,

A remark about the command view

The command octave:18> view([79,21]) yields

It seems that view([az,el]) actually yields view position = [90-el,az]

Thanks!

