
This document includes text contributed by Nikos Mavrogiannopoulos, Simon
Josefsson, Daiki Ueno, Carolin Latze, Alfredo Pironti, Ted Zlatanov and Andrew
McDonald. Several corrections are due to Patrick Pelletier and Andreas Metzler.

ISBN 978-1-326-00266-4
Copyright c© 2001-2015 Free Software Foundation, Inc.
Copyright c© 2001-2015 Nikos Mavrogiannopoulos

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation
License”.

Contents

Preface xiii

1. Introduction to GnuTLS 1
1.1. Downloading and installing . 1
1.2. Installing for a software distribution . 2
1.3. Overview . 3

2. Introduction to TLS and DTLS 5
2.1. TLS Layers . 5
2.2. The Transport Layer . 5
2.3. The TLS record protocol . 6

2.3.1. Encryption algorithms used in the record layer 6
2.3.2. Compression algorithms used in the record layer 8
2.3.3. Weaknesses and countermeasures . 8
2.3.4. On record padding . 9

2.4. The TLS alert protocol . 9
2.5. The TLS handshake protocol . 10

2.5.1. TLS ciphersuites . 11
2.5.2. Authentication . 11
2.5.3. Client authentication . 11
2.5.4. Resuming sessions . 11

2.6. TLS extensions . 12
2.6.1. Maximum fragment length negotiation 12
2.6.2. Server name indication . 12
2.6.3. Session tickets . 13
2.6.4. HeartBeat . 13
2.6.5. Safe renegotiation . 14
2.6.6. OCSP status request . 15
2.6.7. SRTP . 16
2.6.8. Application Layer Protocol Negotiation (ALPN) 17
2.6.9. Extensions and Supplemental Data . 18

2.7. How to use TLS in application protocols . 18
2.7.1. Separate ports . 18
2.7.2. Upward negotiation . 18

2.8. On SSL 2 and older protocols . 20

3. Authentication methods 21
3.1. Certificate authentication . 21

3.1.1. X.509 certificates . 21
3.1.2. OpenPGP certificates . 36
3.1.3. Advanced certificate verification . 38
3.1.4. Digital signatures . 39

iii

Contents

3.2. More on certificate authentication . 41
3.2.1. PKCS #10 certificate requests . 41
3.2.2. PKIX certificate revocation lists . 44
3.2.3. OCSP certificate status checking . 47
3.2.4. Managing encrypted keys . 51
3.2.5. Invoking certtool . 55
3.2.6. Invoking ocsptool . 73
3.2.7. Invoking danetool . 77

3.3. Shared-key and anonymous authentication . 82
3.3.1. SRP authentication . 83
3.3.2. PSK authentication . 86
3.3.3. Anonymous authentication . 88

3.4. Selecting an appropriate authentication method 89
3.4.1. Two peers with an out-of-band channel 89
3.4.2. Two peers without an out-of-band channel 89
3.4.3. Two peers and a trusted third party . 90

4. Abstract keys types and Hardware security modules 97
4.1. Abstract key types . 97

4.1.1. Public keys . 98
4.1.2. Private keys . 100
4.1.3. Operations . 102

4.2. System and application-specific keys . 105
4.2.1. System-specific keys . 105
4.2.2. Application-specific keys . 105

4.3. Smart cards and HSMs . 107
4.3.1. Initialization . 107
4.3.2. Accessing objects that require a PIN . 109
4.3.3. Reading objects . 110
4.3.4. Writing objects . 113
4.3.5. Using a PKCS #11 token with TLS . 114
4.3.6. Invoking p11tool . 114
4.3.7. p11tool help/usage (“--help”) . 115
4.3.8. token-related-options options . 117
4.3.9. object-list-related-options options . 117
4.3.10. keygen-related-options options . 118
4.3.11. write-object-related-options options . 119
4.3.12. other-options options . 121
4.3.13. p11tool exit status . 123
4.3.14. p11tool See Also . 123
4.3.15. p11tool Examples . 123

4.4. Trusted Platform Module (TPM) . 124
4.4.1. Keys in TPM . 124
4.4.2. Key generation . 125
4.4.3. Using keys . 126
4.4.4. Invoking tpmtool . 127

iv

Contents

4.4.5. tpmtool help/usage (“--help”) . 128
4.4.6. debug option (-d) . 129
4.4.7. generate-rsa option . 129
4.4.8. user option . 129
4.4.9. system option . 129
4.4.10. test-sign option . 130
4.4.11. sec-param option . 130
4.4.12. inder option . 130
4.4.13. outder option . 130
4.4.14. tpmtool exit status . 130
4.4.15. tpmtool See Also . 130
4.4.16. tpmtool Examples . 131

5. How to use GnuTLS in applications 133
5.1. Introduction . 133

5.1.1. General idea . 133
5.1.2. Error handling . 134
5.1.3. Common types . 135
5.1.4. Debugging and auditing . 135
5.1.5. Thread safety . 136
5.1.6. Running in a sandbox . 137
5.1.7. Sessions and fork . 138
5.1.8. Callback functions . 138

5.2. Preparation . 139
5.2.1. Headers . 139
5.2.2. Initialization . 139
5.2.3. Version check . 139
5.2.4. Building the source . 140

5.3. Session initialization . 140
5.4. Associating the credentials . 142

5.4.1. Certificates . 142
5.4.2. SRP . 147
5.4.3. PSK . 148
5.4.4. Anonymous . 150

5.5. Setting up the transport layer . 151
5.5.1. Asynchronous operation . 153
5.5.2. DTLS sessions . 155

5.6. TLS handshake . 156
5.7. Data transfer and termination . 158
5.8. Buffered data transfer . 161
5.9. Handling alerts . 161
5.10. Priority strings . 163
5.11. Selecting cryptographic key sizes . 168
5.12. Advanced topics . 170

5.12.1. Session resumption . 170
5.12.2. Certificate verification . 172

v

Contents

5.12.3. Re-authentication . 175
5.12.4. Parameter generation . 177
5.12.5. Deriving keys for other applications/protocols 178
5.12.6. Channel bindings . 178
5.12.7. Interoperability . 179
5.12.8. Compatibility with the OpenSSL library 180

6. GnuTLS application examples 181
6.1. Client examples . 181

6.1.1. Simple client example with X.509 certificate support 181
6.1.2. Simple client example with SSH-style certificate verification 184
6.1.3. Simple client example with anonymous authentication 186
6.1.4. Simple datagram TLS client example . 188
6.1.5. Obtaining session information . 191
6.1.6. Using a callback to select the certificate to use 193
6.1.7. Verifying a certificate . 198
6.1.8. Using a smart card with TLS . 200
6.1.9. Client with resume capability example 203
6.1.10. Simple client example with SRP authentication 206
6.1.11. Simple client example using the C++ API 209
6.1.12. Helper functions for TCP connections 210
6.1.13. Helper functions for UDP connections 211

6.2. Server examples . 213
6.2.1. Echo server with X.509 authentication 213
6.2.2. Echo server with OpenPGP authentication 216
6.2.3. Echo server with SRP authentication . 220
6.2.4. Echo server with anonymous authentication 223
6.2.5. DTLS echo server with X.509 authentication 226

6.3. OCSP example . 234
6.4. Miscellaneous examples . 239

6.4.1. Checking for an alert . 239
6.4.2. X.509 certificate parsing example . 240
6.4.3. Listing the ciphersuites in a priority string 242
6.4.4. PKCS #12 structure generation example 244

7. Other included programs 247
7.1. Invoking gnutls-cli . 247
7.2. Invoking gnutls-serv . 255
7.3. Invoking gnutls-cli-debug . 260

8. Internal Architecture of GnuTLS 265
8.1. The TLS Protocol . 265
8.2. TLS Handshake Protocol . 266
8.3. TLS Authentication Methods . 267
8.4. TLS Extension Handling . 267
8.5. Cryptographic Backend . 273

vi

Contents

A. Upgrading from previous versions 277

B. Support 281
B.1. Getting Help . 281
B.2. Commercial Support . 281
B.3. Bug Reports . 282
B.4. Contributing . 282
B.5. Certification . 283

C. Supported Ciphersuites 285

D. Error Codes and Descriptions 291

GNU Free Documentation License 297

Bibliography 305

vii

List of Tables

2.1. Supported ciphers in TLS. 7
2.2. Supported MAC algorithms in TLS. 7
2.3. Supported compression algorithms . 8
2.4. The TLS alert table . 10
2.5. Supported SRTP profiles . 16

3.1. Supported key exchange algorithms. 22
3.2. X.509 certificate fields. 22
3.3. Supported X.509 certificate extensions. 29
3.4. The gnutls certificate status t enumeration. 91
3.5. The gnutls certificate verify flags enumeration. 92
3.6. Key purpose object identifiers. 93
3.7. OpenPGP certificate fields. 93
3.8. The types of (sub)keys required for the various TLS key exchange methods. . . 93
3.9. Certificate revocation list fields. 94
3.10. The most important OCSP response fields. 94
3.11. The revocation reasons . 95
3.12. Encryption flags . 95

4.1. The gnutls pin flag t enumeration. 109

5.1. Environment variables used by the library. 136
5.2. Key exchange algorithms and the corresponding credential types. 142
5.3. Supported initial keywords. 164
5.4. The supported algorithm keywords in priority strings. 165
5.5. Special priority string keywords. 166
5.6. More priority string keywords. 167
5.7. Key sizes and security parameters. 169
5.8. The DANE verification status flags. 176

C.1. The ciphersuites table . 289

D.1. The error codes table . 296

ix

List of Figures

2.1. The TLS protocol layers. 6

3.1. An example of the X.509 hierarchical trust model. 23
3.2. An example of the OpenPGP trust model. 36

4.1. PKCS #11 module usage. 107

5.1. High level design of GnuTLS. 134

8.1. TLS protocol use case. 265
8.2. GnuTLS handshake state machine. 266
8.3. GnuTLS handshake process sequence. 266
8.4. GnuTLS cryptographic back-end design. 274

xi

Preface

This document demonstrates and explains the GnuTLS library API. A brief introduction to
the protocols and the technology involved is also included so that an application programmer
can better understand the GnuTLS purpose and actual offerings. Even if GnuTLS is a typical
library software, it operates over several security and cryptographic protocols which require the
programmer to make careful and correct usage of them. Otherwise it is likely to only obtain
a false sense of security. The term of security is very broad even if restricted to computer
software, and cannot be confined to a single cryptographic library. For that reason, do not
consider any program secure just because it uses GnuTLS; there are several ways to compromise
a program or a communication line and GnuTLS only helps with some of them.

Although this document tries to be self contained, basic network programming and public key
infrastructure (PKI) knowledge is assumed in most of it. A good introduction to networking
can be found in [35], to public key infrastructure in [14] and to security engineering in [5].

Updated versions of the GnuTLS software and this document will be available from http:

//www.gnutls.org/.

xiii

http://www.gnutls.org/
http://www.gnutls.org/

1
Introduction to GnuTLS

In brief GnuTLS can be described as a library which offers an API to access secure commu-
nication protocols. These protocols provide privacy over insecure lines, and were designed to
prevent eavesdropping, tampering, or message forgery.

Technically GnuTLS is a portable ANSI C based library which implements the protocols rang-
ing from SSL 3.0 to TLS 1.2 (see chapter 2, for a detailed description of the protocols), accompa-
nied with the required framework for authentication and public key infrastructure. Important
features of the GnuTLS library include:

• Support for TLS 1.2, TLS 1.1, TLS 1.0 and SSL 3.0 protocols.

• Support for Datagram TLS 1.0 and 1.2.

• Support for handling and verification of X.509 and OpenPGP certificates.

• Support for password authentication using TLS-SRP.

• Support for keyed authentication using TLS-PSK.

• Support for TPM, PKCS #11 tokens and smart-cards.

The GnuTLS library consists of three independent parts, namely the “TLS protocol part”,
the “Certificate part”, and the “Cryptographic back-end” part. The “TLS protocol part” is
the actual protocol implementation, and is entirely implemented within the GnuTLS library.
The “Certificate part” consists of the certificate parsing, and verification functions and it uses
functionality from the libtasn1 library. The “Cryptographic back-end” is provided by the nettle
and gmplib libraries.

1.1. Downloading and installing

GnuTLS is available for download at: http://www.gnutls.org/download.html

GnuTLS uses a development cycle where even minor version numbers indicate a stable release
and a odd minor version number indicate a development release. For example, GnuTLS 1.6.3
denote a stable release since 6 is even, and GnuTLS 1.7.11 denote a development release since
7 is odd.

1

http://www.gnutls.org/download.html

1.2. INSTALLING FOR A SOFTWARE DISTRIBUTION

GnuTLS depends on nettle and gmplib, and you will need to install it before installing
GnuTLS. The nettle library is available from http://www.lysator.liu.se/~nisse/nettle/,
while gmplib is available from http://www.gmplib.org/. Don’t forget to verify the crypto-
graphic signature after downloading source code packages.

The package is then extracted, configured and built like many other packages that use Autoconf.
For detailed information on configuring and building it, refer to the “INSTALL” file that is part
of the distribution archive. Typically you invoke ./configure and then make check install.
There are a number of compile-time parameters, as discussed below.

Several parts of GnuTLS require ASN.1 functionality, which is provided by a library called
libtasn1. A copy of libtasn1 is included in GnuTLS. If you want to install it separately (e.g.,
to make it possibly to use libtasn1 in other programs), you can get it from http://www.gnu.

org/software/libtasn1/.

The compression library, libz, the PKCS #11 helper library p11-kit, the TPM library
trousers, as well as the IDN library libidn1 are optional dependencies. Check the README
file in the distribution on how to obtain these libraries.

A few configure options may be relevant, summarized below. They disable or enable partic-
ular features, to create a smaller library with only the required features. Note however, that
although a smaller library is generated, the included programs are not guaranteed to compile
if some of these options are given.

--disable-srp-authentication

--disable-psk-authentication

--disable-anon-authentication

--disable-openpgp-authentication

--disable-dhe

--disable-ecdhe

--disable-openssl-compatibility

--disable-dtls-srtp-support

--disable-alpn-support

--disable-heartbeat-support

--disable-libdane

--without-p11-kit

--without-tpm

--without-zlib

For the complete list, refer to the output from configure --help.

1.2. Installing for a software distribution

When installing for a software distribution, it is often desirable to preconfigure GnuTLS with
the system-wide paths and files. There two important configuration options, one sets the trust

1Needed to use RFC6125 name comparison in internationalized domains.

2

http://www.lysator.liu.se/~nisse/nettle/
http://www.gmplib.org/
http://www.gnu.org/software/libtasn1/
http://www.gnu.org/software/libtasn1/

CHAPTER 1. INTRODUCTION TO GNUTLS

store in system, which are the CA certificates to be used by programs by default (if they
don’t override it), and the other sets to DNSSEC root key file used by unbound for DNSSEC
verification.

For the latter the following configuration option is available, and if not specified GnuTLS will
try to auto-detect the location of that file.

--with-unbound-root-key-file

To set the trust store the following options are available.

--with-default-trust-store-file

--with-default-trust-store-dir

--with-default-trust-store-pkcs11

The first option is used to set a PEM file which contains a list of trusted certificates, while the
second will read all certificates in the given path. The recommended option is the last, which
allows to use a PKCS #11 trust policy module. That module not only provides the trusted
certificates, but allows the categorization of them using purpose, e.g., CAs can be restricted
for e-mail usage only, or administrative restrictions of CAs, for examples by restricting a CA
to only issue certificates for a given DNS domain using NameConstraints. A publicly available
PKCS #11 trust module is p11-kit’s trust module2.

1.3. Overview

In this document we present an overview of the supported security protocols in chapter 2,
and continue by providing more information on the certificate authentication in section 3.1,
and shared-key as well anonymous authentication in section 3.3. We elaborate on certificate
authentication by demonstrating advanced usage of the API in section 3.2. The core of the
TLS library is presented in chapter 5 and example applications are listed in chapter 6. In
chapter 7 the usage of few included programs that may assist debugging is presented. The last
chapter is chapter 8 that provides a short introduction to GnuTLS’ internal architecture.

2http://p11-glue.freedesktop.org/doc/p11-kit/trust-module.html

3

http://p11-glue.freedesktop.org/doc/p11-kit/trust-module.html

2
Introduction to TLS and DTLS

TLS stands for “Transport Layer Security” and is the successor of SSL, the Secure Sockets
Layer protocol [13] designed by Netscape. TLS is an Internet protocol, defined by IETF1,
described in [10]. The protocol provides confidentiality, and authentication layers over any
reliable transport layer. The description, above, refers to TLS 1.0 but applies to all other TLS
versions as the differences between the protocols are not major.

The DTLS protocol, or “Datagram TLS” [29] is a protocol with identical goals as TLS, but
can operate under unreliable transport layers such as UDP. The discussions below apply to
this protocol as well, except when noted otherwise.

2.1. TLS Layers

TLS is a layered protocol, and consists of the record protocol, the handshake protocol and the
alert protocol. The record protocol is to serve all other protocols and is above the transport
layer. The record protocol offers symmetric encryption, data authenticity, and optionally
compression. The alert protocol offers some signaling to the other protocols. It can help
informing the peer for the cause of failures and other error conditions. section 2.4, for more
information. The alert protocol is above the record protocol.

The handshake protocol is responsible for the security parameters’ negotiation, the initial key
exchange and authentication. section 2.5, for more information about the handshake protocol.
The protocol layering in TLS is shown in Figure 2.1.

2.2. The Transport Layer

TLS is not limited to any transport layer and can be used above any transport layer, as long as
it is a reliable one. DTLS can be used over reliable and unreliable transport layers. GnuTLS
supports TCP and UDP layers transparently using the Berkeley sockets API. However, any
transport layer can be used by providing callbacks for GnuTLS to access the transport layer
(for details see section 5.5).

1IETF, or Internet Engineering Task Force, is a large open international community of network designers,
operators, vendors, and researchers concerned with the evolution of the Internet architecture and the smooth
operation of the Internet. It is open to any interested individual.

5

2.3. THE TLS RECORD PROTOCOL

Transport Layer

TLS Record
Protocol

TLS Alert
Protocol

TLS Handshake
Protocol

Application
Protocol

Figure 2.1.: The TLS protocol layers.

2.3. The TLS record protocol

The record protocol is the secure communications provider. Its purpose is to encrypt, authen-
ticate and —optionally— compress packets. The record layer functions can be called at any
time after the handshake process is finished, when there is need to receive or send data. In
DTLS however, due to re-transmission timers used in the handshake out-of-order handshake
data might be received for some time (maximum 60 seconds) after the handshake process is
finished.

The functions to access the record protocol are limited to send and receive functions, which
might, given the importance of this protocol in TLS, seem awkward. This is because the record
protocol’s parameters are all set by the handshake protocol. The record protocol initially starts
with NULL parameters, which means no encryption, and no MAC is used. Encryption and
authentication begin just after the handshake protocol has finished.

2.3.1. Encryption algorithms used in the record layer

Confidentiality in the record layer is achieved by using symmetric block encryption algorithms
like 3DES, AES or stream algorithms like ARCFOUR 128. Ciphers are encryption algorithms
that use a single, secret, key to encrypt and decrypt data. Block algorithms in CBC mode
also provide protection against statistical analysis of the data. Thus, if you’re using the TLS
protocol, a random number of blocks will be appended to data, to prevent eavesdroppers from
guessing the actual data size.

The supported in GnuTLS ciphers and MAC algorithms are shown in Table 2.1 and Table 2.2.

6

CHAPTER 2. INTRODUCTION TO TLS AND DTLS

Algorithm Description

AES CBC AES or RIJNDAEL is the block cipher algorithm that replaces the
old DES algorithm. Has 128 bits block size and is used in CBC
mode.

AES GCM This is the AES algorithm in the authenticated encryption GCM
mode. This mode combines message authentication and encryp-
tion and can be extremely fast on CPUs that support hardware
acceleration.

AES CCM This is the AES algorithm in the authenticated encryption CCM
mode. This mode combines message authentication and encryp-
tion and is often used by systems without AES or GCM accelera-
tion support.

AES CCM 8 This is the AES algorithm in the authenticated encryption CCM
mode with a truncated to 64-bit authentication tag. This mode is
for communication with restricted systems.

CAMELLIA CBC This is an 128-bit block cipher developed by Mitsubishi and NTT.
It is one of the approved ciphers of the European NESSIE and
Japanese CRYPTREC projects.

CHACHA20 -
POLY1305

CHACHA20-POLY1305 is an authenticated encryption algorithm
based on CHACHA20 cipher and POLY1305 MAC. CHACHA20
is a refinement of SALSA20 algorithm, an approved cipher by the
European ESTREAM project. POLY1305 is Wegman-Carter, one-
time authenticator. The combination provides a fast stream cipher
suitable for systems where a hardware AES accelerator is not avail-
able.

3DES CBC This is the DES block cipher algorithm used with triple encryption
(EDE). Has 64 bits block size and is used in CBC mode.

ARCFOUR 128 ARCFOUR-128 is a compatible algorithm with RSA’s RC4 algo-
rithm, which is considered to be a trade secret. It is a fast cipher
but considered weak today, and thus it is not enabled by default.

Table 2.1.: Supported ciphers in TLS.

Algorithm Description

MAC MD5 This is an HMAC based on MD5 a cryptographic hash algorithm
designed by Ron Rivest. Outputs 128 bits of data.

MAC SHA1 An HMAC based on the SHA1 cryptographic hash algorithm de-
signed by NSA. Outputs 160 bits of data.

MAC SHA256 An HMAC based on SHA2-256. Outputs 256 bits of data.
MAC SHA384 An HMAC based on SHA2-384. Outputs 384 bits of data.
MAC AEAD This indicates that an authenticated encryption algorithm, such

as GCM, is in use.

Table 2.2.: Supported MAC algorithms in TLS.

7

2.3. THE TLS RECORD PROTOCOL

2.3.2. Compression algorithms used in the record layer

The TLS record layer also supports compression. The algorithms implemented in GnuTLS can
be found in the table below. The included algorithms perform really good when text, or other
compressible data are to be transferred, but offer nothing on already compressed data, such as
compressed images, zipped archives etc. These compression algorithms, may be useful in high
bandwidth TLS tunnels, and in cases where network usage has to be minimized. It should be
noted however that compression increases latency.

The record layer compression in GnuTLS is implemented based on [15]. The supported algo-
rithms are shown below.

enum gnutls compression method t:
GNUTLS COMP UNKNOWN Unknown compression method.

GNUTLS COMP NULL The NULL compression method (no compression).

GNUTLS COMP DEFLATE The DEFLATE compression method from zlib.

GNUTLS COMP ZLIB Same as GNUTLS COMP DEFLATE.

Table 2.3.: Supported compression algorithms

Note that compression enables attacks such as traffic analysis, or even plaintext recovery under
certain circumstances. To avoid some of these attacks GnuTLS allows each record to be com-
pressed independently (i.e., stateless compression), by using the ”%STATELESS COMPRESSION”
priority string, in order to be used in cases where the attacker controlled data are pt in separate
records.

2.3.3. Weaknesses and countermeasures

Some weaknesses that may affect the security of the record layer have been found in TLS 1.0
protocol. These weaknesses can be exploited by active attackers, and exploit the facts that

1. TLS has separate alerts for “decryption failed” and “bad record mac”

2. The decryption failure reason can be detected by timing the response time.

3. The IV for CBC encrypted packets is the last block of the previous encrypted packet.

Those weaknesses were solved in TLS 1.1 [9] which is implemented in GnuTLS. For this reason
we suggest to always negotiate the highest supported TLS version with the peer2. For a detailed
discussion of the issues see the archives of the TLS Working Group mailing list and [23].

2If this is not possible then please consult subsection 5.12.7.

8

CHAPTER 2. INTRODUCTION TO TLS AND DTLS

2.3.4. On record padding

The TLS protocol allows for extra padding of records in CBC ciphers, to prevent statistical
analysis based on the length of exchanged messages (see [10] section 6.2.3.2). GnuTLS appears
to be one of few implementations that take advantage of this feature: the user can provide some
plaintext data with a range of lengths she wishes to hide, and GnuTLS adds extra padding
to make sure the attacker cannot tell the real plaintext length is in a range smaller than
the user-provided one. Use gnutls record send range to send length-hidden messages and
gnutls record can use length hiding to check whether the current session supports length
hiding. Using the standard gnutls record send will only add minimal padding.

The TLS implementation in the Symbian operating system, frequently used by Nokia and Sony-
Ericsson mobile phones, cannot handle non-minimal record padding. What happens when one
of these clients handshake with a GnuTLS server is that the client will fail to compute the
correct MAC for the record. The client sends a TLS alert (bad record mac) and disconnects.
Typically this will result in error messages such as ’A TLS fatal alert has been received’, ’Bad
record MAC’, or both, on the GnuTLS server side.

If compatibility with such devices is a concern, not sending length-hidden messages solves the
problem by using minimal padding.

If you implement an application that has a configuration file, we recommend that you make it
possible for users or administrators to specify a GnuTLS protocol priority string, which is used
by your application via gnutls priority set. To allow the best flexibility, make it possible
to have a different priority string for different incoming IP addresses.

2.4. The TLS alert protocol

The alert protocol is there to allow signals to be sent between peers. These signals are mostly
used to inform the peer about the cause of a protocol failure. Some of these signals are used
internally by the protocol and the application protocol does not have to cope with them (e.g.
GNUTLS A CLOSE NOTIFY), and others refer to the application protocol solely (e.g. GNUTLS A -

USER CANCELLED). An alert signal includes a level indication which may be either fatal or warn-
ing. Fatal alerts always terminate the current connection, and prevent future re-negotiations
using the current session ID. All alert messages are summarized in the table below.

The alert messages are protected by the record protocol, thus the information that is included
does not leak. You must take extreme care for the alert information not to leak to a possible
attacker, via public log files etc.

Alert ID Description

GNUTLS A CLOSE NOTIFY
0 Close notify

GNUTLS A UNEXPECTED MESSAGE 10 Unexpected message
GNUTLS A BAD RECORD MAC 20 Bad record MAC
GNUTLS A DECRYPTION FAILED 21 Decryption failed

9

2.5. THE TLS HANDSHAKE PROTOCOL

GNUTLS A RECORD OVERFLOW 22 Record overflow
GNUTLS A DECOMPRESSION FAILURE 30 Decompression failed
GNUTLS A HANDSHAKE FAILURE 40 Handshake failed
GNUTLS A SSL3 NO CERTIFICATE 41 No certificate (SSL 3.0)
GNUTLS A BAD CERTIFICATE 42 Certificate is bad
GNUTLS A UNSUPPORTED CERTIFICATE 43 Certificate is not supported
GNUTLS A CERTIFICATE REVOKED 44 Certificate was revoked
GNUTLS A CERTIFICATE EXPIRED 45 Certificate is expired
GNUTLS A CERTIFICATE UNKNOWN 46 Unknown certificate
GNUTLS A ILLEGAL PARAMETER 47 Illegal parameter
GNUTLS A UNKNOWN CA 48 CA is unknown
GNUTLS A ACCESS DENIED 49 Access was denied
GNUTLS A DECODE ERROR 50 Decode error
GNUTLS A DECRYPT ERROR 51 Decrypt error
GNUTLS A EXPORT RESTRICTION 60 Export restriction
GNUTLS A PROTOCOL VERSION 70 Error in protocol version
GNUTLS A INSUFFICIENT SECURITY 71 Insufficient security
GNUTLS A INTERNAL ERROR 80 Internal error
GNUTLS A INAPPROPRIATE FALLBACK 86 Inappropriate fallback
GNUTLS A USER CANCELED 90 User canceled
GNUTLS A NO RENEGOTIATION 100 No renegotiation is allowed
GNUTLS A UNSUPPORTED EXTENSION 110 An unsupported extension was

sent
GNUTLS A CERTIFICATE UNOBTAINABLE 111 Could not retrieve the specified

certificate
GNUTLS A UNRECOGNIZED NAME 112 The server name sent was not

recognized
GNUTLS A UNKNOWN PSK IDENTITY 115 The SRP/PSK username is

missing or not known
GNUTLS A NO APPLICATION PROTOCOL 120 No supported application proto-

col could be negotiated

Table 2.4.: The TLS alert table

2.5. The TLS handshake protocol

The handshake protocol is responsible for the ciphersuite negotiation, the initial key exchange,
and the authentication of the two peers. This is fully controlled by the application layer,
thus your program has to set up the required parameters. The main handshake function is
gnutls handshake. In the next paragraphs we elaborate on the handshake protocol, i.e., the
ciphersuite negotiation.

10

CHAPTER 2. INTRODUCTION TO TLS AND DTLS

2.5.1. TLS ciphersuites

The handshake protocol of TLS negotiates cipher suites of a special form illustrated by the
TLS DHE RSA WITH 3DES CBC SHA cipher suite name. A typical cipher suite contains these pa-
rameters:

• The key exchange algorithm. DHE RSA in the example.

• The Symmetric encryption algorithm and mode 3DES CBC in this example.

• The MAC3 algorithm used for authentication. MAC SHA is used in the above example.

The cipher suite negotiated in the handshake protocol will affect the record protocol, by en-
abling encryption and data authentication. Note that you should not over rely on TLS to
negotiate the strongest available cipher suite. Do not enable ciphers and algorithms that you
consider weak.

All the supported ciphersuites are listed in Appendix C.

2.5.2. Authentication

The key exchange algorithms of the TLS protocol offer authentication, which is a prerequisite
for a secure connection. The available authentication methods in GnuTLS follow.

• Certificate authentication: Authenticated key exchange using public key infrastructure
and certificates (X.509 or OpenPGP).

• SRP authentication: Authenticated key exchange using a password.

• PSK authentication: Authenticated key exchange using a pre-shared key.

• Anonymous authentication: Key exchange without peer authentication.

2.5.3. Client authentication

In the case of ciphersuites that use certificate authentication, the authentication of the client
is optional in TLS. A server may request a certificate from the client using the gnutls -

certificate server set request function. We elaborate in subsection 5.4.1.

2.5.4. Resuming sessions

The TLS handshake process performs expensive calculations and a busy server might easily
be put under load. To reduce the load, session resumption may be used. This is a feature
of the TLS protocol which allows a client to connect to a server after a successful handshake,
without the expensive calculations. This is achieved by re-using the previously established

3MAC stands for Message Authentication Code. It can be described as a keyed hash algorithm. See RFC2104.

11

2.6. TLS EXTENSIONS

keys, meaning the server needs to store the state of established connections (unless session
tickets are used – subsection 2.6.3).

Session resumption is an integral part of GnuTLS, and subsection 5.12.1, subsection 6.1.9
illustrate typical uses of it.

2.6. TLS extensions

A number of extensions to the TLS protocol have been proposed mainly in [6]. The extensions
supported in GnuTLS are discussed in the subsections that follow.

2.6.1. Maximum fragment length negotiation

This extension allows a TLS implementation to negotiate a smaller value for record packet
maximum length. This extension may be useful to clients with constrained capabilities. The
functions shown below can be used to control this extension.

size t gnutls record get max size (gnutls session t session)

ssize t gnutls record set max size (gnutls session t session, size t size)

2.6.2. Server name indication

A common problem in HTTPS servers is the fact that the TLS protocol is not aware of the
hostname that a client connects to, when the handshake procedure begins. For that reason the
TLS server has no way to know which certificate to send.

This extension solves that problem within the TLS protocol, and allows a client to send the
HTTP hostname before the handshake begins within the first handshake packet. The functions
gnutls server name set and gnutls server name get can be used to enable this extension,
or to retrieve the name sent by a client.

int gnutls server name set (gnutls session t session, gnutls server name type t
type, const void * name, size t name length)

int gnutls server name get (gnutls session t session, void * data, size t *
data length, unsigned int * type, unsigned int indx)

12

CHAPTER 2. INTRODUCTION TO TLS AND DTLS

2.6.3. Session tickets

To resume a TLS session, the server normally stores session parameters. This complicates
deployment, and can be avoided by delegating the storage to the client. Because session
parameters are sensitive they are encrypted and authenticated with a key only known to the
server and then sent to the client. The Session Tickets extension is described in RFC 5077 [33].

A disadvantage of session tickets is that they eliminate the effects of forward secrecy when a
server uses the same key for long time. That is, the secrecy of all sessions on a server using
tickets depends on the ticket key being kept secret. For that reason server keys should be
rotated and discarded regularly.

Since version 3.1.3 GnuTLS clients transparently support session tickets, unless forward secrecy
is explicitly requested (with the PFS priority string).

2.6.4. HeartBeat

This is a TLS extension that allows to ping and receive confirmation from the peer, and is
described in [27]. The extension is disabled by default and gnutls heartbeat enable can be
used to enable it. A policy may be negotiated to only allow sending heartbeat messages or
sending and receiving. The current session policy can be checked with gnutls heartbeat -

allowed. The requests coming from the peer result to GNUTLS E HEARTBEAT PING RECEIVED

being returned from the receive function. Ping requests to peer can be send via gnutls -

heartbeat ping.

int gnutls heartbeat allowed (gnutls session t session, unsigned int type)

void gnutls heartbeat enable (gnutls session t session, unsigned int type)

int gnutls heartbeat ping (gnutls session t session, size t data size, unsigned int
max tries, unsigned int flags)

int gnutls heartbeat pong (gnutls session t session, unsigned int flags)

void gnutls heartbeat set timeouts (gnutls session t session, unsigned int re-
trans timeout, unsigned int total timeout)

unsigned int gnutls heartbeat get timeout (gnutls session t session)

13

2.6. TLS EXTENSIONS

2.6.5. Safe renegotiation

TLS gives the option to two communicating parties to renegotiate and update their security
parameters. One useful example of this feature was for a client to initially connect using
anonymous negotiation to a server, and the renegotiate using some authenticated ciphersuite.
This occurred to avoid having the client sending its credentials in the clear.

However this renegotiation, as initially designed would not ensure that the party one is renego-
tiating is the same as the one in the initial negotiation. For example one server could forward
all renegotiation traffic to an other server who will see this traffic as an initial negotiation
attempt.

This might be seen as a valid design decision, but it seems it was not widely known or under-
stood, thus today some application protocols use the TLS renegotiation feature in a manner
that enables a malicious server to insert content of his choice in the beginning of a TLS session.

The most prominent vulnerability was with HTTPS. There servers request a renegotiation to
enforce an anonymous user to use a certificate in order to access certain parts of a web site.
The attack works by having the attacker simulate a client and connect to a server, with server-
only authentication, and send some data intended to cause harm. The server will then require
renegotiation from him in order to perform the request. When the proper client attempts to
contact the server, the attacker hijacks that connection and forwards traffic to the initial server
that requested renegotiation. The attacker will not be able to read the data exchanged between
the client and the server. However, the server will (incorrectly) assume that the initial request
sent by the attacker was sent by the now authenticated client. The result is a prefix plain-text
injection attack.

The above is just one example. Other vulnerabilities exists that do not rely on the TLS
renegotiation to change the client’s authenticated status (either TLS or application layer).

While fixing these application protocols and implementations would be one natural reaction,
an extension to TLS has been designed that cryptographically binds together any renegotiated
handshakes with the initial negotiation. When the extension is used, the attack is detected
and the session can be terminated. The extension is specified in [30].

GnuTLS supports the safe renegotiation extension. The default behavior is as follows. Clients
will attempt to negotiate the safe renegotiation extension when talking to servers. Servers
will accept the extension when presented by clients. Clients and servers will permit an initial
handshake to complete even when the other side does not support the safe renegotiation exten-
sion. Clients and servers will refuse renegotiation attempts when the extension has not been
negotiated.

Note that permitting clients to connect to servers when the safe renegotiation extension is not
enabled, is open up for attacks. Changing this default behavior would prevent interoperability
against the majority of deployed servers out there. We will reconsider this default behavior in
the future when more servers have been upgraded. Note that it is easy to configure clients to
always require the safe renegotiation extension from servers.

To modify the default behavior, we have introduced some new priority strings (see section 5.10).
The %UNSAFE RENEGOTIATION priority string permits (re-)handshakes even when the safe rene-

14

CHAPTER 2. INTRODUCTION TO TLS AND DTLS

gotiation extension was not negotiated. The default behavior is %PARTIAL RENEGOTIATION that
will prevent renegotiation with clients and servers not supporting the extension. This is secure
for servers but leaves clients vulnerable to some attacks, but this is a trade-off between security
and compatibility with old servers. The %SAFE RENEGOTIATION priority string makes clients
and servers require the extension for every handshake. The latter is the most secure option for
clients, at the cost of not being able to connect to legacy servers. Servers will also deny clients
that do not support the extension from connecting.

It is possible to disable use of the extension completely, in both clients and servers, by using the
%DISABLE SAFE RENEGOTIATION priority string however we strongly recommend you to only do
this for debugging and test purposes.

The default values if the flags above are not specified are:

• Server: %PARTIAL RENEGOTIATION

• Client: %PARTIAL RENEGOTIATION

For applications we have introduced a new API related to safe renegotiation. The gnutls -

safe renegotiation status function is used to check if the extension has been negotiated on
a session, and can be used both by clients and servers.

2.6.6. OCSP status request

The Online Certificate Status Protocol (OCSP) is a protocol that allows the client to verify the
server certificate for revocation without messing with certificate revocation lists. Its drawback
is that it requires the client to connect to the server’s CA OCSP server and request the status
of the certificate. This extension however, enables a TLS server to include its CA OCSP server
response in the handshake. That is an HTTPS server may periodically run ocsptool (see
subsection 3.2.6) to obtain its certificate revocation status and serve it to the clients. That
way a client avoids an additional connection to the OCSP server.

void gnutls certificate set ocsp status request function
(gnutls certificate credentials t sc, gnutls status request ocsp func ocsp func, void
* ptr)

int gnutls certificate set ocsp status request file (gnutls certificate credentials t
sc, const char * response file, unsigned int flags)

int gnutls ocsp status request enable client (gnutls session t session,
gnutls datum t * responder id, size t responder id size, gnutls datum t * ex-
tensions)

int gnutls ocsp status request is checked (gnutls session t session, unsigned int
flags)

A server is required to provide the OCSP server’s response using the gnutls certificate -

15

2.6. TLS EXTENSIONS

set ocsp status request file. The response may be obtained periodically using the follow-
ing command.

1 ocsptool --ask --load-cert server_cert.pem --load-issuer the_issuer.pem

2 --load-signer the_issuer.pem --outfile ocsp.response

Since version 3.1.3 GnuTLS clients transparently support the certificate status request.

2.6.7. SRTP

The TLS protocol was extended in [22] to provide keying material to the Secure RTP (SRTP)
protocol. The SRTP protocol provides an encapsulation of encrypted data that is optimized for
voice data. With the SRTP TLS extension two peers can negotiate keys using TLS or DTLS
and obtain keying material for use with SRTP. The available SRTP profiles are listed below.

enum gnutls srtp profile t:
GNUTLS SRTP AES128 CM HMAC -

SHA1 80

128 bit AES with a 80 bit HMAC-SHA1

GNUTLS SRTP AES128 CM HMAC -

SHA1 32

128 bit AES with a 32 bit HMAC-SHA1

GNUTLS SRTP NULL HMAC SHA1 80 NULL cipher with a 80 bit HMAC-SHA1

GNUTLS SRTP NULL HMAC SHA1 32 NULL cipher with a 32 bit HMAC-SHA1

Table 2.5.: Supported SRTP profiles

To enable use the following functions.

int gnutls srtp set profile (gnutls session t session, gnutls srtp profile t profile)

int gnutls srtp set profile direct (gnutls session t session, const char * profiles,
const char ** err pos)

To obtain the negotiated keys use the function below.

Other helper functions are listed below.

16

CHAPTER 2. INTRODUCTION TO TLS AND DTLS

int gnutls srtp get keys (gnutls session t session, void * key material, unsigned
int key material size, gnutls datum t * client key, gnutls datum t * client salt,
gnutls datum t * server key, gnutls datum t * server salt)

Description: This is a helper function to generate the keying material for SRTP. It

requires the space of the key material to be pre-allocated (should be at least 2x the

maximum key size and salt size). The client key, client salt, server key and server salt are

convenience datums that point inside the key material. They may be NULL.

Returns: On success the size of the key material is returned, otherwise, GNUTLS E -

SHORT MEMORY BUFFER if the buffer given is not sufficient, or a negative error

code. Since 3.1.4

int gnutls srtp get selected profile (gnutls session t session, gnutls srtp profile t *
profile)

const char * gnutls srtp get profile name (gnutls srtp profile t profile)

int gnutls srtp get profile id (const char * name, gnutls srtp profile t * profile)

2.6.8. Application Layer Protocol Negotiation (ALPN)

The TLS protocol was extended in RFC7301 to provide the application layer a method of
negotiating the application protocol version. This allows for negotiation of the application
protocol during the TLS handshake, thus reducing round-trips. The application protocol is
described by an opaque string. To enable, use the following functions.

int gnutls alpn set protocols (gnutls session t session, const gnutls datum t * pro-
tocols, unsigned protocols size, unsigned int flags)

int gnutls alpn get selected protocol (gnutls session t session, gnutls datum t *
protocol)

Note that these functions are intended to be used with protocols that are registered in the
Application Layer Protocol Negotiation IANA registry. While you can use them for other
protocols (at the risk of collisions), it is preferable to register them.

17

2.7. HOW TO USE TLS IN APPLICATION PROTOCOLS

2.6.9. Extensions and Supplemental Data

It is possible to transfer supplemental data during the TLS handshake, following [34]. This is
for ”custom” protocol modifications for applications which may want to transfer additional data
(e.g. additional authentication messages). Such an exchange requires a custom extension to
be registered. The provided API for this functionality is low-level and described in section 8.4.

2.7. How to use TLS in application protocols

This chapter is intended to provide some hints on how to use TLS over simple custom made
application protocols. The discussion below mainly refers to the TCP/IP transport layer but
may be extended to other ones too.

2.7.1. Separate ports

Traditionally SSL was used in application protocols by assigning a new port number for the
secure services. By doing this two separate ports were assigned, one for the non-secure sessions,
and one for the secure sessions. This method ensures that if a user requests a secure session
then the client will attempt to connect to the secure port and fail otherwise. The only possible
attack with this method is to perform a denial of service attack. The most famous example of
this method is “HTTP over TLS” or HTTPS protocol [28].

Despite its wide use, this method has several issues. This approach starts the TLS Handshake
procedure just after the client connects on the —so called— secure port. That way the TLS
protocol does not know anything about the client, and popular methods like the host advertising
in HTTP do not work4. There is no way for the client to say “I connected to YYY server”
before the Handshake starts, so the server cannot possibly know which certificate to use.

Other than that it requires two separate ports to run a single service, which is unnecessary
complication. Due to the fact that there is a limitation on the available privileged ports, this
approach was soon deprecated in favor of upward negotiation.

2.7.2. Upward negotiation

Other application protocols5 use a different approach to enable the secure layer. They use
something often called as the “TLS upgrade” method. This method is quite tricky but it is
more flexible. The idea is to extend the application protocol to have a “STARTTLS” request,
whose purpose it to start the TLS protocols just after the client requests it. This approach
does not require any extra port to be reserved. There is even an extension to HTTP protocol
to support this method [17].

4See also the Server Name Indication extension on subsection 2.6.2.
5See LDAP, IMAP etc.

18

CHAPTER 2. INTRODUCTION TO TLS AND DTLS

The tricky part, in this method, is that the “STARTTLS” request is sent in the clear, thus
is vulnerable to modifications. A typical attack is to modify the messages in a way that the
client is fooled and thinks that the server does not have the “STARTTLS” capability. See a
typical conversation of a hypothetical protocol:

(client connects to the server)

CLIENT: HELLO I’M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

SERVER: OK

*** TLS STARTS

CLIENT: HERE ARE SOME CONFIDENTIAL DATA

And an example of a conversation where someone is acting in between:

(client connects to the server)

CLIENT: HELLO I’M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

(here someone inserts this message)

SERVER: SORRY I DON’T HAVE THIS CAPABILITY

CLIENT: HERE ARE SOME CONFIDENTIAL DATA

As you can see above the client was fooled, and was näıve enough to send the confidential data
in the clear, despite the server telling the client that it does not support “STARTTLS”.

How do we avoid the above attack? As you may have already noticed this situation is easy to
avoid. The client has to ask the user before it connects whether the user requests TLS or not.
If the user answered that he certainly wants the secure layer the last conversation should be:

(client connects to the server)

CLIENT: HELLO I’M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

(here someone inserts this message)

SERVER: SORRY I DON’T HAVE THIS CAPABILITY

CLIENT: BYE

(the client notifies the user that the secure connection was not possible)

19

2.8. ON SSL 2 AND OLDER PROTOCOLS

This method, if implemented properly, is far better than the traditional method, and the
security properties remain the same, since only denial of service is possible. The benefit is that
the server may request additional data before the TLS Handshake protocol starts, in order to
send the correct certificate, use the correct password file, or anything else!

2.8. On SSL 2 and older protocols

One of the initial decisions in the GnuTLS development was to implement the known security
protocols for the transport layer. Initially TLS 1.0 was implemented since it was the latest at
that time, and was considered to be the most advanced in security properties. Later the SSL
3.0 protocol was implemented since it is still the only protocol supported by several servers
and there are no serious security vulnerabilities known.

One question that may arise is why we didn’t implement SSL 2.0 in the library. There are
several reasons, most important being that it has serious security flaws, unacceptable for a
modern security library. Other than that, this protocol is barely used by anyone these days
since it has been deprecated since 1996. The security problems in SSL 2.0 include:

• Message integrity compromised. The SSLv2 message authentication uses the MD5 func-
tion, and is insecure.

• Man-in-the-middle attack. There is no protection of the handshake in SSLv2, which
permits a man-in-the-middle attack.

• Truncation attack. SSLv2 relies on TCP FIN to close the session, so the attacker can
forge a TCP FIN, and the peer cannot tell if it was a legitimate end of data or not.

• Weak message integrity for export ciphers. The cryptographic keys in SSLv2 are used
for both message authentication and encryption, so if weak encryption schemes are nego-
tiated (say 40-bit keys) the message authentication code uses the same weak key, which
isn’t necessary.

Other protocols such as Microsoft’s PCT 1 and PCT 2 were not implemented because they
were also abandoned and deprecated by SSL 3.0 and later TLS 1.0.

20

3
Authentication methods

The initial key exchange of the TLS protocol performs authentication of the peers. In typical
scenarios the server is authenticated to the client, and optionally the client to the server.

While many associate TLS with X.509 certificates and public key authentication, the protocol
supports various authentication methods, including pre-shared keys, and passwords. In this
chapter a description of the existing authentication methods is provided, as well as some
guidance on which use-cases each method can be used at.

3.1. Certificate authentication

The most known authentication method of TLS are certificates. The PKIX [16] public key
infrastructure is daily used by anyone using a browser today. GnuTLS supports both X.509
certificates [16] and OpenPGP certificates using a common API.

The key exchange algorithms supported by certificate authentication are shown in Table 3.1.

3.1.1. X.509 certificates

The X.509 protocols rely on a hierarchical trust model. In this trust model Certification
Authorities (CAs) are used to certify entities. Usually more than one certification authorities
exist, and certification authorities may certify other authorities to issue certificates as well,
following a hierarchical model.

One needs to trust one or more CAs for his secure communications. In that case only the
certificates issued by the trusted authorities are acceptable. The framework is illustrated on
Figure 3.1.

X.509 certificate structure

An X.509 certificate usually contains information about the certificate holder, the signer, a
unique serial number, expiration dates and some other fields [16] as shown in Table 3.2.

The certificate’s subject or issuer name is not just a single string. It is a Distinguished name
and in the ASN.1 notation is a sequence of several object identifiers with their corresponding

21

3.1. CERTIFICATE AUTHENTICATION

Key exchange Description

RSA The RSA algorithm is used to encrypt a key and send it to the
peer. The certificate must allow the key to be used for encryption.

DHE RSA The RSA algorithm is used to sign ephemeral Diffie-Hellman pa-
rameters which are sent to the peer. The key in the certificate
must allow the key to be used for signing. Note that key exchange
algorithms which use ephemeral Diffie-Hellman parameters, offer
perfect forward secrecy. That means that even if the private key
used for signing is compromised, it cannot be used to reveal past
session data.

ECDHE RSA The RSA algorithm is used to sign ephemeral elliptic curve Diffie-
Hellman parameters which are sent to the peer. The key in the
certificate must allow the key to be used for signing. It also offers
perfect forward secrecy. That means that even if the private key
used for signing is compromised, it cannot be used to reveal past
session data.

DHE DSS The DSA algorithm is used to sign ephemeral Diffie-Hellman pa-
rameters which are sent to the peer. The certificate must contain
DSA parameters to use this key exchange algorithm. DSA is the
algorithm of the Digital Signature Standard (DSS).

ECDHE ECDSA The Elliptic curve DSA algorithm is used to sign ephemeral elliptic
curve Diffie-Hellman parameters which are sent to the peer. The
certificate must contain ECDSA parameters (i.e., EC and marked
for signing) to use this key exchange algorithm.

Table 3.1.: Supported key exchange algorithms.

Field Description

version The field that indicates the version of the certificate.
serialNumber This field holds a unique serial number per certificate.
signature The issuing authority’s signature.
issuer Holds the issuer’s distinguished name.
validity The activation and expiration dates.
subject The subject’s distinguished name of the certificate.
extensions The extensions are fields only present in version 3 certificates.

Table 3.2.: X.509 certificate fields.

22

CHAPTER 3. AUTHENTICATION METHODS

Alice Bob

Root CA

CA I CA II

Web Server

Figure 3.1.: An example of the X.509 hierarchical trust model.

values. Some of available OIDs to be used in an X.509 distinguished name are defined in
“gnutls/x509.h”.

The Version field in a certificate has values either 1 or 3 for version 3 certificates. Version 1
certificates do not support the extensions field so it is not possible to distinguish a CA from a
person, thus their usage should be avoided.

The validity dates are there to indicate the date that the specific certificate was activated and
the date the certificate’s key would be considered invalid.

In GnuTLS the X.509 certificate structures are handled using the gnutls x509 crt t type
and the corresponding private keys with the gnutls x509 privkey t type. All the available
functions for X.509 certificate handling have their prototypes in “gnutls/x509.h”. An example
program to demonstrate the X.509 parsing capabilities can be found in subsection 6.4.2.

Importing an X.509 certificate

The certificate structure should be initialized using gnutls x509 crt init, and a certificate
structure can be imported using gnutls x509 crt import.

23

3.1. CERTIFICATE AUTHENTICATION

int gnutls x509 crt init (gnutls x509 crt t * cert)

int gnutls x509 crt import (gnutls x509 crt t cert, const gnutls datum t * data,
gnutls x509 crt fmt t format)

void gnutls x509 crt deinit (gnutls x509 crt t cert)

In several functions an array of certificates is required. To assist in initialization and import
the following two functions are provided.

int gnutls x509 crt list import (gnutls x509 crt t * certs, unsigned int *
cert max, const gnutls datum t * data, gnutls x509 crt fmt t format, unsigned
int flags)

int gnutls x509 crt list import2 (gnutls x509 crt t ** certs, unsigned int * size,
const gnutls datum t * data, gnutls x509 crt fmt t format, unsigned int flags)

In all cases after use a certificate must be deinitialized using gnutls x509 crt deinit. Note
that although the functions above apply to gnutls x509 crt t structure, similar functions
exist for the CRL structure gnutls x509 crl t.

X.509 certificate names

X.509 certificates allow for multiple names and types of names to be specified. CA certificates
often rely on X.509 distinguished names (see section 3.1.1) for unique identification, while end-
user and server certificates rely on the ’subject alternative names’. The subject alternative
names provide a typed name, e.g., a DNS name, or an email address, which identifies the
owner of the certificate. The following functions provide access to that names.

int gnutls x509 crt get subject alt name2 (gnutls x509 crt t cert, unsigned
int seq, void * san, size t * san size, unsigned int * san type, unsigned int *
critical)

int gnutls x509 crt set subject alt name (gnutls x509 crt t crt,
gnutls x509 subject alt name t type, const void * data, unsigned int data size,
unsigned int flags)

24

CHAPTER 3. AUTHENTICATION METHODS

int gnutls subject alt names init (gnutls subject alt names t * sans)

int gnutls subject alt names get (gnutls subject alt names t sans, unsigned int
seq, unsigned int * san type, gnutls datum t * san, gnutls datum t * other-
name oid)

int gnutls subject alt names set (gnutls subject alt names t sans, unsigned int
san type, const gnutls datum t * san, const char * othername oid)

Note however, that server certificates often used the Common Name (CN), part of the certificate
DistinguishedName to place a single DNS address. That practice is discouraged (see [32]),
because only a single address can be specified, and the CN field is free-form making matching
ambiguous.

X.509 distinguished names

The “subject” of an X.509 certificate is not described by a single name, but rather with a
distinguished name. This in X.509 terminology is a list of strings each associated an object
identifier. To make things simple GnuTLS provides gnutls x509 crt get dn2 which follows
the rules in [41] and returns a single string. Access to each string by individual object identifiers
can be accessed using gnutls x509 crt get dn by oid.

int gnutls x509 crt get dn2 (gnutls x509 crt t cert, gnutls datum t * dn)

Description: This function will allocate buffer and copy the name of the Certificate.

The name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC4514. The output

string will be ASCII or UTF-8 encoded, depending on the certificate data.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls x509 crt get dn (gnutls x509 crt t cert, char * buf, size t * buf size)

int gnutls x509 crt get dn by oid (gnutls x509 crt t cert, const char * oid, int
indx, unsigned int raw flag, void * buf, size t * buf size)

int gnutls x509 crt get dn oid (gnutls x509 crt t cert, int indx, void * oid,
size t * oid size)

25

3.1. CERTIFICATE AUTHENTICATION

Similar functions exist to access the distinguished name of the issuer of the certificate.

int gnutls x509 crt get issuer dn (gnutls x509 crt t cert, char * buf, size t *
buf size)

int gnutls x509 crt get issuer dn2 (gnutls x509 crt t cert, gnutls datum t * dn)

int gnutls x509 crt get issuer dn by oid (gnutls x509 crt t cert, const char *
oid, int indx, unsigned int raw flag, void * buf, size t * buf size)

int gnutls x509 crt get issuer dn oid (gnutls x509 crt t cert, int indx, void *
oid, size t * oid size)

int gnutls x509 crt get issuer (gnutls x509 crt t cert, gnutls x509 dn t * dn)

The more powerful gnutls x509 crt get subject and gnutls x509 dn get rdn ava provide
efficient but low-level access to the contents of the distinguished name structure.

int gnutls x509 crt get subject (gnutls x509 crt t cert, gnutls x509 dn t * dn)

int gnutls x509 crt get issuer (gnutls x509 crt t cert, gnutls x509 dn t * dn)

int gnutls x509 dn get rdn ava (gnutls x509 dn t dn, int irdn, int iava,
gnutls x509 ava st * ava)

Description: Get pointers to data within the DN. The format of the ava structure is

shown below. struct gnutls x509 ava st gnutls datum t oid; gnutls datum t value; unsigned

long value tag; ; The X.509 distinguished name is a sequence of sequences of strings and

this is what the irdn and iava indexes model. Note that ava will contain pointers into the

dn structure which in turns points to the original certificate. Thus you should not modify

any data or deallocate any of those. This is a low-level function that requires the caller

to do the value conversions when necessary (e.g. from UCS-2).

Returns: Returns 0 on success, or an error code.

26

CHAPTER 3. AUTHENTICATION METHODS

X.509 extensions

X.509 version 3 certificates include a list of extensions that can be used to obtain additional
information on the subject or the issuer of the certificate. Those may be e-mail addresses, flags
that indicate whether the belongs to a CA etc. All the supported X.509 version 3 extensions
are shown in Table 3.3.

The certificate extensions access is split into two parts. The first requires to retrieve the
extension, and the second is the parsing part.

To enumerate and retrieve the DER-encoded extension data available in a certificate the fol-
lowing two functions are available.

int gnutls x509 crt get extension info (gnutls x509 crt t cert, int indx, void *
oid, size t * oid size, unsigned int * critical)

int gnutls x509 crt get extension data2 (gnutls x509 crt t cert, unsigned indx,
gnutls datum t * data)

int gnutls x509 crt get extension by oid2 (gnutls x509 crt t cert, const char *
oid, int indx, gnutls datum t * output, unsigned int * critical)

After a supported DER-encoded extension is retrieved it can be parsed using the APIs in
x509-ext.h. Complex extensions may require initializing an intermediate structure that holds
the parsed extension data. Examples of simple parsing functions are shown below.

int gnutls x509 ext import basic constraints (const gnutls datum t * ext, un-
signed int * ca, int * pathlen)

int gnutls x509 ext export basic constraints (unsigned int ca, int pathlen,
gnutls datum t * ext)

int gnutls x509 ext import key usage (const gnutls datum t * ext, unsigned int *
key usage)

int gnutls x509 ext export key usage (unsigned int usage, gnutls datum t * ext)

More complex extensions, such as Name Constraints, require an intermediate structure, in that
case gnutls x509 name constraints t to be initialized in order to store the parsed extension
data.

27

3.1. CERTIFICATE AUTHENTICATION

int gnutls x509 ext import name constraints (const gnutls datum t * ext,
gnutls x509 name constraints t nc, unsigned int flags)

int gnutls x509 ext export name constraints (gnutls x509 name constraints t nc,
gnutls datum t * ext)

After the name constraints are extracted in the structure, the following functions can be used
to access them.

int gnutls x509 name constraints get permitted (gnutls x509 name constraints t
nc, unsigned idx, unsigned * type, gnutls datum t * name)

int gnutls x509 name constraints get excluded (gnutls x509 name constraints t
nc, unsigned idx, unsigned * type, gnutls datum t * name)

int gnutls x509 name constraints add permitted (gnutls x509 name constraints t
nc, gnutls x509 subject alt name t type, const gnutls datum t * name)

int gnutls x509 name constraints add excluded (gnutls x509 name constraints t
nc, gnutls x509 subject alt name t type, const gnutls datum t * name)

unsigned gnutls x509 name constraints check (gnutls x509 name constraints t nc,
gnutls x509 subject alt name t type, const gnutls datum t * name)

unsigned gnutls x509 name constraints check crt (gnutls x509 name constraints t
nc, gnutls x509 subject alt name t type, gnutls x509 crt t cert)

Other utility functions are listed below.

int gnutls x509 name constraints init (gnutls x509 name constraints t * nc)

void gnutls x509 name constraints deinit (gnutls x509 name constraints t nc)

Similar functions exist for all of the other supported extensions, listed in Table 3.3.

Note, that there are also direct APIs to access extensions that may be simpler to use for
non-complex extensions. They are available in x509.h and some examples are listed below.

28

CHAPTER 3. AUTHENTICATION METHODS

Extension OID Description

Subject key id 2.5.29.14 An identifier of the key of the subject.
Key usage 2.5.29.15 Constraints the key’s usage of the cer-

tificate.
Private key usage period 2.5.29.16 Constraints the validity time of the

private key.
Subject alternative name 2.5.29.17 Alternative names to subject’s distin-

guished name.
Issuer alternative name 2.5.29.18 Alternative names to the issuer’s dis-

tinguished name.
Basic constraints 2.5.29.19 Indicates whether this is a CA certifi-

cate or not, and specify the maximum
path lengths of certificate chains.

Name constraints 2.5.29.30 A field in CA certificates that restricts
the scope of the name of issued certifi-
cates.

CRL distribution points 2.5.29.31 This extension is set by the CA, in or-
der to inform about the issued CRLs.

Certificate policy 2.5.29.32 This extension is set to indicate the
certificate policy as object identifier
and may contain a descriptive string
or URL.

Authority key identifier 2.5.29.35 An identifier of the key of the issuer
of the certificate. That is used to dis-
tinguish between different keys of the
same issuer.

Extended key usage 2.5.29.37 Constraints the purpose of the certifi-
cate.

Authority information ac-
cess

1.3.6.1.5.5.7.1.1 Information on services by the issuer
of the certificate.

Proxy Certification Informa-
tion

1.3.6.1.5.5.7.1.14 Proxy Certificates includes this ex-
tension that contains the OID of
the proxy policy language used, and
can specify limits on the maximum
lengths of proxy chains. Proxy Cer-
tificates are specified in [37].

Table 3.3.: Supported X.509 certificate extensions.

29

3.1. CERTIFICATE AUTHENTICATION

int gnutls x509 crt get basic constraints (gnutls x509 crt t cert, unsigned int *
critical, unsigned int * ca, int * pathlen)

int gnutls x509 crt set basic constraints (gnutls x509 crt t crt, unsigned int ca,
int pathLenConstraint)

int gnutls x509 crt get key usage (gnutls x509 crt t cert, unsigned int *
key usage, unsigned int * critical)

int gnutls x509 crt set key usage (gnutls x509 crt t crt, unsigned int usage)

Accessing public and private keys

Each X.509 certificate contains a public key that corresponds to a private key. To get a
unique identifier of the public key the gnutls x509 crt get key id function is provided. To
export the public key or its parameters you may need to convert the X.509 structure to a
gnutls pubkey t. See subsection 4.1.1 for more information.

int gnutls x509 crt get key id (gnutls x509 crt t crt, unsigned int flags, unsigned
char * output data, size t * output data size)

Description: This function will return a unique ID that depends on the public key

parameters. This ID can be used in checking whether a certificate corresponds to the

given private key. If the buffer provided is not long enough to hold the output, then

*output data size is updated and GNUTLS E SHORT MEMORY BUFFER will be returned. The output

will normally be a SHA-1 hash output, which is 20 bytes.

Returns: In case of failure a negative error code will be returned, and 0 on success.

The private key parameters may be directly accessed by using one of the following functions.

30

CHAPTER 3. AUTHENTICATION METHODS

int gnutls x509 privkey get pk algorithm2 (gnutls x509 privkey t key, unsigned
int * bits)

int gnutls x509 privkey export rsa raw2 (gnutls x509 privkey t key,
gnutls datum t * m, gnutls datum t * e, gnutls datum t * d, gnutls datum t *
p, gnutls datum t * q, gnutls datum t * u, gnutls datum t * e1, gnutls datum t *
e2)

int gnutls x509 privkey export ecc raw (gnutls x509 privkey t key,
gnutls ecc curve t * curve, gnutls datum t * x, gnutls datum t * y, gnutls datum t *
k)

int gnutls x509 privkey export dsa raw (gnutls x509 privkey t key,
gnutls datum t * p, gnutls datum t * q, gnutls datum t * g, gnutls datum t * y,
gnutls datum t * x)

int gnutls x509 privkey get key id (gnutls x509 privkey t key, unsigned int flags,
unsigned char * output data, size t * output data size)

Verifying X.509 certificate paths

Verifying certificate paths is important in X.509 authentication. For this purpose the following
functions are provided.

int gnutls x509 trust list add cas (gnutls x509 trust list t list, const
gnutls x509 crt t * clist, unsigned clist size, unsigned int flags)

Description: This function will add the given certificate authorities to the trusted

list. The list of CAs must not be deinitialized during this structure’s lifetime. If the

flag GNUTLS TL NO DUPLICATES is specified, then the provided clist entries that

are duplicates will not be added to the list and will be deinitialized.

Returns: The number of added elements is returned.

The verification function will verify a given certificate chain against a list of certificate author-
ities and certificate revocation lists, and output a bit-wise OR of elements of the gnutls -

certificate status t enumeration shown in Table 3.4. The GNUTLS CERT INVALID flag is
always set on a verification error and more detailed flags will also be set when appropriate.

An example of certificate verification is shown in subsection 6.1.7. It is also possible to have a
set of certificates that are trusted for a particular server but not to authorize other certificates.
This purpose is served by the functions gnutls x509 trust list add named crt and gnutls -

x509 trust list verify named crt.

31

3.1. CERTIFICATE AUTHENTICATION

int gnutls x509 trust list add named crt (gnutls x509 trust list t list,
gnutls x509 crt t cert, const void * name, size t name size, unsigned int flags)

Description: This function will add the given certificate to the trusted list and

associate it with a name. The certificate will not be be used for verification with

gnutls x509 trust list verify crt() but with gnutls x509 trust list verify named crt() or

gnutls x509 trust list verify crt2() - the latter only since GnuTLS 3.4.0 and if a hostname

is provided. In principle this function can be used to set individual "server" certificates

that are trusted by the user for that specific server but for no other purposes. The

certificate must not be deinitialized during the lifetime of the trusted list.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls x509 trust list add crls (gnutls x509 trust list t list, const
gnutls x509 crl t * crl list, int crl size, unsigned int flags, unsigned int verifi-
cation flags)

Description: This function will add the given certificate revocation lists to the

trusted list. The list of CRLs must not be deinitialized during this structure’s lifetime.

This function must be called after gnutls x509 trust list add cas() to allow verifying

the CRLs for validity. If the flag GNUTLS TL NO DUPLICATES is given, then any

provided CRLs that are a duplicate, will be deinitialized and not added to the list (that

assumes that gnutls x509 trust list deinit() will be called with all=1).

Returns: The number of added elements is returned.

int gnutls x509 trust list verify crt (gnutls x509 trust list t list, gnutls x509 crt t
* cert list, unsigned int cert list size, unsigned int flags, unsigned int * voutput,
gnutls verify output function func)

Description: This function will try to verify the given certificate and return its

status. The voutput parameter will hold an OR’ed sequence of gnutls certificate status t

flags. The details of the verification are the same as in gnutls x509 trust list verify -

crt2().

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

32

CHAPTER 3. AUTHENTICATION METHODS

int gnutls x509 trust list verify crt2 (gnutls x509 trust list t list, gnutls x509 crt t
* cert list, unsigned int cert list size, gnutls typed vdata st * data, unsigned int
elements, unsigned int flags, unsigned int * voutput, gnutls verify output function
func)

Description: This function will attempt to verify the given certificate and return

its status. The voutput parameter will hold an OR’ed sequence of gnutls certificate -

status t flags. When a chain of cert list size with more than one certificates is provided,

the verification status will apply to the first certificate in the chain that failed

verification. The verification process starts from the end of the chain (from CA to end

certificate). Additionally a certificate verification profile can be specified from the

ones in gnutls certificate verification profiles t by ORing the result of GNUTLS PROFILE -

TO VFLAGS() to the verification flags. The acceptable data types are GNUTLS DT -

DNS HOSTNAME and GNUTLS DT KEY PURPOSE OID. The former accepts as data

a null-terminated hostname, and the latter a null-terminated object identifier (e.g.,

GNUTLS KP TLS WWW SERVER). If a DNS hostname is provided then this function

will compare the hostname in the certificate against the given. If names do not match the

GNUTLS CERT UNEXPECTED OWNER status flag will be set. In addition it will

consider certificates provided with gnutls x509 trust list add named crt(). If a key purpose

OID is provided and the end-certificate contains the extended key usage PKIX extension,

it will be required to match the provided OID or be marked for any purpose, otherwise

verification will fail with GNUTLS CERT PURPOSE MISMATCH status.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value. Note that verification failure will not result to an error code, only voutput will

be updated.

int gnutls x509 trust list verify named crt (gnutls x509 trust list t list,
gnutls x509 crt t cert, const void * name, size t name size, unsigned int flags,
unsigned int * voutput, gnutls verify output function func)

Description: This function will try to find a certificate that is associated with

the provided name --see gnutls x509 trust list add named crt(). If a match is found the

certificate is considered valid. In addition to that this function will also check CRLs.

The voutput parameter will hold an OR’ed sequence of gnutls certificate status t flags.

Additionally a certificate verification profile can be specified from the ones in gnutls -

certificate verification profiles t by ORing the result of GNUTLS PROFILE TO VFLAGS() to the

verification flags.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

33

3.1. CERTIFICATE AUTHENTICATION

int gnutls x509 trust list add trust file (gnutls x509 trust list t list, const char *
ca file, const char * crl file, gnutls x509 crt fmt t type, unsigned int tl flags, un-
signed int tl vflags)

Description: This function will add the given certificate authorities to the trusted

list. PKCS #11 URLs are also accepted, instead of files, by this function. A PKCS #11 URL

implies a trust database (a specially marked module in p11-kit); the URL "pkcs11:" implies

all trust databases in the system. Only a single URL specifying trust databases can be set;

they cannot be stacked with multiple calls.

Returns: The number of added elements is returned.

int gnutls x509 trust list add trust mem (gnutls x509 trust list t list, const
gnutls datum t * cas, const gnutls datum t * crls, gnutls x509 crt fmt t type, un-
signed int tl flags, unsigned int tl vflags)

Description: This function will add the given certificate authorities to the trusted

list.

Returns: The number of added elements is returned.

Verifying a certificate in the context of TLS session

When operating in the context of a TLS session, the trusted certificate authority list may also
be set using:

int gnutls x509 trust list add system trust (gnutls x509 trust list t list, unsigned
int tl flags, unsigned int tl vflags)

Description: This function adds the system’s default trusted certificate authorities

to the trusted list. Note that on unsupported systems this function returns GNUTLS -

E UNIMPLEMENTED FEATURE. This function implies the flag GNUTLS TL NO -

DUPLICATES.

Returns: The number of added elements or a negative error code on error.

34

CHAPTER 3. AUTHENTICATION METHODS

int gnutls certificate set x509 trust file (gnutls certificate credentials t cred,
const char * cafile, gnutls x509 crt fmt t type)

int gnutls certificate set x509 trust dir (gnutls certificate credentials t cred,
const char * ca dir, gnutls x509 crt fmt t type)

int gnutls certificate set x509 crl file (gnutls certificate credentials t res, const
char * crlfile, gnutls x509 crt fmt t type)

int gnutls certificate set x509 system trust (gnutls certificate credentials t cred)

These functions allow the specification of the trusted certificate authorities, either via a file,
a directory or use the system-specified certificate authorities. Unless the authorities are ap-
plication specific, it is generally recommended to use the system trust storage (see gnutls -

certificate set x509 system trust).

Unlike the previous section it is not required to setup a trusted list, and there are two ap-
proaches to verify the peer’s certificate and identity. The recommended in GnuTLS 3.5.0 and
later is via the gnutls session set verify cert, but for older GnuTLS versions you may
use an explicit callback set via gnutls certificate set verify function and then utilize
gnutls certificate verify peers3 for verification. The reported verification status is iden-
tical to the verification functions described in the previous section.

Note that in certain cases it is required to check the marked purpose of the end certificate (e.g.
GNUTLS KP TLS WWW SERVER); in these cases the more advanced gnutls session set verify -

cert2 and gnutls certificate verify peers should be used instead.

There is also the possibility to pass some input to the verification functions in the form of flags.
For gnutls x509 trust list verify crt2 the flags are passed directly, but for gnutls -

certificate verify peers3, the flags are set using gnutls certificate set verify flags.
All the available flags are part of the enumeration gnutls certificate verify flags shown
in Table 3.5.

Verifying a certificate using PKCS #11

Some systems provide a system wide trusted certificate storage accessible using the PKCS #11
API. That is, the trusted certificates are queried and accessed using the PKCS #11 API, and
trusted certificate properties, such as purpose, are marked using attached extensions. One
example is the p11-kit trust module1.

These special PKCS #11 modules can be used for GnuTLS certificate verification if marked
as trust policy modules, i.e., with trust-policy: yes in the p11-kit module file. The way

1see http://p11-glue.freedesktop.org/trust-module.html.

35

http://p11-glue.freedesktop.org/trust-module.html

3.1. CERTIFICATE AUTHENTICATION

to use them is by specifying to the file verification function (e.g., gnutls certificate set -

x509 trust file), a pkcs11 URL, or simply pkcs11: to use all the marked with trust policy
modules.

The trust modules of p11-kit assign a purpose to trusted authorities using the extended key
usage object identifiers. The common purposes are shown in Table 3.6. Note that typically
according to [8] the extended key usage object identifiers apply to end certificates. Their
application to CA certificates is an extension used by the trust modules.

With such modules, it is recommended to use the verification functions gnutls x509 trust -

list verify crt2, or gnutls certificate verify peers, which allow to explicitly specify
the key purpose. The other verification functions which do not allow setting a purpose, would
operate as if GNUTLS KP TLS WWW SERVER was requested from the trusted authorities.

3.1.2. OpenPGP certificates

The OpenPGP key authentication relies on a distributed trust model, called the “web of trust”.
The “web of trust” uses a decentralized system of trusted introducers, which are the same as a
CA. OpenPGP allows anyone to sign anyone else’s public key. When Alice signs Bob’s key, she
is introducing Bob’s key to anyone who trusts Alice. If someone trusts Alice to introduce keys,
then Alice is a trusted introducer in the mind of that observer. For example in Figure 3.2,
David trusts Alice to be an introducer and Alice signed Bob’s key thus Dave trusts Bob’s key
to be the real one.

Alice

Bob

Dave

{Trust}

Charlie

Kevin

{Trust}

Figure 3.2.: An example of the OpenPGP trust model.

There are some key points that are important in that model. In the example Alice has to sign
Bob’s key, only if she is sure that the key belongs to Bob. Otherwise she may also make Dave
falsely believe that this is Bob’s key. Dave has also the responsibility to know who to trust.
This model is similar to real life relations.

36

CHAPTER 3. AUTHENTICATION METHODS

Just see how Charlie behaves in the previous example. Although he has signed Bob’s key -
because he knows, somehow, that it belongs to Bob - he does not trust Bob to be an introducer.
Charlie decided to trust only Kevin, for some reason. A reason could be that Bob is lazy enough,
and signs other people’s keys without being sure that they belong to the actual owner.

OpenPGP certificate structure

In GnuTLS the OpenPGP certificate structures [7] are handled using the gnutls openpgp crt t

type. A typical certificate contains the user ID, which is an RFC 2822 mail and name address,
a public key, possibly a number of additional public keys (called subkeys), and a number of
signatures. The various fields are shown in Table 3.7.

The additional subkeys may provide key for various different purposes, e.g. one key to encrypt
mail, and another to sign a TLS key exchange. Each subkey is identified by a unique key
ID. The keys that are to be used in a TLS key exchange that requires signatures are called
authentication keys in the OpenPGP jargon. The mapping of TLS key exchange methods to
public keys is shown in Table 3.8.

The corresponding private keys are stored in the gnutls openpgp privkey t type. All the
prototypes for the key handling functions can be found in “gnutls/openpgp.h”.

Verifying an OpenPGP certificate

The verification functions of OpenPGP keys, included in GnuTLS, are simple ones, and do not
use the features of the “web of trust”. For that reason, if the verification needs are complex,
the assistance of external tools like GnuPG and GPGME2 is recommended.

In GnuTLS there is a verification function for OpenPGP certificates, the gnutls openpgp -

crt verify ring. This checks an OpenPGP key against a given set of public keys (keyring)
and returns the key status. The key verification status is the same as in X.509 certificates,
although the meaning and interpretation are different. For example an OpenPGP key may be
valid, if the self signature is ok, even if no signers were found. The meaning of verification
status flags is the same as in the X.509 certificates (see Table 3.5).

Verifying a certificate in the context of a TLS session

Similarly with X.509 certificates, one needs to specify the OpenPGP keyring file in the creden-
tials structure. The certificates in this file will be used by gnutls certificate verify peers3

to verify the signatures in the certificate sent by the peer.

2http://www.gnupg.org/related_software/gpgme/

37

http://www.gnupg.org/related_software/gpgme/

3.1. CERTIFICATE AUTHENTICATION

int gnutls openpgp crt verify ring (gnutls openpgp crt t key,
gnutls openpgp keyring t keyring, unsigned int flags, unsigned int * verify)

Description: Verify all signatures in the key, using the given set of keys (keyring).

The key verification output will be put in verify and will be one or more of the gnutls -

certificate status t enumerated elements bitwise or’d. Note that this function does not verify

using any "web of trust". You may use GnuPG for that purpose, or any other external PGP

application.

Returns: GNUTLS E SUCCESS on success, or an error code.

int gnutls openpgp crt verify self (gnutls openpgp crt t key, unsigned int flags,
unsigned int * verify)

Description: Verifies the self signature in the key. The key verification output will

be put in verify and will be one or more of the gnutls certificate status t enumerated

elements bitwise or’d.

Returns: GNUTLS E SUCCESS on success, or an error code.

3.1.3. Advanced certificate verification

The verification of X.509 certificates in the HTTPS and other Internet protocols is typically
done by loading a trusted list of commercial Certificate Authorities (see gnutls certificate -

set x509 system trust), and using them as trusted anchors. However, there are several ex-
amples (eg. the Diginotar incident) where one of these authorities was compromised. This risk
can be mitigated by using in addition to CA certificate verification, other verification methods.
In this section we list the available in GnuTLS methods.

int gnutls certificate set openpgp keyring file (gnutls certificate credentials t c,
const char * file, gnutls openpgp crt fmt t format)

Description: The function is used to set keyrings that will be used internally by

various OpenPGP functions. For example to find a key when it is needed for an operations.

The keyring will also be used at the verification functions.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

38

CHAPTER 3. AUTHENTICATION METHODS

Verifying a certificate using trust on first use authentication

It is possible to use a trust on first use (TOFU) authentication method in GnuTLS. That is the
concept used by the SSH programs, where the public key of the peer is not verified, or verified
in an out-of-bound way, but subsequent connections to the same peer require the public key to
remain the same. Such a system in combination with the typical CA verification of a certificate,
and OCSP revocation checks, can help to provide multiple factor verification, where a single
point of failure is not enough to compromise the system. For example a server compromise
may be detected using OCSP, and a CA compromise can be detected using the trust on first
use method. Such a hybrid system with X.509 and trust on first use authentication is shown
in subsection 6.1.2.

See subsection 5.12.2 on how to use the available functionality.

Verifying a certificate using DANE (DNSSEC)

The DANE protocol is a protocol that can be used to verify TLS certificates using the DNS (or
better DNSSEC) protocols. The DNS security extensions (DNSSEC) provide an alternative
public key infrastructure to the commercial CAs that are typically used to sign TLS certificates.
The DANE protocol takes advantage of the DNSSEC infrastructure to verify TLS certificates.
This can be in addition to the verification by CA infrastructure or may even replace it where
DNSSEC is fully deployed. Note however, that DNSSEC deployment is fairly new and it would
be better to use it as an additional verification method rather than the only one.

The DANE functionality is provided by the libgnutls-dane library that is shipped with
GnuTLS and the function prototypes are in gnutls/dane.h. See subsection 5.12.2 for infor-
mation on how to use the library.

Note however, that the DANE RFC mandates the verification methods one should use in ad-
dition to the validation via DNSSEC TLSA entries. GnuTLS doesn’t follow that RFC require-
ment, and the term DANE verification in this manual refers to the TLSA entry verification. In
GnuTLS any other verification methods can be used (e.g., PKIX or TOFU) on top of DANE.

3.1.4. Digital signatures

In this section we will provide some information about digital signatures, how they work, and
give the rationale for disabling some of the algorithms used.

Digital signatures work by using somebody’s secret key to sign some arbitrary data. Then
anybody else could use the public key of that person to verify the signature. Since the data
may be arbitrary it is not suitable input to a cryptographic digital signature algorithm. For
this reason and also for performance cryptographic hash algorithms are used to preprocess the
input to the signature algorithm. This works as long as it is difficult enough to generate two
different messages with the same hash algorithm output. In that case the same signature could
be used as a proof for both messages. Nobody wants to sign an innocent message of donating
1 euro to Greenpeace and find out that they donated 1.000.000 euros to Bad Inc.

39

3.1. CERTIFICATE AUTHENTICATION

For a hash algorithm to be called cryptographic the following three requirements must hold:

1. Preimage resistance. That means the algorithm must be one way and given the output
of the hash function H(x), it is impossible to calculate x.

2. 2nd preimage resistance. That means that given a pair x, y with y = H(x) it is impossible
to calculate an x′ such that y = H(x′).

3. Collision resistance. That means that it is impossible to calculate random x and x′ such
H(x′) = H(x).

The last two requirements in the list are the most important in digital signatures. These pro-
tect against somebody who would like to generate two messages with the same hash output.
When an algorithm is considered broken usually it means that the Collision resistance of the
algorithm is less than brute force. Using the birthday paradox the brute force attack takes 2
textasciicircum(hash size)/2 operations. Today colliding certificates using the MD5 hash al-
gorithm have been generated as shown in [20].

There has been cryptographic results for the SHA-1 hash algorithms as well, although they are
not yet critical. Before 2004, MD5 had a presumed collision strength of 2
textasciicircum64, but it has been showed to have a collision strength well under 2
textasciicircum50. As of November 2005, it is believed that SHA-1’s collision strength is
around 2
textasciicircum63. We consider this sufficiently hard so that we still support SHA-1. We
anticipate that SHA-256/386/512 will be used in publicly-distributed certificates in the future.
When 2
textasciicircum63 can be considered too weak compared to the computer power available
sometime in the future, SHA-1 will be disabled as well. The collision attacks on SHA-1 may
also get better, given the new interest in tools for creating them.

Trading security for interoperability

If you connect to a server and use GnuTLS’ functions to verify the certificate chain, and
get a GNUTLS CERT INSECURE ALGORITHM validation error (see section 3.1.1), it means that
somewhere in the certificate chain there is a certificate signed using RSA-MD2 or RSA-MD5.
These two digital signature algorithms are considered broken, so GnuTLS fails verifying the
certificate. In some situations, it may be useful to be able to verify the certificate chain anyway,
assuming an attacker did not utilize the fact that these signatures algorithms are broken. This
section will give help on how to achieve that.

It is important to know that you do not have to enable any of the flags discussed here to be
able to use trusted root CA certificates self-signed using RSA-MD2 or RSA-MD5. The certificates
in the trusted list are considered trusted irrespective of the signature.

If you are using gnutls certificate verify peers3 to verify the certificate chain, you can
call gnutls certificate set verify flags with the flags:

• GNUTLS VERIFY ALLOW SIGN RSA MD2

• GNUTLS VERIFY ALLOW SIGN RSA MD5

40

CHAPTER 3. AUTHENTICATION METHODS

as in the following example:

1 gnutls_certificate_set_verify_flags (x509cred,

2 GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5);

This will signal the verifier algorithm to enable RSA-MD5 when verifying the certificates.

If you are using gnutls x509 crt verify or gnutls x509 crt list verify, you can pass the
GNUTLS VERIFY ALLOW SIGN RSA MD5 parameter directly in the flags parameter.

If you are using these flags, it may also be a good idea to warn the user when verification
failure occur for this reason. The simplest is to not use the flags by default, and only fall
back to using them after warning the user. If you wish to inspect the certificate chain your-
self, you can use gnutls certificate get peers to extract the raw server’s certificate chain,
gnutls x509 crt list import to parse each of the certificates, and then gnutls x509 crt -

get signature algorithm to find out the signing algorithm used for each certificate. If any
of the intermediary certificates are using GNUTLS SIGN RSA MD2 or GNUTLS SIGN RSA MD5, you
could present a warning.

3.2. More on certificate authentication

Certificates are not the only structures involved in a public key infrastructure. Several other
structures that are used for certificate requests, encrypted private keys, revocation lists, GnuTLS
abstract key structures, etc., are discussed in this chapter.

3.2.1. PKCS #10 certificate requests

A certificate request is a structure, which contain information about an applicant of a certificate
service. It usually contains a private key, a distinguished name and secondary data such as a
challenge password. GnuTLS supports the requests defined in PKCS #10 [25]. Other formats
of certificate requests are not currently supported.

A certificate request can be generated by associating it with a private key, setting the subject’s
information and finally self signing it. The last step ensures that the requester is in possession
of the private key.

41

3.2. MORE ON CERTIFICATE AUTHENTICATION

int gnutls x509 crq set version (gnutls x509 crq t crq, unsigned int version)

int gnutls x509 crq set dn (gnutls x509 crq t crq, const char * dn, const char **
err)

int gnutls x509 crq set dn by oid (gnutls x509 crq t crq, const char * oid, un-
signed int raw flag, const void * data, unsigned int sizeof data)

int gnutls x509 crq set key usage (gnutls x509 crq t crq, unsigned int usage)

int gnutls x509 crq set key purpose oid (gnutls x509 crq t crq, const void * oid,
unsigned int critical)

int gnutls x509 crq set basic constraints (gnutls x509 crq t crq, unsigned int ca,
int pathLenConstraint)

The gnutls x509 crq set key and gnutls x509 crq sign2 functions associate the request
with a private key and sign it. If a request is to be signed with a key residing in a PKCS #11
token it is recommended to use the signing functions shown in section 4.1.

int gnutls x509 crq set key (gnutls x509 crq t crq, gnutls x509 privkey t key)

Description: This function will set the public parameters from the given private key to

the request.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls x509 crq sign2 (gnutls x509 crq t crq, gnutls x509 privkey t key,
gnutls digest algorithm t dig, unsigned int flags)

Description: This function will sign the certificate request with a private key. This

must be the same key as the one used in gnutls x509 crt set key() since a certificate request

is self signed. This must be the last step in a certificate request generation since all

the previously set parameters are now signed.

Returns: GNUTLS E SUCCESS on success, otherwise a negative error code.

GNUTLS E ASN1 VALUE NOT FOUND is returned if you didn’t set all information in the

certificate request (e.g., the version using gnutls x509 crq set version()).

42

CHAPTER 3. AUTHENTICATION METHODS

The following example is about generating a certificate request, and a private key. A certificate
request can be later be processed by a CA which should return a signed certificate.

1 /* This example code is placed in the public domain. */

2

3 #ifdef HAVE_CONFIG_H

4 #include <config.h>

5 #endif

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <string.h>

10 #include <gnutls/gnutls.h>

11 #include <gnutls/x509.h>

12 #include <gnutls/abstract.h>

13 #include <time.h>

14

15 /* This example will generate a private key and a certificate

16 * request.

17 */

18

19 int main(void)

20 {

21 gnutls_x509_crq_t crq;

22 gnutls_x509_privkey_t key;

23 unsigned char buffer[10 * 1024];

24 size_t buffer_size = sizeof(buffer);

25 unsigned int bits;

26

27 gnutls_global_init();

28

29 /* Initialize an empty certificate request, and

30 * an empty private key.

31 */

32 gnutls_x509_crq_init(&crq);

33

34 gnutls_x509_privkey_init(&key);

35

36 /* Generate an RSA key of moderate security.

37 */

38 bits =

39 gnutls_sec_param_to_pk_bits(GNUTLS_PK_RSA,

40 GNUTLS_SEC_PARAM_MEDIUM);

41 gnutls_x509_privkey_generate(key, GNUTLS_PK_RSA, bits, 0);

42

43 /* Add stuff to the distinguished name

44 */

45 gnutls_x509_crq_set_dn_by_oid(crq, GNUTLS_OID_X520_COUNTRY_NAME,

46 0, "GR", 2);

47

48 gnutls_x509_crq_set_dn_by_oid(crq, GNUTLS_OID_X520_COMMON_NAME,

49 0, "Nikos", strlen("Nikos"));

50

51 /* Set the request version.

52 */

53 gnutls_x509_crq_set_version(crq, 1);

54

55 /* Set a challenge password.

43

3.2. MORE ON CERTIFICATE AUTHENTICATION

56 */

57 gnutls_x509_crq_set_challenge_password(crq,

58 "something to remember here");

59

60 /* Associate the request with the private key

61 */

62 gnutls_x509_crq_set_key(crq, key);

63

64 /* Self sign the certificate request.

65 */

66 gnutls_x509_crq_sign2(crq, key, GNUTLS_DIG_SHA1, 0);

67

68 /* Export the PEM encoded certificate request, and

69 * display it.

70 */

71 gnutls_x509_crq_export(crq, GNUTLS_X509_FMT_PEM, buffer,

72 &buffer_size);

73

74 printf("Certificate Request: \n%s", buffer);

75

76

77 /* Export the PEM encoded private key, and

78 * display it.

79 */

80 buffer_size = sizeof(buffer);

81 gnutls_x509_privkey_export(key, GNUTLS_X509_FMT_PEM, buffer,

82 &buffer_size);

83

84 printf("\n\nPrivate key: \n%s", buffer);

85

86 gnutls_x509_crq_deinit(crq);

87 gnutls_x509_privkey_deinit(key);

88

89 return 0;

90

91 }

3.2.2. PKIX certificate revocation lists

A certificate revocation list (CRL) is a structure issued by an authority periodically containing
a list of revoked certificates serial numbers. The CRL structure is signed with the issuing au-
thorities’ keys. A typical CRL contains the fields as shown in Table 3.9. Certificate revocation
lists are used to complement the expiration date of a certificate, in order to account for other
reasons of revocation, such as compromised keys, etc.

Each CRL is valid for limited amount of time and is required to provide, except for the current
issuing time, also the issuing time of the next update.

The basic CRL structure functions follow.

44

CHAPTER 3. AUTHENTICATION METHODS

int gnutls x509 crl init (gnutls x509 crl t * crl)

int gnutls x509 crl import (gnutls x509 crl t crl, const gnutls datum t * data,
gnutls x509 crt fmt t format)

int gnutls x509 crl export (gnutls x509 crl t crl, gnutls x509 crt fmt t format,
void * output data, size t * output data size)

int gnutls x509 crl export (gnutls x509 crl t crl, gnutls x509 crt fmt t format,
void * output data, size t * output data size)

Reading a CRL

The most important function that extracts the certificate revocation information from a CRL
is gnutls x509 crl get crt serial. Other functions that return other fields of the CRL
structure are also provided.

int gnutls x509 crl get crt serial (gnutls x509 crl t crl, int indx, unsigned char *
serial, size t * serial size, time t * t)

Description: This function will retrieve the serial number of the specified, by the

index, revoked certificate. Note that this function will have performance issues in large

sequences of revoked certificates. In that case use gnutls x509 crl iter crt serial().

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

45

3.2. MORE ON CERTIFICATE AUTHENTICATION

int gnutls x509 crl get version (gnutls x509 crl t crl)

int gnutls x509 crl get issuer dn (const gnutls x509 crl t crl, char * buf, size t *
sizeof buf)

int gnutls x509 crl get issuer dn2 (gnutls x509 crl t crl, gnutls datum t * dn)

time t gnutls x509 crl get this update (gnutls x509 crl t crl)

time t gnutls x509 crl get next update (gnutls x509 crl t crl)

int gnutls x509 crl get crt count (gnutls x509 crl t crl)

Generation of a CRL

The following functions can be used to generate a CRL.

int gnutls x509 crl set version (gnutls x509 crl t crl, unsigned int version)

int gnutls x509 crl set crt serial (gnutls x509 crl t crl, const void * serial, size t
serial size, time t revocation time)

int gnutls x509 crl set crt (gnutls x509 crl t crl, gnutls x509 crt t crt, time t
revocation time)

int gnutls x509 crl set next update (gnutls x509 crl t crl, time t exp time)

int gnutls x509 crl set this update (gnutls x509 crl t crl, time t act time)

The gnutls x509 crl sign2 and gnutls x509 crl privkey sign functions sign the revoca-
tion list with a private key. The latter function can be used to sign with a key residing in a
PKCS #11 token.

Few extensions on the CRL structure are supported, including the CRL number extension and
the authority key identifier.

46

CHAPTER 3. AUTHENTICATION METHODS

int gnutls x509 crl sign2 (gnutls x509 crl t crl, gnutls x509 crt t issuer,
gnutls x509 privkey t issuer key, gnutls digest algorithm t dig, unsigned int flags)

Description: This function will sign the CRL with the issuer’s private key, and will

copy the issuer’s information into the CRL. This must be the last step in a certificate CRL

since all the previously set parameters are now signed.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls x509 crl privkey sign (gnutls x509 crl t crl, gnutls x509 crt t issuer,
gnutls privkey t issuer key, gnutls digest algorithm t dig, unsigned int flags)

Description: This function will sign the CRL with the issuer’s private key, and will

copy the issuer’s information into the CRL. This must be the last step in a certificate CRL

since all the previously set parameters are now signed.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value. Since 2.12.0

int gnutls x509 crl set number (gnutls x509 crl t crl, const void * nr, size t
nr size)

int gnutls x509 crl set authority key id (gnutls x509 crl t crl, const void * id,
size t id size)

3.2.3. OCSP certificate status checking

Certificates may be revoked before their expiration time has been reached. There are several
reasons for revoking certificates, but a typical situation is when the private key associated with
a certificate has been compromised. Traditionally, Certificate Revocation Lists (CRLs) have
been used by application to implement revocation checking, however, several problems with
CRLs have been identified [31].

The Online Certificate Status Protocol, or OCSP [24], is a widely implemented protocol which
performs certificate revocation status checking. An application that wish to verify the identity
of a peer will verify the certificate against a set of trusted certificates and then check whether
the certificate is listed in a CRL and/or perform an OCSP check for the certificate.

Note that in the context of a TLS session the server may provide an OCSP response that
will be used during the TLS certificate verification (see gnutls certificate verify peers2).

47

3.2. MORE ON CERTIFICATE AUTHENTICATION

You may obtain this response using gnutls ocsp status request get.

Before performing the OCSP query, the application will need to figure out the address of
the OCSP server. The OCSP server address can be provided by the local user in manual
configuration or may be stored in the certificate that is being checked. When stored in a
certificate the OCSP server is in the extension field called the Authority Information Access
(AIA). The following function extracts this information from a certificate.

int gnutls x509 crt get authority info access (gnutls x509 crt t crt, unsigned int
seq, int what, gnutls datum t * data, unsigned int * critical)

There are several functions in GnuTLS for creating and manipulating OCSP requests and
responses. The general idea is that a client application creates an OCSP request object, stores
some information about the certificate to check in the request, and then exports the request
in DER format. The request will then need to be sent to the OCSP responder, which needs
to be done by the application (GnuTLS does not send and receive OCSP packets). Normally
an OCSP response is received that the application will need to import into an OCSP response
object. The digital signature in the OCSP response needs to be verified against a set of trust
anchors before the information in the response can be trusted.

The ASN.1 structure of OCSP requests are briefly as follows. It is useful to review the structures
to get an understanding of which fields are modified by GnuTLS functions.

1 OCSPRequest ::= SEQUENCE {

2 tbsRequest TBSRequest,

3 optionalSignature [0] EXPLICIT Signature OPTIONAL }

4

5 TBSRequest ::= SEQUENCE {

6 version [0] EXPLICIT Version DEFAULT v1,

7 requestorName [1] EXPLICIT GeneralName OPTIONAL,

8 requestList SEQUENCE OF Request,

9 requestExtensions [2] EXPLICIT Extensions OPTIONAL }

10

11 Request ::= SEQUENCE {

12 reqCert CertID,

13 singleRequestExtensions [0] EXPLICIT Extensions OPTIONAL }

14

15 CertID ::= SEQUENCE {

16 hashAlgorithm AlgorithmIdentifier,

17 issuerNameHash OCTET STRING, -- Hash of Issuer’s DN

18 issuerKeyHash OCTET STRING, -- Hash of Issuers public key

19 serialNumber CertificateSerialNumber }

The basic functions to initialize, import, export and deallocate OCSP requests are the following.

48

CHAPTER 3. AUTHENTICATION METHODS

int gnutls ocsp req init (gnutls ocsp req t * req)

void gnutls ocsp req deinit (gnutls ocsp req t req)

int gnutls ocsp req import (gnutls ocsp req t req, const gnutls datum t * data)

int gnutls ocsp req export (gnutls ocsp req t req, gnutls datum t * data)

int gnutls ocsp req print (gnutls ocsp req t req, gnutls ocsp print formats t for-
mat, gnutls datum t * out)

To generate an OCSP request the issuer name hash, issuer key hash, and the checked certifi-
cate’s serial number are required. There are two interfaces available for setting those in an
OCSP request. The is a low-level function when you have the issuer name hash, issuer key
hash, and certificate serial number in binary form. The second is more useful if you have the
certificate (and its issuer) in a gnutls x509 crt t type. There is also a function to extract
this information from existing an OCSP request.

int gnutls ocsp req add cert id (gnutls ocsp req t req, gnutls digest algorithm t
digest, const gnutls datum t * issuer name hash, const gnutls datum t * is-
suer key hash, const gnutls datum t * serial number)

int gnutls ocsp req add cert (gnutls ocsp req t req, gnutls digest algorithm t di-
gest, gnutls x509 crt t issuer, gnutls x509 crt t cert)

int gnutls ocsp req get cert id (gnutls ocsp req t req, unsigned indx,
gnutls digest algorithm t * digest, gnutls datum t * issuer name hash,
gnutls datum t * issuer key hash, gnutls datum t * serial number)

Each OCSP request may contain a number of extensions. Extensions are identified by an
Object Identifier (OID) and an opaque data buffer whose syntax and semantics is implied by
the OID. You can extract or set those extensions using the following functions.

int gnutls ocsp req get extension (gnutls ocsp req t req, unsigned indx,
gnutls datum t * oid, unsigned int * critical, gnutls datum t * data)

int gnutls ocsp req set extension (gnutls ocsp req t req, const char * oid, un-
signed int critical, const gnutls datum t * data)

49

3.2. MORE ON CERTIFICATE AUTHENTICATION

A common OCSP Request extension is the nonce extension (OID 1.3.6.1.5.5.7.48.1.2), which is
used to avoid replay attacks of earlier recorded OCSP responses. The nonce extension carries
a value that is intended to be sufficiently random and unique so that an attacker will not be
able to give a stale response for the same nonce.

int gnutls ocsp req get nonce (gnutls ocsp req t req, unsigned int * critical,
gnutls datum t * nonce)

int gnutls ocsp req set nonce (gnutls ocsp req t req, unsigned int critical, const
gnutls datum t * nonce)

int gnutls ocsp req randomize nonce (gnutls ocsp req t req)

The OCSP response structures is a complex structure. A simplified overview of it is in Ta-
ble 3.10. Note that a response may contain information on multiple certificates.

We provide basic functions for initialization, importing, exporting and deallocating OCSP
responses.

int gnutls ocsp resp init (gnutls ocsp resp t * resp)

void gnutls ocsp resp deinit (gnutls ocsp resp t resp)

int gnutls ocsp resp import (gnutls ocsp resp t resp, const gnutls datum t * data)

int gnutls ocsp resp export (gnutls ocsp resp t resp, gnutls datum t * data)

int gnutls ocsp resp print (gnutls ocsp resp t resp, gnutls ocsp print formats t
format, gnutls datum t * out)

The utility function that extracts the revocation as well as other information from a response
is shown below.

The possible revocation reasons available in an OCSP response are shown below.

Note, that the OCSP response needs to be verified against some set of trust anchors before
it can be relied upon. It is also important to check whether the received OCSP response
corresponds to the certificate being checked.

50

CHAPTER 3. AUTHENTICATION METHODS

int gnutls ocsp resp get single (gnutls ocsp resp t resp, unsigned indx,
gnutls digest algorithm t * digest, gnutls datum t * issuer name hash,
gnutls datum t * issuer key hash, gnutls datum t * serial number, unsigned
int * cert status, time t * this update, time t * next update, time t * revoca-
tion time, unsigned int * revocation reason)

Description: This function will return the certificate information of the indx’ed

response in the Basic OCSP Response resp. The information returned corresponds to the OCSP

SingleResponse structure except the final singleExtensions. Each of the pointers to output

variables may be NULL to indicate that the caller is not interested in that value.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative

error code is returned. If you have reached the last CertID available GNUTLS E -

REQUESTED DATA NOT AVAILABLE will be returned.

int gnutls ocsp resp verify (gnutls ocsp resp t resp, gnutls x509 trust list t
trustlist, unsigned int * verify, unsigned int flags)

int gnutls ocsp resp verify direct (gnutls ocsp resp t resp, gnutls x509 crt t is-
suer, unsigned int * verify, unsigned int flags)

int gnutls ocsp resp check crt (gnutls ocsp resp t resp, unsigned int indx,
gnutls x509 crt t crt)

3.2.4. Managing encrypted keys

Transferring or storing private keys in plain may not be a good idea, since any compromise
is irreparable. Storing the keys in hardware security modules (see section 4.3) could solve the
storage problem but it is not always practical or efficient enough. This section describes ways
to store and transfer encrypted private keys.

There are methods for key encryption, namely the PKCS #8, PKCS #12 and OpenSSL’s
custom encrypted private key formats. The PKCS #8 and the OpenSSL’s method allow
encryption of the private key, while the PKCS #12 method allows, in addition, the bundling of
accompanying data into the structure. That is typically the corresponding certificate, as well
as a trusted CA certificate.

High level functionality

Generic and higher level private key import functions are available, that import plain or en-
crypted keys and will auto-detect the encrypted key format.

51

3.2. MORE ON CERTIFICATE AUTHENTICATION

int gnutls privkey import x509 raw (gnutls privkey t pkey, const gnutls datum t *
data, gnutls x509 crt fmt t format, const char * password, unsigned int flags)

Description: This function will import the given private key to the abstract gnutls -

privkey t type. The supported formats are basic unencrypted key, PKCS8, PKCS12, and the

openssl format.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls x509 privkey import2 (gnutls x509 privkey t key, const gnutls datum t *
data, gnutls x509 crt fmt t format, const char * password, unsigned int flags)

Description: This function will import the given DER or PEM encoded key, to the

native gnutls x509 privkey t format, irrespective of the input format. The input format

is auto-detected. The supported formats are basic unencrypted key, PKCS8, PKCS12, and

the openssl format. If the provided key is encrypted but no password was given, then

GNUTLS E DECRYPTION FAILED is returned. Since GnuTLS 3.4.0 this function will

utilize the PIN callbacks if any.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

Any keys imported using those functions can be imported to a certificate credentials struc-
ture using gnutls certificate set key, or alternatively they can be directly imported using
gnutls certificate set x509 key file2.

PKCS #8 structures

PKCS #8 keys can be imported and exported as normal private keys using the functions below.
An addition to the normal import functions, are a password and a flags argument. The flags
can be any element of the gnutls pkcs encrypt flags t enumeration. Note however, that
GnuTLS only supports the PKCS #5 PBES2 encryption scheme. Keys encrypted with the
obsolete PBES1 scheme cannot be decrypted.

52

CHAPTER 3. AUTHENTICATION METHODS

int gnutls x509 privkey import pkcs8 (gnutls x509 privkey t key, const
gnutls datum t * data, gnutls x509 crt fmt t format, const char * password,
unsigned int flags)

int gnutls x509 privkey export pkcs8 (gnutls x509 privkey t key,
gnutls x509 crt fmt t format, const char * password, unsigned int flags, void
* output data, size t * output data size)

int gnutls x509 privkey export2 pkcs8 (gnutls x509 privkey t key,
gnutls x509 crt fmt t format, const char * password, unsigned int flags,
gnutls datum t * out)

PKCS #12 structures

A PKCS #12 structure [18] usually contains a user’s private keys and certificates. It is com-
monly used in browsers to export and import the user’s identities. A file containing such a key
can be directly imported to a certificate credentials structure by using gnutls certificate -

set x509 simple pkcs12 file.

In GnuTLS the PKCS #12 structures are handled using the gnutls pkcs12 t type. This is
an abstract type that may hold several gnutls pkcs12 bag t types. The bag types are the
holders of the actual data, which may be certificates, private keys or encrypted data. A bag
of type encrypted should be decrypted in order for its data to be accessed.

To reduce the complexity in parsing the structures the simple helper function gnutls pkcs12 -

simple parse is provided. For more advanced uses, manual parsing of the structure is required
using the functions below.

int gnutls pkcs12 get bag (gnutls pkcs12 t pkcs12, int indx, gnutls pkcs12 bag t
bag)

int gnutls pkcs12 verify mac (gnutls pkcs12 t pkcs12, const char * pass)

int gnutls pkcs12 bag decrypt (gnutls pkcs12 bag t bag, const char * pass)

int gnutls pkcs12 bag get count (gnutls pkcs12 bag t bag)

53

3.2. MORE ON CERTIFICATE AUTHENTICATION

int gnutls pkcs12 simple parse (gnutls pkcs12 t p12, const char * password,
gnutls x509 privkey t * key, gnutls x509 crt t ** chain, unsigned int * chain len,
gnutls x509 crt t ** extra certs, unsigned int * extra certs len, gnutls x509 crl t *
crl, unsigned int flags)

Description: This function parses a PKCS12 structure in pkcs12 and extracts the private

key, the corresponding certificate chain, any additional certificates and a CRL. The ex-

tra certs and extra certs len parameters are optional and both may be set to NULL. If

either is non-NULL, then both must be set. The value for extra certs is allocated

using gnutls malloc(). Encrypted PKCS12 bags and PKCS8 private keys are supported, but

only with password based security and the same password for all operations. Note that

a PKCS12 structure may contain many keys and/or certificates, and there is no way to

identify which key/certificate pair you want. For this reason this function is useful

for PKCS12 files that contain only one key/certificate pair and/or one CRL. If the provided

structure has encrypted fields but no password is provided then this function returns

GNUTLS E DECRYPTION FAILED. Note that normally the chain constructed does not

include self signed certificates, to comply with TLS’ requirements. If, however, the flag

GNUTLS PKCS12 SP INCLUDE SELF SIGNED is specified then self signed certificates will be

included in the chain. Prior to using this function the PKCS #12 structure integrity must

be verified using gnutls pkcs12 verify mac().

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls pkcs12 bag get data (gnutls pkcs12 bag t bag, int indx,
gnutls datum t * data)

int gnutls pkcs12 bag get key id (gnutls pkcs12 bag t bag, int indx,
gnutls datum t * id)

int gnutls pkcs12 bag get friendly name (gnutls pkcs12 bag t bag, int indx,
char ** name)

The functions below are used to generate a PKCS #12 structure. An example of their usage
is shown at subsection 6.4.4.

54

CHAPTER 3. AUTHENTICATION METHODS

int gnutls pkcs12 set bag (gnutls pkcs12 t pkcs12, gnutls pkcs12 bag t bag)

int gnutls pkcs12 bag encrypt (gnutls pkcs12 bag t bag, const char * pass, un-
signed int flags)

int gnutls pkcs12 generate mac (gnutls pkcs12 t pkcs12, const char * pass)

int gnutls pkcs12 bag set data (gnutls pkcs12 bag t bag, gnutls pkcs12 bag type t
type, const gnutls datum t * data)

int gnutls pkcs12 bag set crl (gnutls pkcs12 bag t bag, gnutls x509 crl t crl)

int gnutls pkcs12 bag set crt (gnutls pkcs12 bag t bag, gnutls x509 crt t crt)

int gnutls pkcs12 bag set key id (gnutls pkcs12 bag t bag, int indx, const
gnutls datum t * id)

int gnutls pkcs12 bag set friendly name (gnutls pkcs12 bag t bag, int indx,
const char * name)

OpenSSL encrypted keys

Unfortunately the structures discussed in the previous sections are not the only structures
that may hold an encrypted private key. For example the OpenSSL library offers a custom
key encryption method. Those structures are also supported in GnuTLS with gnutls x509 -

privkey import openssl.

3.2.5. Invoking certtool

Tool to parse and generate X.509 certificates, requests and private keys. It can be used inter-
actively or non interactively by specifying the template command line option.

The tool accepts files or URLs supported by GnuTLS. In case PIN is required for the URL access
you can provide it using the environment variables GNUTLS PIN and GNUTLS SO PIN.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the certtool program. This software is released under the GNU General
Public License, version 3 or later.

55

3.2. MORE ON CERTIFICATE AUTHENTICATION

int gnutls x509 privkey import openssl (gnutls x509 privkey t key, const
gnutls datum t * data, const char * password)

Description: This function will convert the given PEM encrypted to the native gnutls -

x509 privkey t format. The output will be stored in key. The password should be in

ASCII. If the password is not provided or wrong then GNUTLS E DECRYPTION FAILED

will be returned. If the Certificate is PEM encoded it should have a header of "PRIVATE

KEY" and the "DEK-Info" header.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

certtool help/usage (“--help”)

This is the automatically generated usage text for certtool.

The text printed is the same whether selected with the help option (“--help”) or the more-help
option (“--more-help”). more-help will print the usage text by passing it through a pager
program. more-help is disabled on platforms without a working fork(2) function. The PAGER

environment variable is used to select the program, defaulting to “more”. Both will exit with
a status code of 0.

1 certtool - GnuTLS certificate tool

2 Usage: certtool [-<flag> [<val>] | --<name>[{=| }<val>]]...

3

4 -d, --debug=num Enable debugging

5 - it must be in the range:

6 0 to 9999

7 -V, --verbose More verbose output

8 - may appear multiple times

9 --infile=file Input file

10 - file must pre-exist

11 --outfile=str Output file

12 -s, --generate-self-signed Generate a self-signed certificate

13 -c, --generate-certificate Generate a signed certificate

14 --generate-proxy Generates a proxy certificate

15 --generate-crl Generate a CRL

16 -u, --update-certificate Update a signed certificate

17 -p, --generate-privkey Generate a private key

18 -q, --generate-request Generate a PKCS #10 certificate request

19 - prohibits the option ’infile’

20 -e, --verify-chain Verify a PEM encoded certificate chain

21 --verify Verify a PEM encoded certificate chain using a trusted list

22 --verify-crl Verify a CRL using a trusted list

23 - requires the option ’load-ca-certificate’

24 --verify-hostname=str Specify a hostname to be used for certificate chain verification

25 --verify-email=str Specify a email to be used for certificate chain verification

26 - prohibits the option ’verify-hostname’

27 --verify-purpose=str Specify a purpose OID to be used for certificate chain verification

28 --generate-dh-params Generate PKCS #3 encoded Diffie-Hellman parameters

56

CHAPTER 3. AUTHENTICATION METHODS

29 --get-dh-params Get the included PKCS #3 encoded Diffie-Hellman parameters

30 --dh-info Print information PKCS #3 encoded Diffie-Hellman parameters

31 --load-privkey=str Loads a private key file

32 --load-pubkey=str Loads a public key file

33 --load-request=str Loads a certificate request file

34 --load-certificate=str Loads a certificate file

35 --load-ca-privkey=str Loads the certificate authority’s private key file

36 --load-ca-certificate=str Loads the certificate authority’s certificate file

37 --load-crl=str Loads the provided CRL

38 --load-data=str Loads auxilary data

39 --password=str Password to use

40 --null-password Enforce a NULL password

41 --empty-password Enforce an empty password

42 --hex-numbers Print big number in an easier format to parse

43 --cprint In certain operations it prints the information in C-friendly format

44 -i, --certificate-info Print information on the given certificate

45 --fingerprint Print the fingerprint of the given certificate

46 --key-id Print the key ID of the given certificate

47 --certificate-pubkey Print certificate’s public key

48 --pgp-certificate-info Print information on the given OpenPGP certificate

49 --pgp-ring-info Print information on the given OpenPGP keyring structure

50 -l, --crl-info Print information on the given CRL structure

51 --crq-info Print information on the given certificate request

52 --no-crq-extensions Do not use extensions in certificate requests

53 -!, --p12-info Print information on a PKCS #12 structure

54 -", --p12-name=str The PKCS #12 friendly name to use

55 -#, --p7-generate Generate a PKCS #7 structure

56 -$, --p7-sign Signs using a PKCS #7 structure

57 -%, --p7-detached-sign Signs using a detached PKCS #7 structure

58 -&, --p7-include-cert The signer’s certificate will be included in the cert list.

59 - disabled as ’--no-p7-include-cert’

60 - enabled by default

61 -’, --p7-time Will include a timestamp in the PKCS #7 structure

62 -(, --p7-show-data Will show the embedded data in the PKCS #7 structure

63 - disabled as ’--no-p7-show-data’

64 -), --p7-info Print information on a PKCS #7 structure

65 -*, --p7-verify Verify the provided PKCS #7 structure

66 -+, --p8-info Print information on a PKCS #8 structure

67 -,, --smime-to-p7 Convert S/MIME to PKCS #7 structure

68 -k, --key-info Print information on a private key

69 --, --pgp-key-info Print information on an OpenPGP private key

70 -., --pubkey-info Print information on a public key

71 -/, --v1 Generate an X.509 version 1 certificate (with no extensions)

72 -0, --to-p12 Generate a PKCS #12 structure

73 - requires the option ’load-certificate’

74 -1, --to-p8 Generate a PKCS #8 structure

75 -8, --pkcs8 Use PKCS #8 format for private keys

76 -2, --rsa Generate RSA key

77 -3, --dsa Generate DSA key

78 -4, --ecc Generate ECC (ECDSA) key

79 -5, --ecdsa an alias for the ’ecc’ option

80 -6, --hash=str Hash algorithm to use for signing

81 -7, --inder Use DER format for input certificates, private keys, and DH parameters

82 - disabled as ’--no-inder’

83 -8, --inraw an alias for the ’inder’ option

84 -9, --outder Use DER format for output certificates, private keys, and DH parameters

85 - disabled as ’--no-outder’

86 -:, --outraw an alias for the ’outder’ option

57

3.2. MORE ON CERTIFICATE AUTHENTICATION

87 -;, --bits=num Specify the number of bits for key generate

88 -<, --curve=str Specify the curve used for EC key generation

89 -=, --sec-param=str Specify the security level [low, legacy, medium, high, ultra]

90 ->, --disable-quick-random No effect

91 -?, --template=str Template file to use for non-interactive operation

92 -@, --stdout-info Print information to stdout instead of stderr

93 -A, --ask-pass Enable interaction for entering password when in batch mode.

94 -B, --pkcs-cipher=str Cipher to use for PKCS #8 and #12 operations

95 -C, --provider=str Specify the PKCS #11 provider library

96 -v, --version[=arg] output version information and exit

97 -h, --help display extended usage information and exit

98 -!, --more-help extended usage information passed thru pager

99

100 Options are specified by doubled hyphens and their name or by a single

101 hyphen and the flag character.

102

103 Tool to parse and generate X.509 certificates, requests and private keys.

104 It can be used interactively or non interactively by specifying the

105 template command line option.

106

107 The tool accepts files or URLs supported by GnuTLS. In case PIN is

108 required for the URL access you can provide it using the environment

109 variables GNUTLS_PIN and GNUTLS_SO_PIN.

110

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

generate-crl option

This is the “generate a crl” option. This option generates a CRL. When combined with –load-
crl it would use the loaded CRL as base for the generated (i.e., all revoked certificates in the
base will be copied to the new CRL).

generate-request option (-q)

This is the “generate a pkcs #10 certificate request” option.

This option has some usage constraints. It:

• must not appear in combination with any of the following options: infile.

Will generate a PKCS #10 certificate request. To specify a private key use –load-privkey.

58

CHAPTER 3. AUTHENTICATION METHODS

verify-chain option (-e)

This is the “verify a pem encoded certificate chain” option. The last certificate in the chain
must be a self signed one. It can be combined with –verify-purpose or –verify-hostname.

verify option

This is the “verify a pem encoded certificate chain using a trusted list” option. The trusted
certificate list can be loaded with –load-ca-certificate. If no certificate list is provided, then the
system’s certificate list is used. Note that during verification multiple paths may be explored.
On a successful verification the successful path will be the last one. It can be combined with
–verify-purpose or –verify-hostname.

verify-crl option

This is the “verify a crl using a trusted list” option.

This option has some usage constraints. It:

• must appear in combination with the following options: load-ca-certificate.

The trusted certificate list must be loaded with –load-ca-certificate.

verify-hostname option

This is the “specify a hostname to be used for certificate chain verification” option. This option
takes a string argument. This is to be combined with one of the verify certificate options.

verify-email option

This is the “specify a email to be used for certificate chain verification” option. This option
takes a string argument.

This option has some usage constraints. It:

• must not appear in combination with any of the following options: verify-hostname.

This is to be combined with one of the verify certificate options.

verify-purpose option

This is the “specify a purpose oid to be used for certificate chain verification” option. This
option takes a string argument. This object identifier restricts the purpose of the certificates
to be verified. Example purposes are 1.3.6.1.5.5.7.3.1 (TLS WWW), 1.3.6.1.5.5.7.3.4 (EMAIL)
etc. Note that a CA certificate without a purpose set (extended key usage) is valid for any
purpose.

59

3.2. MORE ON CERTIFICATE AUTHENTICATION

get-dh-params option

This is the “get the included pkcs #3 encoded diffie-hellman parameters” option. Returns
stored DH parameters in GnuTLS. Those parameters are used in the SRP protocol. The
parameters returned by fresh generation are more efficient since GnuTLS 3.0.9.

load-privkey option

This is the “loads a private key file” option. This option takes a string argument. This can be
either a file or a PKCS #11 URL

load-pubkey option

This is the “loads a public key file” option. This option takes a string argument. This can be
either a file or a PKCS #11 URL

load-certificate option

This is the “loads a certificate file” option. This option takes a string argument. This can be
either a file or a PKCS #11 URL

load-ca-privkey option

This is the “loads the certificate authority’s private key file” option. This option takes a string
argument. This can be either a file or a PKCS #11 URL

load-ca-certificate option

This is the “loads the certificate authority’s certificate file” option. This option takes a string
argument. This can be either a file or a PKCS #11 URL

password option

This is the “password to use” option. This option takes a string argument. You can use this
option to specify the password in the command line instead of reading it from the tty. Note,
that the command line arguments are available for view in others in the system. Specifying
password as ” is the same as specifying no password.

60

CHAPTER 3. AUTHENTICATION METHODS

null-password option

This is the “enforce a null password” option. This option enforces a NULL password. This is
different than the empty or no password in schemas like PKCS #8.

empty-password option

This is the “enforce an empty password” option. This option enforces an empty password.
This is different than the NULL or no password in schemas like PKCS #8.

cprint option

This is the “in certain operations it prints the information in c-friendly format” option. In
certain operations it prints the information in C-friendly format, suitable for including into C
programs.

fingerprint option

This is the “print the fingerprint of the given certificate” option. This is a simple hash of the
DER encoding of the certificate. It can be combined with the –hash parameter. However, it is
recommended for identification to use the key-id which depends only on the certificate’s key.

key-id option

This is the “print the key id of the given certificate” option. This is a hash of the public key of
the given certificate. It identifies the key uniquely, remains the same on a certificate renewal
and depends only on signed fields of the certificate.

p12-info option

This is the “print information on a pkcs #12 structure” option. This option will dump the
contents and print the metadata of the provided PKCS #12 structure.

p12-name option

This is the “the pkcs #12 friendly name to use” option. This option takes a string argument.
The name to be used for the primary certificate and private key in a PKCS #12 file.

61

3.2. MORE ON CERTIFICATE AUTHENTICATION

p7-generate option

This is the “generate a pkcs #7 structure” option. This option generates a PKCS #7 certificate
container structure. To add certificates in the structure use –load-certificate and –load-crl.

p7-sign option

This is the “signs using a pkcs #7 structure” option. This option generates a PKCS #7
structure containing a signature for the provided data. The data are stored within the structure.
The signer certificate has to be specified using –load-certificate and –load-privkey.

p7-detached-sign option

This is the “signs using a detached pkcs #7 structure” option. This option generates a PKCS
#7 structure containing a signature for the provided data. The signer certificate has to be
specified using –load-certificate and –load-privkey.

p7-include-cert option

This is the “the signer’s certificate will be included in the cert list.” option.

This option has some usage constraints. It:

• can be disabled with –no-p7-include-cert.

• It is enabled by default.

This options works with –p7-sign or –p7-detached-sign and will include or exclude the signer’s
certificate into the generated signature.

p7-time option

This is the “will include a timestamp in the pkcs #7 structure” option. This option will include
a timestamp in the generated signature

p7-show-data option

This is the “will show the embedded data in the pkcs #7 structure” option.

This option has some usage constraints. It:

• can be disabled with –no-p7-show-data.

This option can be combined with –p7-verify and will display the embedded signed data in the
PKCS #7 structure.

62

CHAPTER 3. AUTHENTICATION METHODS

p7-verify option

This is the “verify the provided pkcs #7 structure” option. This option verifies the signed
PKCS #7 structure. The certificate list to use for verification can be specified with –load-
ca-certificate. When no certificate list is provided, then the system’s certificate list is used.
Alternatively a direct signer can be provided using –load-certificate. A key purpose can be
enforced with the –verify-purpose option, and the –load-data option will utilize detached data.

p8-info option

This is the “print information on a pkcs #8 structure” option. This option will print infor-
mation about encrypted PKCS #8 structures. That option does not require the decryption of
the structure.

pubkey-info option

This is the “print information on a public key” option. The option combined with –load-
request, –load-pubkey, –load-privkey and –load-certificate will extract the public key of the
object in question.

to-p12 option

This is the “generate a pkcs #12 structure” option.

This option has some usage constraints. It:

• must appear in combination with the following options: load-certificate.

It requires a certificate, a private key and possibly a CA certificate to be specified.

rsa option

This is the “generate rsa key” option. When combined with –generate-privkey generates an
RSA private key.

dsa option

This is the “generate dsa key” option. When combined with –generate-privkey generates a
DSA private key.

63

3.2. MORE ON CERTIFICATE AUTHENTICATION

ecc option

This is the “generate ecc (ecdsa) key” option. When combined with –generate-privkey generates
an elliptic curve private key to be used with ECDSA.

ecdsa option

This is an alias for the ecc option, section 3.2.5.

hash option

This is the “hash algorithm to use for signing” option. This option takes a string argument.
Available hash functions are SHA1, RMD160, SHA256, SHA384, SHA512.

inder option

This is the “use der format for input certificates, private keys, and dh parameters ” option.

This option has some usage constraints. It:

• can be disabled with –no-inder.

The input files will be assumed to be in DER or RAW format. Unlike options that in PEM
input would allow multiple input data (e.g. multiple certificates), when reading in DER format
a single data structure is read.

inraw option

This is an alias for the inder option, section 3.2.5.

outder option

This is the “use der format for output certificates, private keys, and dh parameters” option.

This option has some usage constraints. It:

• can be disabled with –no-outder.

The output will be in DER or RAW format.

outraw option

This is an alias for the outder option, section 3.2.5.

64

CHAPTER 3. AUTHENTICATION METHODS

curve option

This is the “specify the curve used for ec key generation” option. This option takes a string
argument. Supported values are secp192r1, secp224r1, secp256r1, secp384r1 and secp521r1.

sec-param option

This is the “specify the security level [low, legacy, medium, high, ultra]” option. This option
takes a string argument “Security parameter”. This is alternative to the bits option.

ask-pass option

This is the “enable interaction for entering password when in batch mode.” option. This
option will enable interaction to enter password when in batch mode. That is useful when the
template option has been specified.

pkcs-cipher option

This is the “cipher to use for pkcs #8 and #12 operations” option. This option takes a string
argument “Cipher”. Cipher may be one of 3des, 3des-pkcs12, aes-128, aes-192, aes-256, rc2-40,
arcfour.

provider option

This is the “specify the pkcs #11 provider library” option. This option takes a string argument.
This will override the default options in /etc/gnutls/pkcs11.conf

certtool exit status

One of the following exit values will be returned:

• 0 (EXIT SUCCESS) Successful program execution.

• 1 (EXIT FAILURE) The operation failed or the command syntax was not valid.

certtool See Also

p11tool (1)

65

3.2. MORE ON CERTIFICATE AUTHENTICATION

certtool Examples

Generating private keys

To create an RSA private key, run:

1 $ certtool --generate-privkey --outfile key.pem --rsa

To create a DSA or elliptic curves (ECDSA) private key use the above command combined
with ’dsa’ or ’ecc’ options.

Generating certificate requests

To create a certificate request (needed when the certificate is issued by another party), run:

1 certtool --generate-request --load-privkey key.pem \

2 --outfile request.pem

If the private key is stored in a smart card you can generate a request by specifying the private
key object URL.

1 $./certtool --generate-request --load-privkey "pkcs11:..." \

2 --load-pubkey "pkcs11:..." --outfile request.pem

Generating a self-signed certificate

To create a self signed certificate, use the command:

1 $ certtool --generate-privkey --outfile ca-key.pem

2 $ certtool --generate-self-signed --load-privkey ca-key.pem \

3 --outfile ca-cert.pem

Note that a self-signed certificate usually belongs to a certificate authority, that signs other
certificates.

Generating a certificate

To generate a certificate using the previous request, use the command:

1 $ certtool --generate-certificate --load-request request.pem \

2 --outfile cert.pem --load-ca-certificate ca-cert.pem \

3 --load-ca-privkey ca-key.pem

To generate a certificate using the private key only, use the command:

66

CHAPTER 3. AUTHENTICATION METHODS

1 $ certtool --generate-certificate --load-privkey key.pem \

2 --outfile cert.pem --load-ca-certificate ca-cert.pem \

3 --load-ca-privkey ca-key.pem

Certificate information

To view the certificate information, use:

1 $ certtool --certificate-info --infile cert.pem

PKCS #12 structure generation

To generate a PKCS #12 structure using the previous key and certificate, use the command:

1 $ certtool --load-certificate cert.pem --load-privkey key.pem \

2 --to-p12 --outder --outfile key.p12

Some tools (reportedly web browsers) have problems with that file because it does not contain
the CA certificate for the certificate. To work around that problem in the tool, you can use
the –load-ca-certificate parameter as follows:

1 $ certtool --load-ca-certificate ca.pem \

2 --load-certificate cert.pem --load-privkey key.pem \

3 --to-p12 --outder --outfile key.p12

Diffie-Hellman parameter generation

To generate parameters for Diffie-Hellman key exchange, use the command:

1 $ certtool --generate-dh-params --outfile dh.pem --sec-param medium

Proxy certificate generation

Proxy certificate can be used to delegate your credential to a temporary, typically short-lived,
certificate. To create one from the previously created certificate, first create a temporary key
and then generate a proxy certificate for it, using the commands:

1 $ certtool --generate-privkey > proxy-key.pem

2 $ certtool --generate-proxy --load-ca-privkey key.pem \

3 --load-privkey proxy-key.pem --load-certificate cert.pem \

4 --outfile proxy-cert.pem

67

3.2. MORE ON CERTIFICATE AUTHENTICATION

Certificate revocation list generation

To create an empty Certificate Revocation List (CRL) do:

1 $ certtool --generate-crl --load-ca-privkey x509-ca-key.pem \

2 --load-ca-certificate x509-ca.pem

To create a CRL that contains some revoked certificates, place the certificates in a file and use
--load-certificate as follows:

1 $ certtool --generate-crl --load-ca-privkey x509-ca-key.pem \

2 --load-ca-certificate x509-ca.pem --load-certificate revoked-certs.pem

To verify a Certificate Revocation List (CRL) do:

1 $ certtool --verify-crl --load-ca-certificate x509-ca.pem < crl.pem

certtool Files

Certtool’s template file format

A template file can be used to avoid the interactive questions of certtool. Initially create a file
named ’cert.cfg’ that contains the information about the certificate. The template can be used
as below:

1 $ certtool --generate-certificate --load-privkey key.pem \

2 --template cert.cfg --outfile cert.pem \

3 --load-ca-certificate ca-cert.pem --load-ca-privkey ca-key.pem

An example certtool template file that can be used to generate a certificate request or a self
signed certificate follows.

1 # X.509 Certificate options

2 #

3 # DN options

4

5 # The organization of the subject.

6 organization = "Koko inc."

7

8 # The organizational unit of the subject.

9 unit = "sleeping dept."

10

11 # The locality of the subject.

12 # locality =

13

14 # The state of the certificate owner.

15 state = "Attiki"

16

17 # The country of the subject. Two letter code.

18 country = GR

19

20 # The common name of the certificate owner.

68

CHAPTER 3. AUTHENTICATION METHODS

21 cn = "Cindy Lauper"

22

23 # A user id of the certificate owner.

24 #uid = "clauper"

25

26 # Set domain components

27 #dc = "name"

28 #dc = "domain"

29

30 # If the supported DN OIDs are not adequate you can set

31 # any OID here.

32 # For example set the X.520 Title and the X.520 Pseudonym

33 # by using OID and string pairs.

34 #dn_oid = 2.5.4.12 Dr.

35 #dn_oid = 2.5.4.65 jackal

36

37 # This is deprecated and should not be used in new

38 # certificates.

39 # pkcs9_email = "none@none.org"

40

41 # An alternative way to set the certificate’s distinguished name directly

42 # is with the "dn" option. The attribute names allowed are:

43 # C (country), street, O (organization), OU (unit), title, CN (common name),

44 # L (locality), ST (state), placeOfBirth, gender, countryOfCitizenship,

45 # countryOfResidence, serialNumber, telephoneNumber, surName, initials,

46 # generationQualifier, givenName, pseudonym, dnQualifier, postalCode, name,

47 # businessCategory, DC, UID, jurisdictionOfIncorporationLocalityName,

48 # jurisdictionOfIncorporationStateOrProvinceName,

49 # jurisdictionOfIncorporationCountryName, XmppAddr, and numeric OIDs.

50

51 #dn = "cn = Nikos,st = New\, Something,C=GR,surName=Mavrogiannopoulos,2.5.4.9=Arkadias"

52

53 # The serial number of the certificate

54 # Comment the field for a time-based serial number.

55 serial = 007

56

57 # In how many days, counting from today, this certificate will expire.

58 # Use -1 if there is no expiration date.

59 expiration_days = 700

60

61 # Alternatively you may set concrete dates and time. The GNU date string

62 # formats are accepted. See:

63 # http://www.gnu.org/software/tar/manual/html_node/Date-input-formats.html

64

65 #activation_date = "2004-02-29 16:21:42"

66 #expiration_date = "2025-02-29 16:24:41"

67

68 # X.509 v3 extensions

69

70 # A dnsname in case of a WWW server.

71 #dns_name = "www.none.org"

72 #dns_name = "www.morethanone.org"

73

74 # A subject alternative name URI

75 #uri = "http://www.example.com"

76

77 # An IP address in case of a server.

78 #ip_address = "192.168.1.1"

69

3.2. MORE ON CERTIFICATE AUTHENTICATION

79

80 # An email in case of a person

81 email = "none@none.org"

82

83 # Challenge password used in certificate requests

84 challenge_password = 123456

85

86 # Password when encrypting a private key

87 #password = secret

88

89 # An URL that has CRLs (certificate revocation lists)

90 # available. Needed in CA certificates.

91 #crl_dist_points = "http://www.getcrl.crl/getcrl/"

92

93 # Whether this is a CA certificate or not

94 #ca

95

96 # Subject Unique ID (in hex)

97 #subject_unique_id = 00153224

98

99 # Issuer Unique ID (in hex)

100 #issuer_unique_id = 00153225

101

102 #### Key usage

103

104 # The following key usage flags are used by CAs and end certificates

105

106 # Whether this certificate will be used to sign data (needed

107 # in TLS DHE ciphersuites). This is the digitalSignature flag

108 # in RFC5280 terminology.

109 signing_key

110

111 # Whether this certificate will be used to encrypt data (needed

112 # in TLS RSA ciphersuites). Note that it is preferred to use different

113 # keys for encryption and signing. This is the keyEncipherment flag

114 # in RFC5280 terminology.

115 encryption_key

116

117 # Whether this key will be used to sign other certificates. The

118 # keyCertSign flag in RFC5280 terminology.

119 #cert_signing_key

120

121 # Whether this key will be used to sign CRLs. The

122 # cRLSign flag in RFC5280 terminology.

123 #crl_signing_key

124

125 # The keyAgreement flag of RFC5280. It’s purpose is loosely

126 # defined. Not use it unless required by a protocol.

127 #key_agreement

128

129 # The dataEncipherment flag of RFC5280. It’s purpose is loosely

130 # defined. Not use it unless required by a protocol.

131 #data_encipherment

132

133 # The nonRepudiation flag of RFC5280. It’s purpose is loosely

134 # defined. Not use it unless required by a protocol.

135 #non_repudiation

136

70

CHAPTER 3. AUTHENTICATION METHODS

137 #### Extended key usage (key purposes)

138

139 # The following extensions are used in an end certificate

140 # to clarify its purpose. Some CAs also use it to indicate

141 # the types of certificates they are purposed to sign.

142

143

144 # Whether this certificate will be used for a TLS client;

145 # this sets the id-kp-serverAuth (1.3.6.1.5.5.7.3.1) of

146 # extended key usage.

147 #tls_www_client

148

149 # Whether this certificate will be used for a TLS server;

150 # This sets the id-kp-clientAuth (1.3.6.1.5.5.7.3.2) of

151 # extended key usage.

152 #tls_www_server

153

154 # Whether this key will be used to sign code. This sets the

155 # id-kp-codeSigning (1.3.6.1.5.5.7.3.3) of extended key usage

156 # extension.

157 #code_signing_key

158

159 # Whether this key will be used to sign OCSP data. This sets the

160 # id-kp-OCSPSigning (1.3.6.1.5.5.7.3.9) of extended key usage extension.

161 #ocsp_signing_key

162

163 # Whether this key will be used for time stamping. This sets the

164 # id-kp-timeStamping (1.3.6.1.5.5.7.3.8) of extended key usage extension.

165 #time_stamping_key

166

167 # Whether this key will be used for email protection. This sets the

168 # id-kp-emailProtection (1.3.6.1.5.5.7.3.4) of extended key usage extension.

169 #email_protection_key

170

171 # Whether this key will be used for IPsec IKE operations (1.3.6.1.5.5.7.3.17).

172 #ipsec_ike_key

173

174 ## adding custom key purpose OIDs

175

176 # for microsoft smart card logon

177 # key_purpose_oid = 1.3.6.1.4.1.311.20.2.2

178

179 # for email protection

180 # key_purpose_oid = 1.3.6.1.5.5.7.3.4

181

182 # for any purpose (must not be used in intermediate CA certificates)

183 # key_purpose_oid = 2.5.29.37.0

184

185 ### end of key purpose OIDs

186

187 # When generating a certificate from a certificate

188 # request, then honor the extensions stored in the request

189 # and store them in the real certificate.

190 #honor_crq_extensions

191

192 # Path length contraint. Sets the maximum number of

193 # certificates that can be used to certify this certificate.

194 # (i.e. the certificate chain length)

71

3.2. MORE ON CERTIFICATE AUTHENTICATION

195 #path_len = -1

196 #path_len = 2

197

198 # OCSP URI

199 # ocsp_uri = http://my.ocsp.server/ocsp

200

201 # CA issuers URI

202 # ca_issuers_uri = http://my.ca.issuer

203

204 # Certificate policies

205 #policy1 = 1.3.6.1.4.1.5484.1.10.99.1.0

206 #policy1_txt = "This is a long policy to summarize"

207 #policy1_url = http://www.example.com/a-policy-to-read

208

209 #policy2 = 1.3.6.1.4.1.5484.1.10.99.1.1

210 #policy2_txt = "This is a short policy"

211 #policy2_url = http://www.example.com/another-policy-to-read

212

213 # Name constraints

214

215 # DNS

216 #nc_permit_dns = example.com

217 #nc_exclude_dns = test.example.com

218

219 # EMAIL

220 #nc_permit_email = "nmav@ex.net"

221

222 # Exclude subdomains of example.com

223 #nc_exclude_email = .example.com

224

225 # Exclude all e-mail addresses of example.com

226 #nc_exclude_email = example.com

227

228

229 # Options for proxy certificates

230 #proxy_policy_language = 1.3.6.1.5.5.7.21.1

231

232

233 # Options for generating a CRL

234

235 # The number of days the next CRL update will be due.

236 # next CRL update will be in 43 days

237 #crl_next_update = 43

238

239 # this is the 5th CRL by this CA

240 # Comment the field for a time-based number.

241 #crl_number = 5

242

243 # Specify the update dates more precisely.

244 #crl_this_update_date = "2004-02-29 16:21:42"

245 #crl_next_update_date = "2025-02-29 16:24:41"

246

247 # The date that the certificates will be made seen as

248 # being revoked.

249 #crl_revocation_date = "2025-02-29 16:24:41"

250

72

CHAPTER 3. AUTHENTICATION METHODS

3.2.6. Invoking ocsptool

Ocsptool is a program that can parse and print information about OCSP requests/responses,
generate requests and verify responses.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the ocsptool program. This software is released under the GNU General
Public License, version 3 or later.

ocsptool help/usage (“--help”)

This is the automatically generated usage text for ocsptool.

The text printed is the same whether selected with the help option (“--help”) or the more-help
option (“--more-help”). more-help will print the usage text by passing it through a pager
program. more-help is disabled on platforms without a working fork(2) function. The PAGER

environment variable is used to select the program, defaulting to “more”. Both will exit with
a status code of 0.

1 ocsptool - GnuTLS OCSP tool

2 Usage: ocsptool [-<flag> [<val>] | --<name>[{=| }<val>]]...

3

4 -d, --debug=num Enable debugging

5 - it must be in the range:

6 0 to 9999

7 -V, --verbose More verbose output

8 - may appear multiple times

9 --infile=file Input file

10 - file must pre-exist

11 --outfile=str Output file

12 --ask[=arg] Ask an OCSP/HTTP server on a certificate validity

13 - requires these options:

14 load-cert

15 load-issuer

16 -e, --verify-response Verify response

17 -i, --request-info Print information on a OCSP request

18 -j, --response-info Print information on a OCSP response

19 -q, --generate-request Generate an OCSP request

20 --nonce Use (or not) a nonce to OCSP request

21 - disabled as ’--no-nonce’

22 --load-issuer=file Read issuer certificate from file

23 - file must pre-exist

24 --load-cert=file Read certificate to check from file

25 - file must pre-exist

26 --load-trust=file Read OCSP trust anchors from file

27 - prohibits the option ’load-signer’

28 - file must pre-exist

29 --load-signer=file Read OCSP response signer from file

30 - prohibits the option ’load-trust’

31 - file must pre-exist

32 --inder Use DER format for input certificates and private keys

33 - disabled as ’--no-inder’

34 -Q, --load-request=file Read DER encoded OCSP request from file

35 - file must pre-exist

73

3.2. MORE ON CERTIFICATE AUTHENTICATION

36 -S, --load-response=file Read DER encoded OCSP response from file

37 - file must pre-exist

38 --ignore-errors Ignore any verification errors

39 -v, --version[=arg] output version information and exit

40 -h, --help display extended usage information and exit

41 -!, --more-help extended usage information passed thru pager

42

43 Options are specified by doubled hyphens and their name or by a single

44 hyphen and the flag character.

45

46 Ocsptool is a program that can parse and print information about OCSP

47 requests/responses, generate requests and verify responses.

48

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

ask option

This is the “ask an ocsp/http server on a certificate validity” option. This option takes an
optional string argument @fileserver name—url.

This option has some usage constraints. It:

• must appear in combination with the following options: load-cert, load-issuer.

Connects to the specified HTTP OCSP server and queries on the validity of the loaded certifi-
cate.

ocsptool exit status

One of the following exit values will be returned:

• 0 (EXIT SUCCESS) Successful program execution.

• 1 (EXIT FAILURE) The operation failed or the command syntax was not valid.

ocsptool See Also

certtool (1)

74

CHAPTER 3. AUTHENTICATION METHODS

ocsptool Examples

Print information about an OCSP request

To parse an OCSP request and print information about the content, the -i or --request-info
parameter may be used as follows. The -Q parameter specify the name of the file containing
the OCSP request, and it should contain the OCSP request in binary DER format.

1 $ ocsptool -i -Q ocsp-request.der

The input file may also be sent to standard input like this:

1 $ cat ocsp-request.der | ocsptool --request-info

Print information about an OCSP response

Similar to parsing OCSP requests, OCSP responses can be parsed using the -j or --response-info
as follows.

1 $ ocsptool -j -Q ocsp-response.der

2 $ cat ocsp-response.der | ocsptool --response-info

Generate an OCSP request

The -q or --generate-request parameters are used to generate an OCSP request. By default
the OCSP request is written to standard output in binary DER format, but can be stored in a
file using --outfile. To generate an OCSP request the issuer of the certificate to check needs
to be specified with --load-issuer and the certificate to check with --load-cert. By default
PEM format is used for these files, although --inder can be used to specify that the input
files are in DER format.

1 $ ocsptool -q --load-issuer issuer.pem --load-cert client.pem \

2 --outfile ocsp-request.der

When generating OCSP requests, the tool will add an OCSP extension containing a nonce.
This behaviour can be disabled by specifying --no-nonce.

Verify signature in OCSP response

To verify the signature in an OCSP response the -e or --verify-response parameter is used.
The tool will read an OCSP response in DER format from standard input, or from the file
specified by --load-response. The OCSP response is verified against a set of trust anchors,
which are specified using --load-trust. The trust anchors are concatenated certificates in
PEM format. The certificate that signed the OCSP response needs to be in the set of trust
anchors, or the issuer of the signer certificate needs to be in the set of trust anchors and the
OCSP Extended Key Usage bit has to be asserted in the signer certificate.

75

3.2. MORE ON CERTIFICATE AUTHENTICATION

1 $ ocsptool -e --load-trust issuer.pem \

2 --load-response ocsp-response.der

The tool will print status of verification.

Verify signature in OCSP response against given certificate

It is possible to override the normal trust logic if you know that a certain certificate is supposed
to have signed the OCSP response, and you want to use it to check the signature. This is
achieved using --load-signer instead of --load-trust. This will load one certificate and it
will be used to verify the signature in the OCSP response. It will not check the Extended Key
Usage bit.

1 $ ocsptool -e --load-signer ocsp-signer.pem \

2 --load-response ocsp-response.der

This approach is normally only relevant in two situations. The first is when the OCSP response
does not contain a copy of the signer certificate, so the --load-trust code would fail. The
second is if you want to avoid the indirect mode where the OCSP response signer certificate is
signed by a trust anchor.

Real-world example

Here is an example of how to generate an OCSP request for a certificate and to verify the
response. For illustration we’ll use the blog.josefsson.org host, which (as of writing) uses
a certificate from CACert. First we’ll use gnutls-cli to get a copy of the server certificate
chain. The server is not required to send this information, but this particular one is configured
to do so.

1 $ echo | gnutls-cli -p 443 blog.josefsson.org --print-cert > chain.pem

Use a text editor on chain.pem to create three files for each separate certificates, called
cert.pem for the first certificate for the domain itself, secondly issuer.pem for the inter-
mediate certificate and root.pem for the final root certificate.

The domain certificate normally contains a pointer to where the OCSP responder is located,
in the Authority Information Access Information extension. For example, from certtool -i

< cert.pem there is this information:

1 Authority Information Access Information (not critical):

2 Access Method: 1.3.6.1.5.5.7.48.1 (id-ad-ocsp)

3 Access Location URI: http://ocsp.CAcert.org/

This means the CA support OCSP queries over HTTP. We are now ready to create a OCSP
request for the certificate.

76

CHAPTER 3. AUTHENTICATION METHODS

1 $ ocsptool --ask ocsp.CAcert.org --load-issuer issuer.pem \

2 --load-cert cert.pem --outfile ocsp-response.der

The request is sent via HTTP to the OCSP server address specified. If the address is ommited
ocsptool will use the address stored in the certificate.

3.2.7. Invoking danetool

Tool to generate and check DNS resource records for the DANE protocol.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the danetool program. This software is released under the GNU General
Public License, version 3 or later.

danetool help/usage (“--help”)

This is the automatically generated usage text for danetool.

The text printed is the same whether selected with the help option (“--help”) or the more-help
option (“--more-help”). more-help will print the usage text by passing it through a pager
program. more-help is disabled on platforms without a working fork(2) function. The PAGER

environment variable is used to select the program, defaulting to “more”. Both will exit with
a status code of 0.

1 danetool - GnuTLS DANE tool

2 Usage: danetool [-<flag> [<val>] | --<name>[{=| }<val>]]...

3

4 -d, --debug=num Enable debugging

5 - it must be in the range:

6 0 to 9999

7 -V, --verbose More verbose output

8 - may appear multiple times

9 --infile=file Input file

10 - file must pre-exist

11 --outfile=str Output file

12 --load-pubkey=str Loads a public key file

13 --load-certificate=str Loads a certificate file

14 --dlv=str Sets a DLV file

15 --hash=str Hash algorithm to use for signing

16 --check=str Check a host’s DANE TLSA entry

17 --check-ee Check only the end-entity’s certificate

18 --check-ca Check only the CA’s certificate

19 --tlsa-rr Print the DANE RR data on a certificate or public key

20 - requires the option ’host’

21 --host=str Specify the hostname to be used in the DANE RR

22 --proto=str The protocol set for DANE data (tcp, udp etc.)

23 --port=num Specify the port number for the DANE data

24 --app-proto=str an alias for the ’starttls-proto’ option

25 --starttls-proto=str The application protocol to be used to obtain the server’s certificate

26 (https, ftp, smtp, imap, ldap, xmpp)

27 --ca Whether the provided certificate or public key is a Certificate

77

3.2. MORE ON CERTIFICATE AUTHENTICATION

28 Authority

29 --x509 Use the hash of the X.509 certificate, rather than the public key

30 --local an alias for the ’domain’ option

31 - enabled by default

32 --domain The provided certificate or public key is issued by the local domain

33 - disabled as ’--no-domain’

34 - enabled by default

35 --local-dns Use the local DNS server for DNSSEC resolving

36 - disabled as ’--no-local-dns’

37 --insecure Do not verify any DNSSEC signature

38 --inder Use DER format for input certificates and private keys

39 - disabled as ’--no-inder’

40 --inraw an alias for the ’inder’ option

41 --print-raw Print the received DANE data in raw format

42 - disabled as ’--no-print-raw’

43 --quiet Suppress several informational messages

44 -v, --version[=arg] output version information and exit

45 -h, --help display extended usage information and exit

46 -!, --more-help extended usage information passed thru pager

47

48 Options are specified by doubled hyphens and their name or by a single

49 hyphen and the flag character.

50

51 Tool to generate and check DNS resource records for the DANE protocol.

52

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

load-pubkey option

This is the “loads a public key file” option. This option takes a string argument. This can be
either a file or a PKCS #11 URL

load-certificate option

This is the “loads a certificate file” option. This option takes a string argument. This can be
either a file or a PKCS #11 URL

dlv option

This is the “sets a dlv file” option. This option takes a string argument. This sets a DLV file
to be used for DNSSEC verification.

78

CHAPTER 3. AUTHENTICATION METHODS

hash option

This is the “hash algorithm to use for signing” option. This option takes a string argument.
Available hash functions are SHA1, RMD160, SHA256, SHA384, SHA512.

check option

This is the “check a host’s dane tlsa entry” option. This option takes a string argument.
Obtains the DANE TLSA entry from the given hostname and prints information. Note that
the actual certificate of the host can be provided using –load-certificate, otherwise danetool
will connect to the server to obtain it. The exit code on verification success will be zero.

check-ee option

This is the “check only the end-entity’s certificate” option. Checks the end-entity’s certificate
only. Trust anchors or CAs are not considered.

check-ca option

This is the “check only the ca’s certificate” option. Checks the trust anchor’s and CA’s certifi-
cate only. End-entities are not considered.

tlsa-rr option

This is the “print the dane rr data on a certificate or public key” option.

This option has some usage constraints. It:

• must appear in combination with the following options: host.

This command prints the DANE RR data needed to enable DANE on a DNS server.

host option

This is the “specify the hostname to be used in the dane rr” option. This option takes a string
argument “Hostname”. This command sets the hostname for the DANE RR.

proto option

This is the “the protocol set for dane data (tcp, udp etc.)” option. This option takes a string
argument “Protocol”. This command specifies the protocol for the service set in the DANE
data.

79

3.2. MORE ON CERTIFICATE AUTHENTICATION

app-proto option

This is an alias for the starttls-proto option, section 3.2.7.

starttls-proto option

This is the “the application protocol to be used to obtain the server’s certificate (https, ftp,
smtp, imap, ldap, xmpp)” option. This option takes a string argument. When the server’s
certificate isn’t provided danetool will connect to the server to obtain the certificate. In that
case it is required to known the protocol to talk with the server prior to initiating the TLS
handshake.

ca option

This is the “whether the provided certificate or public key is a certificate authority” option.
Marks the DANE RR as a CA certificate if specified.

x509 option

This is the “use the hash of the x.509 certificate, rather than the public key” option. This
option forces the generated record to contain the hash of the full X.509 certificate. By default
only the hash of the public key is used.

local option

This is an alias for the domain option, section 3.2.7.

domain option

This is the “the provided certificate or public key is issued by the local domain” option.

This option has some usage constraints. It:

• can be disabled with –no-domain.

• It is enabled by default.

DANE distinguishes certificates and public keys offered via the DNSSEC to trusted and local
entities. This flag indicates that this is a domain-issued certificate, meaning that there could
be no CA involved.

80

CHAPTER 3. AUTHENTICATION METHODS

local-dns option

This is the “use the local dns server for dnssec resolving” option.

This option has some usage constraints. It:

• can be disabled with –no-local-dns.

This option will use the local DNS server for DNSSEC. This is disabled by default due to many
servers not allowing DNSSEC.

insecure option

This is the “do not verify any dnssec signature” option. Ignores any DNSSEC signature
verification results.

inder option

This is the “use der format for input certificates and private keys” option.

This option has some usage constraints. It:

• can be disabled with –no-inder.

The input files will be assumed to be in DER or RAW format. Unlike options that in PEM
input would allow multiple input data (e.g. multiple certificates), when reading in DER format
a single data structure is read.

inraw option

This is an alias for the inder option, section 3.2.7.

print-raw option

This is the “print the received dane data in raw format” option.

This option has some usage constraints. It:

• can be disabled with –no-print-raw.

This option will print the received DANE data.

quiet option

This is the “suppress several informational messages” option. In that case on the exit code can
be used as an indication of verification success

81

3.3. SHARED-KEY AND ANONYMOUS AUTHENTICATION

danetool exit status

One of the following exit values will be returned:

• 0 (EXIT SUCCESS) Successful program execution.

• 1 (EXIT FAILURE) The operation failed or the command syntax was not valid.

danetool See Also

certtool (1)

danetool Examples

DANE TLSA RR generation

To create a DANE TLSA resource record for a certificate (or public key) that was issued localy
and may or may not be signed by a CA use the following command.

1 $ danetool --tlsa-rr --host www.example.com --load-certificate cert.pem

To create a DANE TLSA resource record for a CA signed certificate, which will be marked as
such use the following command.

1 $ danetool --tlsa-rr --host www.example.com --load-certificate cert.pem \

2 --no-domain

The former is useful to add in your DNS entry even if your certificate is signed by a CA. That
way even users who do not trust your CA will be able to verify your certificate using DANE.

In order to create a record for the CA signer of your certificate use the following.

1 $ danetool --tlsa-rr --host www.example.com --load-certificate cert.pem \

2 --ca --no-domain

To read a server’s DANE TLSA entry, use:

1 $ danetool --check www.example.com --proto tcp --port 443

To verify a server’s DANE TLSA entry, use:

1 $ danetool --check www.example.com --proto tcp --port 443 --load-certificate chain.pem

3.3. Shared-key and anonymous authentication

In addition to certificate authentication, the TLS protocol may be used with password, shared-
key and anonymous authentication methods. The rest of this chapter discusses details of these

82

CHAPTER 3. AUTHENTICATION METHODS

methods.

3.3.1. SRP authentication

Authentication using SRP

GnuTLS supports authentication via the Secure Remote Password or SRP protocol (see [40, 39]
for a description). The SRP key exchange is an extension to the TLS protocol, and it provides
an authenticated with a password key exchange. The peers can be identified using a single
password, or there can be combinations where the client is authenticated using SRP and the
server using a certificate.

The advantage of SRP authentication, over other proposed secure password authentication
schemes, is that SRP is not susceptible to off-line dictionary attacks. Moreover, SRP does
not require the server to hold the user’s password. This kind of protection is similar to the
one used traditionally in the UNIX “/etc/passwd” file, where the contents of this file did
not cause harm to the system security if they were revealed. The SRP needs instead of the
plain password something called a verifier, which is calculated using the user’s password, and
if stolen cannot be used to impersonate the user.

Typical conventions in SRP are a password file, called “tpasswd” that holds the SRP verifiers
(encoded passwords) and another file, “tpasswd.conf”, which holds the allowed SRP parame-
ters. The included in GnuTLS helper follow those conventions. The srptool program, discussed
in the next section is a tool to manipulate the SRP parameters.

The implementation in GnuTLS is based on [36]. The supported key exchange methods are
shown below.

• SRP: Authentication using the SRP protocol.

• SRP DSS: Client authentication using the SRP protocol. Server is authenticated using
a certificate with DSA parameters.

• SRP RSA: Client authentication using the SRP protocol. Server is authenticated using
a certificate with RSA parameters.

int gnutls srp verifier (const char * username, const char * password, const
gnutls datum t * salt, const gnutls datum t * generator, const gnutls datum t *
prime, gnutls datum t * res)

Description: This function will create an SRP verifier, as specified in RFC2945. The

prime and generator should be one of the static parameters defined in gnutls/gnutls.h or

may be generated. The verifier will be allocated with gnutls malloc() and will be stored

in res using binary format.

Returns: On success, GNUTLS E SUCCESS (0) is returned, or an error code.

83

3.3. SHARED-KEY AND ANONYMOUS AUTHENTICATION

int gnutls srp base64 encode2 (const gnutls datum t * data, gnutls datum t * re-
sult)

int gnutls srp base64 decode2 (const gnutls datum t * b64 data, gnutls datum t *
result)

Invoking srptool

Simple program that emulates the programs in the Stanford SRP (Secure Remote Password)
libraries using GnuTLS. It is intended for use in places where you don’t expect SRP authenti-
cation to be the used for system users.

In brief, to use SRP you need to create two files. These are the password file that holds
the users and the verifiers associated with them and the configuration file to hold the group
parameters (called tpasswd.conf).

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the srptool program. This software is released under the GNU General
Public License, version 3 or later.

srptool help/usage (“--help”)

This is the automatically generated usage text for srptool.

The text printed is the same whether selected with the help option (“--help”) or the more-help
option (“--more-help”). more-help will print the usage text by passing it through a pager
program. more-help is disabled on platforms without a working fork(2) function. The PAGER

environment variable is used to select the program, defaulting to “more”. Both will exit with
a status code of 0.

1 srptool - GnuTLS SRP tool

2 Usage: srptool [-<flag> [<val>] | --<name>[{=| }<val>]]...

3

4 -d, --debug=num Enable debugging

5 - it must be in the range:

6 0 to 9999

7 -i, --index=num specify the index of the group parameters in tpasswd.conf to use

8 -u, --username=str specify a username

9 -p, --passwd=str specify a password file

10 -s, --salt=num specify salt size

11 --verify just verify the password.

12 -v, --passwd-conf=str specify a password conf file.

13 --create-conf=str Generate a password configuration file.

14 -v, --version[=arg] output version information and exit

15 -h, --help display extended usage information and exit

16 -!, --more-help extended usage information passed thru pager

17

18 Options are specified by doubled hyphens and their name or by a single

19 hyphen and the flag character.

84

CHAPTER 3. AUTHENTICATION METHODS

20

21 Simple program that emulates the programs in the Stanford SRP (Secure

22 Remote Password) libraries using GnuTLS. It is intended for use in places

23 where you don’t expect SRP authentication to be the used for system users.

24

25 In brief, to use SRP you need to create two files. These are the password

26 file that holds the users and the verifiers associated with them and the

27 configuration file to hold the group parameters (called tpasswd.conf).

28

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

verify option

This is the “just verify the password.” option. Verifies the password provided against the
password file.

passwd-conf option (-v)

This is the “specify a password conf file.” option. This option takes a string argument. Specify
a filename or a PKCS #11 URL to read the CAs from.

create-conf option

This is the “generate a password configuration file.” option. This option takes a string argu-
ment. This generates a password configuration file (tpasswd.conf) containing the required for
TLS parameters.

srptool exit status

One of the following exit values will be returned:

• 0 (EXIT SUCCESS) Successful program execution.

• 1 (EXIT FAILURE) The operation failed or the command syntax was not valid.

srptool See Also

gnutls-cli-debug (1), gnutls-serv (1), srptool (1), psktool (1), certtool (1)

85

3.3. SHARED-KEY AND ANONYMOUS AUTHENTICATION

srptool Examples

To create “tpasswd.conf” which holds the g and n values for SRP protocol (generator and a
large prime), run:

1 $ srptool --create-conf /etc/tpasswd.conf

This command will create “/etc/tpasswd” and will add user ’test’ (you will also be prompted
for a password). Verifiers are stored by default in the way libsrp expects.

1 $ srptool --passwd /etc/tpasswd --passwd-conf /etc/tpasswd.conf -u test

This command will check against a password. If the password matches the one in “/etc/tpasswd”
you will get an ok.

1 $ srptool --passwd /etc/tpasswd --passwd\-conf /etc/tpasswd.conf --verify -u test

3.3.2. PSK authentication

Authentication using PSK

Authentication using Pre-shared keys is a method to authenticate using usernames and binary
keys. This protocol avoids making use of public key infrastructure and expensive calculations,
thus it is suitable for constraint clients.

The implementation in GnuTLS is based on [11]. The supported PSK key exchange methods
are:

• PSK: Authentication using the PSK protocol.

• DHE-PSK: Authentication using the PSK protocol and Diffie-Hellman key exchange.
This method offers perfect forward secrecy.

• ECDHE-PSK: Authentication using the PSK protocol and Elliptic curve Diffie-Hellman
key exchange. This method offers perfect forward secrecy.

• RSA-PSK: Authentication using the PSK protocol for the client and an RSA certificate
for the server.

Helper functions to generate and maintain PSK keys are also included in GnuTLS.

86

CHAPTER 3. AUTHENTICATION METHODS

int gnutls key generate (gnutls datum t * key, unsigned int key size)

int gnutls hex encode (const gnutls datum t * data, char * result, size t * re-
sult size)

int gnutls hex decode (const gnutls datum t * hex data, void * result, size t *
result size)

Invoking psktool

Program that generates random keys for use with TLS-PSK. The keys are stored in hexadecimal
format in a key file.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the psktool program. This software is released under the GNU General
Public License, version 3 or later.

psktool help/usage (“--help”)

This is the automatically generated usage text for psktool.

The text printed is the same whether selected with the help option (“--help”) or the more-help
option (“--more-help”). more-help will print the usage text by passing it through a pager
program. more-help is disabled on platforms without a working fork(2) function. The PAGER

environment variable is used to select the program, defaulting to “more”. Both will exit with
a status code of 0.

1 psktool - GnuTLS PSK tool

2 Usage: psktool [-<flag> [<val>] | --<name>[{=| }<val>]]...

3

4 -d, --debug=num Enable debugging

5 - it must be in the range:

6 0 to 9999

7 -s, --keysize=num specify the key size in bytes

8 - it must be in the range:

9 0 to 512

10 -u, --username=str specify a username

11 -p, --passwd=str specify a password file

12 -v, --version[=arg] output version information and exit

13 -h, --help display extended usage information and exit

14 -!, --more-help extended usage information passed thru pager

15

16 Options are specified by doubled hyphens and their name or by a single

17 hyphen and the flag character.

18

19 Program that generates random keys for use with TLS-PSK. The keys are

20 stored in hexadecimal format in a key file.

21

87

3.3. SHARED-KEY AND ANONYMOUS AUTHENTICATION

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

psktool exit status

One of the following exit values will be returned:

• 0 (EXIT SUCCESS) Successful program execution.

• 1 (EXIT FAILURE) The operation failed or the command syntax was not valid.

psktool See Also

gnutls-cli-debug (1), gnutls-serv (1), srptool (1), certtool (1)

psktool Examples

To add a user ’psk identity’ in “passwd.psk” for use with GnuTLS run:

1 $./psktool -u psk_identity -p passwd.psk

2 Generating a random key for user ’psk_identity’

3 Key stored to passwd.psk

4 $ cat psks.txt

5 psk_identity:88f3824b3e5659f52d00e959bacab954b6540344

6 $

This command will create “passwd.psk” if it does not exist and will add user ’psk identity’
(you will also be prompted for a password).

3.3.3. Anonymous authentication

The anonymous key exchange offers encryption without any indication of the peer’s identity.
This kind of authentication is vulnerable to a man in the middle attack, but can be used even if
there is no prior communication or shared trusted parties with the peer. It is useful to establish
a session over which certificate authentication will occur in order to hide the indentities of the
participants from passive eavesdroppers.

Unless in the above case, it is not recommended to use anonymous authentication. In the cases
where there is no prior communication with the peers, an alternative with better properties,
such as key continuity, is trust on first use (see section 3.1.3).

The available key exchange algorithms for anonymous authentication are shown below, but
note that few public servers support them, and they have to be explicitly enabled.

• ANON DH: This algorithm exchanges Diffie-Hellman parameters.

88

CHAPTER 3. AUTHENTICATION METHODS

• ANON ECDH: This algorithm exchanges elliptic curve Diffie-Hellman parameters. It is
more efficient than ANON DH on equivalent security levels.

3.4. Selecting an appropriate authentication method

This section provides some guidance on how to use the available authentication methods in
GnuTLS in various scenarios.

3.4.1. Two peers with an out-of-band channel

Let’s consider two peers who need to communicate over an untrusted channel (the Internet), but
have an out-of-band channel available. The latter channel is considered safe from eavesdropping
and message modification and thus can be used for an initial bootstrapping of the protocol.
The options available are:

• Pre-shared keys (see subsection 3.3.2). The server and a client communicate a shared
randomly generated key over the trusted channel and use it to negotiate further sessions
over the untrusted channel.

• Passwords (see subsection 3.3.1). The client communicates to the server its username and
password of choice and uses it to negotiate further sessions over the untrusted channel.

• Public keys (see section 3.1). The client and the server exchange their public keys (or
fingerprints of them) over the trusted channel. On future sessions over the untrusted
channel they verify the key being the same (similar to section 3.1.3).

Provided that the out-of-band channel is trusted all of the above provide a similar level of
protection. An out-of-band channel may be the initial bootstrapping of a user’s PC in a
corporate environment, in-person communication, communication over an alternative network
(e.g. the phone network), etc.

3.4.2. Two peers without an out-of-band channel

When an out-of-band channel is not available a peer cannot be reliably authenticated. What
can be done, however, is to allow some form of registration of users connecting for the first
time and ensure that their keys remain the same after that initial connection. This is termed
key continuity or trust on first use (TOFU).

The available option is to use public key authentication (see section 3.1). The client and the
server store each other’s public keys (or fingerprints of them) and associate them with their
identity. On future sessions over the untrusted channel they verify the keys being the same
(see section 3.1.3).

To mitigate the uncertainty of the information exchanged in the first connection other channels
over the Internet may be used, e.g., DNSSEC (see section 3.1.3).

89

3.4. SELECTING AN APPROPRIATE AUTHENTICATION METHOD

3.4.3. Two peers and a trusted third party

When a trusted third party is available (or a certificate authority) the most suitable option is
to use certificate authentication (see section 3.1). The client and the server obtain certificates
that associate their identity and public keys using a digital signature by the trusted party
and use them to on the subsequent communications with each other. Each party verifies the
peer’s certificate using the trusted third party’s signature. The parameters of the third party’s
signature are present in its certificate which must be available to all communicating parties.

While the above is the typical authentication method for servers in the Internet by using the
commercial CAs, the users that act as clients in the protocol rarely possess such certificates. In
that case a hybrid method can be used where the server is authenticated by the client using the
commercial CAs and the client is authenticated based on some information the client provided
over the initial server-authenticated channel. The available options are:

• Passwords (see subsection 3.3.1). The client communicates to the server its username and
password of choice on the initial server-authenticated connection and uses it to negotiate
further sessions. This is possible because the SRP protocol allows for the server to be
authenticated using a certificate and the client using the password.

• Public keys (see section 3.1). The client sends its public key to the server (or a fingerprint
of it) over the initial server-authenticated connection. On future sessions the client verifies
the server using the third party certificate and the server verifies that the client’s public
key remained the same (see section 3.1.3).

90

CHAPTER 3. AUTHENTICATION METHODS

enum gnutls certificate status t:
GNUTLS CERT INVALID The certificate is not signed by one of the known

authorities or the signature is invalid (deprecated by

the flags GNUTLS CERT SIGNATURE FAILURE

and GNUTLS CERT SIGNER NOT FOUND).

GNUTLS CERT REVOKED Certificate is revoked by its authority. In X.509 this

will be set only if CRLs are checked.

GNUTLS CERT SIGNER NOT FOUND The certificate’s issuer is not known. This is the

case if the issuer is not included in the trusted

certificate list.

GNUTLS CERT SIGNER NOT CA The certificate’s signer was not a CA. This may happen

if this was a version 1 certificate, which is common

with some CAs, or a version 3 certificate without the

basic constrains extension.

GNUTLS CERT INSECURE -

ALGORITHM

The certificate was signed using an insecure algorithm

such as MD2 or MD5. These algorithms have been broken

and should not be trusted.

GNUTLS CERT NOT ACTIVATED The certificate is not yet activated.

GNUTLS CERT EXPIRED The certificate has expired.

GNUTLS CERT SIGNATURE FAILURE The signature verification failed.

GNUTLS CERT REVOCATION DATA -

SUPERSEDED

The revocation data are old and have been superseded.

GNUTLS CERT UNEXPECTED -

OWNER

The owner is not the expected one.

GNUTLS CERT REVOCATION DATA -

ISSUED IN FUTURE

The revocation data have a future issue date.

GNUTLS CERT SIGNER -

CONSTRAINTS FAILURE

The certificate’s signer constraints were violated.

GNUTLS CERT MISMATCH The certificate presented isn’t the expected one (TOFU)

GNUTLS CERT PURPOSE MISMATCH The certificate or an intermediate does not match the

intended purpose (extended key usage).

Table 3.4.: The gnutls certificate status t enumeration.

91

3.4. SELECTING AN APPROPRIATE AUTHENTICATION METHOD

enum gnutls certificate verify flags:
GNUTLS VERIFY DISABLE CA SIGN If set a signer does not have to be a certificate

authority. This flag should normally be disabled,

unless you know what this means.

GNUTLS VERIFY DO NOT ALLOW -

SAME

If a certificate is not signed by anyone trusted

but exists in the trusted CA list do not treat it as

trusted.

GNUTLS VERIFY ALLOW ANY X509 -

V1 CA CRT

Allow CA certificates that have version 1 (both root

and intermediate). This might be dangerous since those

haven’t the basicConstraints extension.

GNUTLS VERIFY ALLOW SIGN RSA -

MD2

Allow certificates to be signed using the broken MD2

algorithm.

GNUTLS VERIFY ALLOW SIGN RSA -

MD5

Allow certificates to be signed using the broken MD5

algorithm.

GNUTLS VERIFY DISABLE TIME -

CHECKS

Disable checking of activation and expiration validity

periods of certificate chains. Don’t set this unless

you understand the security implications.

GNUTLS VERIFY DISABLE -

TRUSTED TIME CHECKS

If set a signer in the trusted list is never checked

for expiration or activation.

GNUTLS VERIFY DO NOT ALLOW -

X509 V1 CA CRT

Do not allow trusted CA certificates that have

version 1. This option is to be used to deprecate

all certificates of version 1.

GNUTLS VERIFY DISABLE CRL -

CHECKS

Disable checking for validity using certificate

revocation lists or the available OCSP data.

GNUTLS VERIFY ALLOW -

UNSORTED CHAIN

A certificate chain is tolerated if unsorted (the case

with many TLS servers out there). This is the default

since GnuTLS 3.1.4.

GNUTLS VERIFY DO NOT ALLOW -

UNSORTED CHAIN

Do not tolerate an unsorted certificate chain.

GNUTLS VERIFY DO NOT ALLOW -

WILDCARDS

When including a hostname check in the verification, do

not consider any wildcards.

GNUTLS VERIFY USE TLS1 RSA This indicates that a (raw) RSA signature is provided

as in the TLS 1.0 protocol. Not all functions accept

this flag.

Table 3.5.: The gnutls certificate verify flags enumeration.

92

CHAPTER 3. AUTHENTICATION METHODS

Purpose OID Description

GNUTLS KP TLS WWW SERVER1.3.6.1.5.5.7.3.1 The certificate is to be used for TLS WWW authentica-
tion. When in a CA certificate, it indicates that the CA
is allowed to sign certificates for TLS WWW authentica-
tion.

GNUTLS KP TLS WWW CLIENT1.3.6.1.5.5.7.3.2 The certificate is to be used for TLS WWW client au-
thentication. When in a CA certificate, it indicates that
the CA is allowed to sign certificates for TLS WWW
client authentication.

GNUTLS KP CODE SIGNING1.3.6.1.5.5.7.3.3 The certificate is to be used for code signing. When in a
CA certificate, it indicates that the CA is allowed to sign
certificates for code signing.

GNUTLS KP EMAIL PROTECTION1.3.6.1.5.5.7.3.4 The certificate is to be used for email protection. When
in a CA certificate, it indicates that the CA is allowed to
sign certificates for email users.

GNUTLS KP OCSP SIGNING1.3.6.1.5.5.7.3.9 The certificate is to be used for signing OCSP responses.
When in a CA certificate, it indicates that the CA is
allowed to sign certificates which sign OCSP reponses.

GNUTLS KP ANY 2.5.29.37.0 The certificate is to be used for any purpose. When in a
CA certificate, it indicates that the CA is allowed to sign
any kind of certificates.

Table 3.6.: Key purpose object identifiers.

Field Description

version The field that indicates the version of the OpenPGP structure.
user ID An RFC 2822 string that identifies the owner of the key. There

may be multiple user identifiers in a key.
public key The main public key of the certificate.
expiration The expiration time of the main public key.
public subkey An additional public key of the certificate. There may be multiple

subkeys in a certificate.
public subkey ex-
piration

The expiration time of the subkey.

Table 3.7.: OpenPGP certificate fields.

Key exchange Public key requirements

RSA An RSA public key that allows encryption.
DHE RSA An RSA public key that is marked for authentication.
ECDHE RSA An RSA public key that is marked for authentication.
DHE DSS A DSA public key that is marked for authentication.

Table 3.8.: The types of (sub)keys required for the various TLS key exchange methods.

93

3.4. SELECTING AN APPROPRIATE AUTHENTICATION METHOD

Field Description

version The field that indicates the version of the CRL structure.
signature A signature by the issuing authority.
issuer Holds the issuer’s distinguished name.
thisUpdate The issuing time of the revocation list.
nextUpdate The issuing time of the revocation list that will update that one.
revokedCertificates List of revoked certificates serial numbers.
extensions Optional CRL structure extensions.

Table 3.9.: Certificate revocation list fields.

Field Description

version The OCSP response version number (typically 1).
responder ID An identifier of the responder (DN name or a hash of its key).
issue time The time the response was generated.
thisUpdate The issuing time of the revocation information.
nextUpdate The issuing time of the revocation information that will update

that one.
Revoked certificates

certificate status The status of the certificate.
certificate serial The certificate’s serial number.
revocationTime The time the certificate was revoked.
revocationReason The reason the certificate was revoked.

Table 3.10.: The most important OCSP response fields.

94

CHAPTER 3. AUTHENTICATION METHODS

enum gnutls x509 crl reason t:
GNUTLS X509 CRLREASON -

UNSPECIFIED

Unspecified reason.

GNUTLS X509 CRLREASON -

KEYCOMPROMISE

Private key compromised.

GNUTLS X509 CRLREASON -

CACOMPROMISE

CA compromised.

GNUTLS X509 CRLREASON -

AFFILIATIONCHANGED

Affiliation has changed.

GNUTLS X509 CRLREASON -

SUPERSEDED

Certificate superseded.

GNUTLS X509 CRLREASON -

CESSATIONOFOPERATION

Operation has ceased.

GNUTLS X509 CRLREASON -

CERTIFICATEHOLD

Certificate is on hold.

GNUTLS X509 CRLREASON -

REMOVEFROMCRL

Will be removed from delta CRL.

GNUTLS X509 CRLREASON -

PRIVILEGEWITHDRAWN

Privilege withdrawn.

GNUTLS X509 CRLREASON -

AACOMPROMISE

AA compromised.

Table 3.11.: The revocation reasons

enum gnutls pkcs encrypt flags t:
GNUTLS PKCS PLAIN Unencrypted private key.

GNUTLS PKCS PKCS12 3DES PKCS-12 3DES.

GNUTLS PKCS PKCS12 ARCFOUR PKCS-12 ARCFOUR.

GNUTLS PKCS PKCS12 RC2 40 PKCS-12 RC2-40.

GNUTLS PKCS PBES2 3DES PBES2 3DES.

GNUTLS PKCS PBES2 AES 128 PBES2 AES-128.

GNUTLS PKCS PBES2 AES 192 PBES2 AES-192.

GNUTLS PKCS PBES2 AES 256 PBES2 AES-256.

GNUTLS PKCS NULL PASSWORD Some schemas distinguish between an empty and a NULL

password.

GNUTLS PKCS PBES2 DES PBES2 single DES.

Table 3.12.: Encryption flags

95

4
Abstract keys types and Hardware security

modules

In several cases storing the long term cryptographic keys in a hard disk or even in memory
poses a significant risk. Once the system they are stored is compromised the keys must be
replaced as the secrecy of future sessions is no longer guaranteed. Moreover, past sessions that
were not protected by a perfect forward secrecy offering ciphersuite are also to be assumed
compromised.

If such threats need to be addressed, then it may be wise storing the keys in a security module
such as a smart card, an HSM or the TPM chip. Those modules ensure the protection of the
cryptographic keys by only allowing operations on them and preventing their extraction. The
purpose of the abstract key API is to provide an API that will allow the handle of keys in
memory and files, as well as keys stored in such modules.

In GnuTLS the approach is to handle all keys transparently by the high level API, e.g., the
API that loads a key or certificate from a file. The high-level API will accept URIs in addition
to files that specify keys on an HSM or in TPM, and a callback function will be used to obtain
any required keys. The URI format is defined in [19] and the standardized [26].

More information on the API is provided in the next sections. Examples of a URI of a certificate
stored in an HSM, as well as a key stored in the TPM chip are shown below. To discover the
URIs of the objects the p11tool (see subsection 4.3.6), or tpmtool (see subsection 4.4.4) may
be used.

1 pkcs11:token=Nikos;serial=307521161601031;model=PKCS%2315; \

2 manufacturer=EnterSafe;object=test1;type=cert

3

4 tpmkey:uuid=42309df8-d101-11e1-a89a-97bb33c23ad1;storage=user

4.1. Abstract key types

Since there are many forms of a public or private keys supported by GnuTLS such as X.509,
OpenPGP, PKCS #11 or TPM it is desirable to allow common operations on them. For these
reasons the abstract gnutls privkey t and gnutls pubkey t were introduced in gnutls/-

abstract.h header. Those types are initialized using a specific type of key and then can be

97

4.1. ABSTRACT KEY TYPES

used to perform operations in an abstract way. For example in order to sign an X.509 certificate
with a key that resides in a token the following steps can be used.

1 #inlude <gnutls/abstract.h>

2

3 void sign_cert(gnutls_x509_crt_t to_be_signed)

4 {

5 gnutls_x509_crt_t ca_cert;

6 gnutls_privkey_t abs_key;

7

8 /* initialize the abstract key */

9 gnutls_privkey_init(&abs_key);

10

11 /* keys stored in tokens are identified by URLs */

12 gnutls_privkey_import_url(abs_key, key_url);

13

14 gnutls_x509_crt_init(&ca_cert);

15 gnutls_x509_crt_import_url(&ca_cert, cert_url);

16

17 /* sign the certificate to be signed */

18 gnutls_x509_crt_privkey_sign(to_be_signed, ca_cert, abs_key,

19 GNUTLS_DIG_SHA256, 0);

20 }

4.1.1. Public keys

An abstract gnutls pubkey t can be initialized using the functions below. It can be imported
through an existing structure like gnutls x509 crt t, or through an ASN.1 encoding of the
X.509 SubjectPublicKeyInfo sequence.

int gnutls pubkey import x509 (gnutls pubkey t key, gnutls x509 crt t crt, un-
signed int flags)

int gnutls pubkey import openpgp (gnutls pubkey t key, gnutls openpgp crt t
crt, unsigned int flags)

int gnutls pubkey import pkcs11 (gnutls pubkey t key, gnutls pkcs11 obj t obj,
unsigned int flags)

98

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

int gnutls pubkey import url (gnutls pubkey t key, const char * url, unsigned int
flags)

int gnutls pubkey import privkey (gnutls pubkey t key, gnutls privkey t pkey,
unsigned int usage, unsigned int flags)

int gnutls pubkey import (gnutls pubkey t key, const gnutls datum t * data,
gnutls x509 crt fmt t format)

int gnutls pubkey export (gnutls pubkey t key, gnutls x509 crt fmt t format,
void * output data, size t * output data size)

int gnutls pubkey export2 (gnutls pubkey t key, gnutls x509 crt fmt t format,
gnutls datum t * out)

Description: This function will export the public key to DER or PEM format. The

contents of the exported data is the SubjectPublicKeyInfo X.509 structure. The output

buffer will be allocated using gnutls malloc(). If the structure is PEM encoded, it will

have a header of "BEGIN CERTIFICATE".

Returns: In case of failure a negative error code will be returned, and 0 on success.

Other helper functions that allow directly importing from raw X.509 or OpenPGP structures
are shown below.

int gnutls pubkey import x509 raw (gnutls pubkey t pkey, const gnutls datum t *
data, gnutls x509 crt fmt t format, unsigned int flags)

int gnutls pubkey import openpgp raw (gnutls pubkey t pkey, const
gnutls datum t * data, gnutls openpgp crt fmt t format, const gnutls openpgp keyid t
keyid, unsigned int flags)

An important function is gnutls pubkey import url which will import public keys from URLs
that identify objects stored in tokens (see section 4.3 and section 4.4). A function to check for
a supported by GnuTLS URL is gnutls url is supported.

Additional functions are available that will return information over a public key, such as a
unique key ID, as well as a function that given a public key fingerprint would provide a
memorable sketch.

Note that gnutls pubkey get key id calculates a SHA1 digest of the public key as a DER-
formatted, subjectPublicKeyInfo object. Other implementations use different approaches, e.g.,

99

4.1. ABSTRACT KEY TYPES

int gnutls url is supported (const char * url)

Description: Check whether url is supported. Depending on the system libraries GnuTLS

may support pkcs11 or tpmkey URLs.

Returns: return non-zero if the given URL is supported, and zero if it is not known.

some use the “common method” described in section 4.2.1.2 of [8] which calculates a digest on
a part of the subjectPublicKeyInfo object.

int gnutls pubkey get pk algorithm (gnutls pubkey t key, unsigned int * bits)

int gnutls pubkey get preferred hash algorithm (gnutls pubkey t key,
gnutls digest algorithm t * hash, unsigned int * mand)

int gnutls pubkey get key id (gnutls pubkey t key, unsigned int flags, unsigned
char * output data, size t * output data size)

int gnutls random art (gnutls random art t type, const char * key type, un-
signed int key size, void * fpr, size t fpr size, gnutls datum t * art)

To export the key-specific parameters, or obtain a unique key ID the following functions are
provided.

int gnutls pubkey export rsa raw (gnutls pubkey t key, gnutls datum t * m,

gnutls datum t * e)

int gnutls pubkey export dsa raw (gnutls pubkey t key, gnutls datum t * p,
gnutls datum t * q, gnutls datum t * g, gnutls datum t * y)

int gnutls pubkey export ecc raw (gnutls pubkey t key, gnutls ecc curve t *
curve, gnutls datum t * x, gnutls datum t * y)

int gnutls pubkey export ecc x962 (gnutls pubkey t key, gnutls datum t * pa-
rameters, gnutls datum t * ecpoint)

4.1.2. Private keys

An abstract gnutls privkey t can be initialized using the functions below. It can be imported
through an existing structure like gnutls x509 privkey t, but unlike public keys it cannot be

100

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

exported. That is to allow abstraction over keys stored in hardware that makes available only
operations.

int gnutls privkey import x509 (gnutls privkey t pkey, gnutls x509 privkey t key,
unsigned int flags)

int gnutls privkey import openpgp (gnutls privkey t pkey,
gnutls openpgp privkey t key, unsigned int flags)

int gnutls privkey import pkcs11 (gnutls privkey t pkey, gnutls pkcs11 privkey t
key, unsigned int flags)

Other helper functions that allow directly importing from raw X.509 or OpenPGP structures
are shown below. Again, as with public keys, private keys can be imported from a hardware
module using URLs.

int gnutls privkey import x509 raw (gnutls privkey t pkey, const gnutls datum t *
data, gnutls x509 crt fmt t format, const char * password, unsigned int flags)

int gnutls privkey import openpgp raw (gnutls privkey t pkey, const
gnutls datum t * data, gnutls openpgp crt fmt t format, const gnutls openpgp keyid t
keyid, const char * password)

int gnutls privkey import url (gnutls privkey t key, const char * url, unsigned int
flags)

Description: This function will import a PKCS11 or TPM URL as a private key. The

supported URL types can be checked using gnutls url is supported().

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls privkey get pk algorithm (gnutls privkey t key, unsigned int * bits)

gnutls privkey type t gnutls privkey get type (gnutls privkey t key)

int gnutls privkey status (gnutls privkey t key)

101

4.1. ABSTRACT KEY TYPES

In order to support cryptographic operations using an external API, the following function is
provided. This allows for a simple extensibility API without resorting to PKCS #11.

int gnutls privkey import ext3 (gnutls privkey t pkey, void * userdata,
gnutls privkey sign func sign fn, gnutls privkey decrypt func decrypt fn,
gnutls privkey deinit func deinit fn, gnutls privkey info func info fn, unsigned int
flags)

Description: This function will associate the given callbacks with the gnutls privkey t

type. At least one of the two callbacks must be non-null. If a deinitialization function

is provided then flags is assumed to contain GNUTLS PRIVKEY IMPORT AUTO -

RELEASE. Note that the signing function is supposed to "raw" sign data, i.e., without

any hashing or preprocessing. In case of RSA the DigestInfo will be provided, and the

signing function is expected to do the PKCS #1 1.5 padding and the exponentiation. The

info fn must provide information on the algorithms supported by this private key, and should

support the flags GNUTLS PRIVKEY INFO PK ALGO and GNUTLS PRIVKEY -

INFO SIGN ALGO. It must return -1 on unknown flags.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

4.1.3. Operations

The abstract key types can be used to access signing and signature verification operations with
the underlying keys.

int gnutls pubkey verify data2 (gnutls pubkey t pubkey, gnutls sign algorithm t
algo, unsigned int flags, const gnutls datum t * data, const gnutls datum t *
signature)

Description: This function will verify the given signed data, using the parameters from

the certificate.

Returns: In case of a verification failure GNUTLS E PK SIG VERIFY FAILED is

returned, and zero or positive code on success. For known to be insecure signatures this

function will return GNUTLS E INSUFFICIENT SECURITY unless the flag GNUTLS -

VERIFY ALLOW BROKEN is specified.

Signing existing structures, such as certificates, CRLs, or certificate requests, as well as asso-
ciating public keys with structures is also possible using the key abstractions.

102

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

int gnutls pubkey verify hash2 (gnutls pubkey t key, gnutls sign algorithm t
algo, unsigned int flags, const gnutls datum t * hash, const gnutls datum t *
signature)

Description: This function will verify the given signed digest, using the parameters

from the public key. Note that unlike gnutls privkey sign hash(), this function accepts a

signature algorithm instead of a digest algorithm. You can use gnutls pk to sign() to get

the appropriate value.

Returns: In case of a verification failure GNUTLS E PK SIG VERIFY FAILED is

returned, and zero or positive code on success.

int gnutls pubkey encrypt data (gnutls pubkey t key, unsigned int flags, const
gnutls datum t * plaintext, gnutls datum t * ciphertext)

Description: This function will encrypt the given data, using the public key. On

success the ciphertext will be allocated using gnutls malloc().

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls x509 crt privkey sign (gnutls x509 crt t crt, gnutls x509 crt t issuer,
gnutls privkey t issuer key, gnutls digest algorithm t dig, unsigned int flags)

int gnutls x509 crl privkey sign (gnutls x509 crl t crl, gnutls x509 crt t issuer,
gnutls privkey t issuer key, gnutls digest algorithm t dig, unsigned int flags)

int gnutls x509 crq privkey sign (gnutls x509 crq t crq, gnutls privkey t key,
gnutls digest algorithm t dig, unsigned int flags)

int gnutls privkey sign data (gnutls privkey t signer, gnutls digest algorithm t
hash, unsigned int flags, const gnutls datum t * data, gnutls datum t * signature)

Description: This function will sign the given data using a signature algorithm

supported by the private key. Signature algorithms are always used together with a hash

functions. Different hash functions may be used for the RSA algorithm, but only the

SHA family for the DSA keys. You may use gnutls pubkey get preferred hash algorithm() to

determine the hash algorithm.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

103

4.1. ABSTRACT KEY TYPES

int gnutls privkey sign hash (gnutls privkey t signer, gnutls digest algorithm t
hash algo, unsigned int flags, const gnutls datum t * hash data, gnutls datum t *
signature)

Description: This function will sign the given hashed data using a signature algorithm

supported by the private key. Signature algorithms are always used together with a hash

functions. Different hash functions may be used for the RSA algorithm, but only SHA-XXX for

the DSA keys. You may use gnutls pubkey get preferred hash algorithm() to determine the hash

algorithm. Note that if GNUTLS PRIVKEY SIGN FLAG TLS1 RSA flag is specified

this function will ignore hash algo and perform a raw PKCS1 signature.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls privkey decrypt data (gnutls privkey t key, unsigned int flags, const
gnutls datum t * ciphertext, gnutls datum t * plaintext)

Description: This function will decrypt the given data using the algorithm supported by

the private key.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls x509 crq set pubkey (gnutls x509 crq t crq, gnutls pubkey t key)

Description: This function will set the public parameters from the given public key to

the request. The key can be deallocated after that.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls x509 crt set pubkey (gnutls x509 crt t crt, gnutls pubkey t key)

Description: This function will set the public parameters from the given public key to

the certificate. The key can be deallocated after that.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

104

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

4.2. System and application-specific keys

4.2.1. System-specific keys

In several systems there are keystores which allow to read, store and use certificates and private
keys. For these systems GnuTLS provides the system-key API in gnutls/system-keys.h.
That API provides the ability to iterate through all stored keys, add and delete keys as well as
use these keys using a URL which starts with ”system:”. The format of the URLs is system-
specific.

int gnutls system key iter get info (gnutls system key iter t * iter, unsigned
cert type, char ** cert url, char ** key url, char ** label, gnutls datum t *
der, unsigned int flags)

Description: This function will return on each call a certificate and key pair URLs, as

well as a label associated with them, and the DER-encoded certificate. When the iteration

is complete it will return GNUTLS E REQUESTED DATA NOT AVAILABLE.

Typically cert type should be GNUTLS CRT X509. All values set are allocated and

must be cleared using gnutls free(),

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

void gnutls system key iter deinit (gnutls system key iter t iter)

int gnutls system key add x509 (gnutls x509 crt t crt, gnutls x509 privkey t
privkey, const char * label, char ** cert url, char ** key url)

int gnutls system key delete (const char * cert url, const char * key url)

4.2.2. Application-specific keys

For systems where GnuTLS doesn’t provide a system specific store, it may often be desirable
to define a custom class of keys that are identified via URLs and available to GnuTLS calls
such as gnutls certificate set x509 key file2. Such keys can be registered using the API
in gnutls/urls.h. The function which registers such keys is gnutls register custom url.

The input to this function are three callback functions as well as the prefix of the URL, (e.g.,
”mypkcs11:”) and the length of the prefix. The types of the callbacks are shown below, and

105

4.2. SYSTEM AND APPLICATION-SPECIFIC KEYS

int gnutls register custom url (const gnutls custom url st * st)

Description: Register a custom URL. This will affect the following functions: gnutls -

url is supported(), gnutls privkey import url(), gnutls pubkey import url, gnutls x509 crt -

import url() and all functions that depend on them, e.g., gnutls certificate set x509 -

key file2(). The provided structure and callback functions must be valid throughout

the lifetime of the process. The registration of an existing URL type will fail with

GNUTLS E INVALID REQUEST. This function is not thread safe.

Returns: returns zero if the given structure was imported or a negative value

otherwise.

are expected to use the exported gnutls functions to import the keys and certificates. E.g., a
typical import key callback should use gnutls privkey import ext3.

1 typedef int (*gnutls_privkey_import_url_func)(gnutls_privkey_t pkey,

2 const char *url,

3 unsigned flags);

4

5 typedef int (*gnutls_x509_crt_import_url_func)(gnutls_x509_crt_t pkey,

6 const char *url,

7 unsigned flags);

8

9 /* The following callbacks are optional */

10

11 /* This is to enable gnutls_pubkey_import_url() */

12 typedef int (*gnutls_pubkey_import_url_func)(gnutls_pubkey_t pkey,

13 const char *url, unsigned flags);

14

15 /* This is to allow constructing a certificate chain. It will be provided

16 * the initial certificate URL and the certificate to find its issuer, and must

17 * return zero and the DER encoding of the issuer’s certificate. If not available,

18 * it should return GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE. */

19 typedef int (*gnutls_get_raw_issuer_func)(const char *url, gnutls_x509_crt_t crt,

20 gnutls_datum_t *issuer_der, unsigned flags);

21

22 typedef struct custom_url_st {

23 const char *name;

24 unsigned name_size;

25 gnutls_privkey_import_url_func import_key;

26 gnutls_x509_crt_import_url_func import_crt;

27 gnutls_pubkey_import_url_func import_pubkey;

28 gnutls_get_raw_issuer_func get_issuer;

29 } gnutls_custom_url_st;

106

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

4.3. Smart cards and HSMs

In this section we present the smart-card and hardware security module (HSM) support in
GnuTLS using PKCS #11 [2]. Hardware security modules and smart cards provide a way
to store private keys and perform operations on them without exposing them. This decouples
cryptographic keys from the applications that use them and provide an additional security layer
against cryptographic key extraction. Since this can also be achieved in software components
such as in Gnome keyring, we will use the term security module to describe any cryptographic
key separation subsystem.

PKCS #11 is plugin API allowing applications to access cryptographic operations on a security
module, as well as to objects residing on it. PKCS #11 modules exist for hardware tokens such
as smart cards1, cryptographic tokens, as well as for software modules like Gnome Keyring. The
objects residing on a security module may be certificates, public keys, private keys or secret
keys. Of those certificates and public/private key pairs can be used with GnuTLS. PKCS
#11’s main advantage is that it allows operations on private key objects such as decryption
and signing without exposing the key. In GnuTLS the PKCS #11 functionality is available in
gnutls/pkcs11.h.

Moreover PKCS #11 can be (ab)used to allow all applications in the same operating system to
access shared cryptographic keys and certificates in a uniform way, as in Figure 4.1. That way
applications could load their trusted certificate list, as well as user certificates from a common
PKCS #11 module. Such a provider is the p11-kit trust storage module2.

User
Application

GnuTLS

Gnome Keyring
Daemon

Smart card

Other crypto
package

PKCS #11
Provider

PKCS #11
Provider

PKCS #11
Provider

Trusted Platform
Module

Figure 4.1.: PKCS #11 module usage.

4.3.1. Initialization

To allow all GnuTLS applications to transparently access smart cards and tokens, PKCS #11 is
automatically initialized during the first call of a PKCS #11 related function. The initialization

1For example, OpenSC-supported cards.
2http://p11-glue.freedesktop.org/trust-module.html

107

http://p11-glue.freedesktop.org/trust-module.html

4.3. SMART CARDS AND HSMS

process, based on p11-kit configuration, loads any appropriate modules. The p11-kit configura-
tion files3 are typically stored in /etc/pkcs11/modules/. For example a file that will instruct
GnuTLS to load the OpenSC module, could be named /etc/pkcs11/modules/opensc.module

and contain the following:

1 module: /usr/lib/opensc-pkcs11.so

If you use these configuration files, then there is no need for other initialization in GnuTLS,
except for the PIN and token callbacks (see next section). In several cases, however, it is
desirable to limit badly behaving modules (e.g., modules that add an unacceptable delay on
initialization) to single applications. That can be done using the “enable-in:” option followed
by the base name of applications that this module should be used.

It is also possible to manually initialize the PKCS #11 subsystem if the default settings are
not desirable. To completely disable PKCS #11 support you need to call gnutls pkcs11 init

with the flag GNUTLS PKCS11 FLAG MANUAL prior to gnutls global init.

int gnutls pkcs11 init (unsigned int flags, const char * deprecated config file)

Description: This function will initialize the PKCS 11 subsystem in gnutls. It

will read configuration files if GNUTLS PKCS11 FLAG AUTO is used or allow you to

independently load PKCS 11 modules using gnutls pkcs11 add provider() if GNUTLS -

PKCS11 FLAG MANUAL is specified. You don’t need to call this function since GnuTLS

3.3.0 because it is being called during the first request PKCS 11 operation. That call will

assume the GNUTLS PKCS11 FLAG AUTO flag. If another flags are required then it must

be called independently prior to any PKCS 11 operation.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

Note that, PKCS #11 modules behave in a peculiar way after a fork; they require a reinitial-
ization of all the used PKCS #11 resources. While GnuTLS automates that process, there are
corner cases where it is not possible to handle it correctly in an automated way4. For that
reasons it is recommended not to mix fork() and PKCS #11 module usage. It is recommended
to initialize and use any PKCS #11 resources in a single process.

Older versions of GnuTLS required to call gnutls pkcs11 reinit after a fork() call; since
3.3.0 this is no longer required.

3http://p11-glue.freedesktop.org/
4For example when an open session is to be reinitialized, but the PIN is not available to GnuTLS (e.g., it was

entered at a pinpad).

108

http://p11-glue.freedesktop.org/

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

4.3.2. Accessing objects that require a PIN

Objects stored in token such as a private keys are typically protected from access by a PIN
or password. This PIN may be required to either read the object (if allowed) or to perform
operations with it. To allow obtaining the PIN when accessing a protected object, as well as
probe the user to insert the token the following functions allow to set a callback.

void gnutls pkcs11 set token function (gnutls pkcs11 token callback t fn, void *
userdata)

void gnutls pkcs11 set pin function (gnutls pin callback t fn, void * userdata)

int gnutls pkcs11 add provider (const char * name, const char * params)

gnutls pin callback t gnutls pkcs11 get pin function (void ** userdata)

The callback is of type gnutls pin callback t and will have as input the provided userdata,
the PIN attempt number, a URL describing the token, a label describing the object and flags.
The PIN must be at most of pin max size and must be copied to pin variable. The function
must return 0 on success or a negative error code otherwise.

typedef int (*gnutls_pin_callback_t) (void *userdata, int attempt,

const char *token_url,

const char *token_label,

unsigned int flags,

char *pin, size_t pin_max);

The flags are of gnutls pin flag t type and are explained below.

enum gnutls pin flag t:
GNUTLS PIN USER The PIN for the user.

GNUTLS PIN SO The PIN for the security officer (admin).

GNUTLS PIN FINAL TRY This is the final try before blocking.

GNUTLS PIN COUNT LOW Few tries remain before token blocks.

GNUTLS PIN CONTEXT SPECIFIC The PIN is for a specific action and key like signing.

GNUTLS PIN WRONG Last given PIN was not correct.

Table 4.1.: The gnutls pin flag t enumeration.

Note that due to limitations of PKCS #11 there are issues when multiple libraries are sharing
a module. To avoid this problem GnuTLS uses p11-kit that provides a middleware to control

109

4.3. SMART CARDS AND HSMS

access to resources over the multiple users.

To avoid conflicts with multiple registered callbacks for PIN functions, gnutls pkcs11 get -

pin function may be used to check for any previously set functions. In addition context
specific PIN functions are allowed, e.g., by using functions below.

void gnutls certificate set pin function (gnutls certificate credentials t cred,
gnutls pin callback t fn, void * userdata)

void gnutls pubkey set pin function (gnutls pubkey t key, gnutls pin callback t
fn, void * userdata)

void gnutls privkey set pin function (gnutls privkey t key, gnutls pin callback t
fn, void * userdata)

void gnutls pkcs11 obj set pin function (gnutls pkcs11 obj t obj,
gnutls pin callback t fn, void * userdata)

void gnutls x509 crt set pin function (gnutls x509 crt t crt, gnutls pin callback t
fn, void * userdata)

4.3.3. Reading objects

All PKCS #11 objects are referenced by GnuTLS functions by URLs as described in [26]. This
allows for a consistent naming of objects across systems and applications in the same system.
For example a public key on a smart card may be referenced as:

1 pkcs11:token=Nikos;serial=307521161601031;model=PKCS%2315; \

2 manufacturer=EnterSafe;object=test1;type=public;\

3 id=32f153f3e37990b08624141077ca5dec2d15faed

while the smart card itself can be referenced as:

1 pkcs11:token=Nikos;serial=307521161601031;model=PKCS%2315;manufacturer=EnterSafe

Objects stored in a PKCS #11 token can be extracted if they are not marked as sensitive.
Usually only private keys are marked as sensitive and cannot be extracted, while certificates
and other data can be retrieved. The functions that can be used to access objects are shown
below.

int gnutls pkcs11 obj import url (gnutls pkcs11 obj t obj, const char * url, un-
signed int flags)

int gnutls pkcs11 obj export url (gnutls pkcs11 obj t obj, gnutls pkcs11 url type t
detailed, char ** url)

110

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

int gnutls pkcs11 obj get info (gnutls pkcs11 obj t obj, gnutls pkcs11 obj info t
itype, void * output, size t * output size)

Description: This function will return information about the PKCS11 certificate such as

the label, id as well as token information where the key is stored. When output is text it

returns null terminated string although output size contains the size of the actual data

only.

Returns: GNUTLS E SUCCESS (0) on success or a negative error code on error.

int gnutls x509 crt import pkcs11 (gnutls x509 crt t crt, gnutls pkcs11 obj t
pkcs11 crt)

int gnutls x509 crt import url (gnutls x509 crt t crt, const char * url, unsigned
int flags)

int gnutls x509 crt list import pkcs11 (gnutls x509 crt t * certs, unsigned int
cert max, gnutls pkcs11 obj t * const objs, unsigned int flags)

Properties of the physical token can also be accessed and altered with GnuTLS. For example
data in a token can be erased (initialized), PIN can be altered, etc.

int gnutls pkcs11 token init (const char * token url, const char * so pin, const
char * label)

int gnutls pkcs11 token get url (unsigned int seq, gnutls pkcs11 url type t de-
tailed, char ** url)

int gnutls pkcs11 token get info (const char * url, gnutls pkcs11 token info t
ttype, void * output, size t * output size)

int gnutls pkcs11 token get flags (const char * url, unsigned int * flags)

int gnutls pkcs11 token set pin (const char * token url, const char * oldpin,
const char * newpin, unsigned int flags)

The following examples demonstrate the usage of the API. The first example will list all
available PKCS #11 tokens in a system and the latter will list all certificates in a token that
have a corresponding private key.

1 int i;

111

4.3. SMART CARDS AND HSMS

2 char* url;

3

4 gnutls_global_init();

5

6 for (i=0;;i++)

7 {

8 ret = gnutls_pkcs11_token_get_url(i, &url);

9 if (ret == GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE)

10 break;

11

12 if (ret < 0)

13 exit(1);

14

15 fprintf(stdout, "Token[%d]: URL: %s\n", i, url);

16 gnutls_free(url);

17 }

18 gnutls_global_deinit();

1 /* This example code is placed in the public domain. */

2

3 #include <config.h>

4 #include <gnutls/gnutls.h>

5 #include <gnutls/pkcs11.h>

6 #include <stdio.h>

7 #include <stdlib.h>

8

9 #define URL "pkcs11:URL"

10

11 int main(int argc, char **argv)

12 {

13 gnutls_pkcs11_obj_t *obj_list;

14 gnutls_x509_crt_t xcrt;

15 unsigned int obj_list_size = 0;

16 gnutls_datum_t cinfo;

17 int ret;

18 unsigned int i;

19

20 ret = gnutls_pkcs11_obj_list_import_url4(&obj_list, &obj_list_size, URL,

21 GNUTLS_PKCS11_OBJ_FLAG_CRT|

22 GNUTLS_PKCS11_OBJ_FLAG_WITH_PRIVKEY);

23 if (ret < 0)

24 return -1;

25

26 /* now all certificates are in obj_list */

27 for (i = 0; i < obj_list_size; i++) {

28

29 gnutls_x509_crt_init(&xcrt);

30

31 gnutls_x509_crt_import_pkcs11(xcrt, obj_list[i]);

32

33 gnutls_x509_crt_print(xcrt, GNUTLS_CRT_PRINT_FULL, &cinfo);

34

35 fprintf(stdout, "cert[%d]:\n %s\n\n", i, cinfo.data);

36

37 gnutls_free(cinfo.data);

38 gnutls_x509_crt_deinit(xcrt);

39 }

112

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

40

41 for (i = 0; i < obj_list_size; i++)

42 gnutls_pkcs11_obj_deinit(obj_list[i]);

43 gnutls_free(obj_list);

44

45 return 0;

46 }

4.3.4. Writing objects

With GnuTLS you can copy existing private keys and certificates to a token. Note that
when copying private keys it is recommended to mark them as sensitive using the GNUTLS -

PKCS11 OBJ FLAG MARK SENSITIVE to prevent its extraction. An object can be marked as
private using the flag GNUTLS PKCS11 OBJ FLAG MARK PRIVATE, to require PIN to be entered
before accessing the object (for operations or otherwise).

int gnutls pkcs11 copy x509 privkey2 (const char * token url,
gnutls x509 privkey t key, const char * label, const gnutls datum t * cid, unsigned
int key usage, unsigned int flags)

Description: This function will copy a private key into a PKCS #11 token specified by a

URL. It is highly recommended flags to contain GNUTLS PKCS11 OBJ FLAG MARK SENSITIVE

unless there is a strong reason not to.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls pkcs11 copy x509 crt2 (const char * token url, gnutls x509 crt t crt,
const char * label, const gnutls datum t * cid, unsigned int flags)

Description: This function will copy a certificate into a PKCS #11 token specified by

a URL. Valid flags to mark the certificate: GNUTLS PKCS11 OBJ FLAG MARK TRUSTED,

GNUTLS PKCS11 OBJ FLAG MARK SENSITIVE, GNUTLS PKCS11 OBJ FLAG MARK PRIVATE,

GNUTLS PKCS11 OBJ FLAG MARK CA, GNUTLS PKCS11 OBJ FLAG MARK ALWAYS AUTH.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

113

4.3. SMART CARDS AND HSMS

int gnutls pkcs11 delete url (const char * object url, unsigned int flags)

Description: This function will delete objects matching the given URL. Note that not all

tokens support the delete operation.

Returns: On success, the number of objects deleted is returned, otherwise a negative

error value.

4.3.5. Using a PKCS #11 token with TLS

It is possible to use a PKCS #11 token to a TLS session, as shown in subsection 6.1.8. In ad-
dition the following functions can be used to load PKCS #11 key and certificates by specifying
a PKCS #11 URL instead of a filename.

int gnutls certificate set x509 trust file (gnutls certificate credentials t cred,
const char * cafile, gnutls x509 crt fmt t type)

int gnutls certificate set x509 key file2 (gnutls certificate credentials t res, const
char * certfile, const char * keyfile, gnutls x509 crt fmt t type, const char * pass,
unsigned int flags)

int gnutls certificate set x509 system trust (gnutls certificate credentials t cred)

Description: This function adds the system’s default trusted CAs in order to verify

client or server certificates. In the case the system is currently unsupported GNUTLS -

E UNIMPLEMENTED FEATURE is returned.

Returns: the number of certificates processed or a negative error code on error.

4.3.6. Invoking p11tool

Program that allows operations on PKCS #11 smart cards and security modules.

To use PKCS #11 tokens with GnuTLS the p11-kit configuration files need to be setup. That is
create a .module file in /etc/pkcs11/modules with the contents ’module: /path/to/pkcs11.so’.
Alternatively the configuration file /etc/gnutls/pkcs11.conf has to exist and contain a number
of lines of the form ’load=/usr/lib/opensc-pkcs11.so’.

You can provide the PIN to be used for the PKCS #11 operations with the environment
variables GNUTLS PIN and GNUTLS SO PIN.

114

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the p11tool program. This software is released under the GNU General
Public License, version 3 or later.

4.3.7. p11tool help/usage (“--help”)

This is the automatically generated usage text for p11tool.

The text printed is the same whether selected with the help option (“--help”) or the more-help
option (“--more-help”). more-help will print the usage text by passing it through a pager
program. more-help is disabled on platforms without a working fork(2) function. The PAGER

environment variable is used to select the program, defaulting to “more”. Both will exit with
a status code of 0.

1 p11tool - GnuTLS PKCS #11 tool

2 Usage: p11tool [-<flag> [<val>] | --<name>[{=| }<val>]]... [url]

3

4

5 Tokens:

6

7 --list-tokens List all available tokens

8 --list-token-urls List the URLs available tokens

9 --list-mechanisms List all available mechanisms in a token

10 --initialize Initializes a PKCS #11 token

11 --set-pin=str Specify the PIN to use on token initialization

12 --set-so-pin=str Specify the Security Officer’s PIN to use on token initialization

13

14 Object listing:

15

16 --list-all List all available objects in a token

17 --list-all-certs List all available certificates in a token

18 --list-certs List all certificates that have an associated private key

19 --list-all-privkeys List all available private keys in a token

20 --list-privkeys an alias for the ’list-all-privkeys’ option

21 --list-keys an alias for the ’list-all-privkeys’ option

22 --list-all-trusted List all available certificates marked as trusted

23 --export Export the object specified by the URL

24 --export-chain Export the certificate specified by the URL and its chain of trust

25 --export-pubkey Export the public key for a private key

26 --info List information on an available object in a token

27

28 Key generation:

29

30 --generate-rsa Generate an RSA private-public key pair

31 --generate-dsa Generate a DSA private-public key pair

32 --generate-ecc Generate an ECDSA private-public key pair

33 --bits=num Specify the number of bits for key generate

34 --curve=str Specify the curve used for EC key generation

35 --sec-param=str Specify the security level

36

37 Writing objects:

38

39 --set-id=str Set the CKA_ID (in hex) for the specified by the URL object

40 - prohibits the option ’write’

41 --set-label=str Set the CKA_LABEL for the specified by the URL object

115

4.3. SMART CARDS AND HSMS

42 - prohibits these options:

43 write

44 set-id

45 --write Writes the loaded objects to a PKCS #11 token

46 --delete Deletes the objects matching the given PKCS #11 URL

47 --label=str Sets a label for the write operation

48 --id=str Sets an ID for the write operation

49 --mark-wrap Marks the generated key to be a wrapping key

50 - disabled as ’--no-mark-wrap’

51 --mark-trusted Marks the object to be written as trusted

52 - disabled as ’--no-mark-trusted’

53 --mark-decrypt Marks the object to be written for decryption

54 - disabled as ’--no-mark-decrypt’

55 -!, --mark-sign Marks the object to be written for signature generation

56 - disabled as ’--no-mark-sign’

57 -", --mark-ca Marks the object to be written as a CA

58 - disabled as ’--no-mark-ca’

59 -#, --mark-private Marks the object to be written as private

60 - disabled as ’--no-mark-private’

61 - enabled by default

62 -$, --trusted an alias for the ’mark-trusted’ option

63 -%, --ca an alias for the ’mark-ca’ option

64 -&, --private an alias for the ’mark-private’ option

65 - enabled by default

66 -’, --secret-key=str Provide a hex encoded secret key

67 -(, --load-privkey=file Private key file to use

68 - file must pre-exist

69 -), --load-pubkey=file Public key file to use

70 - file must pre-exist

71 -*, --load-certificate=file Certificate file to use

72 - file must pre-exist

73

74 Other options:

75

76 -d, --debug=num Enable debugging

77 - it must be in the range:

78 0 to 9999

79 -+, --outfile=str Output file

80 -,, --login Force (user) login to token

81 - disabled as ’--no-login’

82 --, --so-login Force security officer login to token

83 - disabled as ’--no-so-login’

84 -., --admin-login an alias for the ’so-login’ option

85 -/, --test-sign Tests the signature operation of the provided object

86 -0, --generate-random=num Generate random data

87 -8, --pkcs8 Use PKCS #8 format for private keys

88 -1, --inder Use DER/RAW format for input

89 - disabled as ’--no-inder’

90 -2, --inraw an alias for the ’inder’ option

91 -3, --outder Use DER format for output certificates, private keys, and DH parameters

92 - disabled as ’--no-outder’

93 -4, --outraw an alias for the ’outder’ option

94 -5, --provider=file Specify the PKCS #11 provider library

95 -6, --detailed-url Print detailed URLs

96 - disabled as ’--no-detailed-url’

97 -7, --only-urls Print a compact listing using only the URLs

98 -8, --batch Disable all interaction with the tool

99

116

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

100 Version, usage and configuration options:

101

102 -v, --version[=arg] output version information and exit

103 -h, --help display extended usage information and exit

104 -!, --more-help extended usage information passed thru pager

105

106 Options are specified by doubled hyphens and their name or by a single

107 hyphen and the flag character.

108 Operands and options may be intermixed. They will be reordered.

109

110 Program that allows operations on PKCS #11 smart cards and security

111 modules.

112

113 To use PKCS #11 tokens with GnuTLS the p11-kit configuration files need to

114 be setup. That is create a .module file in /etc/pkcs11/modules with the

115 contents ’module: /path/to/pkcs11.so’. Alternatively the configuration

116 file /etc/gnutls/pkcs11.conf has to exist and contain a number of lines of

117 the form ’load=/usr/lib/opensc-pkcs11.so’.

118

119 You can provide the PIN to be used for the PKCS #11 operations with the

120 environment variables GNUTLS_PIN and GNUTLS_SO_PIN.

121

4.3.8. token-related-options options

Tokens.

list-token-urls option.

This is the “list the urls available tokens” option. This is a more compact version of –list-tokens.

set-pin option.

This is the “specify the pin to use on token initialization” option. This option takes a string
argument. Alternatively the GNUTLS PIN environment variable may be used.

set-so-pin option.

This is the “specify the security officer’s pin to use on token initialization” option. This option
takes a string argument. Alternatively the GNUTLS SO PIN environment variable may be
used.

4.3.9. object-list-related-options options

Object listing.

117

4.3. SMART CARDS AND HSMS

list-all-privkeys option.

This is the “list all available private keys in a token” option. Lists all the private keys in a
token that match the specified URL.

list-privkeys option.

This is an alias for the list-all-privkeys option, section 4.3.9.

list-keys option.

This is an alias for the list-all-privkeys option, section 4.3.9.

export-chain option.

This is the “export the certificate specified by the url and its chain of trust” option. Exports the
certificate specified by the URL and generates its chain of trust based on the stored certificates
in the module.

export-pubkey option.

This is the “export the public key for a private key” option. Exports the public key for the
specified private key

4.3.10. keygen-related-options options

Key generation.

generate-rsa option.

This is the “generate an rsa private-public key pair” option. Generates an RSA private-public
key pair on the specified token.

generate-dsa option.

This is the “generate a dsa private-public key pair” option. Generates a DSA private-public
key pair on the specified token.

118

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

generate-ecc option.

This is the “generate an ecdsa private-public key pair” option. Generates an ECDSA private-
public key pair on the specified token.

curve option.

This is the “specify the curve used for ec key generation” option. This option takes a string
argument. Supported values are secp192r1, secp224r1, secp256r1, secp384r1 and secp521r1.

sec-param option.

This is the “specify the security level” option. This option takes a string argument “Security
parameter”. This is alternative to the bits option. Available options are [low, legacy, medium,
high, ultra].

4.3.11. write-object-related-options options

Writing objects.

set-id option.

This is the “set the cka id (in hex) for the specified by the url object” option. This option
takes a string argument.

This option has some usage constraints. It:

• must not appear in combination with any of the following options: write.

Modifies or sets the CKA ID in the specified by the URL object. The ID should be specified
in hexadecimal format without a ’0x’ prefix.

set-label option.

This is the “set the cka label for the specified by the url object” option. This option takes a
string argument.

This option has some usage constraints. It:

• must not appear in combination with any of the following options: write, set-id.

Modifies or sets the CKA LABEL in the specified by the URL object

119

4.3. SMART CARDS AND HSMS

write option.

This is the “writes the loaded objects to a pkcs #11 token” option. It can be used to write
private keys, certificates or secret keys to a token. Must be combined with a –load option.

id option.

This is the “sets an id for the write operation” option. This option takes a string argument.
Sets the CKA ID to be set by the write operation. The ID should be specified in hexadecimal
format without a ’0x’ prefix.

mark-wrap option.

This is the “marks the generated key to be a wrapping key” option.

This option has some usage constraints. It:

• can be disabled with –no-mark-wrap.

Marks the generated key with the CKA WRAP flag.

mark-trusted option.

This is the “marks the object to be written as trusted” option.

This option has some usage constraints. It:

• can be disabled with –no-mark-trusted.

Marks the object to be generated/written with the CKA TRUST flag.

mark-decrypt option.

This is the “marks the object to be written for decryption” option.

This option has some usage constraints. It:

• can be disabled with –no-mark-decrypt.

Marks the object to be generated/written with the CKA DECRYPT flag set to true.

mark-sign option.

This is the “marks the object to be written for signature generation” option.

This option has some usage constraints. It:

• can be disabled with –no-mark-sign.

120

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

Marks the object to be generated/written with the CKA SIGN flag set to true.

mark-ca option.

This is the “marks the object to be written as a ca” option.

This option has some usage constraints. It:

• can be disabled with –no-mark-ca.

Marks the object to be generated/written with the CKA CERTIFICATE CATEGORY as CA.

mark-private option.

This is the “marks the object to be written as private” option.

This option has some usage constraints. It:

• can be disabled with –no-mark-private.

• It is enabled by default.

Marks the object to be generated/written with the CKA PRIVATE flag. The written object
will require a PIN to be used.

trusted option.

This is an alias for the mark-trusted option, section 4.3.11.

ca option.

This is an alias for the mark-ca option, section 4.3.11.

private option.

This is an alias for the mark-private option, section 4.3.11.

secret-key option.

This is the “provide a hex encoded secret key” option. This option takes a string argument.
This secret key will be written to the module if –write is specified.

4.3.12. other-options options

Other options.

121

4.3. SMART CARDS AND HSMS

debug option (-d).

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

so-login option.

This is the “force security officer login to token” option.

This option has some usage constraints. It:

• can be disabled with –no-so-login.

Forces login to the token as security officer (admin).

admin-login option.

This is an alias for the so-login option, section 4.3.12.

test-sign option.

This is the “tests the signature operation of the provided object” option. It can be used to
test the correct operation of the signature operation. If both a private and a public key are
available this operation will sign and verify the signed data.

generate-random option.

This is the “generate random data” option. This option takes a number argument. Asks the
token to generate a number of bytes of random bytes.

inder option.

This is the “use der/raw format for input” option.

This option has some usage constraints. It:

• can be disabled with –no-inder.

Use DER/RAW format for input certificates and private keys.

inraw option.

This is an alias for the inder option, section 4.3.12.

122

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

outder option.

This is the “use der format for output certificates, private keys, and dh parameters” option.

This option has some usage constraints. It:

• can be disabled with –no-outder.

The output will be in DER or RAW format.

outraw option.

This is an alias for the outder option, section 4.3.12.

provider option.

This is the “specify the pkcs #11 provider library” option. This option takes a file argument.
This will override the default options in /etc/gnutls/pkcs11.conf

batch option.

This is the “disable all interaction with the tool” option. In batch mode there will be no
prompts, all parameters need to be specified on command line.

4.3.13. p11tool exit status

One of the following exit values will be returned:

• 0 (EXIT SUCCESS) Successful program execution.

• 1 (EXIT FAILURE) The operation failed or the command syntax was not valid.

4.3.14. p11tool See Also

certtool (1)

4.3.15. p11tool Examples

To view all tokens in your system use:

1 $ p11tool --list-tokens

To view all objects in a token use:

123

4.4. TRUSTED PLATFORM MODULE (TPM)

1 $ p11tool --login --list-all "pkcs11:TOKEN-URL"

To store a private key and a certificate in a token run:

1 $ p11tool --login --write "pkcs11:URL" --load-privkey key.pem \

2 --label "Mykey"

3 $ p11tool --login --write "pkcs11:URL" --load-certificate cert.pem \

4 --label "Mykey"

Note that some tokens require the same label to be used for the certificate and its corresponding
private key.

To generate an RSA private key inside the token use:

1 $ p11tool --login --generate-rsa --bits 1024 --label "MyNewKey" \

2 --outfile MyNewKey.pub "pkcs11:TOKEN-URL"

The bits parameter in the above example is explicitly set because some tokens only support
limited choices in the bit length. The output file is the corresponding public key. This key can
be used to general a certificate request with certtool.

1 certtool --generate-request --load-privkey "pkcs11:KEY-URL" \

2 --load-pubkey MyNewKey.pub --outfile request.pem

4.4. Trusted Platform Module (TPM)

In this section we present the Trusted Platform Module (TPM) support in GnuTLS.

There was a big hype when the TPM chip was introduced into computers. Briefly it is a co-
processor in your PC that allows it to perform calculations independently of the main processor.
This has good and bad side-effects. In this section we focus on the good ones; these are the
fact that you can use the TPM chip to perform cryptographic operations on keys stored in it,
without accessing them. That is very similar to the operation of a PKCS #11 smart card. The
chip allows for storage and usage of RSA keys, but has quite some operational differences from
PKCS #11 module, and thus require different handling. The basic TPM operations supported
and used by GnuTLS, are key generation and signing.

The next sections assume that the TPM chip in the system is already initialized and in a
operational state.

In GnuTLS the TPM functionality is available in gnutls/tpm.h.

4.4.1. Keys in TPM

The RSA keys in the TPM module may either be stored in a flash memory within TPM or
stored in a file in disk. In the former case the key can provide operations as with PKCS #11
and is identified by a URL. The URL is described in [19] and is of the following form.

124

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

tpmkey:uuid=42309df8-d101-11e1-a89a-97bb33c23ad1;storage=user

It consists from a unique identifier of the key as well as the part of the flash memory the key
is stored at. The two options for the storage field are ‘user’ and ‘system’. The user keys are
typically only available to the generating user and the system keys to all users. The stored in
TPM keys are called registered keys.

The keys that are stored in the disk are exported from the TPM but in an encrypted form. To
access them two passwords are required. The first is the TPM Storage Root Key (SRK), and
the other is a key-specific password. Also those keys are identified by a URL of the form:

tpmkey:file=/path/to/file

When objects require a PIN to be accessed the same callbacks as with PKCS #11 objects are
expected (see subsection 4.3.2). Note that the PIN function may be called multiple times to
unlock the SRK and the specific key in use. The label in the key function will then be set to
‘SRK’ when unlocking the SRK key, or to ‘TPM’ when unlocking any other key.

4.4.2. Key generation

All keys used by the TPM must be generated by the TPM. This can be done using gnutls -

tpm privkey generate.

int gnutls tpm privkey generate (gnutls pk algorithm t pk, unsigned int bits,
const char * srk password, const char * key password, gnutls tpmkey fmt t for-
mat, gnutls x509 crt fmt t pub format, gnutls datum t * privkey, gnutls datum t *
pubkey, unsigned int flags)

Description: This function will generate a private key in the TPM chip. The private key

will be generated within the chip and will be exported in a wrapped with TPM’s master key

form. Furthermore the wrapped key can be protected with the provided password. Note that

bits in TPM is quantized value. If the input value is not one of the allowed values, then

it will be quantized to one of 512, 1024, 2048, 4096, 8192 and 16384. Allowed flags are:

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

125

4.4. TRUSTED PLATFORM MODULE (TPM)

int gnutls tpm get registered (gnutls tpm key list t * list)

void gnutls tpm key list deinit (gnutls tpm key list t list)

int gnutls tpm key list get url (gnutls tpm key list t list, unsigned int idx, char
** url, unsigned int flags)

int gnutls tpm privkey delete (const char * url, const char * srk password)

Description: This function will unregister the private key from the TPM chip.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

4.4.3. Using keys

Importing keys

The TPM keys can be used directly by the abstract key types and do not require any spe-
cial structures. Moreover functions like gnutls certificate set x509 key file2 can access
TPM URLs.

int gnutls privkey import tpm raw (gnutls privkey t pkey, const gnutls datum t
* fdata, gnutls tpmkey fmt t format, const char * srk password, const char *
key password, unsigned int flags)

int gnutls pubkey import tpm raw (gnutls pubkey t pkey, const gnutls datum t *
fdata, gnutls tpmkey fmt t format, const char * srk password, unsigned int flags)

Listing and deleting keys

The registered keys (that are stored in the TPM) can be listed using one of the following
functions. Those keys are unfortunately only identified by their UUID and have no label or
other human friendly identifier. Keys can be deleted from permament storage using gnutls -

tpm privkey delete.

126

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

int gnutls privkey import tpm url (gnutls privkey t pkey, const char * url,
const char * srk password, const char * key password, unsigned int flags)

Description: This function will import the given private key to the abstract gnutls -

privkey t type. Note that unless GNUTLS PRIVKEY DISABLE CALLBACKS is

specified, if incorrect (or NULL) passwords are given the PKCS11 callback functions will be

used to obtain the correct passwords. Otherwise if the SRK password is wrong GNUTLS -

E TPM SRK PASSWORD ERROR is returned and if the key password is wrong or not

provided then GNUTLS E TPM KEY PASSWORD ERROR is returned.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls pubkey import tpm url (gnutls pubkey t pkey, const char * url, const
char * srk password, unsigned int flags)

Description: This function will import the given private key to the abstract gnutls -

privkey t type. Note that unless GNUTLS PUBKEY DISABLE CALLBACKS is

specified, if incorrect (or NULL) passwords are given the PKCS11 callback functions will be

used to obtain the correct passwords. Otherwise if the SRK password is wrong GNUTLS E -

TPM SRK PASSWORD ERROR is returned.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls tpm get registered (gnutls tpm key list t * list)

void gnutls tpm key list deinit (gnutls tpm key list t list)

int gnutls tpm key list get url (gnutls tpm key list t list, unsigned int idx, char
** url, unsigned int flags)

4.4.4. Invoking tpmtool

Program that allows handling cryptographic data from the TPM chip.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the tpmtool program. This software is released under the GNU General

127

4.4. TRUSTED PLATFORM MODULE (TPM)

int gnutls tpm privkey delete (const char * url, const char * srk password)

Description: This function will unregister the private key from the TPM chip.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

Public License, version 3 or later.

4.4.5. tpmtool help/usage (“--help”)

This is the automatically generated usage text for tpmtool.

The text printed is the same whether selected with the help option (“--help”) or the more-help
option (“--more-help”). more-help will print the usage text by passing it through a pager
program. more-help is disabled on platforms without a working fork(2) function. The PAGER

environment variable is used to select the program, defaulting to “more”. Both will exit with
a status code of 0.

1 tpmtool - GnuTLS TPM tool

2 Usage: tpmtool [-<flag> [<val>] | --<name>[{=| }<val>]]...

3

4 -d, --debug=num Enable debugging

5 - it must be in the range:

6 0 to 9999

7 --infile=file Input file

8 - file must pre-exist

9 --outfile=str Output file

10 --generate-rsa Generate an RSA private-public key pair

11 --register Any generated key will be registered in the TPM

12 - requires the option ’generate-rsa’

13 --signing Any generated key will be a signing key

14 - requires the option ’generate-rsa’

15 -- and prohibits the option ’legacy’

16 --legacy Any generated key will be a legacy key

17 - requires the option ’generate-rsa’

18 -- and prohibits the option ’signing’

19 --user Any registered key will be a user key

20 - requires the option ’register’

21 -- and prohibits the option ’system’

22 --system Any registered key will be a system key

23 - requires the option ’register’

24 -- and prohibits the option ’user’

25 --pubkey=str Prints the public key of the provided key

26 --list Lists all stored keys in the TPM

27 --delete=str Delete the key identified by the given URL (UUID).

28 --test-sign=str Tests the signature operation of the provided object

29 --sec-param=str Specify the security level [low, legacy, medium, high, ultra].

30 --bits=num Specify the number of bits for key generate

31 --inder Use the DER format for keys.

128

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

32 - disabled as ’--no-inder’

33 --outder Use DER format for output keys

34 - disabled as ’--no-outder’

35 -v, --version[=arg] output version information and exit

36 -h, --help display extended usage information and exit

37 -!, --more-help extended usage information passed thru pager

38

39 Options are specified by doubled hyphens and their name or by a single

40 hyphen and the flag character.

41

42 Program that allows handling cryptographic data from the TPM chip.

43

4.4.6. debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

4.4.7. generate-rsa option

This is the “generate an rsa private-public key pair” option. Generates an RSA private-public
key pair in the TPM chip. The key may be stored in filesystem and protected by a PIN, or
stored (registered) in the TPM chip flash.

4.4.8. user option

This is the “any registered key will be a user key” option.

This option has some usage constraints. It:

• must appear in combination with the following options: register.

• must not appear in combination with any of the following options: system.

The generated key will be stored in a user specific persistent storage.

4.4.9. system option

This is the “any registered key will be a system key” option.

This option has some usage constraints. It:

• must appear in combination with the following options: register.

• must not appear in combination with any of the following options: user.

The generated key will be stored in system persistent storage.

129

4.4. TRUSTED PLATFORM MODULE (TPM)

4.4.10. test-sign option

This is the “tests the signature operation of the provided object” option. This option takes a
string argument “url”. It can be used to test the correct operation of the signature operation.
This operation will sign and verify the signed data.

4.4.11. sec-param option

This is the “specify the security level [low, legacy, medium, high, ultra].” option. This option
takes a string argument “Security parameter”. This is alternative to the bits option. Note
however that the values allowed by the TPM chip are quantized and given values may be
rounded up.

4.4.12. inder option

This is the “use the der format for keys.” option.

This option has some usage constraints. It:

• can be disabled with –no-inder.

The input files will be assumed to be in the portable DER format of TPM. The default format
is a custom format used by various TPM tools

4.4.13. outder option

This is the “use der format for output keys” option.

This option has some usage constraints. It:

• can be disabled with –no-outder.

The output will be in the TPM portable DER format.

4.4.14. tpmtool exit status

One of the following exit values will be returned:

• 0 (EXIT SUCCESS) Successful program execution.

• 1 (EXIT FAILURE) The operation failed or the command syntax was not valid.

4.4.15. tpmtool See Also

p11tool (1), certtool (1)

130

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

4.4.16. tpmtool Examples

To generate a key that is to be stored in filesystem use:

1 $ tpmtool --generate-rsa --bits 2048 --outfile tpmkey.pem

To generate a key that is to be stored in TPM’s flash use:

1 $ tpmtool --generate-rsa --bits 2048 --register --user

To get the public key of a TPM key use:

1 $ tpmtool --pubkey tpmkey:uuid=58ad734b-bde6-45c7-89d8-756a55ad1891;storage=user \

2 --outfile pubkey.pem

or if the key is stored in the filesystem:

1 $ tpmtool --pubkey tpmkey:file=tmpkey.pem --outfile pubkey.pem

To list all keys stored in TPM use:

1 $ tpmtool --list

131

5
How to use GnuTLS in applications

5.1. Introduction

This chapter tries to explain the basic functionality of the current GnuTLS library. Note that
there may be additional functionality not discussed here but included in the library. Checking
the header files in “/usr/include/gnutls/” and the manpages is recommended.

5.1.1. General idea

A brief description of how GnuTLS sessions operate is shown at Figure 5.1. This section
will become more clear when it is completely read. As shown in the figure, there is a read-
only global state that is initialized once by the global initialization function. This global
structure, among others, contains the memory allocation functions used, structures needed
for the ASN.1 parser and depending on the system’s CPU, pointers to hardware accelerated
encryption functions. This structure is never modified by any GnuTLS function, except for the
deinitialization function which frees all allocated memory and must be called after the program
has permanently finished using GnuTLS.

The credentials structures are used by the authentication methods, such as certificate authen-
tication. They store certificates, privates keys, and other information that is needed to prove
the identity to the peer, and/or verify the identity of the peer. The information stored in the
credentials structures is initialized once and then can be shared by many TLS sessions.

A GnuTLS session contains all the required state and information to handle one secure connec-
tion. The session communicates with the peers using the provided functions of the transport
layer. Every session has a unique session ID shared with the peer.

Since TLS sessions can be resumed, servers need a database back-end to hold the session’s
parameters. Every GnuTLS session after a successful handshake calls the appropriate back-
end function (see subsection 2.5.4) to store the newly negotiated session. The session database
is examined by the server just after having received the client hello1, and if the session ID sent
by the client, matches a stored session, the stored session will be retrieved, and the new session
will be a resumed one, and will share the same session ID with the previous one.

1The first message in a TLS handshake

133

5.1. INTRODUCTION

TLS Session TLS Session

Global state

Session Database
Backend

Transport Layer

Credentials

Figure 5.1.: High level design of GnuTLS.

5.1.2. Error handling

In GnuTLS most functions return an integer type as a result. In almost all cases a zero or a
positive number means success, and a negative number indicates failure, or a situation that
some action has to be taken. Thus negative error codes may be fatal or not.

Fatal errors terminate the connection immediately and further sends and receives will be dis-
allowed. Such an example is GNUTLS E DECRYPTION FAILED. Non-fatal errors may warn about
something, i.e., a warning alert was received, or indicate the some action has to be taken.
This is the case with the error code GNUTLS E REHANDSHAKE returned by gnutls record recv.
This error code indicates that the server requests a re-handshake. The client may ignore this
request, or may reply with an alert. You can test if an error code is a fatal one by using the
gnutls error is fatal. All errors can be converted to a descriptive string using gnutls -

strerror.

If any non fatal errors, that require an action, are to be returned by a function, these error
codes will be documented in the function’s reference. For example the error codes GNUTLS -

E WARNING ALERT RECEIVED and GNUTLS E FATAL ALERT RECEIVED that may returned when
receiving data, should be handled by notifying the user of the alert (as explained in section 5.9).
See Appendix D, for a description of the available error codes.

134

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

5.1.3. Common types

All strings that are to provided as input to GnuTLS functions should be in UTF-8 unless
otherwise specified. Output strings are also in UTF-8 format unless otherwise specified.

When data of a fixed size are provided to GnuTLS functions then the helper structure gnutls datum t

is often used. Its definition is shown below.

typedef struct

{

unsigned char *data;

unsigned int size;

} gnutls_datum_t;

Other functions that require data for scattered read use a structure similar to struct iovec

typically used by readv. It is shown below.

typedef struct

{

void *iov_base; /* Starting address */

size_t iov_len; /* Number of bytes to transfer */

} giovec_t;

5.1.4. Debugging and auditing

In many cases things may not go as expected and further information, to assist debugging,
from GnuTLS is desired. Those are the cases where the gnutls global set log level and
gnutls global set log function are to be used. Those will print verbose information on the
GnuTLS functions internal flow.

void gnutls global set log level (int level)

void gnutls global set log function (gnutls log func log func)

Alternatively the environment variable GNUTLS DEBUG LEVEL can be set to a logging level and
GnuTLS will output debugging output to standard error. Other available environment variables
are shown in Table 5.1.

When debugging is not required, important issues, such as detected attacks on the protocol
still need to be logged. This is provided by the logging function set by gnutls global set -

audit log function. The provided function will receive an message and the corresponding
TLS session. The session information might be used to derive IP addresses or other information
about the peer involved.

135

5.1. INTRODUCTION

Variable Purpose

GNUTLS DEBUG LEVEL When set to a numeric value, it sets the default debugging level
for GnuTLS applications.

GNUTLS CPUID OVERRIDE That environment variable can be used to explicitly enable/disable
the use of certain CPU capabilities. Note that CPU detection
cannot be overridden, i.e., VIA options cannot be enabled on an
Intel CPU. The currently available options are: @itemize

0x1: Disable all run-time de-
tected optimizations
0x2: Enable AES-NI
0x4: Enable SSSE3
0x8: Enable PCLMUL
0x100000: Enable VIA pad-
lock
0x200000: Enable VIA PHE
0x400000: Enable VIA PHE
SHA512 @end itemize
GNUTLS FORCE FIPS MODE In setups where GnuTLS is compiled with support for FIPS140-2

(see –enable-fips140-mode in configure), that option if set to one
enforces the FIPS140 mode.

Table 5.1.: Environment variables used by the library.

5.1.5. Thread safety

The GnuTLS library is thread safe by design, meaning that objects of the library such as TLS
sessions, can be safely divided across threads as long as a single thread accesses a single object.
This is sufficient to support a server which handles several sessions per thread. If, however,
an object needs to be shared across threads then access must be protected with a mutex.
Read-only access to objects, for example the credentials holding structures, is also thread-safe.

A gnutls session t object can be shared by two threads, one sending, the other receiving.
In that case rehandshakes, if required, must only be handled by a single thread being active.
The termination of a session should be handled, either by a single thread being active, or by

void gnutls global set audit log function (gnutls audit log func log func)

Description: This is the function to set the audit logging function. This is a function

to report important issues, such as possible attacks in the protocol. This is different

from gnutls global set log function() because it will report also session-specific events.

The session parameter will be null if there is no corresponding TLS session. gnutls audit -

log func is of the form, void (*gnutls audit log func)(gnutls session t, const char*);

136

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

the sender thread using gnutls bye with GNUTLS SHUT WR and the receiving thread waiting for
a return value of zero.

The random generator of the cryptographic back-end, utilizes mutex locks (e.g., pthreads on
GNU/Linux and CriticalSection on Windows) which are setup by GnuTLS on library initializa-
tion. Prior to version 3.3.0 they were setup by calling gnutls global init. On special systems
you could manually specify the locking system using the function gnutls global set mutex

before calling any other GnuTLS function. Setting mutexes manually is not recommended. An
example of non-native thread usage is shown below.

1 #include <gnutls/gnutls.h>

2

3 int main()

4 {

5 /* When the system mutexes are not to be used

6 * gnutls_global_set_mutex() must be called explicitly

7 */

8 gnutls_global_set_mutex (mutex_init, mutex_deinit,

9 mutex_lock, mutex_unlock);

10 }

void gnutls global set mutex (mutex init func init, mutex deinit func deinit,
mutex lock func lock, mutex unlock func unlock)

Description: With this function you are allowed to override the default mutex locks

used in some parts of gnutls and dependent libraries. This function should be used if

you have complete control of your program and libraries. Do not call this function from a

library, or preferably from any application unless really needed to. GnuTLS will use the

appropriate locks for the running system. This function must be called prior to any other

gnutls function.

5.1.6. Running in a sandbox

Given that TLS protocol handling as well as X.509 certificate parsing are complicated processes
involving several thousands lines of code, it is often desirable (and recommended) to run the
TLS session handling in a sandbox like seccomp. That has to be allowed by the overall software
design, but if available, it adds an additional layer of protection by preventing parsing errors
from becoming vessels for further security issues such as code execution.

GnuTLS requires the following system calls to be available for its proper operation.

• nanosleep

• time

• gettimeofday

• clock gettime

137

5.1. INTRODUCTION

• getrusage

• getpid

• send

• recv

• writev

• read (to read from /dev/urandom)

• getrandom (this is Linux-kernel specific)

• select

As well as any calls needed for memory allocation to work. Note however, that GnuTLS
depends on libc for the system calls, and there is no guarantee that libc will call the expected
system call. For that it is recommended to test your program in all the targetted platforms
when filters like seccomp are in place.

An example with a seccomp filter from GnuTLS’ test suite is at: http://gitlab.com/gnutls/
gnutls/blob/master/tests/seccomp.c.

5.1.7. Sessions and fork

A gnutls session t object can be shared by two processes after a fork, one sending, the other
receiving. In that case rehandshakes, cannot and must not be performed. As with threads,
the termination of a session should be handled by the sender process using gnutls bye with
GNUTLS SHUT WR and the receiving process waiting for a return value of zero.

5.1.8. Callback functions

There are several cases where GnuTLS may need out of band input from your program. This
is now implemented using some callback functions, which your program is expected to register.

An example of this type of functions are the push and pull callbacks which are used to specify
the functions that will retrieve and send data to the transport layer.

void gnutls transport set push function (gnutls session t session,
gnutls push func push func)

void gnutls transport set pull function (gnutls session t session, gnutls pull func
pull func)

Other callback functions may require more complicated input and data to be allocated. Such
an example is gnutls srp set server credentials function. All callbacks should allocate
and free memory using gnutls malloc and gnutls free.

138

http://gitlab.com/gnutls/gnutls/blob/master/tests/seccomp.c
http://gitlab.com/gnutls/gnutls/blob/master/tests/seccomp.c

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

5.2. Preparation

To use GnuTLS, you have to perform some changes to your sources and your build system.
The necessary changes are explained in the following subsections.

5.2.1. Headers

All the data types and functions of the GnuTLS library are defined in the header file “gnutls/gnutls.h”.
This must be included in all programs that make use of the GnuTLS library.

5.2.2. Initialization

The GnuTLS library is initialized on load; prior to 3.3.0 was initialized by calling gnutls -

global init2. The initialization typically enables CPU-specific acceleration, performs any
required precalculations needed, opens any required system devices (e.g., /dev/urandom on
Linux) and initializes subsystems that could be used later.

The resources allocated by the initialization process will be released on library deinitialization,
or explicitly by calling gnutls global deinit.

Note that during initialization file descriptors may be kept open by GnuTLS (e.g. /dev/uran-
dom) on library load. Applications closing all unknown file descriptors must immediately call
gnutls global init, after that, to ensure they don’t disrupt GnuTLS’ operation.

5.2.3. Version check

It is often desirable to check that the version of ‘gnutls’ used is indeed one which fits all
requirements. Even with binary compatibility new features may have been introduced but due
to problem with the dynamic linker an old version is actually used. So you may want to check
that the version is okay right after program start-up. See the function gnutls check version.

On the other hand, it is often desirable to support more than one versions of the library. In
that case you could utilize compile-time feature checks using the the GNUTLS VERSION NUMBER

macro. For example, to conditionally add code for GnuTLS 3.2.1 or later, you may use:

1 #if GNUTLS_VERSION_NUMBER >= 0x030201

2 ...

3 #endif

2 The original behavior of requiring explicit initialization can obtained by setting the
GNUTLS NO EXPLICIT INIT environment variable to 1, or by using the macro
GNUTLS SKIP GLOBAL INIT in a global section of your program.

139

5.3. SESSION INITIALIZATION

5.2.4. Building the source

If you want to compile a source file including the “gnutls/gnutls.h” header file, you must
make sure that the compiler can find it in the directory hierarchy. This is accomplished by
adding the path to the directory in which the header file is located to the compilers include
file search path (via the “-I” option).

However, the path to the include file is determined at the time the source is configured. To
solve this problem, the library uses the external package “pkg-config” that knows the path
to the include file and other configuration options. The options that need to be added to the
compiler invocation at compile time are output by the “--cflags” option to “pkg-config
gnutls”. The following example shows how it can be used at the command line:

1 gcc -c foo.c ‘pkg-config gnutls --cflags‘

Adding the output of pkg-config gnutls –cflags to the compilers command line will ensure that
the compiler can find the “gnutls/gnutls.h” header file.

A similar problem occurs when linking the program with the library. Again, the compiler has
to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the “-L” option). For this, the option “--libs” to “pkg-config
gnutls” can be used. For convenience, this option also outputs all other options that are
required to link the program with the library (for instance, the -ltasn1 option). The example
shows how to link “foo.o” with the library to a program “foo”.

1 gcc -o foo foo.o ‘pkg-config gnutls --libs‘

Of course you can also combine both examples to a single command by specifying both options
to “pkg-config”:

1 gcc -o foo foo.c ‘pkg-config gnutls --cflags --libs‘

When a program uses the GNU autoconf system, then the following line or similar can be used
to detect the presence of GnuTLS.

1 PKG_CHECK_MODULES([LIBGNUTLS], [gnutls >= 3.3.0])

2

3 AC_SUBST([LIBGNUTLS_CFLAGS])

4 AC_SUBST([LIBGNUTLS_LIBS])

5.3. Session initialization

In the previous sections we have discussed the global initialization required for GnuTLS as well
as the initialization required for each authentication method’s credentials (see subsection 2.5.2).
In this section we elaborate on the TLS or DTLS session initiation. Each session is initialized
using gnutls init which among others is used to specify the type of the connection (server or
client), and the underlying protocol type, i.e., datagram (UDP) or reliable (TCP).

140

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

int gnutls init (gnutls session t * session, unsigned int flags)

Description: This function initializes the current session to null. Every session must

be initialized before use, so internal structures can be allocated. This function allocates

structures which can only be free’d by calling gnutls deinit(). Returns GNUTLS E -

SUCCESS (0) on success. flags can be one of GNUTLS CLIENT, GNUTLS SERVER,

GNUTLS DATAGRAM, GNUTLS NONBLOCK or GNUTLS NOSIGNAL (since

3.4.2). The flag GNUTLS NO REPLAY PROTECTION will disable any replay

protection in DTLS mode. That must only used when replay protection is achieved using

other means. Note that since version 3.1.2 this function enables some common TLS extensions

such as session tickets and OCSP certificate status request in client side by default. To

prevent that use the GNUTLS NO EXTENSIONS flag.

Returns: GNUTLS E SUCCESS on success, or an error code.

After the session initialization details on the allowed ciphersuites and protocol versions should
be set using the priority functions such as gnutls priority set direct. We elaborate on
them in section 5.10. The credentials used for the key exchange method, such as certificates
or usernames and passwords should also be associated with the session current session using
gnutls credentials set.

int gnutls credentials set (gnutls session t session, gnutls credentials type t type,
void * cred)

Description: Sets the needed credentials for the specified type. E.g. username,

password - or public and private keys etc. The cred parameter is a structure that depends

on the specified type and on the current session (client or server). In order to minimize

memory usage, and share credentials between several threads gnutls keeps a pointer to

cred, and not the whole cred structure. Thus you will have to keep the structure allocated

until you call gnutls deinit(). For GNUTLS CRD ANON, cred should be gnutls anon -

client credentials t in case of a client. In case of a server it should be gnutls anon server -

credentials t. For GNUTLS CRD SRP, cred should be gnutls srp client credentials t in case

of a client, and gnutls srp server credentials t, in case of a server. For GNUTLS CRD -

CERTIFICATE, cred should be gnutls certificate credentials t.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

code is returned.

141

5.4. ASSOCIATING THE CREDENTIALS

5.4. Associating the credentials

Each authentication method is associated with a key exchange method, and a credentials type.
The contents of the credentials is method-dependent, e.g. certificates for certificate authenti-
cation and should be initialized and associated with a session (see gnutls credentials set).
A mapping of the key exchange methods with the credential types is shown in Table 5.2.

Authentication method Key exchange Client credentials Server credentials

Certificate KX RSA, KX DHE RSA,
KX DHE DSS,
KX ECDHE RSA,
KX ECDHE ECDSA

CRD CERTIFICATE CRD CERTIFICATE

Password and certifi-
cate

KX SRP RSA,
KX SRP DSS

CRD SRP CRD CERTIFICATE,
CRD SRP

Password KX SRP CRD SRP CRD SRP

Anonymous KX ANON DH,
KX ANON ECDH

CRD ANON CRD ANON

Pre-shared key KX PSK, KX DHE PSK,
KX ECDHE PSK

CRD PSK CRD PSK

Table 5.2.: Key exchange algorithms and the corresponding credential types.

5.4.1. Certificates

Server certificate authentication

When using certificates the server is required to have at least one certificate and private key
pair. Clients may not hold such a pair, but a server could require it. In this section we discuss
general issues applying to both client and server certificates. The next section will elaborate
on issues arising from client authentication only.

int gnutls certificate allocate credentials (gnutls certificate credentials t * res)

void gnutls certificate free credentials (gnutls certificate credentials t sc)

After the credentials structures are initialized, the certificate and key pair must be loaded. This
occurs before any TLS session is initialized, and the same structures are reused for multiple
sessions. Depending on the certificate type different loading functions are available, as shown
below. For X.509 certificates, the functions will accept and use a certificate chain that leads to
a trusted authority. The certificate chain must be ordered in such way that every certificate

142

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

certifies the one before it. The trusted authority’s certificate need not to be included since the
peer should possess it already.

int gnutls certificate set x509 key file2 (gnutls certificate credentials t res, const
char * certfile, const char * keyfile, gnutls x509 crt fmt t type, const char * pass,
unsigned int flags)

int gnutls certificate set x509 key mem2 (gnutls certificate credentials t res,
const gnutls datum t * cert, const gnutls datum t * key, gnutls x509 crt fmt t type,
const char * pass, unsigned int flags)

int gnutls certificate set x509 key (gnutls certificate credentials t res,
gnutls x509 crt t * cert list, int cert list size, gnutls x509 privkey t key)

int gnutls certificate set openpgp key file (gnutls certificate credentials t res,
const char * certfile, const char * keyfile, gnutls openpgp crt fmt t format)

int gnutls certificate set openpgp key mem (gnutls certificate credentials t res,
const gnutls datum t * cert, const gnutls datum t * key, gnutls openpgp crt fmt t
format)

int gnutls certificate set openpgp key (gnutls certificate credentials t res,
gnutls openpgp crt t crt, gnutls openpgp privkey t pkey)

It is recommended to use the higher level functions such as gnutls certificate set x509 -

key file2 which accept not only file names but URLs that specify objects stored in token, or
system certificates and keys (see section 4.2). For these cases, another important function is
gnutls certificate set pin function, that allows setting a callback function to retrieve a
PIN if the input keys are protected by PIN.

void gnutls certificate set pin function (gnutls certificate credentials t cred,
gnutls pin callback t fn, void * userdata)

Description: This function will set a callback function to be used when required to

access a protected object. This function overrides any other global PIN functions. Note

that this function must be called right after initialization to have effect.

If the imported keys and certificates need to be accessed before any TLS session is established,
it is convenient to use gnutls certificate set key in combination with gnutls pcert -

import x509 raw and gnutls privkey import x509 raw.

If multiple certificates are used with the functions above each client’s request will be served
with the certificate that matches the requested name (see subsection 2.6.2).

143

5.4. ASSOCIATING THE CREDENTIALS

int gnutls certificate set key (gnutls certificate credentials t res, const char
** names, int names size, gnutls pcert st * pcert list, int pcert list size,
gnutls privkey t key)

Description: This function sets a certificate/private key pair in the gnutls -

certificate credentials t type. This function may be called more than once, in case

multiple keys/certificates exist for the server. For clients that wants to send more than

its own end entity certificate (e.g., also an intermediate CA cert) then put the certificate

chain in pcert list. Note that the pcert list and key will become part of the credentials

structure and must not be deallocated. They will be automatically deallocated when the res

type is deinitialized. If that function fails to load the res structure is at an undefined

state, it must not be reused to load other keys or certificates.

Returns: GNUTLS E SUCCESS (0) on success, or a negative error code.

As an alternative to loading from files or buffers, a callback may be used for the server or
the client to specify the certificate and the key at the handshake time. In that case a cer-
tificate should be selected according the peer’s signature algorithm preferences. To get those
preferences use gnutls sign algorithm get requested. Both functions are shown below.

void gnutls certificate set retrieve function (gnutls certificate credentials t cred,
gnutls certificate retrieve function * func)

void gnutls certificate set retrieve function2 (gnutls certificate credentials t cred,
gnutls certificate retrieve function2 * func)

int gnutls sign algorithm get requested (gnutls session t session, size t indx,
gnutls sign algorithm t * algo)

c The functions above do not handle the requested server name automatically. A server would
need to check the name requested by the client using gnutls server name get, and serve
the appropriate certificate. Note that some of these functions require the gnutls pcert st

structure to be filled in. Helper functions to fill in the structure are listed below.

typedef struct gnutls_pcert_st

{

gnutls_pubkey_t pubkey;

gnutls_datum_t cert;

gnutls_certificate_type_t type;

} gnutls_pcert_st;

144

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

int gnutls pcert import x509 (gnutls pcert st * pcert, gnutls x509 crt t crt,
unsigned int flags)

int gnutls pcert import openpgp (gnutls pcert st * pcert, gnutls openpgp crt t
crt, unsigned int flags)

int gnutls pcert import x509 raw (gnutls pcert st * pcert, const gnutls datum t *
cert, gnutls x509 crt fmt t format, unsigned int flags)

int gnutls pcert import openpgp raw (gnutls pcert st * pcert, const
gnutls datum t * cert, gnutls openpgp crt fmt t format, gnutls openpgp keyid t
keyid, unsigned int flags)

void gnutls pcert deinit (gnutls pcert st * pcert)

In a handshake, the negotiated cipher suite depends on the certificate’s parameters, so some key
exchange methods might not be available with all certificates. GnuTLS will disable ciphersuites
that are not compatible with the key, or the enabled authentication methods. For example
keys marked as sign-only, will not be able to access the plain RSA ciphersuites, that require
decryption. It is not recommended to use RSA keys for both signing and encryption. If possible
use a different key for the DHE-RSA which uses signing and RSA that requires decryption. All
the key exchange methods shown in Table 3.1 are available in certificate authentication.

Client certificate authentication

If a certificate is to be requested from the client during the handshake, the server will send
a certificate request message. This behavior is controlled gnutls certificate server set -

request. The request contains a list of the acceptable by the server certificate signers. This list
is constructed using the trusted certificate authorities of the server. In cases where the server
supports a large number of certificate authorities it makes sense not to advertise all of the
names to save bandwidth. That can be controlled using the function gnutls certificate -

send x509 rdn sequence. This however will have the side-effect of not restricting the client
to certificates signed by server’s acceptable signers.

void gnutls certificate server set request (gnutls session t session,
gnutls certificate request t req)

Description: This function specifies if we (in case of a server) are going to send a

certificate request message to the client. If req is GNUTLS CERT REQUIRE then the server

will return an error if the peer does not provide a certificate. If you do not call this

function then the client will not be asked to send a certificate.

145

5.4. ASSOCIATING THE CREDENTIALS

void gnutls certificate send x509 rdn sequence (gnutls session t session, int
status)

Description: If status is non zero, this function will order gnutls not to send the

rdnSequence in the certificate request message. That is the server will not advertise its

trusted CAs to the peer. If status is zero then the default behaviour will take effect,

which is to advertise the server’s trusted CAs. This function has no effect in clients, and

in authentication methods other than certificate with X.509 certificates.

Client or server certificate verification

Certificate verification is possible by loading the trusted authorities into the credentials struc-
ture by using the following functions, applicable to X.509 and OpenPGP certificates.

int gnutls certificate set x509 system trust (gnutls certificate credentials t cred)

int gnutls certificate set x509 trust file (gnutls certificate credentials t cred,
const char * cafile, gnutls x509 crt fmt t type)

int gnutls certificate set x509 trust dir (gnutls certificate credentials t cred,
const char * ca dir, gnutls x509 crt fmt t type)

int gnutls certificate set openpgp keyring file (gnutls certificate credentials t c,
const char * file, gnutls openpgp crt fmt t format)

The peer’s certificate will be automatically verified if gnutls session set verify cert is
called prior to handshake.

Alternatively, one must set a callback function during the handshake using gnutls certificate -

set verify function, which will verify the peer’s certificate once received. The verification
should happen using gnutls certificate verify peers3 within the callback. It will verify
the certificate’s signature and the owner of the certificate. That will provide a brief verification
output. If a detailed output is required one should call gnutls certificate get peers to
obtain the raw certificate of the peer and verify it using the functions discussed in subsec-
tion 3.1.1.

In both the automatic and the manual cases, the verification status returned can be printed
using gnutls certificate verification status print.

146

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

void gnutls session set verify cert (gnutls session t session, const char * host-
name, unsigned flags)

Description: This function instructs GnuTLS to verify the peer’s certificate using the

provided hostname. If the verification fails the handshake will also fail with GNUTLS -

E CERTIFICATE VERIFICATION ERROR. In that case the verification result can

be obtained using gnutls session get verify cert status(). The hostname pointer provided

must remain valid for the lifetime of the session. More precisely it should be available

during any subsequent handshakes. If no hostname is provided, no hostname verification will

be performed. For a more advanced verification function check gnutls session set verify -

cert2(). The gnutls session set verify cert() function is intended to be used by TLS clients

to verify the server’s certificate.

int gnutls certificate verify peers3 (gnutls session t session, const char * host-
name, unsigned int * status)

void gnutls certificate set verify function (gnutls certificate credentials t cred,
gnutls certificate verify function * func)

5.4.2. SRP

The initialization functions in SRP credentials differ between client and server. Clients support-
ing SRP should set the username and password prior to connection, to the credentials structure.
Alternatively gnutls srp set client credentials function may be used instead, to specify
a callback function that should return the SRP username and password. The callback is called
once during the TLS handshake.

int gnutls srp allocate server credentials (gnutls srp server credentials t * sc)

int gnutls srp allocate client credentials (gnutls srp client credentials t * sc)

void gnutls srp free server credentials (gnutls srp server credentials t sc)

void gnutls srp free client credentials (gnutls srp client credentials t sc)

int gnutls srp set client credentials (gnutls srp client credentials t res, const char
* username, const char * password)

147

5.4. ASSOCIATING THE CREDENTIALS

void gnutls srp set client credentials function (gnutls srp client credentials t
cred, gnutls srp client credentials function * func)

Description: This function can be used to set a callback to retrieve the username

and password for client SRP authentication. The callback’s function form is: int

(*callback)(gnutls session t, char** username, char**password); The username and password

must be allocated using gnutls malloc(). username and password should be ASCII strings

or UTF-8 strings prepared using the "SASLprep" profile of "stringprep". The callback

function will be called once per handshake before the initial hello message is sent. The

callback should not return a negative error code the second time called, since the handshake

procedure will be aborted. The callback function should return 0 on success. -1 indicates

an error.

In server side the default behavior of GnuTLS is to read the usernames and SRP verifiers
from password files. These password file format is compatible the with the Stanford srp
libraries format. If a different password file format is to be used, then gnutls srp set -

server credentials function should be called, to set an appropriate callback.

int gnutls srp set server credentials file (gnutls srp server credentials t res, const
char * password file, const char * password conf file)

Description: This function sets the password files, in a gnutls srp server credentials -

t type. Those password files hold usernames and verifiers and will be used for SRP

authentication.

Returns: On success, GNUTLS E SUCCESS (0) is returned, or an error code.

5.4.3. PSK

The initialization functions in PSK credentials differ between client and server.

148

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

void gnutls srp set server credentials function (gnutls srp server credentials t
cred, gnutls srp server credentials function * func)

Description: This function can be used to set a callback to retrieve the user’s SRP

credentials. The callback’s function form is: int (*callback)(gnutls session t, const

char* username, gnutls datum t *salt, gnutls datum t *verifier, gnutls datum t *generator,

gnutls datum t *prime); username contains the actual username. The salt, verifier, gen-

erator and prime must be filled in using the gnutls malloc(). For convenience prime and

generator may also be one of the static parameters defined in gnutls.h. Initially, the

data field is NULL in every gnutls datum t structure that the callback has to fill in. When

the callback is done GnuTLS deallocates all of those buffers which are non-NULL, regardless

of the return value. In order to prevent attackers from guessing valid usernames, if a

user does not exist, g and n values should be filled in using a random user’s parameters.

In that case the callback must return the special value (1). See gnutls srp set server fake -

salt seed too. If this is not required for your application, return a negative number from

the callback to abort the handshake. The callback function will only be called once per

handshake. The callback function should return 0 on success, while -1 indicates an error.

int gnutls psk allocate server credentials (gnutls psk server credentials t * sc)

int gnutls psk allocate client credentials (gnutls psk client credentials t * sc)

void gnutls psk free server credentials (gnutls psk server credentials t sc)

void gnutls psk free client credentials (gnutls psk client credentials t sc)

Clients supporting PSK should supply the username and key before a TLS session is estab-
lished. Alternatively gnutls psk set client credentials function can be used to specify
a callback function. This has the advantage that the callback will be called only if PSK has
been negotiated.

int gnutls psk set client credentials (gnutls psk client credentials t res, const char
* username, const gnutls datum t * key, gnutls psk key flags flags)

In server side the default behavior of GnuTLS is to read the usernames and PSK keys from
a password file. The password file should contain usernames and keys in hexadecimal format.
The name of the password file can be stored to the credentials structure by calling gnutls -

149

5.4. ASSOCIATING THE CREDENTIALS

void gnutls psk set client credentials function (gnutls psk client credentials t
cred, gnutls psk client credentials function * func)

Description: This function can be used to set a callback to retrieve the username

and password for client PSK authentication. The callback’s function form is: int

(*callback)(gnutls session t, char** username, gnutls datum t* key); The username and

key→data must be allocated using gnutls malloc(). username should be ASCII strings or

UTF-8 strings prepared using the "SASLprep" profile of "stringprep". The callback function

will be called once per handshake. The callback function should return 0 on success. -1

indicates an error.

psk set server credentials file. If a different password file format is to be used, then a
callback should be set instead by gnutls psk set server credentials function.

The server can help the client chose a suitable username and password, by sending a hint. Note
that there is no common profile for the PSK hint and applications are discouraged to use it. A
server, may specify the hint by calling gnutls psk set server credentials hint. The client
can retrieve the hint, for example in the callback function, using gnutls psk client get hint.

int gnutls psk set server credentials file (gnutls psk server credentials t res,
const char * password file)

Description: This function sets the password file, in a gnutls psk server credentials t type.

This password file holds usernames and keys and will be used for PSK authentication.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise an error code is

returned.

void gnutls psk set server credentials function (gnutls psk server credentials t
cred, gnutls psk server credentials function * func)

int gnutls psk set server credentials hint (gnutls psk server credentials t res,
const char * hint)

const char * gnutls psk client get hint (gnutls session t session)

5.4.4. Anonymous

The key exchange methods for anonymous authentication might require Diffie-Hellman param-
eters to be generated by the server and associated with an anonymous credentials structure.

150

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

Check subsection 5.12.4 for more information. The initialization functions for the credentials
are shown below.

int gnutls anon allocate server credentials (gnutls anon server credentials t * sc)

int gnutls anon allocate client credentials (gnutls anon client credentials t * sc)

void gnutls anon free server credentials (gnutls anon server credentials t sc)

void gnutls anon free client credentials (gnutls anon client credentials t sc)

5.5. Setting up the transport layer

The next step is to setup the underlying transport layer details. The Berkeley sockets are
implicitly used by GnuTLS, thus a call to gnutls transport set int would be sufficient to
specify the socket descriptor.

void gnutls transport set int (gnutls session t session, int i)

void gnutls transport set int2 (gnutls session t session, int recv int, int
send int)

If however another transport layer than TCP is selected, then a pointer should be used instead
to express the parameter to be passed to custom functions. In that case the following functions
should be used instead.

void gnutls transport set ptr (gnutls session t session, gnutls transport ptr t ptr)

void gnutls transport set ptr2 (gnutls session t session, gnutls transport ptr t
recv ptr, gnutls transport ptr t send ptr)

Moreover all of the following push and pull callbacks should be set.

The functions above accept a callback function which should return the number of bytes written,
or -1 on error and should set errno appropriately. In some environments, setting errno is

151

5.5. SETTING UP THE TRANSPORT LAYER

void gnutls transport set push function (gnutls session t session,
gnutls push func push func)

Description: This is the function where you set a push function for gnutls to use in

order to send data. If you are going to use berkeley style sockets, you do not need to use

this function since the default send(2) will probably be ok. Otherwise you should specify

this function for gnutls to be able to send data. The callback should return a positive

number indicating the bytes sent, and -1 on error. push func is of the form, ssize t

(*gnutls push func)(gnutls transport ptr t, const void*, size t);

void gnutls transport set vec push function (gnutls session t session,
gnutls vec push func vec func)

Description: Using this function you can override the default writev(2) function for

gnutls to send data. Setting this callback instead of gnutls transport set push function()

is recommended since it introduces less overhead in the TLS handshake process. vec func is

of the form, ssize t (*gnutls vec push func) (gnutls transport ptr t, const giovec t * iov,

int iovcnt);

unreliable. For example Windows have several errno variables in different CRTs, or in other
systems it may be a non thread-local variable. If this is a concern to you, call gnutls -

transport set errno with the intended errno value instead of setting errno directly.

GnuTLS currently only interprets the EINTR, EAGAIN and EMSGSIZE errno values and
returns the corresponding GnuTLS error codes:

• GNUTLS E INTERRUPTED

• GNUTLS E AGAIN

• GNUTLS E LARGE PACKET

void gnutls transport set pull function (gnutls session t session, gnutls pull func
pull func)

Description: This is the function where you set a function for gnutls to receive data.

Normally, if you use berkeley style sockets, do not need to use this function since

the default recv(2) will probably be ok. The callback should return 0 on connection

termination, a positive number indicating the number of bytes received, and -1 on error.

gnutls pull func is of the form, ssize t (*gnutls pull func)(gnutls transport ptr t, void*,

size t);

152

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

void gnutls transport set pull timeout function (gnutls session t session,
gnutls pull timeout func func)

Description: This is the function where you set a function for gnutls to know whether

data are ready to be received. It should wait for data a given time frame in milliseconds.

The callback should return 0 on timeout, a positive number if data can be received, and

-1 on error. You’ll need to override this function if select() is not suitable for the

provided transport calls. As with select(), if the timeout value is zero the callback

should return zero if no data are immediately available. gnutls pull timeout func is of

the form, int (*gnutls pull timeout func)(gnutls transport ptr t, unsigned int ms); This

callback is necessary when gnutls handshake set timeout() or gnutls record set timeout() are

set. It will not be used when non-blocking sockets are in use. That is, this function

will not operate when GNUTLS NONBLOCK is specified in gnutls init(), or a custom

pull function is registered without updating the pull timeout function. The helper function

gnutls system recv timeout() is provided to simplify writing callbacks.

void gnutls transport set errno (gnutls session t session, int err)

Description: Store err in the session-specific errno variable. Useful values for err

are EINTR, EAGAIN and EMSGSIZE, other values are treated will be treated as real errors

in the push/pull function. This function is useful in replacement push and pull functions

set by gnutls transport set push function() and gnutls transport set pull function() under

Windows, where the replacements may not have access to the same errno variable that is

used by GnuTLS (e.g., the application is linked to msvcr71.dll and gnutls is linked to

msvcrt.dll).

The EINTR and EAGAIN values are returned by interrupted system calls, or when non block-
ing IO is used. All GnuTLS functions can be resumed (called again), if any of the above
error codes is returned. The EMSGSIZE value is returned when attempting to send a large
datagram.

In the case of DTLS it is also desirable to override the generic transport functions with functions
that emulate the operation of recvfrom and sendto. In addition DTLS requires timers during
the receive of a handshake message, set using the gnutls transport set pull timeout -

function function. To check the retransmission timers the function gnutls dtls get timeout

is provided, which returns the time remaining until the next retransmission, or better the time
until gnutls handshake should be called again.

5.5.1. Asynchronous operation

GnuTLS can be used with asynchronous socket or event-driven programming. The approach
is similar to using Berkeley sockets under such an environment. The blocking, due to network

153

5.5. SETTING UP THE TRANSPORT LAYER

void gnutls transport set pull timeout function (gnutls session t session,
gnutls pull timeout func func)

Description: This is the function where you set a function for gnutls to know whether

data are ready to be received. It should wait for data a given time frame in milliseconds.

The callback should return 0 on timeout, a positive number if data can be received, and

-1 on error. You’ll need to override this function if select() is not suitable for the

provided transport calls. As with select(), if the timeout value is zero the callback

should return zero if no data are immediately available. gnutls pull timeout func is of

the form, int (*gnutls pull timeout func)(gnutls transport ptr t, unsigned int ms); This

callback is necessary when gnutls handshake set timeout() or gnutls record set timeout() are

set. It will not be used when non-blocking sockets are in use. That is, this function

will not operate when GNUTLS NONBLOCK is specified in gnutls init(), or a custom

pull function is registered without updating the pull timeout function. The helper function

gnutls system recv timeout() is provided to simplify writing callbacks.

unsigned int gnutls dtls get timeout (gnutls session t session)

Description: This function will return the milliseconds remaining for a retransmission

of the previously sent handshake message. This function is useful when DTLS is used in

non-blocking mode, to estimate when to call gnutls handshake() if no packets have been

received.

Returns: the remaining time in milliseconds.

interaction, calls such as gnutls handshake, gnutls record recv, can be set to non-blocking
by setting the underlying sockets to non-blocking. If other push and pull functions are setup,
then they should behave the same way as recv and send when used in a non-blocking way,
i.e., return -1 and set errno to EAGAIN. Since, during a TLS protocol session GnuTLS does
not block except for network interaction, the non blocking EAGAIN errno will be propagated
and GnuTLS functions will return the GNUTLS E AGAIN error code. Such calls can be resumed
the same way as a system call would. The only exception is gnutls record send, which if
interrupted subsequent calls need not to include the data to be sent (can be called with NULL
argument).

When using the poll or select system calls though, one should remember that they only apply
to the kernel sockets API. To check for any available buffered data in a GnuTLS session, utilize
gnutls record check pending, either before the poll system call, or after a call to gnutls -

record recv. Data queued by gnutls record send (when interrupted) can be discarded using
gnutls record discard queued.

The following paragraphs describe the detailed requirements for non-blocking operation when
using the TLS or DTLS protocols.

154

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

TLS protocol

There are no special requirements for the TLS protocol operation in non-blocking mode if a
non-blocking socket is used.

It is recommended, however, for future compatibility, when in non-blocking mode, to call the
gnutls init function with the GNUTLS NONBLOCK flag set (see section 5.3).

Datagram TLS protocol

When in non-blocking mode the function, the gnutls init function must be called with the
GNUTLS NONBLOCK flag set (see section 5.3).

In contrast with the TLS protocol, the pull timeout function is required, but will only be called
with a timeout of zero. In that case it should indicate whether there are data to be received or
not. When not using the default pull function, then gnutls transport set pull timeout -

function should be called.

Although in the TLS protocol implementation each call to receive or send function implies to
restoring the same function that was interrupted, in the DTLS protocol this requirement isn’t
true. There are cases where a retransmission is required, which are indicated by a received
message and thus gnutls record get direction must be called to decide which direction to
check prior to restoring a function call.

int gnutls record get direction (gnutls session t session)

Description: This function provides information about the internals of the record

protocol and is only useful if a prior gnutls function call, e.g. gnutls handshake(),

was interrupted for some reason. That is, if a function returned GNUTLS E -

INTERRUPTED or GNUTLS E AGAIN. In such a case, you might want to call select()

or poll() before restoring the interrupted gnutls function. This function’s output

is unreliable if you are using the same session in different threads, for sending and

receiving.

Returns: 0 if interrupted while trying to read data, or 1 while trying to write data.

When calling gnutls handshake through a multi-plexer, to be able to handle properly the
DTLS handshake retransmission timers, the function gnutls dtls get timeout should be
used to estimate when to call gnutls handshake if no data have been received.

5.5.2. DTLS sessions

Because datagram TLS can operate over connections where the client cannot be reliably ver-
ified, functionality in the form of cookies, is available to prevent denial of service attacks to

155

5.6. TLS HANDSHAKE

servers. GnuTLS requires a server to generate a secret key that is used to sign a cookie3.
That cookie is sent to the client using gnutls dtls cookie send, and the client must reply
using the correct cookie. The server side should verify the initial message sent by client using
gnutls dtls cookie verify. If successful the session should be initialized and associated with
the cookie using gnutls dtls prestate set, before proceeding to the handshake.

int gnutls key generate (gnutls datum t * key, unsigned int key size)

int gnutls dtls cookie send (gnutls datum t * key, void * client data, size t
client data size, gnutls dtls prestate st * prestate, gnutls transport ptr t ptr,
gnutls push func push func)

int gnutls dtls cookie verify (gnutls datum t * key, void * client data, size t
client data size, void * msg, size t msg size, gnutls dtls prestate st * prestate)

void gnutls dtls prestate set (gnutls session t session, gnutls dtls prestate st *
prestate)

Note that the above apply to server side only and they are not mandatory to be used. Not
using them, however, allows denial of service attacks. The client side cookie handling is part
of gnutls handshake.

Datagrams are typically restricted by a maximum transfer unit (MTU). For that both client and
server side should set the correct maximum transfer unit for the layer underneath GnuTLS.
This will allow proper fragmentation of DTLS messages and prevent messages from being
silently discarded by the transport layer. The “correct” maximum transfer unit can be obtained
through a path MTU discovery mechanism [21].

void gnutls dtls set mtu (gnutls session t session, unsigned int mtu)

unsigned int gnutls dtls get mtu (gnutls session t session)

unsigned int gnutls dtls get data mtu (gnutls session t session)

5.6. TLS handshake

Once a session has been initialized and a network connection has been set up, TLS and DTLS
protocols perform a handshake. The handshake is the actual key exchange.

3A key of 128 bits or 16 bytes should be sufficient for this purpose.

156

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

int gnutls handshake (gnutls session t session)

Description: This function does the handshake of the TLS/SSL protocol, and initializes

the TLS connection. This function will fail if any problem is encountered, and will return

a negative error code. In case of a client, if the client has asked to resume a session,

but the server couldn’t, then a full handshake will be performed. The non-fatal errors

expected by this function are: GNUTLS E INTERRUPTED, GNUTLS E AGAIN,

GNUTLS E WARNING ALERT RECEIVED, and GNUTLS E GOT APPLICATION -

DATA, the latter only in a case of rehandshake. The former two interrupt the handshake

procedure due to the lower layer being interrupted, and the latter because of an alert

that may be sent by a server (it is always a good idea to check any received alerts).

On these errors call this function again, until it returns 0; cf. gnutls record get -

direction() and gnutls error is fatal(). In DTLS sessions the non-fatal error GNUTLS -

E LARGE PACKET is also possible, and indicates that the MTU should be adjusted. If

this function is called by a server after a rehandshake request then GNUTLS E GOT -

APPLICATION DATA or GNUTLS E WARNING ALERT RECEIVED may be returned.

Note that these are non fatal errors, only in the specific case of a rehandshake. Their

meaning is that the client rejected the rehandshake request or in the case of GNUTLS E -

GOT APPLICATION DATA it could also mean that some data were pending. A client may

receive that error code if it initiates the handshake and the server doesn’t agreed.

Returns: GNUTLS E SUCCESS on success, otherwise a negative error code.

In GnuTLS 3.5.0 and later it is recommended to use gnutls session set verify cert for the
handshake process to ensure the verification of the peer’s identity.

In older GnuTLS versions it is required to manually verify the peer’s certificate during the
handshake by using gnutls certificate set verify function, and gnutls certificate -

verify peers2. See section 3.1 for more information.

void gnutls handshake set timeout (gnutls session t session, unsigned int ms)

Description: This function sets the timeout for the TLS handshake process to the

provided value. Use an ms value of zero to disable timeout, or GNUTLS DEFAULT -

HANDSHAKE TIMEOUT for a reasonable default value. For the DTLS protocol, the

more detailed gnutls dtls set timeouts() is provided. This function requires to set a pull

timeout callback. See gnutls transport set pull timeout function().

157

5.7. DATA TRANSFER AND TERMINATION

void gnutls session set verify cert (gnutls session t session, const char * host-
name, unsigned flags)

int gnutls certificate verify peers2 (gnutls session t session, unsigned int * sta-
tus)

5.7. Data transfer and termination

Once the handshake is complete and peer’s identity has been verified data can be exchanged.
The available functions resemble the POSIX recv and send functions. It is suggested to use
gnutls error is fatal to check whether the error codes returned by these functions are fatal
for the protocol or can be ignored.

ssize t gnutls record send (gnutls session t session, const void * data, size t
data size)

Description: This function has the similar semantics with send(). The only difference

is that it accepts a GnuTLS session, and uses different error codes. Note that if the send

buffer is full, send() will block this function. See the send() documentation for more

information. You can replace the default push function which is send(), by using gnutls -

transport set push function(). If the EINTR is returned by the internal push function then

GNUTLS E INTERRUPTED will be returned. If GNUTLS E INTERRUPTED or

GNUTLS E AGAIN is returned, you must call this function again, with the exact same

parameters; alternatively you could provide a NULL pointer for data, and 0 for size. cf.

gnutls record get direction(). Note that in DTLS this function will return the GNUTLS -

E LARGE PACKET error code if the send data exceed the data MTU value - as returned

by gnutls dtls get data mtu(). The errno value EMSGSIZE also maps to GNUTLS E LARGE -

PACKET. Note that since 3.2.13 this function can be called under cork in DTLS mode, and

will refuse to send data over the MTU size by returning GNUTLS E LARGE PACKET.

Returns: The number of bytes sent, or a negative error code. The number of bytes sent

might be less than data size. The maximum number of bytes this function can send in a

single call depends on the negotiated maximum record size.

Although, in the TLS protocol the receive function can be called at any time, when DTLS is
used the GnuTLS receive functions must be called once a message is available for reading, even
if no data are expected. This is because in DTLS various (internal) actions may be required
due to retransmission timers. Moreover, an extended receive function is shown below, which
allows the extraction of the message’s sequence number. Due to the unreliable nature of the
protocol, this field allows distinguishing out-of-order messages.

The gnutls record check pending helper function is available to allow checking whether data

158

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

ssize t gnutls record recv (gnutls session t session, void * data, size t
data size)

Description: This function has the similar semantics with recv(). The only difference

is that it accepts a GnuTLS session, and uses different error codes. In the special

case that the peer requests a renegotiation, the caller will receive an error code of

GNUTLS E REHANDSHAKE. In case of a client, this message may be simply ignored,

replied with an alert GNUTLS A NO RENEGOTIATION, or replied with a new

handshake, depending on the client’s will. A server receiving this error code can only

initiate a new handshake or terminate the session. If EINTR is returned by the internal

push function (the default is recv()) then GNUTLS E INTERRUPTED will be returned.

If GNUTLS E INTERRUPTED or GNUTLS E AGAIN is returned, you must call this

function again to get the data. See also gnutls record get direction().

Returns: The number of bytes received and zero on EOF (for stream connections). A

negative error code is returned in case of an error. The number of bytes received might be

less than the requested data size.

int gnutls error is fatal (int error)

Description: If a GnuTLS function returns a negative error code you may feed that value

to this function to see if the error condition is fatal to a TLS session (i.e., must be

terminated). Note that you may also want to check the error code manually, since some

non-fatal errors to the protocol (such as a warning alert or a rehandshake request) may

be fatal for your program. This function is only useful if you are dealing with errors

from functions that relate to a TLS session (e.g., record layer or handshake layer handling

functions).

Returns: Non-zero value on fatal errors or zero on non-fatal.

ssize t gnutls record recv seq (gnutls session t session, void * data, size t
data size, unsigned char * seq)

Description: This function is the same as gnutls record recv(), except that it returns

in addition to data, the sequence number of the data. This is useful in DTLS where record

packets might be received out-of-order. The returned 8-byte sequence number is an integer

in big-endian format and should be treated as a unique message identification.

Returns: The number of bytes received and zero on EOF. A negative error code is returned

in case of an error. The number of bytes received might be less than data size.

159

5.7. DATA TRANSFER AND TERMINATION

are available to be read in a GnuTLS session buffers. Note that this function complements but
does not replace poll, i.e., gnutls record check pending reports no data to be read, poll
should be called to check for data in the network buffers.

size t gnutls record check pending (gnutls session t session)

Description: This function checks if there are unread data in the gnutls buffers. If

the return value is non-zero the next call to gnutls record recv() is guaranteed not to

block.

Returns: Returns the size of the data or zero.

int gnutls record get direction (gnutls session t session)

Once a TLS or DTLS session is no longer needed, it is recommended to use gnutls bye to
terminate the session. That way the peer is notified securely about the intention of termination,
which allows distinguishing it from a malicious connection termination. A session can be
deinitialized with the gnutls deinit function.

int gnutls bye (gnutls session t session, gnutls close request t how)

Description: Terminates the current TLS/SSL connection. The connection should have

been initiated using gnutls handshake(). how should be one of GNUTLS SHUT -

RDWR, GNUTLS SHUT WR. In case of GNUTLS SHUT RDWR the TLS session

gets terminated and further receives and sends will be disallowed. If the return value

is zero you may continue using the underlying transport layer. GNUTLS SHUT RDWR

sends an alert containing a close request and waits for the peer to reply with the same

message. In case of GNUTLS SHUT WR the TLS session gets terminated and further

sends will be disallowed. In order to reuse the connection you should wait for an EOF from

the peer. GNUTLS SHUT WR sends an alert containing a close request. Note that

not all implementations will properly terminate a TLS connection. Some of them, usually

for performance reasons, will terminate only the underlying transport layer, and thus

not distinguishing between a malicious party prematurely terminating the connection and

normal termination. This function may also return GNUTLS E AGAIN or GNUTLS E -

INTERRUPTED; cf. gnutls record get direction().

Returns: GNUTLS E SUCCESS on success, or an error code, see function

documentation for entire semantics.

160

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

void gnutls deinit (gnutls session t session)

Description: This function clears all buffers associated with the session. This

function will also remove session data from the session database if the session was

terminated abnormally.

5.8. Buffered data transfer

Although gnutls record send is sufficient to transmit data to the peer, when many small
chunks of data are to be transmitted it is inefficient and wastes bandwidth due to the TLS
record overhead. In that case it is preferrable to combine the small chunks before transmission.
The following functions provide that functionality.

void gnutls record cork (gnutls session t session)

Description: If called, gnutls record send() will no longer send any records. Any sent

records will be cached until gnutls record uncork() is called. This function is safe to use

with DTLS after GnuTLS 3.3.0.

int gnutls record uncork (gnutls session t session, unsigned int flags)

Description: This resets the effect of gnutls record cork(), and flushes any pending

data. If the GNUTLS RECORD WAIT flag is specified then this function will

block until the data is sent or a fatal error occurs (i.e., the function will retry

on GNUTLS E AGAIN and GNUTLS E INTERRUPTED). If the flag GNUTLS -

RECORD WAIT is not specified and the function is interrupted then the GNUTLS -

E AGAIN or GNUTLS E INTERRUPTED errors will be returned. To obtain the data

left in the corked buffer use gnutls record check corked().

Returns: On success the number of transmitted data is returned, or otherwise a negative

error code.

5.9. Handling alerts

During a TLS connection alert messages may be exchanged by the two peers. Those mes-
sages may be fatal, meaning the connection must be terminated afterwards, or warning when
something needs to be reported to the peer, but without interrupting the session. The er-
ror codes GNUTLS E WARNING ALERT RECEIVED or GNUTLS E FATAL ALERT RECEIVED signal those

161

5.9. HANDLING ALERTS

alerts when received, and may be returned by all GnuTLS functions that receive data from the
peer, being gnutls handshake and gnutls record recv.

If those error codes are received the alert and its level should be logged or reported to the peer
using the functions below.

gnutls alert description t gnutls alert get (gnutls session t session)

Description: This function will return the last alert number received. This function

should be called when GNUTLS E WARNING ALERT RECEIVED or GNUTLS E -

FATAL ALERT RECEIVED errors are returned by a gnutls function. The peer may send

alerts if he encounters an error. If no alert has been received the returned value is

undefined.

Returns: the last alert received, a gnutls alert description t value.

const char * gnutls alert get name (gnutls alert description t alert)

Description: This function will return a string that describes the given alert number,

or NULL. See gnutls alert get().

Returns: string corresponding to gnutls alert description t value.

The peer may also be warned or notified of a fatal issue by using one of the functions below.
All the available alerts are listed in section 2.4.

int gnutls alert send (gnutls session t session, gnutls alert level t level,
gnutls alert description t desc)

Description: This function will send an alert to the peer in order to inform him of

something important (eg. his Certificate could not be verified). If the alert level is

Fatal then the peer is expected to close the connection, otherwise he may ignore the alert

and continue. The error code of the underlying record send function will be returned, so

you may also receive GNUTLS E INTERRUPTED or GNUTLS E AGAIN as well.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise an error code is

returned.

162

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

int gnutls error to alert (int err, int * level)

Description: Get an alert depending on the error code returned by a gnutls function.

All alerts sent by this function should be considered fatal. The only exception is when

err is GNUTLS E REHANDSHAKE, where a warning alert should be sent to the peer

indicating that no renegotiation will be performed. If there is no mapping to a valid alert

the alert to indicate internal error is returned.

Returns: the alert code to use for a particular error code.

5.10. Priority strings

The GnuTLS priority strings specify the TLS session’s handshake algorithms and options in
a compact, easy-to-use format. That string may contain a single initial keyword such as in
Table 5.3 and may be followed by additional algorithm or special keywords. Note that their
description is intentionally avoiding specific algorithm details, as the priority strings are not
constant between gnutls versions (they are periodically updated to account for cryptographic
advances while providing compatibility with old clients and servers).

int gnutls priority set direct (gnutls session t session, const char * priorities,
const char ** err pos)

int gnutls priority set (gnutls session t session, gnutls priority t priority)

Unless the initial keyword is ”NONE” the defaults (in preference order) are for TLS protocols
TLS 1.2, TLS1.1, TLS1.0; for compression NULL; for certificate types X.509. In key exchange
algorithms when in NORMAL or SECURE levels the perfect forward secrecy algorithms take
precedence of the other protocols. In all cases all the supported key exchange algorithms are
enabled.

Note that the SECURE levels distinguish between overall security level and message authentic-
ity security level. That is because the message authenticity security level requires the adversary
to break the algorithms at real-time during the protocol run, whilst the overall security level
refers to off-line adversaries (e.g. adversaries breaking the ciphertext years after it was cap-
tured).

The NONE keyword, if used, must followed by keywords specifying the algorithms and protocols
to be enabled. The other initial keywords do not require, but may be followed by such keywords.
All level keywords can be combined, and for example a level of ”SECURE256:+SECURE128”
is allowed.

The order with which every algorithm or protocol is specified is significant. Algorithms specified

163

5.10. PRIORITY STRINGS

Keyword Description

@KEYWORD Means that a compile-time specified system configuration file4 will
be used to expand the provided keyword. That is used to im-
pose system-specific policies. It may be followed by additional
options that will be appended to the system string (e.g., ”@SYS-
TEM:+SRP”). The system file should have the format ’KEY-
WORD=VALUE’, e.g., ’SYSTEM=NORMAL:+ARCFOUR-128’.

PERFORMANCE All the known to be secure ciphersuites are enabled, limited to
128 bit ciphers and sorted by terms of speed performance. The
message authenticity security level is of 64 bits or more, and the
certificate verification profile is set to GNUTLS PROFILE LOW
(80-bits).

NORMAL Means all the known to be secure ciphersuites. The ciphers are
sorted by security margin, although the 256-bit ciphers are in-
cluded as a fallback only. The message authenticity security level
is of 64 bits or more, and the certificate verification profile is set
to GNUTLS PROFILE LOW (80-bits). This priority string im-
plicitly enables ECDHE and DHE. The ECDHE ciphersuites are
placed first in the priority order, but due to compatibility issues
with the DHE ciphersuites they are placed last in the priority or-
der, after the plain RSA ciphersuites.

LEGACY This sets the NORMAL settings that were used for GnuTLS 3.2.x
or earlier. There is no verification profile set, and the allowed DH
primes are considered weak today (but are often used by miscon-
figured servers).

PFS Means all the known to be secure ciphersuites that support per-
fect forward secrecy (ECDHE and DHE). The ciphers are sorted
by security margin, although the 256-bit ciphers are included as
a fallback only. The message authenticity security level is of
80 bits or more, and the certificate verification profile is set to
GNUTLS PROFILE LOW (80-bits). This option is available since
3.2.4 or later.

SECURE128 Means all known to be secure ciphersuites that offer a security
level 128-bit or more. The message authenticity security level is
of 80 bits or more, and the certificate verification profile is set to
GNUTLS PROFILE LOW (80-bits).

SECURE192 Means all the known to be secure ciphersuites that offer a security
level 192-bit or more. The message authenticity security level is
of 128 bits or more, and the certificate verification profile is set to
GNUTLS PROFILE HIGH (128-bits).

SECURE256 Currently alias for SECURE192. This option, will enable ciphers
which use a 256-bit key but, due to limitations of the TLS protocol,
the overall security level will be 192-bits (the security level depends
on more factors than cipher key size).

SUITEB128 Means all the NSA Suite B cryptography (RFC5430) ciphersuites
with an 128 bit security level, as well as the enabling of the corre-
sponding verification profile.

SUITEB192 Means all the NSA Suite B cryptography (RFC5430) ciphersuites
with an 192 bit security level, as well as the enabling of the corre-
sponding verification profile.

NONE Means nothing is enabled. This disables even protocols and com-
pression methods. It should be followed by the algorithms to be
enabled.

Table 5.3.: Supported initial keywords.

164

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

before others will take precedence. The supported algorithms and protocols are shown in
Table 5.4. To avoid collisions in order to specify a compression algorithm in the priority string
you have to prefix it with ”COMP-”, protocol versions with ”VERS-”, signature algorithms
with ”SIGN-” and certificate types with ”CTYPE-”. All other algorithms don’t need a prefix.
Each specified keyword (except for special keywords) can be prefixed with any of the following
characters.

• ’ !’ or ’-’ appended with an algorithm will remove this algorithm.

• ”+” appended with an algorithm will add this algorithm.

Type Keywords

Ciphers AES-128-CBC, AES-256-CBC, AES-128-GCM, CAMELLIA-128-
CBC, CAMELLIA-256-CBC, ARCFOUR-128, 3DES-CBC. Catch
all name is CIPHER-ALL which will add all the algorithms from
NORMAL priority.

Key exchange RSA, DHE-RSA, DHE-DSS, SRP, SRP-RSA, SRP-DSS, PSK,
DHE-PSK, ECDHE-RSA, ANON-ECDH, ANON-DH. The Catch
all name is KX-ALL which will add all the algorithms from NOR-
MAL priority. Add !DHE-RSA:!DHE-DSS to the priority string to
disable DHE.

MAC MD5, SHA1, SHA256, SHA384, AEAD (used with GCM ciphers
only). All algorithms from NORMAL priority can be accessed
with MAC-ALL.

Compression algo-
rithms

COMP-NULL, COMP-DEFLATE. Catch all is COMP-ALL.

TLS versions VERS-TLS1.0, VERS-TLS1.1, VERS-TLS1.2, VERS-DTLS1.0,
VERS-DTLS1.2. Catch all are VERS-ALL, VERS-TLS-ALL and
VERS-DTLS-ALL.

Signature algo-
rithms

SIGN-RSA-SHA1, SIGN-RSA-SHA224, SIGN-RSA-SHA256,
SIGN-RSA-SHA384, SIGN-RSA-SHA512, SIGN-DSA-SHA1,
SIGN-DSA-SHA224, SIGN-DSA-SHA256, SIGN-RSA-MD5.
Catch all is SIGN-ALL. This is only valid for TLS 1.2 and later.

Elliptic curves CURVE-SECP192R1, CURVE-SECP224R1, CURVE-
SECP256R1, CURVE-SECP384R1, CURVE-SECP521R1. Catch
all is CURVE-ALL.

Certificate type CTYPE-OPENPGP, CTYPE-X509. Catch all is CTYPE-ALL.

Table 5.4.: The supported algorithm keywords in priority strings.

Note that the DHE key exchange methods are generally slower5 than their elliptic curves
counterpart (ECDHE). Moreover the plain Diffie-Hellman key exchange requires parameters
to be generated and associated with a credentials structure by the server (see subsection 5.12.4).

The available special keywords are shown in Table 5.5 and Table 5.6.

5It depends on the group used. Primes with lesser bits are always faster, but also easier to break. See
section 5.11 for the acceptable security levels.

165

5.10. PRIORITY STRINGS

Keyword Description

%COMPAT will enable compatibility mode. It might
mean that violations of the protocols are
allowed as long as maximum compatibil-
ity with problematic clients and servers
is achieved. More specifically this string
would disable TLS record random padding,
tolerate packets over the maximum allowed
TLS record, and add a padding to TLS
Client Hello packet to prevent it being in
the 256-512 range which is known to be
causing issues with a commonly used fire-
wall.

%DUMBFW will add a private extension with bogus
data that make the client hello exceed 512
bytes. This avoids a black hole behavior
in some firewalls. This is a non-standard
TLS extension, use with care.

%NO EXTENSIONS will prevent the sending of any TLS ex-
tensions in client side. Note that TLS 1.2
requires extensions to be used, as well as
safe renegotiation thus this option must be
used with care.

%NO TICKETS will prevent the advertizing of the TLS ses-
sion ticket extension. This is implied by
the PFS keyword.

%NO SESSION HASH will prevent the advertizing the TLS ex-
tended master secret (session hash) exten-
sion.

%SERVER PRECEDENCE The ciphersuite will be selected according
to server priorities and not the client’s.

%SSL3 RECORD VERSION will use SSL3.0 record version in client
hello. This is the default.

%LATEST RECORD VERSION will use the latest TLS version record ver-
sion in client hello.

Table 5.5.: Special priority string keywords.

166

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

Keyword Description

%STATELESS COMPRESSION will disable keeping state across records
when compressing. This may help to miti-
gate attacks when compression is used but
an attacker is in control of input data. This
has to be used only when the data that
are possibly controlled by an attacker are
placed in separate records.

%DISABLE WILDCARDS will disable matching wildcards when com-
paring hostnames in certificates.

%NO ETM will disable the encrypt-then-mac TLS ex-
tension (RFC7366). This is implied by the
%COMPAT keyword.

%DISABLE SAFE RENEGOTIATION will completely disable safe renegotiation
completely. Do not use unless you know
what you are doing.

%UNSAFE RENEGOTIATION will allow handshakes and re-handshakes
without the safe renegotiation extension.
Note that for clients this mode is insecure
(you may be under attack), and for servers
it will allow insecure clients to connect
(which could be fooled by an attacker). Do
not use unless you know what you are do-
ing and want maximum compatibility.

%PARTIAL RENEGOTIATION will allow initial handshakes to proceed,
but not re-handshakes. This leaves the
client vulnerable to attack, and servers will
be compatible with non-upgraded clients
for initial handshakes. This is currently
the default for clients and servers, for com-
patibility reasons.

%SAFE RENEGOTIATION will enforce safe renegotiation. Clients and
servers will refuse to talk to an insecure
peer. Currently this causes interoperabil-
ity problems, but is required for full pro-
tection.

%FALLBACK SCSV will enable the use of the fallback signaling
cipher suite value in the client hello. Note
that this should be set only by applications
that try to reconnect with a downgraded
protocol version. See RFC7507 for details.

%VERIFY ALLOW SIGN RSA MD5 will allow RSA-MD5 signatures in certifi-
cate chains.

%VERIFY DISABLE CRL CHECKS will disable CRL or OCSP checks in the
verification of the certificate chain.

%VERIFY ALLOW X509 V1 CA CRT will allow V1 CAs in chains.
%PROFILE (LOW—LEGACY—MEDIUM—HIGH—ULTRA)require a certificate verification profile the

corresponds to the specified security level,
see Table 5.7 for the mappings to values.

%PROFILE (SUITEB128—SUITEB192) require a certificate verification profile the
corresponds to SUITEB. Note that an ini-
tial keyword that enables SUITEB auto-
matically sets the profile.

Table 5.6.: More priority string keywords.

167

5.11. SELECTING CRYPTOGRAPHIC KEY SIZES

Finally the ciphersuites enabled by any priority string can be listed using the gnutls-cli

application (see section 7.1), or by using the priority functions as in subsection 6.4.3.

Example priority strings are:

1 The system imposed security level:

2 "SYSTEM"

3

4 The default priority without the HMAC-MD5:

5 "NORMAL:-MD5"

6

7 Specifying RSA with AES-128-CBC:

8 "NONE:+VERS-TLS-ALL:+MAC-ALL:+RSA:+AES-128-CBC:+SIGN-ALL:+COMP-NULL"

9

10 Specifying the defaults plus ARCFOUR-128:

11 "NORMAL:+ARCFOUR-128"

12

13 Enabling the 128-bit secure ciphers, while disabling TLS 1.0 and enabling compression:

14 "SECURE128:-VERS-TLS1.0:+COMP-DEFLATE"

15

16 Enabling the 128-bit and 192-bit secure ciphers, while disabling all TLS versions

17 except TLS 1.2:

18 "SECURE128:+SECURE192:-VERS-TLS-ALL:+VERS-TLS1.2"

5.11. Selecting cryptographic key sizes

Because many algorithms are involved in TLS, it is not easy to set a consistent security level.
For this reason in Table 5.7 we present some correspondence between key sizes of symmetric
algorithms and public key algorithms based on [3]. Those can be used to generate certificates
with appropriate key sizes as well as select parameters for Diffie-Hellman and SRP authenti-
cation.

The first column provides a security parameter in a number of bits. This gives an indication
of the number of combinations to be tried by an adversary to brute force a key. For example
to test all possible keys in a 112 bit security parameter 2
textasciicircum112 combinations have to be tried. For today’s technology this is infeasible.
The next two columns correlate the security parameter with actual bit sizes of parameters for
DH, RSA, SRP and ECC algorithms. A mapping to gnutls sec param t value is given for
each security parameter, on the next column, and finally a brief description of the level.

Note, however, that the values suggested here are nothing more than an educated guess that is
valid today. There are no guarantees that an algorithm will remain unbreakable or that these
values will remain constant in time. There could be scientific breakthroughs that cannot be
predicted or total failure of the current public key systems by quantum computers. On the
other hand though the cryptosystems used in TLS are selected in a conservative way and such
catastrophic breakthroughs or failures are believed to be unlikely. The NIST publication SP
800-57 [1] contains a similar table.

When using GnuTLS and a decision on bit sizes for a public key algorithm is required, use of
the following functions is recommended:

168

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

Security
bits

RSA, DH
and SRP
parameter
size

ECC key
size

Security parame-
ter (profile)

Description

<64 <768 <128 INSECURE Considered to be insecure
64 768 128 VERY WEAK Short term protection against

individuals
72 1008 160 WEAK Short term protection against

small organizations
80 1024 160 LOW Very short term protection

against agencies (corresponds
to ENISA legacy level)

96 1776 192 LEGACY Legacy standard level
112 2048 224 MEDIUM Medium-term protection
128 3072 256 HIGH Long term protection (corre-

sponds to ENISA future level)
192 8192 384 ULTRA Even longer term protection
256 15424 512 FUTURE Foreseeable future

Table 5.7.: Key sizes and security parameters.

unsigned int gnutls sec param to pk bits (gnutls pk algorithm t algo,
gnutls sec param t param)

Description: When generating private and public key pairs a difficult question is which

size of "bits" the modulus will be in RSA and the group size in DSA. The easy answer is

1024, which is also wrong. This function will convert a human understandable security

parameter to an appropriate size for the specific algorithm.

Returns: The number of bits, or (0).

gnutls sec param t gnutls pk bits to sec param (gnutls pk algorithm t algo, un-
signed int bits)

Description: This is the inverse of gnutls sec param to pk bits(). Given an algorithm and

the number of bits, it will return the security parameter. This is a rough indication.

Returns: The security parameter.

169

5.12. ADVANCED TOPICS

Those functions will convert a human understandable security parameter of gnutls sec param t

type, to a number of bits suitable for a public key algorithm.

const char * gnutls sec param get name (gnutls sec param t param)

The following functions will set the minimum acceptable group size for Diffie-Hellman and SRP
authentication.

void gnutls dh set prime bits (gnutls session t session, unsigned int bits)

void gnutls srp set prime bits (gnutls session t session, unsigned int bits)

5.12. Advanced topics

5.12.1. Session resumption

Client side

To reduce time and roundtrips spent in a handshake the client can request session resumption
from a server that previously shared a session with the client. For that the client has to retrieve
and store the session parameters. Before establishing a new session to the same server the
parameters must be re-associated with the GnuTLS session using gnutls session set data.

int gnutls session get data2 (gnutls session t session, gnutls datum t * data)

int gnutls session get id2 (gnutls session t session, gnutls datum t * session id)

int gnutls session set data (gnutls session t session, const void * session data,
size t session data size)

Keep in mind that sessions will be expired after some time, depending on the server, and
a server may choose not to resume a session even when requested to. The expiration is to
prevent temporal session keys from becoming long-term keys. Also note that as a client you
must enable, using the priority functions, at least the algorithms used in the last session.

170

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

int gnutls session is resumed (gnutls session t session)

Description: Check whether session is resumed or not.

Returns: non zero if this session is resumed, or a zero if this is a new session.

Server side

In order to support resumption a server can store the session security parameters in a local
database or by using session tickets (see subsection 2.6.3) to delegate storage to the client.
Because session tickets might not be supported by all clients, servers could combine the two
methods.

A storing server needs to specify callback functions to store, retrieve and delete session data.
These can be registered with the functions below. The stored sessions in the database can be
checked using gnutls db check entry for expiration.

void gnutls db set retrieve function (gnutls session t session, gnutls db retr func
retr func)

void gnutls db set store function (gnutls session t session, gnutls db store func
store func)

void gnutls db set ptr (gnutls session t session, void * ptr)

void gnutls db set remove function (gnutls session t session,
gnutls db remove func rem func)

int gnutls db check entry (gnutls session t session, gnutls datum t ses-
sion entry)

A server utilizing tickets should generate ticket encryption and authentication keys using
gnutls session ticket key generate. Those keys should be associated with the GnuTLS
session using gnutls session ticket enable server, and should be rotated regularly (e.g.,
every few hours), to prevent them from becoming long-term keys which if revealed could be
used to decrypt all previous sessions.

A server enabling both session tickets and a storage for session data would use session tickets
when clients support it and the storage otherwise.

171

5.12. ADVANCED TOPICS

int gnutls session ticket enable server (gnutls session t session, const
gnutls datum t * key)

Description: Request that the server should attempt session resumption using

SessionTicket. key must be initialized with gnutls session ticket key generate(), and

should be overwritten using gnutls memset() before being released.

Returns: On success, GNUTLS E SUCCESS (0) is returned, or an error code.

int gnutls session ticket key generate (gnutls datum t * key)

Description: Generate a random key to encrypt security parameters within

SessionTicket.

Returns: On success, GNUTLS E SUCCESS (0) is returned, or an error code.

5.12.2. Certificate verification

In this section the functionality for additional certificate verification methods is listed. These
methods are intended to be used in addition to normal PKI verification, in order to reduce the
risk of a compromised CA being undetected.

Trust on first use

The GnuTLS library includes functionality to use an SSH-like trust on first use authentication.
The available functions to store and verify public keys are listed below.

In addition to the above the gnutls store commitment can be used to implement a key-pinning
architecture as in [12]. This provides a way for web server to commit on a public key that is
not yet active.

The storage and verification functions may be used with the default text file based back-end,

int gnutls session resumption requested (gnutls session t session)

Description: Check whether the client has asked for session resumption. This function

is valid only on server side.

Returns: non zero if session resumption was asked, or a zero if not.

172

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

int gnutls verify stored pubkey (const char * db name, gnutls tdb t tdb,
const char * host, const char * service, gnutls certificate type t cert type, const
gnutls datum t * cert, unsigned int flags)

Description: This function will try to verify the provided (raw or DER-encoded)

certificate using a list of stored public keys. The service field if non-NULL should

be a port number. The retrieve variable if non-null specifies a custom backend for the

retrieval of entries. If it is NULL then the default file backend will be used. In

POSIX-like systems the file backend uses the $HOME/.gnutls/known hosts file. Note that

if the custom storage backend is provided the retrieval function should return GNUTLS -

E CERTIFICATE KEY MISMATCH if the host/service pair is found but key doesn’t

match, GNUTLS E NO CERTIFICATE FOUND if no such host/service with the given

key is found, and 0 if it was found. The storage function should return 0 on success.

Returns: If no associated public key is found then GNUTLS E NO CERTIFICATE -

FOUND will be returned. If a key is found but does not match GNUTLS E -

CERTIFICATE KEY MISMATCH is returned. On success, GNUTLS E SUCCESS

(0) is returned, or a negative error value on other errors.

or another back-end may be specified. That should contain storage and retrieval functions and
specified as below.

int gnutls store pubkey (const char * db name, gnutls tdb t tdb, const char *
host, const char * service, gnutls certificate type t cert type, const gnutls datum t *
cert, time t expiration, unsigned int flags)

Description: This function will store the provided (raw or DER-encoded) certificate

to the list of stored public keys. The key will be considered valid until the provided

expiration time. The store variable if non-null specifies a custom backend for the storage

of entries. If it is NULL then the default file backend will be used.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

173

5.12. ADVANCED TOPICS

int gnutls store commitment (const char * db name, gnutls tdb t tdb, const
char * host, const char * service, gnutls digest algorithm t hash algo, const
gnutls datum t * hash, time t expiration, unsigned int flags)

Description: This function will store the provided hash commitment to the list of stored

public keys. The key with the given hash will be considered valid until the provided

expiration time. The store variable if non-null specifies a custom backend for the storage

of entries. If it is NULL then the default file backend will be used. Note that this

function is not thread safe with the default backend.

Returns: On success, GNUTLS E SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls tdb init (gnutls tdb t * tdb)

void gnutls tdb deinit (gnutls tdb t tdb)

void gnutls tdb set verify func (gnutls tdb t tdb, gnutls tdb verify func verify)

void gnutls tdb set store func (gnutls tdb t tdb, gnutls tdb store func store)

void gnutls tdb set store commitment func (gnutls tdb t tdb,
gnutls tdb store commitment func cstore)

DANE verification

Since the DANE library is not included in GnuTLS it requires programs to be linked against
it. This can be achieved with the following commands.

1 gcc -o foo foo.c ‘pkg-config gnutls-dane --cflags --libs‘

When a program uses the GNU autoconf system, then the following line or similar can be used
to detect the presence of the library.

1 PKG_CHECK_MODULES([LIBDANE], [gnutls-dane >= 3.0.0])

2

3 AC_SUBST([LIBDANE_CFLAGS])

4 AC_SUBST([LIBDANE_LIBS])

The high level functionality provided by the DANE library is shown below.

174

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

int dane verify crt (dane state t s, const gnutls datum t * chain, unsigned
chain size, gnutls certificate type t chain type, const char * hostname, const
char * proto, unsigned int port, unsigned int sflags, unsigned int vflags, unsigned
int * verify)

Description: This function will verify the given certificate chain against the CA

constrains and/or the certificate available via DANE. If no information via DANE can be

obtained the flag DANE VERIFY NO DANE INFO is set. If a DNSSEC signature is

not available for the DANE record then the verify flag DANE VERIFY NO DNSSEC -

DATA is set. Due to the many possible options of DANE, there is no single threat model

countered. When notifying the user about DANE verification results it may be better to

mention: DANE verification did not reject the certificate, rather than mentioning a

successful DANE verication. Note that this function is designed to be run in addition

to PKIX - certificate chain - verification. To be run independently the DANE VFLAG -

ONLY CHECK EE USAGE flag should be specified; then the function will check whether

the key of the peer matches the key advertized in the DANE entry. If the q parameter is

provided it will be used for caching entries.

Returns: On success, DANE E SUCCESS (0) is returned, otherwise a negative error

value.

int dane verify session crt (dane state t s, gnutls session t session, const char *
hostname, const char * proto, unsigned int port, unsigned int sflags, unsigned int
vflags, unsigned int * verify)

const char * dane strerror (int error)

Note that the dane state t structure that is accepted by both verification functions is optional.
It is required when many queries are performed to facilitate caching. The following flags are
returned by the verify functions to indicate the status of the verification.

In order to generate a DANE TLSA entry to use in a DNS server you may use danetool (see
subsection 3.2.7).

5.12.3. Re-authentication

In TLS there is no distinction between rekey, re-authentication, and re-negotiation. All of
these use cases are handled by the TLS’ rehandshake process. For that reason in GnuTLS
rehandshake is not transparent to the application, and the application must take control of
that process. The following paragraphs explain how to safely use the rehandshake process.

175

5.12. ADVANCED TOPICS

enum dane verify status t:
DANE VERIFY CA CONSTRAINTS -

VIOLATED

The CA constraints were violated.

DANE VERIFY CERT DIFFERS The certificate obtained via DNS differs.

DANE VERIFY UNKNOWN DANE -

INFO

No known DANE data was found in the DNS record.

Table 5.8.: The DANE verification status flags.

Client side

According to the TLS specification a client may initiate a rehandshake at any time. That can
be achieved by calling gnutls handshake and rely on its return value for the outcome of the
handshake (the server may deny a rehandshake). If a server requests a re-handshake, then a call
to gnutls record recv will return GNUTLS E REHANDSHAKE in the client, instructing it
to call gnutls handshake. To deny a rehandshake request by the server it is recommended to
send a warning alert of type GNUTLS A NO RENEGOTIATION.

Due to limitations of early protocol versions, it is required to check whether safe renegotiation
is in place, i.e., using gnutls safe renegotiation status, which ensures that the server
remains the same as the initial. For older servers, which do not support renegotiation, it is
required on the second handshake to verify that their certificate/credentials remained the same
as in the initial session.

int gnutls safe renegotiation status (gnutls session t session)

Description: Can be used to check whether safe renegotiation is being used in the

current session.

Returns: 0 when safe renegotiation is not used and non (0) when safe renegotiation is

used.

Server side

A server which wants to instruct the client to re-authenticate, should call gnutls rehandshake

and wait for the client to re-authenticate. It is recommended to only request re-handshake when
safe renegotiation is enabled for that session (see gnutls safe renegotiation status and the
discussion in subsection 2.6.5).

176

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

int gnutls rehandshake (gnutls session t session)

Description: This function will renegotiate security parameters with the client. This

should only be called in case of a server. This message informs the peer that we want to

renegotiate parameters (perform a handshake). If this function succeeds (returns 0), you

must call the gnutls handshake() function in order to negotiate the new parameters. Since

TLS is full duplex some application data might have been sent during peer’s processing of

this message. In that case one should call gnutls record recv() until GNUTLS E REHANDSHAKE

is returned to clear any pending data. Care must be taken, if rehandshake is mandatory,

to terminate if it does not start after some threshold. If the client does not wish to

renegotiate parameters he should reply with an alert message, thus the return code will be

GNUTLS E WARNING ALERT RECEIVED and the alert will be GNUTLS A NO -

RENEGOTIATION. A client may also choose to ignore this message.

Returns: GNUTLS E SUCCESS on success, otherwise a negative error code.

5.12.4. Parameter generation

Several TLS ciphersuites require additional parameters that need to be generated or provided
by the application. The Diffie-Hellman based ciphersuites (ANON-DH or DHE), require the
group parameters to be provided. Those can either be be generated on the fly using gnutls -

dh params generate2 or imported from pregenerated data using gnutls dh params import -

pkcs3. The parameters can be used in a TLS session by calling gnutls certificate set -

dh params or gnutls anon set server dh params for anonymous sessions.

int gnutls dh params generate2 (gnutls dh params t dparams, unsigned int bits)

int gnutls dh params import pkcs3 (gnutls dh params t params, const
gnutls datum t * pkcs3 params, gnutls x509 crt fmt t format)

void gnutls certificate set dh params (gnutls certificate credentials t res,
gnutls dh params t dh params)

void gnutls anon set server dh params (gnutls anon server credentials t res,
gnutls dh params t dh params)

Due to the time-consuming calculations required for the generation of Diffie-Hellman param-
eters we suggest against performing generation of them within an application. The certtool

tool can be used to generate or export known safe values that can be stored in code or in a
configuration file to provide the ability to replace. We also recommend the usage of gnutls -

sec param to pk bits (see section 5.11) to determine the bit size of the generated parameters.

177

5.12. ADVANCED TOPICS

Note that the information stored in the generated PKCS #3 structure changed with GnuTLS
3.0.9. Since that version the privateValueLength member of the structure is set, allowing the
server utilizing the parameters to use keys of the size of the security parameter. This provides
better performance in key exchange.

To allow renewal of the parameters within an application without accessing the credentials,
which are a shared structure, an alternative interface is available using a callback function.

void gnutls certificate set params function (gnutls certificate credentials t res,
gnutls params function * func)

Description: This function will set a callback in order for the server to get the

Diffie-Hellman or RSA parameters for certificate authentication. The callback should

return GNUTLS E SUCCESS (0) on success.

5.12.5. Deriving keys for other applications/protocols

In several cases, after a TLS connection is established, it is desirable to derive keys to be used
in another application or protocol (e.g., in an other TLS session using pre-shared keys). The
following describe GnuTLS’ implementation of RFC5705 to extract keys based on a session’s
master secret.

The API to use is gnutls prf. The function needs to be provided with a label, and additional
context data to mix in the extra parameter. Moreover, the API allows to switch the mix of
the client and server random nonces, using the server random first parameter. In typical
uses you don’t need it, so a zero value should be provided in server random first.

For example, after establishing a TLS session using gnutls handshake, you can obtain 32-bytes
to be used as key, using this call:

1 #define MYLABEL "EXPORTER-My-protocol-name"

2 #define MYCONTEXT "my-protocol’s-1st-session"

3

4 char out[32];

5 rc = gnutls_prf (session, sizeof(MYLABEL)-1, MYLABEL, 0,

6 sizeof(MYCONTEXT)-1, MYCONTEXT, 32, out);

The output key depends on TLS’ master secret, and is the same on both client and server.

If you don’t want to use the RFC5705 interface and not mix in the client and server random
nonces, there is a low-level TLS PRF interface called gnutls prf raw.

5.12.6. Channel bindings

In user authentication protocols (e.g., EAP or SASL mechanisms) it is useful to have a unique
string that identifies the secure channel that is used, to bind together the user authentication

178

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

with the secure channel. This can protect against man-in-the-middle attacks in some situations.
That unique string is called a “channel binding”. For background and discussion see [38].

In GnuTLS you can extract a channel binding using the gnutls session channel binding

function. Currently only the type GNUTLS CB TLS UNIQUE is supported, which corresponds to
the tls-unique channel binding for TLS defined in [4].

The following example describes how to print the channel binding data. Note that it must be
run after a successful TLS handshake.

1 {

2 gnutls_datum_t cb;

3 int rc;

4

5 rc = gnutls_session_channel_binding (session,

6 GNUTLS_CB_TLS_UNIQUE,

7 &cb);

8 if (rc)

9 fprintf (stderr, "Channel binding error: %s\n",

10 gnutls_strerror (rc));

11 else

12 {

13 size_t i;

14 printf ("- Channel binding ’tls-unique’: ");

15 for (i = 0; i < cb.size; i++)

16 printf ("%02x", cb.data[i]);

17 printf ("\n");

18 }

19 }

5.12.7. Interoperability

The TLS protocols support many ciphersuites, extensions and version numbers. As a result,
few implementations are not able to properly interoperate once faced with extensions or version
protocols they do not support and understand. The TLS protocol allows for a graceful down-
grade to the commonly supported options, but practice shows it is not always implemented
correctly.

Because there is no way to achieve maximum interoperability with broken peers without sac-
rificing security, GnuTLS ignores such peers by default. This might not be acceptable in cases
where maximum compatibility is required. Thus we allow enabling compatibility with broken
peers using priority strings (see section 5.10). A conservative priority string that would disable
certain TLS protocol options that are known to cause compatibility problems, is shown below.

NORMAL:%COMPAT

For very old broken peers that do not tolerate TLS version numbers over TLS 1.0 another
priority string is:

NORMAL:-VERS-TLS-ALL:+VERS-TLS1.0:+VERS-SSL3.0:%COMPAT

This priority string will in addition to above, only enable SSL 3.0 and TLS 1.0 as protocols.

179

5.12. ADVANCED TOPICS

5.12.8. Compatibility with the OpenSSL library

To ease GnuTLS’ integration with existing applications, a compatibility layer with the OpenSSL
library is included in the gnutls-openssl library. This compatibility layer is not complete
and it is not intended to completely re-implement the OpenSSL API with GnuTLS. It only
provides limited source-level compatibility.

The prototypes for the compatibility functions are in the “gnutls/openssl.h” header file.
The limitations imposed by the compatibility layer include:

• Error handling is not thread safe.

180

6
GnuTLS application examples

In this chapter several examples of real-world use cases are listed. The examples are simplified
to promote readability and contain little or no error checking.

6.1. Client examples

This section contains examples of TLS and SSL clients, using GnuTLS. Note that some of the
examples require functions implemented by another example.

6.1.1. Simple client example with X.509 certificate support

Let’s assume now that we want to create a TCP client which communicates with servers that
use X.509 or OpenPGP certificate authentication. The following client is a very simple TLS
client, which uses the high level verification functions for certificates, but does not support
session resumption.

1 /* This example code is placed in the public domain. */

2

3 #ifdef HAVE_CONFIG_H

4 #include <config.h>

5 #endif

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <string.h>

10 #include <gnutls/gnutls.h>

11 #include <gnutls/x509.h>

12 #include "examples.h"

13

14 /* A very basic TLS client, with X.509 authentication and server certificate

15 * verification. Note that error checking for missing files etc. is omitted

16 * for simplicity.

17 */

18

19 #define MAX_BUF 1024

20 #define CAFILE "/etc/ssl/certs/ca-certificates.crt"

21 #define MSG "GET / HTTP/1.0\r\n\r\n"

22

181

6.1. CLIENT EXAMPLES

23 extern int tcp_connect(void);

24 extern void tcp_close(int sd);

25

26 int main(void)

27 {

28 int ret, sd, ii;

29 gnutls_session_t session;

30 char buffer[MAX_BUF + 1];

31 gnutls_datum_t out;

32 int type;

33 unsigned status;

34 #if 0

35 const char *err;

36 #endif

37 gnutls_certificate_credentials_t xcred;

38

39 if (gnutls_check_version("3.4.6") == NULL) {

40 fprintf(stderr, "GnuTLS 3.4.6 or later is required for this example\n");

41 exit(1);

42 }

43

44 /* for backwards compatibility with gnutls < 3.3.0 */

45 gnutls_global_init();

46

47 /* X509 stuff */

48 gnutls_certificate_allocate_credentials(&xcred);

49

50 /* sets the trusted cas file

51 */

52 gnutls_certificate_set_x509_trust_file(xcred, CAFILE,

53 GNUTLS_X509_FMT_PEM);

54

55 /* If client holds a certificate it can be set using the following:

56 *

57 gnutls_certificate_set_x509_key_file (xcred,

58 "cert.pem", "key.pem",

59 GNUTLS_X509_FMT_PEM);

60 */

61

62 /* Initialize TLS session

63 */

64 gnutls_init(&session, GNUTLS_CLIENT);

65

66 gnutls_session_set_ptr(session, (void *) "my_host_name");

67

68 gnutls_server_name_set(session, GNUTLS_NAME_DNS, "my_host_name",

69 strlen("my_host_name"));

70

71 /* It is recommended to use the default priorities */

72 gnutls_set_default_priority(session);

73 #if 0

74 /* if more fine-graned control is required */

75 ret = gnutls_priority_set_direct(session,

76 "NORMAL", &err);

77 if (ret < 0) {

78 if (ret == GNUTLS_E_INVALID_REQUEST) {

79 fprintf(stderr, "Syntax error at: %s\n", err);

80 }

182

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

81 exit(1);

82 }

83 #endif

84

85 /* put the x509 credentials to the current session

86 */

87 gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred);

88 gnutls_session_set_verify_cert(session, "my_host_name", 0);

89

90 /* connect to the peer

91 */

92 sd = tcp_connect();

93

94 gnutls_transport_set_int(session, sd);

95 gnutls_handshake_set_timeout(session,

96 GNUTLS_DEFAULT_HANDSHAKE_TIMEOUT);

97

98 /* Perform the TLS handshake

99 */

100 do {

101 ret = gnutls_handshake(session);

102 }

103 while (ret < 0 && gnutls_error_is_fatal(ret) == 0);

104 if (ret < 0) {

105 fprintf(stderr, "*** Handshake failed\n");

106 gnutls_perror(ret);

107 goto end;

108 } else {

109 char *desc;

110

111 desc = gnutls_session_get_desc(session);

112 printf("- Session info: %s\n", desc);

113 gnutls_free(desc);

114 }

115

116 /* check certificate verification status */

117 type = gnutls_certificate_type_get(session);

118 status = gnutls_session_get_verify_cert_status(session);

119 ret =

120 gnutls_certificate_verification_status_print(status, type,

121 &out, 0);

122 if (ret < 0) {

123 printf("Error\n");

124 return GNUTLS_E_CERTIFICATE_ERROR;

125 }

126

127 printf("%s", out.data);

128 gnutls_free(out.data);

129

130 /* send data */

131 gnutls_record_send(session, MSG, strlen(MSG));

132

133 ret = gnutls_record_recv(session, buffer, MAX_BUF);

134 if (ret == 0) {

135 printf("- Peer has closed the TLS connection\n");

136 goto end;

137 } else if (ret < 0 && gnutls_error_is_fatal(ret) == 0) {

138 fprintf(stderr, "*** Warning: %s\n", gnutls_strerror(ret));

183

6.1. CLIENT EXAMPLES

139 } else if (ret < 0) {

140 fprintf(stderr, "*** Error: %s\n", gnutls_strerror(ret));

141 goto end;

142 }

143

144 if (ret > 0) {

145 printf("- Received %d bytes: ", ret);

146 for (ii = 0; ii < ret; ii++) {

147 fputc(buffer[ii], stdout);

148 }

149 fputs("\n", stdout);

150 }

151

152 gnutls_bye(session, GNUTLS_SHUT_RDWR);

153

154 end:

155

156 tcp_close(sd);

157

158 gnutls_deinit(session);

159

160 gnutls_certificate_free_credentials(xcred);

161

162 gnutls_global_deinit();

163

164 return 0;

165 }

6.1.2. Simple client example with SSH-style certificate verification

This is an alternative verification function that will use the X.509 certificate authorities for
verification, but also assume an trust on first use (SSH-like) authentication system. That is
the user is prompted on unknown public keys and known public keys are considered trusted.

1 /* This example code is placed in the public domain. */

2

3 #ifdef HAVE_CONFIG_H

4 #include <config.h>

5 #endif

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <string.h>

10 #include <gnutls/gnutls.h>

11 #include <gnutls/x509.h>

12 #include "examples.h"

13

14 /* This function will verify the peer’s certificate, check

15 * if the hostname matches. In addition it will perform an

16 * SSH-style authentication, where ultimately trusted keys

17 * are only the keys that have been seen before.

18 */

19 int _ssh_verify_certificate_callback(gnutls_session_t session)

20 {

21 unsigned int status;

184

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

22 const gnutls_datum_t *cert_list;

23 unsigned int cert_list_size;

24 int ret, type;

25 gnutls_datum_t out;

26 const char *hostname;

27

28 /* read hostname */

29 hostname = gnutls_session_get_ptr(session);

30

31 /* This verification function uses the trusted CAs in the credentials

32 * structure. So you must have installed one or more CA certificates.

33 */

34 ret = gnutls_certificate_verify_peers3(session, hostname, &status);

35 if (ret < 0) {

36 printf("Error\n");

37 return GNUTLS_E_CERTIFICATE_ERROR;

38 }

39

40 type = gnutls_certificate_type_get(session);

41

42 ret =

43 gnutls_certificate_verification_status_print(status, type,

44 &out, 0);

45 if (ret < 0) {

46 printf("Error\n");

47 return GNUTLS_E_CERTIFICATE_ERROR;

48 }

49

50 printf("%s", out.data);

51

52 gnutls_free(out.data);

53

54 if (status != 0) /* Certificate is not trusted */

55 return GNUTLS_E_CERTIFICATE_ERROR;

56

57 /* Do SSH verification */

58 cert_list = gnutls_certificate_get_peers(session, &cert_list_size);

59 if (cert_list == NULL) {

60 printf("No certificate was found!\n");

61 return GNUTLS_E_CERTIFICATE_ERROR;

62 }

63

64 /* service may be obtained alternatively using getservbyport() */

65 ret = gnutls_verify_stored_pubkey(NULL, NULL, hostname, "https",

66 type, &cert_list[0], 0);

67 if (ret == GNUTLS_E_NO_CERTIFICATE_FOUND) {

68 printf("Host %s is not known.", hostname);

69 if (status == 0)

70 printf("Its certificate is valid for %s.\n",

71 hostname);

72

73 /* the certificate must be printed and user must be asked on

74 * whether it is trustworthy. --see gnutls_x509_crt_print() */

75

76 /* if not trusted */

77 return GNUTLS_E_CERTIFICATE_ERROR;

78 } else if (ret == GNUTLS_E_CERTIFICATE_KEY_MISMATCH) {

79 printf

185

6.1. CLIENT EXAMPLES

80 ("Warning: host %s is known but has another key associated.",

81 hostname);

82 printf

83 ("It might be that the server has multiple keys, or you are under attack\n");

84 if (status == 0)

85 printf("Its certificate is valid for %s.\n",

86 hostname);

87

88 /* the certificate must be printed and user must be asked on

89 * whether it is trustworthy. --see gnutls_x509_crt_print() */

90

91 /* if not trusted */

92 return GNUTLS_E_CERTIFICATE_ERROR;

93 } else if (ret < 0) {

94 printf("gnutls_verify_stored_pubkey: %s\n",

95 gnutls_strerror(ret));

96 return ret;

97 }

98

99 /* user trusts the key -> store it */

100 if (ret != 0) {

101 ret = gnutls_store_pubkey(NULL, NULL, hostname, "https",

102 type, &cert_list[0], 0, 0);

103 if (ret < 0)

104 printf("gnutls_store_pubkey: %s\n",

105 gnutls_strerror(ret));

106 }

107

108 /* notify gnutls to continue handshake normally */

109 return 0;

110 }

6.1.3. Simple client example with anonymous authentication

The simplest client using TLS is the one that doesn’t do any authentication. This means no
external certificates or passwords are needed to set up the connection. As could be expected,
the connection is vulnerable to man-in-the-middle (active or redirection) attacks. However,
the data are integrity protected and encrypted from passive eavesdroppers.

Note that due to the vulnerable nature of this method very few public servers support it.

1 /* This example code is placed in the public domain. */

2

3 #ifdef HAVE_CONFIG_H

4 #include <config.h>

5 #endif

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <string.h>

10 #include <sys/types.h>

11 #include <sys/socket.h>

12 #include <arpa/inet.h>

13 #include <unistd.h>

186

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

14 #include <gnutls/gnutls.h>

15

16 /* A very basic TLS client, with anonymous authentication.

17 */

18

19 #define MAX_BUF 1024

20 #define MSG "GET / HTTP/1.0\r\n\r\n"

21

22 extern int tcp_connect(void);

23 extern void tcp_close(int sd);

24

25 int main(void)

26 {

27 int ret, sd, ii;

28 gnutls_session_t session;

29 char buffer[MAX_BUF + 1];

30 gnutls_anon_client_credentials_t anoncred;

31 /* Need to enable anonymous KX specifically. */

32

33 gnutls_global_init();

34

35 gnutls_anon_allocate_client_credentials(&anoncred);

36

37 /* Initialize TLS session

38 */

39 gnutls_init(&session, GNUTLS_CLIENT);

40

41 /* Use default priorities */

42 gnutls_priority_set_direct(session,

43 "PERFORMANCE:+ANON-ECDH:+ANON-DH",

44 NULL);

45

46 /* put the anonymous credentials to the current session

47 */

48 gnutls_credentials_set(session, GNUTLS_CRD_ANON, anoncred);

49

50 /* connect to the peer

51 */

52 sd = tcp_connect();

53

54 gnutls_transport_set_int(session, sd);

55 gnutls_handshake_set_timeout(session,

56 GNUTLS_DEFAULT_HANDSHAKE_TIMEOUT);

57

58 /* Perform the TLS handshake

59 */

60 do {

61 ret = gnutls_handshake(session);

62 }

63 while (ret < 0 && gnutls_error_is_fatal(ret) == 0);

64

65 if (ret < 0) {

66 fprintf(stderr, "*** Handshake failed\n");

67 gnutls_perror(ret);

68 goto end;

69 } else {

70 char *desc;

71

187

6.1. CLIENT EXAMPLES

72 desc = gnutls_session_get_desc(session);

73 printf("- Session info: %s\n", desc);

74 gnutls_free(desc);

75 }

76

77 gnutls_record_send(session, MSG, strlen(MSG));

78

79 ret = gnutls_record_recv(session, buffer, MAX_BUF);

80 if (ret == 0) {

81 printf("- Peer has closed the TLS connection\n");

82 goto end;

83 } else if (ret < 0 && gnutls_error_is_fatal(ret) == 0) {

84 fprintf(stderr, "*** Warning: %s\n", gnutls_strerror(ret));

85 } else if (ret < 0) {

86 fprintf(stderr, "*** Error: %s\n", gnutls_strerror(ret));

87 goto end;

88 }

89

90 if (ret > 0) {

91 printf("- Received %d bytes: ", ret);

92 for (ii = 0; ii < ret; ii++) {

93 fputc(buffer[ii], stdout);

94 }

95 fputs("\n", stdout);

96 }

97

98 gnutls_bye(session, GNUTLS_SHUT_RDWR);

99

100 end:

101

102 tcp_close(sd);

103

104 gnutls_deinit(session);

105

106 gnutls_anon_free_client_credentials(anoncred);

107

108 gnutls_global_deinit();

109

110 return 0;

111 }

6.1.4. Simple datagram TLS client example

This is a client that uses UDP to connect to a server. This is the DTLS equivalent to the TLS
example with X.509 certificates.

1 /* This example code is placed in the public domain. */

2

3 #ifdef HAVE_CONFIG_H

4 #include <config.h>

5 #endif

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <string.h>

188

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

10 #include <sys/types.h>

11 #include <sys/socket.h>

12 #include <arpa/inet.h>

13 #include <unistd.h>

14 #include <gnutls/gnutls.h>

15 #include <gnutls/dtls.h>

16

17 /* A very basic Datagram TLS client, over UDP with X.509 authentication.

18 */

19

20 #define MAX_BUF 1024

21 #define CAFILE "/etc/ssl/certs/ca-certificates.crt"

22 #define MSG "GET / HTTP/1.0\r\n\r\n"

23

24 extern int udp_connect(void);

25 extern void udp_close(int sd);

26 extern int verify_certificate_callback(gnutls_session_t session);

27

28 int main(void)

29 {

30 int ret, sd, ii;

31 gnutls_session_t session;

32 char buffer[MAX_BUF + 1];

33 const char *err;

34 gnutls_certificate_credentials_t xcred;

35

36 if (gnutls_check_version("3.1.4") == NULL) {

37 fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n");

38 exit(1);

39 }

40

41 /* for backwards compatibility with gnutls < 3.3.0 */

42 gnutls_global_init();

43

44 /* X509 stuff */

45 gnutls_certificate_allocate_credentials(&xcred);

46

47 /* sets the trusted cas file */

48 gnutls_certificate_set_x509_trust_file(xcred, CAFILE,

49 GNUTLS_X509_FMT_PEM);

50 gnutls_certificate_set_verify_function(xcred,

51 verify_certificate_callback);

52

53 /* Initialize TLS session */

54 gnutls_init(&session, GNUTLS_CLIENT | GNUTLS_DATAGRAM);

55

56 /* Use default priorities */

57 ret = gnutls_priority_set_direct(session,

58 "NORMAL", &err);

59 if (ret < 0) {

60 if (ret == GNUTLS_E_INVALID_REQUEST) {

61 fprintf(stderr, "Syntax error at: %s\n", err);

62 }

63 exit(1);

64 }

65

66 /* put the x509 credentials to the current session */

67 gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred);

189

6.1. CLIENT EXAMPLES

68 gnutls_server_name_set(session, GNUTLS_NAME_DNS, "my_host_name",

69 strlen("my_host_name"));

70

71 /* connect to the peer */

72 sd = udp_connect();

73

74 gnutls_transport_set_int(session, sd);

75

76 /* set the connection MTU */

77 gnutls_dtls_set_mtu(session, 1000);

78 /* gnutls_dtls_set_timeouts(session, 1000, 60000); */

79

80 /* Perform the TLS handshake */

81 do {

82 ret = gnutls_handshake(session);

83 }

84 while (ret == GNUTLS_E_INTERRUPTED || ret == GNUTLS_E_AGAIN);

85 /* Note that DTLS may also receive GNUTLS_E_LARGE_PACKET */

86

87 if (ret < 0) {

88 fprintf(stderr, "*** Handshake failed\n");

89 gnutls_perror(ret);

90 goto end;

91 } else {

92 char *desc;

93

94 desc = gnutls_session_get_desc(session);

95 printf("- Session info: %s\n", desc);

96 gnutls_free(desc);

97 }

98

99 gnutls_record_send(session, MSG, strlen(MSG));

100

101 ret = gnutls_record_recv(session, buffer, MAX_BUF);

102 if (ret == 0) {

103 printf("- Peer has closed the TLS connection\n");

104 goto end;

105 } else if (ret < 0 && gnutls_error_is_fatal(ret) == 0) {

106 fprintf(stderr, "*** Warning: %s\n", gnutls_strerror(ret));

107 } else if (ret < 0) {

108 fprintf(stderr, "*** Error: %s\n", gnutls_strerror(ret));

109 goto end;

110 }

111

112 if (ret > 0) {

113 printf("- Received %d bytes: ", ret);

114 for (ii = 0; ii < ret; ii++) {

115 fputc(buffer[ii], stdout);

116 }

117 fputs("\n", stdout);

118 }

119

120 /* It is suggested not to use GNUTLS_SHUT_RDWR in DTLS

121 * connections because the peer’s closure message might

122 * be lost */

123 gnutls_bye(session, GNUTLS_SHUT_WR);

124

125 end:

190

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

126

127 udp_close(sd);

128

129 gnutls_deinit(session);

130

131 gnutls_certificate_free_credentials(xcred);

132

133 gnutls_global_deinit();

134

135 return 0;

136 }

6.1.5. Obtaining session information

Most of the times it is desirable to know the security properties of the current established
session. This includes the underlying ciphers and the protocols involved. That is the purpose
of the following function. Note that this function will print meaningful values only if called
after a successful gnutls handshake.

1 /* This example code is placed in the public domain. */

2

3 #ifdef HAVE_CONFIG_H

4 #include <config.h>

5 #endif

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <gnutls/gnutls.h>

10 #include <gnutls/x509.h>

11

12 #include "examples.h"

13

14 /* This function will print some details of the

15 * given session.

16 */

17 int print_info(gnutls_session_t session)

18 {

19 const char *tmp;

20 gnutls_credentials_type_t cred;

21 gnutls_kx_algorithm_t kx;

22 int dhe, ecdh;

23

24 dhe = ecdh = 0;

25

26 /* print the key exchange’s algorithm name

27 */

28 kx = gnutls_kx_get(session);

29 tmp = gnutls_kx_get_name(kx);

30 printf("- Key Exchange: %s\n", tmp);

31

32 /* Check the authentication type used and switch

33 * to the appropriate.

34 */

35 cred = gnutls_auth_get_type(session);

191

6.1. CLIENT EXAMPLES

36 switch (cred) {

37 case GNUTLS_CRD_IA:

38 printf("- TLS/IA session\n");

39 break;

40

41

42 #ifdef ENABLE_SRP

43 case GNUTLS_CRD_SRP:

44 printf("- SRP session with username %s\n",

45 gnutls_srp_server_get_username(session));

46 break;

47 #endif

48

49 case GNUTLS_CRD_PSK:

50 /* This returns NULL in server side.

51 */

52 if (gnutls_psk_client_get_hint(session) != NULL)

53 printf("- PSK authentication. PSK hint ’%s’\n",

54 gnutls_psk_client_get_hint(session));

55 /* This returns NULL in client side.

56 */

57 if (gnutls_psk_server_get_username(session) != NULL)

58 printf("- PSK authentication. Connected as ’%s’\n",

59 gnutls_psk_server_get_username(session));

60

61 if (kx == GNUTLS_KX_ECDHE_PSK)

62 ecdh = 1;

63 else if (kx == GNUTLS_KX_DHE_PSK)

64 dhe = 1;

65 break;

66

67 case GNUTLS_CRD_ANON: /* anonymous authentication */

68

69 printf("- Anonymous authentication.\n");

70 if (kx == GNUTLS_KX_ANON_ECDH)

71 ecdh = 1;

72 else if (kx == GNUTLS_KX_ANON_DH)

73 dhe = 1;

74 break;

75

76 case GNUTLS_CRD_CERTIFICATE: /* certificate authentication */

77

78 /* Check if we have been using ephemeral Diffie-Hellman.

79 */

80 if (kx == GNUTLS_KX_DHE_RSA || kx == GNUTLS_KX_DHE_DSS)

81 dhe = 1;

82 else if (kx == GNUTLS_KX_ECDHE_RSA

83 || kx == GNUTLS_KX_ECDHE_ECDSA)

84 ecdh = 1;

85

86 /* if the certificate list is available, then

87 * print some information about it.

88 */

89 print_x509_certificate_info(session);

90

91 } /* switch */

92

93 if (ecdh != 0)

192

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

94 printf("- Ephemeral ECDH using curve %s\n",

95 gnutls_ecc_curve_get_name(gnutls_ecc_curve_get

96 (session)));

97 else if (dhe != 0)

98 printf("- Ephemeral DH using prime of %d bits\n",

99 gnutls_dh_get_prime_bits(session));

100

101 /* print the protocol’s name (ie TLS 1.0)

102 */

103 tmp =

104 gnutls_protocol_get_name(gnutls_protocol_get_version(session));

105 printf("- Protocol: %s\n", tmp);

106

107 /* print the certificate type of the peer.

108 * ie X.509

109 */

110 tmp =

111 gnutls_certificate_type_get_name(gnutls_certificate_type_get

112 (session));

113

114 printf("- Certificate Type: %s\n", tmp);

115

116 /* print the compression algorithm (if any)

117 */

118 tmp = gnutls_compression_get_name(gnutls_compression_get(session));

119 printf("- Compression: %s\n", tmp);

120

121 /* print the name of the cipher used.

122 * ie 3DES.

123 */

124 tmp = gnutls_cipher_get_name(gnutls_cipher_get(session));

125 printf("- Cipher: %s\n", tmp);

126

127 /* Print the MAC algorithms name.

128 * ie SHA1

129 */

130 tmp = gnutls_mac_get_name(gnutls_mac_get(session));

131 printf("- MAC: %s\n", tmp);

132

133 return 0;

134 }

6.1.6. Using a callback to select the certificate to use

There are cases where a client holds several certificate and key pairs, and may not want to
load all of them in the credentials structure. The following example demonstrates the use of
the certificate selection callback.

1 /* This example code is placed in the public domain. */

2

3 #ifdef HAVE_CONFIG_H

4 #include <config.h>

5 #endif

6

7 #include <stdio.h>

193

6.1. CLIENT EXAMPLES

8 #include <stdlib.h>

9 #include <string.h>

10 #include <sys/types.h>

11 #include <sys/socket.h>

12 #include <arpa/inet.h>

13 #include <unistd.h>

14 #include <gnutls/gnutls.h>

15 #include <gnutls/x509.h>

16 #include <gnutls/abstract.h>

17 #include <sys/types.h>

18 #include <sys/stat.h>

19 #include <fcntl.h>

20

21 /* A TLS client that loads the certificate and key.

22 */

23

24 #define MAX_BUF 1024

25 #define MSG "GET / HTTP/1.0\r\n\r\n"

26

27 #define CERT_FILE "cert.pem"

28 #define KEY_FILE "key.pem"

29 #define CAFILE "/etc/ssl/certs/ca-certificates.crt"

30

31 extern int tcp_connect(void);

32 extern void tcp_close(int sd);

33

34 static int

35 cert_callback(gnutls_session_t session,

36 const gnutls_datum_t * req_ca_rdn, int nreqs,

37 const gnutls_pk_algorithm_t * sign_algos,

38 int sign_algos_length, gnutls_pcert_st ** pcert,

39 unsigned int *pcert_length, gnutls_privkey_t * pkey);

40

41 gnutls_pcert_st pcrt;

42 gnutls_privkey_t key;

43

44 /* Load the certificate and the private key.

45 */

46 static void load_keys(void)

47 {

48 int ret;

49 gnutls_datum_t data;

50

51 ret = gnutls_load_file(CERT_FILE, &data);

52 if (ret < 0) {

53 fprintf(stderr, "*** Error loading certificate file.\n");

54 exit(1);

55 }

56

57 ret =

58 gnutls_pcert_import_x509_raw(&pcrt, &data, GNUTLS_X509_FMT_PEM,

59 0);

60 if (ret < 0) {

61 fprintf(stderr, "*** Error loading certificate file: %s\n",

62 gnutls_strerror(ret));

63 exit(1);

64 }

65

194

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

66 gnutls_free(data.data);

67

68 ret = gnutls_load_file(KEY_FILE, &data);

69 if (ret < 0) {

70 fprintf(stderr, "*** Error loading key file.\n");

71 exit(1);

72 }

73

74 gnutls_privkey_init(&key);

75

76 ret =

77 gnutls_privkey_import_x509_raw(key, &data, GNUTLS_X509_FMT_PEM,

78 NULL, 0);

79 if (ret < 0) {

80 fprintf(stderr, "*** Error loading key file: %s\n",

81 gnutls_strerror(ret));

82 exit(1);

83 }

84

85 gnutls_free(data.data);

86 }

87

88 int main(void)

89 {

90 int ret, sd, ii;

91 gnutls_session_t session;

92 gnutls_priority_t priorities_cache;

93 char buffer[MAX_BUF + 1];

94 gnutls_certificate_credentials_t xcred;

95

96 if (gnutls_check_version("3.1.4") == NULL) {

97 fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n");

98 exit(1);

99 }

100

101 /* for backwards compatibility with gnutls < 3.3.0 */

102 gnutls_global_init();

103

104 load_keys();

105

106 /* X509 stuff */

107 gnutls_certificate_allocate_credentials(&xcred);

108

109 /* priorities */

110 gnutls_priority_init(&priorities_cache,

111 "NORMAL", NULL);

112

113 /* sets the trusted cas file

114 */

115 gnutls_certificate_set_x509_trust_file(xcred, CAFILE,

116 GNUTLS_X509_FMT_PEM);

117

118 gnutls_certificate_set_retrieve_function2(xcred, cert_callback);

119

120 /* Initialize TLS session

121 */

122 gnutls_init(&session, GNUTLS_CLIENT);

123

195

6.1. CLIENT EXAMPLES

124 /* Use default priorities */

125 gnutls_priority_set(session, priorities_cache);

126

127 /* put the x509 credentials to the current session

128 */

129 gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred);

130

131 /* connect to the peer

132 */

133 sd = tcp_connect();

134

135 gnutls_transport_set_int(session, sd);

136

137 /* Perform the TLS handshake

138 */

139 ret = gnutls_handshake(session);

140

141 if (ret < 0) {

142 fprintf(stderr, "*** Handshake failed\n");

143 gnutls_perror(ret);

144 goto end;

145 } else {

146 char *desc;

147

148 desc = gnutls_session_get_desc(session);

149 printf("- Session info: %s\n", desc);

150 gnutls_free(desc);

151 }

152

153 gnutls_record_send(session, MSG, strlen(MSG));

154

155 ret = gnutls_record_recv(session, buffer, MAX_BUF);

156 if (ret == 0) {

157 printf("- Peer has closed the TLS connection\n");

158 goto end;

159 } else if (ret < 0) {

160 fprintf(stderr, "*** Error: %s\n", gnutls_strerror(ret));

161 goto end;

162 }

163

164 printf("- Received %d bytes: ", ret);

165 for (ii = 0; ii < ret; ii++) {

166 fputc(buffer[ii], stdout);

167 }

168 fputs("\n", stdout);

169

170 gnutls_bye(session, GNUTLS_SHUT_RDWR);

171

172 end:

173

174 tcp_close(sd);

175

176 gnutls_deinit(session);

177

178 gnutls_certificate_free_credentials(xcred);

179 gnutls_priority_deinit(priorities_cache);

180

181 gnutls_global_deinit();

196

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

182

183 return 0;

184 }

185

186

187

188 /* This callback should be associated with a session by calling

189 * gnutls_certificate_client_set_retrieve_function(session, cert_callback),

190 * before a handshake.

191 */

192

193 static int

194 cert_callback(gnutls_session_t session,

195 const gnutls_datum_t * req_ca_rdn, int nreqs,

196 const gnutls_pk_algorithm_t * sign_algos,

197 int sign_algos_length, gnutls_pcert_st ** pcert,

198 unsigned int *pcert_length, gnutls_privkey_t * pkey)

199 {

200 char issuer_dn[256];

201 int i, ret;

202 size_t len;

203 gnutls_certificate_type_t type;

204

205 /* Print the server’s trusted CAs

206 */

207 if (nreqs > 0)

208 printf("- Server’s trusted authorities:\n");

209 else

210 printf

211 ("- Server did not send us any trusted authorities names.\n");

212

213 /* print the names (if any) */

214 for (i = 0; i < nreqs; i++) {

215 len = sizeof(issuer_dn);

216 ret = gnutls_x509_rdn_get(&req_ca_rdn[i], issuer_dn, &len);

217 if (ret >= 0) {

218 printf(" [%d]: ", i);

219 printf("%s\n", issuer_dn);

220 }

221 }

222

223 /* Select a certificate and return it.

224 * The certificate must be of any of the "sign algorithms"

225 * supported by the server.

226 */

227 type = gnutls_certificate_type_get(session);

228 if (type == GNUTLS_CRT_X509) {

229 *pcert_length = 1;

230 *pcert = &pcrt;

231 *pkey = key;

232 } else {

233 return -1;

234 }

235

236 return 0;

237

238 }

197

6.1. CLIENT EXAMPLES

6.1.7. Verifying a certificate

An example is listed below which uses the high level verification functions to verify a given
certificate list.

1 /* This example code is placed in the public domain. */

2

3 #ifdef HAVE_CONFIG_H

4 #include <config.h>

5 #endif

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <string.h>

10 #include <gnutls/gnutls.h>

11 #include <gnutls/x509.h>

12

13 #include "examples.h"

14

15 /* All the available CRLs

16 */

17 gnutls_x509_crl_t *crl_list;

18 int crl_list_size;

19

20 /* All the available trusted CAs

21 */

22 gnutls_x509_crt_t *ca_list;

23 int ca_list_size;

24

25 static int print_details_func(gnutls_x509_crt_t cert,

26 gnutls_x509_crt_t issuer,

27 gnutls_x509_crl_t crl,

28 unsigned int verification_output);

29

30 /* This function will try to verify the peer’s certificate chain, and

31 * also check if the hostname matches.

32 */

33 void

34 verify_certificate_chain(const char *hostname,

35 const gnutls_datum_t * cert_chain,

36 int cert_chain_length)

37 {

38 int i;

39 gnutls_x509_trust_list_t tlist;

40 gnutls_x509_crt_t *cert;

41

42 unsigned int output;

43

44 /* Initialize the trusted certificate list. This should be done

45 * once on initialization. gnutls_x509_crt_list_import2() and

46 * gnutls_x509_crl_list_import2() can be used to load them.

47 */

48 gnutls_x509_trust_list_init(&tlist, 0);

49

50 gnutls_x509_trust_list_add_cas(tlist, ca_list, ca_list_size, 0);

51 gnutls_x509_trust_list_add_crls(tlist, crl_list, crl_list_size,

52 GNUTLS_TL_VERIFY_CRL, 0);

198

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

53

54 cert = malloc(sizeof(*cert) * cert_chain_length);

55

56 /* Import all the certificates in the chain to

57 * native certificate format.

58 */

59 for (i = 0; i < cert_chain_length; i++) {

60 gnutls_x509_crt_init(&cert[i]);

61 gnutls_x509_crt_import(cert[i], &cert_chain[i],

62 GNUTLS_X509_FMT_DER);

63 }

64

65 gnutls_x509_trust_list_verify_named_crt(tlist, cert[0], hostname,

66 strlen(hostname),

67 GNUTLS_VERIFY_DISABLE_CRL_CHECKS,

68 &output,

69 print_details_func);

70

71 /* if this certificate is not explicitly trusted verify against CAs

72 */

73 if (output != 0) {

74 gnutls_x509_trust_list_verify_crt(tlist, cert,

75 cert_chain_length, 0,

76 &output,

77 print_details_func);

78 }

79

80 if (output & GNUTLS_CERT_INVALID) {

81 fprintf(stderr, "Not trusted");

82

83 if (output & GNUTLS_CERT_SIGNER_NOT_FOUND)

84 fprintf(stderr, ": no issuer was found");

85 if (output & GNUTLS_CERT_SIGNER_NOT_CA)

86 fprintf(stderr, ": issuer is not a CA");

87 if (output & GNUTLS_CERT_NOT_ACTIVATED)

88 fprintf(stderr, ": not yet activated\n");

89 if (output & GNUTLS_CERT_EXPIRED)

90 fprintf(stderr, ": expired\n");

91

92 fprintf(stderr, "\n");

93 } else

94 fprintf(stderr, "Trusted\n");

95

96 /* Check if the name in the first certificate matches our destination!

97 */

98 if (!gnutls_x509_crt_check_hostname(cert[0], hostname)) {

99 printf

100 ("The certificate’s owner does not match hostname ’%s’\n",

101 hostname);

102 }

103

104 gnutls_x509_trust_list_deinit(tlist, 1);

105

106 return;

107 }

108

109 static int

110 print_details_func(gnutls_x509_crt_t cert,

199

6.1. CLIENT EXAMPLES

111 gnutls_x509_crt_t issuer, gnutls_x509_crl_t crl,

112 unsigned int verification_output)

113 {

114 char name[512];

115 char issuer_name[512];

116 size_t name_size;

117 size_t issuer_name_size;

118

119 issuer_name_size = sizeof(issuer_name);

120 gnutls_x509_crt_get_issuer_dn(cert, issuer_name,

121 &issuer_name_size);

122

123 name_size = sizeof(name);

124 gnutls_x509_crt_get_dn(cert, name, &name_size);

125

126 fprintf(stdout, "\tSubject: %s\n", name);

127 fprintf(stdout, "\tIssuer: %s\n", issuer_name);

128

129 if (issuer != NULL) {

130 issuer_name_size = sizeof(issuer_name);

131 gnutls_x509_crt_get_dn(issuer, issuer_name,

132 &issuer_name_size);

133

134 fprintf(stdout, "\tVerified against: %s\n", issuer_name);

135 }

136

137 if (crl != NULL) {

138 issuer_name_size = sizeof(issuer_name);

139 gnutls_x509_crl_get_issuer_dn(crl, issuer_name,

140 &issuer_name_size);

141

142 fprintf(stdout, "\tVerified against CRL of: %s\n",

143 issuer_name);

144 }

145

146 fprintf(stdout, "\tVerification output: %x\n\n",

147 verification_output);

148

149 return 0;

150 }

6.1.8. Using a smart card with TLS

This example will demonstrate how to load keys and certificates from a smart-card or any
other PKCS #11 token, and use it in a TLS connection.

1 /* This example code is placed in the public domain. */

2

3 #ifdef HAVE_CONFIG_H

4 #include <config.h>

5 #endif

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <string.h>

200

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

10 #include <sys/types.h>

11 #include <sys/socket.h>

12 #include <arpa/inet.h>

13 #include <unistd.h>

14 #include <gnutls/gnutls.h>

15 #include <gnutls/x509.h>

16 #include <gnutls/pkcs11.h>

17 #include <sys/types.h>

18 #include <sys/stat.h>

19 #include <fcntl.h>

20 #include <getpass.h> /* for getpass() */

21

22 /* A TLS client that loads the certificate and key.

23 */

24

25 #define MAX_BUF 1024

26 #define MSG "GET / HTTP/1.0\r\n\r\n"

27 #define MIN(x,y) (((x)<(y))?(x):(y))

28

29 #define CAFILE "/etc/ssl/certs/ca-certificates.crt"

30

31 /* The URLs of the objects can be obtained

32 * using p11tool --list-all --login

33 */

34 #define KEY_URL "pkcs11:manufacturer=SomeManufacturer;object=Private%20Key" \

35 ";objecttype=private;id=%db%5b%3e%b5%72%33"

36 #define CERT_URL "pkcs11:manufacturer=SomeManufacturer;object=Certificate;" \

37 "objecttype=cert;id=db%5b%3e%b5%72%33"

38

39 extern int tcp_connect(void);

40 extern void tcp_close(int sd);

41

42 static int

43 pin_callback(void *user, int attempt, const char *token_url,

44 const char *token_label, unsigned int flags, char *pin,

45 size_t pin_max)

46 {

47 const char *password;

48 int len;

49

50 printf("PIN required for token ’%s’ with URL ’%s’\n", token_label,

51 token_url);

52 if (flags & GNUTLS_PIN_FINAL_TRY)

53 printf("*** This is the final try before locking!\n");

54 if (flags & GNUTLS_PIN_COUNT_LOW)

55 printf("*** Only few tries left before locking!\n");

56 if (flags & GNUTLS_PIN_WRONG)

57 printf("*** Wrong PIN\n");

58

59 password = getpass("Enter pin: ");

60 if (password == NULL || password[0] == 0) {

61 fprintf(stderr, "No password given\n");

62 exit(1);

63 }

64

65 len = MIN(pin_max - 1, strlen(password));

66 memcpy(pin, password, len);

67 pin[len] = 0;

201

6.1. CLIENT EXAMPLES

68

69 return 0;

70 }

71

72 int main(void)

73 {

74 int ret, sd, ii;

75 gnutls_session_t session;

76 gnutls_priority_t priorities_cache;

77 char buffer[MAX_BUF + 1];

78 gnutls_certificate_credentials_t xcred;

79 /* Allow connections to servers that have OpenPGP keys as well.

80 */

81

82 if (gnutls_check_version("3.1.4") == NULL) {

83 fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n");

84 exit(1);

85 }

86

87 /* for backwards compatibility with gnutls < 3.3.0 */

88 gnutls_global_init();

89

90 /* The PKCS11 private key operations may require PIN.

91 * Register a callback. */

92 gnutls_pkcs11_set_pin_function(pin_callback, NULL);

93

94 /* X509 stuff */

95 gnutls_certificate_allocate_credentials(&xcred);

96

97 /* priorities */

98 gnutls_priority_init(&priorities_cache,

99 "NORMAL", NULL);

100

101 /* sets the trusted cas file

102 */

103 gnutls_certificate_set_x509_trust_file(xcred, CAFILE,

104 GNUTLS_X509_FMT_PEM);

105

106 gnutls_certificate_set_x509_key_file(xcred, CERT_URL, KEY_URL,

107 GNUTLS_X509_FMT_DER);

108

109 /* Initialize TLS session

110 */

111 gnutls_init(&session, GNUTLS_CLIENT);

112

113 /* Use default priorities */

114 gnutls_priority_set(session, priorities_cache);

115

116 /* put the x509 credentials to the current session

117 */

118 gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred);

119

120 /* connect to the peer

121 */

122 sd = tcp_connect();

123

124 gnutls_transport_set_int(session, sd);

125

202

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

126 /* Perform the TLS handshake

127 */

128 ret = gnutls_handshake(session);

129

130 if (ret < 0) {

131 fprintf(stderr, "*** Handshake failed\n");

132 gnutls_perror(ret);

133 goto end;

134 } else {

135 char *desc;

136

137 desc = gnutls_session_get_desc(session);

138 printf("- Session info: %s\n", desc);

139 gnutls_free(desc);

140 }

141

142 gnutls_record_send(session, MSG, strlen(MSG));

143

144 ret = gnutls_record_recv(session, buffer, MAX_BUF);

145 if (ret == 0) {

146 printf("- Peer has closed the TLS connection\n");

147 goto end;

148 } else if (ret < 0) {

149 fprintf(stderr, "*** Error: %s\n", gnutls_strerror(ret));

150 goto end;

151 }

152

153 printf("- Received %d bytes: ", ret);

154 for (ii = 0; ii < ret; ii++) {

155 fputc(buffer[ii], stdout);

156 }

157 fputs("\n", stdout);

158

159 gnutls_bye(session, GNUTLS_SHUT_RDWR);

160

161 end:

162

163 tcp_close(sd);

164

165 gnutls_deinit(session);

166

167 gnutls_certificate_free_credentials(xcred);

168 gnutls_priority_deinit(priorities_cache);

169

170 gnutls_global_deinit();

171

172 return 0;

173 }

6.1.9. Client with resume capability example

This is a modification of the simple client example. Here we demonstrate the use of session
resumption. The client tries to connect once using TLS, close the connection and then try to
establish a new connection using the previously negotiated data.

203

6.1. CLIENT EXAMPLES

1 /* This example code is placed in the public domain. */

2

3 #ifdef HAVE_CONFIG_H

4 #include <config.h>

5 #endif

6

7 #include <string.h>

8 #include <stdio.h>

9 #include <stdlib.h>

10 #include <gnutls/gnutls.h>

11

12 /* Those functions are defined in other examples.

13 */

14 extern void check_alert(gnutls_session_t session, int ret);

15 extern int tcp_connect(void);

16 extern void tcp_close(int sd);

17

18 #define MAX_BUF 1024

19 #define CAFILE "/etc/ssl/certs/ca-certificates.crt"

20 #define MSG "GET / HTTP/1.0\r\n\r\n"

21

22 int main(void)

23 {

24 int ret;

25 int sd, ii;

26 gnutls_session_t session;

27 char buffer[MAX_BUF + 1];

28 gnutls_certificate_credentials_t xcred;

29

30 /* variables used in session resuming

31 */

32 int t;

33 char *session_data = NULL;

34 size_t session_data_size = 0;

35

36 gnutls_global_init();

37

38 /* X509 stuff */

39 gnutls_certificate_allocate_credentials(&xcred);

40

41 gnutls_certificate_set_x509_trust_file(xcred, CAFILE,

42 GNUTLS_X509_FMT_PEM);

43

44 for (t = 0; t < 2; t++) { /* connect 2 times to the server */

45

46 sd = tcp_connect();

47

48 gnutls_init(&session, GNUTLS_CLIENT);

49

50 gnutls_priority_set_direct(session,

51 "PERFORMANCE:!ARCFOUR-128",

52 NULL);

53

54 gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE,

55 xcred);

56

57 if (t > 0) {

204

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

58 /* if this is not the first time we connect */

59 gnutls_session_set_data(session, session_data,

60 session_data_size);

61 free(session_data);

62 }

63

64 gnutls_transport_set_int(session, sd);

65 gnutls_handshake_set_timeout(session,

66 GNUTLS_DEFAULT_HANDSHAKE_TIMEOUT);

67

68 /* Perform the TLS handshake

69 */

70 do {

71 ret = gnutls_handshake(session);

72 }

73 while (ret < 0 && gnutls_error_is_fatal(ret) == 0);

74

75 if (ret < 0) {

76 fprintf(stderr, "*** Handshake failed\n");

77 gnutls_perror(ret);

78 goto end;

79 } else {

80 printf("- Handshake was completed\n");

81 }

82

83 if (t == 0) { /* the first time we connect */

84 /* get the session data size */

85 gnutls_session_get_data(session, NULL,

86 &session_data_size);

87 session_data = malloc(session_data_size);

88

89 /* put session data to the session variable */

90 gnutls_session_get_data(session, session_data,

91 &session_data_size);

92

93 } else { /* the second time we connect */

94

95 /* check if we actually resumed the previous session */

96 if (gnutls_session_is_resumed(session) != 0) {

97 printf("- Previous session was resumed\n");

98 } else {

99 fprintf(stderr,

100 "*** Previous session was NOT resumed\n");

101 }

102 }

103

104 /* This function was defined in a previous example

105 */

106 /* print_info(session); */

107

108 gnutls_record_send(session, MSG, strlen(MSG));

109

110 ret = gnutls_record_recv(session, buffer, MAX_BUF);

111 if (ret == 0) {

112 printf("- Peer has closed the TLS connection\n");

113 goto end;

114 } else if (ret < 0 && gnutls_error_is_fatal(ret) == 0) {

115 fprintf(stderr, "*** Warning: %s\n",

205

6.1. CLIENT EXAMPLES

116 gnutls_strerror(ret));

117 } else if (ret < 0) {

118 fprintf(stderr, "*** Error: %s\n",

119 gnutls_strerror(ret));

120 goto end;

121 }

122

123 if (ret > 0) {

124 printf("- Received %d bytes: ", ret);

125 for (ii = 0; ii < ret; ii++) {

126 fputc(buffer[ii], stdout);

127 }

128 fputs("\n", stdout);

129 }

130

131 gnutls_bye(session, GNUTLS_SHUT_RDWR);

132

133 end:

134

135 tcp_close(sd);

136

137 gnutls_deinit(session);

138

139 } /* for() */

140

141 gnutls_certificate_free_credentials(xcred);

142

143 gnutls_global_deinit();

144

145 return 0;

146 }

6.1.10. Simple client example with SRP authentication

The following client is a very simple SRP TLS client which connects to a server and authenti-
cates using a username and a password. The server may authenticate itself using a certificate,
and in that case it has to be verified.

1 /* This example code is placed in the public domain. */

2

3 #ifdef HAVE_CONFIG_H

4 #include <config.h>

5 #endif

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <string.h>

10 #include <gnutls/gnutls.h>

11

12 /* Those functions are defined in other examples.

13 */

14 extern void check_alert(gnutls_session_t session, int ret);

15 extern int tcp_connect(void);

16 extern void tcp_close(int sd);

17

206

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

18 #define MAX_BUF 1024

19 #define USERNAME "user"

20 #define PASSWORD "pass"

21 #define CAFILE "/etc/ssl/certs/ca-certificates.crt"

22 #define MSG "GET / HTTP/1.0\r\n\r\n"

23

24 int main(void)

25 {

26 int ret;

27 int sd, ii;

28 gnutls_session_t session;

29 char buffer[MAX_BUF + 1];

30 gnutls_srp_client_credentials_t srp_cred;

31 gnutls_certificate_credentials_t cert_cred;

32

33 if (gnutls_check_version("3.1.4") == NULL) {

34 fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n");

35 exit(1);

36 }

37

38 /* for backwards compatibility with gnutls < 3.3.0 */

39 gnutls_global_init();

40

41 gnutls_srp_allocate_client_credentials(&srp_cred);

42 gnutls_certificate_allocate_credentials(&cert_cred);

43

44 gnutls_certificate_set_x509_trust_file(cert_cred, CAFILE,

45 GNUTLS_X509_FMT_PEM);

46 gnutls_srp_set_client_credentials(srp_cred, USERNAME, PASSWORD);

47

48 /* connects to server

49 */

50 sd = tcp_connect();

51

52 /* Initialize TLS session

53 */

54 gnutls_init(&session, GNUTLS_CLIENT);

55

56

57 /* Set the priorities.

58 */

59 gnutls_priority_set_direct(session,

60 "NORMAL:+SRP:+SRP-RSA:+SRP-DSS",

61 NULL);

62

63 /* put the SRP credentials to the current session

64 */

65 gnutls_credentials_set(session, GNUTLS_CRD_SRP, srp_cred);

66 gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, cert_cred);

67

68 gnutls_transport_set_int(session, sd);

69 gnutls_handshake_set_timeout(session,

70 GNUTLS_DEFAULT_HANDSHAKE_TIMEOUT);

71

72 /* Perform the TLS handshake

73 */

74 do {

75 ret = gnutls_handshake(session);

207

6.1. CLIENT EXAMPLES

76 }

77 while (ret < 0 && gnutls_error_is_fatal(ret) == 0);

78

79 if (ret < 0) {

80 fprintf(stderr, "*** Handshake failed\n");

81 gnutls_perror(ret);

82 goto end;

83 } else {

84 char *desc;

85

86 desc = gnutls_session_get_desc(session);

87 printf("- Session info: %s\n", desc);

88 gnutls_free(desc);

89 }

90

91 gnutls_record_send(session, MSG, strlen(MSG));

92

93 ret = gnutls_record_recv(session, buffer, MAX_BUF);

94 if (gnutls_error_is_fatal(ret) != 0 || ret == 0) {

95 if (ret == 0) {

96 printf

97 ("- Peer has closed the GnuTLS connection\n");

98 goto end;

99 } else {

100 fprintf(stderr, "*** Error: %s\n",

101 gnutls_strerror(ret));

102 goto end;

103 }

104 } else

105 check_alert(session, ret);

106

107 if (ret > 0) {

108 printf("- Received %d bytes: ", ret);

109 for (ii = 0; ii < ret; ii++) {

110 fputc(buffer[ii], stdout);

111 }

112 fputs("\n", stdout);

113 }

114 gnutls_bye(session, GNUTLS_SHUT_RDWR);

115

116 end:

117

118 tcp_close(sd);

119

120 gnutls_deinit(session);

121

122 gnutls_srp_free_client_credentials(srp_cred);

123 gnutls_certificate_free_credentials(cert_cred);

124

125 gnutls_global_deinit();

126

127 return 0;

128 }

208

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

6.1.11. Simple client example using the C++ API

The following client is a simple example of a client client utilizing the GnuTLS C++ API.

1 #include <config.h>

2 #include <iostream>

3 #include <stdexcept>

4 #include <gnutls/gnutls.h>

5 #include <gnutls/gnutlsxx.h>

6 #include <cstring> /* for strlen */

7

8 /* A very basic TLS client, with anonymous authentication.

9 * written by Eduardo Villanueva Che.

10 */

11

12 #define MAX_BUF 1024

13 #define SA struct sockaddr

14

15 #define CAFILE "ca.pem"

16 #define MSG "GET / HTTP/1.0\r\n\r\n"

17

18 extern "C"

19 {

20 int tcp_connect(void);

21 void tcp_close(int sd);

22 }

23

24

25 int main(void)

26 {

27 int sd = -1;

28 gnutls_global_init();

29

30 try

31 {

32

33 /* Allow connections to servers that have OpenPGP keys as well.

34 */

35 gnutls::client_session session;

36

37 /* X509 stuff */

38 gnutls::certificate_credentials credentials;

39

40

41 /* sets the trusted cas file

42 */

43 credentials.set_x509_trust_file(CAFILE, GNUTLS_X509_FMT_PEM);

44 /* put the x509 credentials to the current session

45 */

46 session.set_credentials(credentials);

47

48 /* Use default priorities */

49 session.set_priority ("NORMAL", NULL);

50

51 /* connect to the peer

52 */

53 sd = tcp_connect();

209

6.1. CLIENT EXAMPLES

54 session.set_transport_ptr((gnutls_transport_ptr_t) (ptrdiff_t)sd);

55

56 /* Perform the TLS handshake

57 */

58 int ret = session.handshake();

59 if (ret < 0)

60 {

61 throw std::runtime_error("Handshake failed");

62 }

63 else

64 {

65 std::cout << "- Handshake was completed" << std::endl;

66 }

67

68 session.send(MSG, strlen(MSG));

69 char buffer[MAX_BUF + 1];

70 ret = session.recv(buffer, MAX_BUF);

71 if (ret == 0)

72 {

73 throw std::runtime_error("Peer has closed the TLS connection");

74 }

75 else if (ret < 0)

76 {

77 throw std::runtime_error(gnutls_strerror(ret));

78 }

79

80 std::cout << "- Received " << ret << " bytes:" << std::endl;

81 std::cout.write(buffer, ret);

82 std::cout << std::endl;

83

84 session.bye(GNUTLS_SHUT_RDWR);

85 }

86 catch (std::exception &ex)

87 {

88 std::cerr << "Exception caught: " << ex.what() << std::endl;

89 }

90

91 if (sd != -1)

92 tcp_close(sd);

93

94 gnutls_global_deinit();

95

96 return 0;

97 }

6.1.12. Helper functions for TCP connections

Those helper function abstract away TCP connection handling from the other examples. It is
required to build some examples.

1 /* This example code is placed in the public domain. */

2

3 #ifdef HAVE_CONFIG_H

4 #include <config.h>

5 #endif

210

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <string.h>

10 #include <sys/types.h>

11 #include <sys/socket.h>

12 #include <arpa/inet.h>

13 #include <netinet/in.h>

14 #include <unistd.h>

15

16 /* tcp.c */

17 int tcp_connect(void);

18 void tcp_close(int sd);

19

20 /* Connects to the peer and returns a socket

21 * descriptor.

22 */

23 extern int tcp_connect(void)

24 {

25 const char *PORT = "5556";

26 const char *SERVER = "127.0.0.1";

27 int err, sd;

28 struct sockaddr_in sa;

29

30 /* connects to server

31 */

32 sd = socket(AF_INET, SOCK_STREAM, 0);

33

34 memset(&sa, ’\0’, sizeof(sa));

35 sa.sin_family = AF_INET;

36 sa.sin_port = htons(atoi(PORT));

37 inet_pton(AF_INET, SERVER, &sa.sin_addr);

38

39 err = connect(sd, (struct sockaddr *) &sa, sizeof(sa));

40 if (err < 0) {

41 fprintf(stderr, "Connect error\n");

42 exit(1);

43 }

44

45 return sd;

46 }

47

48 /* closes the given socket descriptor.

49 */

50 extern void tcp_close(int sd)

51 {

52 shutdown(sd, SHUT_RDWR); /* no more receptions */

53 close(sd);

54 }

6.1.13. Helper functions for UDP connections

The UDP helper functions abstract away UDP connection handling from the other examples.
It is required to build the examples using UDP.

211

6.1. CLIENT EXAMPLES

1 /* This example code is placed in the public domain. */

2

3 #ifdef HAVE_CONFIG_H

4 #include <config.h>

5 #endif

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <string.h>

10 #include <sys/types.h>

11 #include <sys/socket.h>

12 #include <arpa/inet.h>

13 #include <netinet/in.h>

14 #include <unistd.h>

15

16 /* udp.c */

17 int udp_connect(void);

18 void udp_close(int sd);

19

20 /* Connects to the peer and returns a socket

21 * descriptor.

22 */

23 extern int udp_connect(void)

24 {

25 const char *PORT = "5557";

26 const char *SERVER = "127.0.0.1";

27 int err, sd, optval;

28 struct sockaddr_in sa;

29

30 /* connects to server

31 */

32 sd = socket(AF_INET, SOCK_DGRAM, 0);

33

34 memset(&sa, ’\0’, sizeof(sa));

35 sa.sin_family = AF_INET;

36 sa.sin_port = htons(atoi(PORT));

37 inet_pton(AF_INET, SERVER, &sa.sin_addr);

38

39 #if defined(IP_DONTFRAG)

40 optval = 1;

41 setsockopt(sd, IPPROTO_IP, IP_DONTFRAG,

42 (const void *) &optval, sizeof(optval));

43 #elif defined(IP_MTU_DISCOVER)

44 optval = IP_PMTUDISC_DO;

45 setsockopt(sd, IPPROTO_IP, IP_MTU_DISCOVER,

46 (const void *) &optval, sizeof(optval));

47 #endif

48

49 err = connect(sd, (struct sockaddr *) &sa, sizeof(sa));

50 if (err < 0) {

51 fprintf(stderr, "Connect error\n");

52 exit(1);

53 }

54

55 return sd;

56 }

57

212

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

58 /* closes the given socket descriptor.

59 */

60 extern void udp_close(int sd)

61 {

62 close(sd);

63 }

6.2. Server examples

This section contains examples of TLS and SSL servers, using GnuTLS.

6.2.1. Echo server with X.509 authentication

This example is a very simple echo server which supports X.509 authentication.

1 /* This example code is placed in the public domain. */

2

3 #ifdef HAVE_CONFIG_H

4 #include <config.h>

5 #endif

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <errno.h>

10 #include <sys/types.h>

11 #include <sys/socket.h>

12 #include <arpa/inet.h>

13 #include <netinet/in.h>

14 #include <string.h>

15 #include <unistd.h>

16 #include <gnutls/gnutls.h>

17

18 #define KEYFILE "key.pem"

19 #define CERTFILE "cert.pem"

20 #define CAFILE "/etc/ssl/certs/ca-certificates.crt"

21 #define CRLFILE "crl.pem"

22

23 /* The OCSP status file contains up to date information about revocation

24 * of the server’s certificate. That can be periodically be updated

25 * using:

26 * $ ocsptool --ask --load-cert your_cert.pem --load-issuer your_issuer.pem

27 * --load-signer your_issuer.pem --outfile ocsp-status.der

28 */

29 #define OCSP_STATUS_FILE "ocsp-status.der"

30

31 /* This is a sample TLS 1.0 echo server, using X.509 authentication and

32 * OCSP stapling support.

33 */

34

35 #define MAX_BUF 1024

36 #define PORT 5556 /* listen to 5556 port */

37

213

6.2. SERVER EXAMPLES

38 /* These are global */

39 static gnutls_dh_params_t dh_params;

40

41 static int generate_dh_params(void)

42 {

43 unsigned int bits = gnutls_sec_param_to_pk_bits(GNUTLS_PK_DH,

44 GNUTLS_SEC_PARAM_LEGACY);

45

46 /* Generate Diffie-Hellman parameters - for use with DHE

47 * kx algorithms. When short bit length is used, it might

48 * be wise to regenerate parameters often.

49 */

50 gnutls_dh_params_init(&dh_params);

51 gnutls_dh_params_generate2(dh_params, bits);

52

53 return 0;

54 }

55

56 int main(void)

57 {

58 int listen_sd;

59 int sd, ret;

60 gnutls_certificate_credentials_t x509_cred;

61 gnutls_priority_t priority_cache;

62 struct sockaddr_in sa_serv;

63 struct sockaddr_in sa_cli;

64 socklen_t client_len;

65 char topbuf[512];

66 gnutls_session_t session;

67 char buffer[MAX_BUF + 1];

68 int optval = 1;

69

70 /* for backwards compatibility with gnutls < 3.3.0 */

71 gnutls_global_init();

72

73 gnutls_certificate_allocate_credentials(&x509_cred);

74 /* gnutls_certificate_set_x509_system_trust(xcred); */

75 gnutls_certificate_set_x509_trust_file(x509_cred, CAFILE,

76 GNUTLS_X509_FMT_PEM);

77

78 gnutls_certificate_set_x509_crl_file(x509_cred, CRLFILE,

79 GNUTLS_X509_FMT_PEM);

80

81 ret =

82 gnutls_certificate_set_x509_key_file(x509_cred, CERTFILE,

83 KEYFILE,

84 GNUTLS_X509_FMT_PEM);

85 if (ret < 0) {

86 printf("No certificate or key were found\n");

87 exit(1);

88 }

89

90 /* loads an OCSP status request if available */

91 gnutls_certificate_set_ocsp_status_request_file(x509_cred,

92 OCSP_STATUS_FILE,

93 0);

94

95 generate_dh_params();

214

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

96

97 gnutls_priority_init(&priority_cache,

98 "PERFORMANCE:%SERVER_PRECEDENCE", NULL);

99

100

101 gnutls_certificate_set_dh_params(x509_cred, dh_params);

102

103 /* Socket operations

104 */

105 listen_sd = socket(AF_INET, SOCK_STREAM, 0);

106

107 memset(&sa_serv, ’\0’, sizeof(sa_serv));

108 sa_serv.sin_family = AF_INET;

109 sa_serv.sin_addr.s_addr = INADDR_ANY;

110 sa_serv.sin_port = htons(PORT); /* Server Port number */

111

112 setsockopt(listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,

113 sizeof(int));

114

115 bind(listen_sd, (struct sockaddr *) &sa_serv, sizeof(sa_serv));

116

117 listen(listen_sd, 1024);

118

119 printf("Server ready. Listening to port ’%d’.\n\n", PORT);

120

121 client_len = sizeof(sa_cli);

122 for (;;) {

123 gnutls_init(&session, GNUTLS_SERVER);

124 gnutls_priority_set(session, priority_cache);

125 gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE,

126 x509_cred);

127

128 /* We don’t request any certificate from the client.

129 * If we did we would need to verify it. One way of

130 * doing that is shown in the "Verifying a certificate"

131 * example.

132 */

133 gnutls_certificate_server_set_request(session,

134 GNUTLS_CERT_IGNORE);

135

136 sd = accept(listen_sd, (struct sockaddr *) &sa_cli,

137 &client_len);

138

139 printf("- connection from %s, port %d\n",

140 inet_ntop(AF_INET, &sa_cli.sin_addr, topbuf,

141 sizeof(topbuf)), ntohs(sa_cli.sin_port));

142

143 gnutls_transport_set_int(session, sd);

144

145 do {

146 ret = gnutls_handshake(session);

147 }

148 while (ret < 0 && gnutls_error_is_fatal(ret) == 0);

149

150 if (ret < 0) {

151 close(sd);

152 gnutls_deinit(session);

153 fprintf(stderr,

215

6.2. SERVER EXAMPLES

154 "*** Handshake has failed (%s)\n\n",

155 gnutls_strerror(ret));

156 continue;

157 }

158 printf("- Handshake was completed\n");

159

160 /* see the Getting peer’s information example */

161 /* print_info(session); */

162

163 for (;;) {

164 ret = gnutls_record_recv(session, buffer, MAX_BUF);

165

166 if (ret == 0) {

167 printf

168 ("\n- Peer has closed the GnuTLS connection\n");

169 break;

170 } else if (ret < 0

171 && gnutls_error_is_fatal(ret) == 0) {

172 fprintf(stderr, "*** Warning: %s\n",

173 gnutls_strerror(ret));

174 } else if (ret < 0) {

175 fprintf(stderr, "\n*** Received corrupted "

176 "data(%d). Closing the connection.\n\n",

177 ret);

178 break;

179 } else if (ret > 0) {

180 /* echo data back to the client

181 */

182 gnutls_record_send(session, buffer, ret);

183 }

184 }

185 printf("\n");

186 /* do not wait for the peer to close the connection.

187 */

188 gnutls_bye(session, GNUTLS_SHUT_WR);

189

190 close(sd);

191 gnutls_deinit(session);

192

193 }

194 close(listen_sd);

195

196 gnutls_certificate_free_credentials(x509_cred);

197 gnutls_priority_deinit(priority_cache);

198

199 gnutls_global_deinit();

200

201 return 0;

202

203 }

6.2.2. Echo server with OpenPGP authentication

The following example is an echo server which supports OpenPGP key authentication. You
can easily combine this functionality —that is have a server that supports both X.509 and

216

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

OpenPGP certificates— but we separated them to keep these examples as simple as possible.

1 /* This example code is placed in the public domain. */

2

3 #ifdef HAVE_CONFIG_H

4 #include <config.h>

5 #endif

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <errno.h>

10 #include <sys/types.h>

11 #include <sys/socket.h>

12 #include <arpa/inet.h>

13 #include <netinet/in.h>

14 #include <string.h>

15 #include <unistd.h>

16 #include <gnutls/gnutls.h>

17 #include <gnutls/openpgp.h>

18

19 #define KEYFILE "secret.asc"

20 #define CERTFILE "public.asc"

21 #define RINGFILE "ring.gpg"

22

23 /* This is a sample TLS 1.0-OpenPGP echo server.

24 */

25

26

27 #define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}

28 #define MAX_BUF 1024

29 #define PORT 5556 /* listen to 5556 port */

30

31 /* These are global */

32 gnutls_dh_params_t dh_params;

33

34 static int generate_dh_params(void)

35 {

36 unsigned int bits = gnutls_sec_param_to_pk_bits(GNUTLS_PK_DH,

37 GNUTLS_SEC_PARAM_LEGACY);

38

39 /* Generate Diffie-Hellman parameters - for use with DHE

40 * kx algorithms. These should be discarded and regenerated

41 * once a day, once a week or once a month. Depending on the

42 * security requirements.

43 */

44 gnutls_dh_params_init(&dh_params);

45 gnutls_dh_params_generate2(dh_params, bits);

46

47 return 0;

48 }

49

50 int main(void)

51 {

52 int err, listen_sd;

53 int sd, ret;

54 struct sockaddr_in sa_serv;

55 struct sockaddr_in sa_cli;

56 socklen_t client_len;

217

6.2. SERVER EXAMPLES

57 char topbuf[512];

58 gnutls_session_t session;

59 gnutls_certificate_credentials_t cred;

60 char buffer[MAX_BUF + 1];

61 int optval = 1;

62 char name[256];

63

64 strcpy(name, "Echo Server");

65

66 if (gnutls_check_version("3.1.4") == NULL) {

67 fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n");

68 exit(1);

69 }

70

71 /* for backwards compatibility with gnutls < 3.3.0 */

72 gnutls_global_init();

73

74 gnutls_certificate_allocate_credentials(&cred);

75 gnutls_certificate_set_openpgp_keyring_file(cred, RINGFILE,

76 GNUTLS_OPENPGP_FMT_BASE64);

77

78 gnutls_certificate_set_openpgp_key_file(cred, CERTFILE, KEYFILE,

79 GNUTLS_OPENPGP_FMT_BASE64);

80

81 generate_dh_params();

82

83 gnutls_certificate_set_dh_params(cred, dh_params);

84

85 /* Socket operations

86 */

87 listen_sd = socket(AF_INET, SOCK_STREAM, 0);

88 SOCKET_ERR(listen_sd, "socket");

89

90 memset(&sa_serv, ’\0’, sizeof(sa_serv));

91 sa_serv.sin_family = AF_INET;

92 sa_serv.sin_addr.s_addr = INADDR_ANY;

93 sa_serv.sin_port = htons(PORT); /* Server Port number */

94

95 setsockopt(listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,

96 sizeof(int));

97

98 err =

99 bind(listen_sd, (struct sockaddr *) &sa_serv, sizeof(sa_serv));

100 SOCKET_ERR(err, "bind");

101 err = listen(listen_sd, 1024);

102 SOCKET_ERR(err, "listen");

103

104 printf("%s ready. Listening to port ’%d’.\n\n", name, PORT);

105

106 client_len = sizeof(sa_cli);

107 for (;;) {

108 gnutls_init(&session, GNUTLS_SERVER);

109 gnutls_priority_set_direct(session,

110 "NORMAL:+CTYPE-OPENPGP", NULL);

111

112 /* request client certificate if any.

113 */

114 gnutls_certificate_server_set_request(session,

218

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

115 GNUTLS_CERT_REQUEST);

116

117 sd = accept(listen_sd, (struct sockaddr *) &sa_cli,

118 &client_len);

119

120 printf("- connection from %s, port %d\n",

121 inet_ntop(AF_INET, &sa_cli.sin_addr, topbuf,

122 sizeof(topbuf)), ntohs(sa_cli.sin_port));

123

124 gnutls_transport_set_int(session, sd);

125 ret = gnutls_handshake(session);

126 if (ret < 0) {

127 close(sd);

128 gnutls_deinit(session);

129 fprintf(stderr,

130 "*** Handshake has failed (%s)\n\n",

131 gnutls_strerror(ret));

132 continue;

133 }

134 printf("- Handshake was completed\n");

135

136 /* see the Getting peer’s information example */

137 /* print_info(session); */

138

139 for (;;) {

140 ret = gnutls_record_recv(session, buffer, MAX_BUF);

141

142 if (ret == 0) {

143 printf

144 ("\n- Peer has closed the GnuTLS connection\n");

145 break;

146 } else if (ret < 0

147 && gnutls_error_is_fatal(ret) == 0) {

148 fprintf(stderr, "*** Warning: %s\n",

149 gnutls_strerror(ret));

150 } else if (ret < 0) {

151 fprintf(stderr, "\n*** Received corrupted "

152 "data(%d). Closing the connection.\n\n",

153 ret);

154 break;

155 } else if (ret > 0) {

156 /* echo data back to the client

157 */

158 gnutls_record_send(session, buffer, ret);

159 }

160 }

161 printf("\n");

162 /* do not wait for the peer to close the connection.

163 */

164 gnutls_bye(session, GNUTLS_SHUT_WR);

165

166 close(sd);

167 gnutls_deinit(session);

168

169 }

170 close(listen_sd);

171

172 gnutls_certificate_free_credentials(cred);

219

6.2. SERVER EXAMPLES

173

174 gnutls_global_deinit();

175

176 return 0;

177

178 }

6.2.3. Echo server with SRP authentication

This is a server which supports SRP authentication. It is also possible to combine this func-
tionality with a certificate server. Here it is separate for simplicity.

1 /* This example code is placed in the public domain. */

2

3 #ifdef HAVE_CONFIG_H

4 #include <config.h>

5 #endif

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <errno.h>

10 #include <sys/types.h>

11 #include <sys/socket.h>

12 #include <arpa/inet.h>

13 #include <netinet/in.h>

14 #include <string.h>

15 #include <unistd.h>

16 #include <gnutls/gnutls.h>

17

18 #define SRP_PASSWD "tpasswd"

19 #define SRP_PASSWD_CONF "tpasswd.conf"

20

21 #define KEYFILE "key.pem"

22 #define CERTFILE "cert.pem"

23 #define CAFILE "/etc/ssl/certs/ca-certificates.crt"

24

25 /* This is a sample TLS-SRP echo server.

26 */

27

28 #define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}

29 #define MAX_BUF 1024

30 #define PORT 5556 /* listen to 5556 port */

31

32 int main(void)

33 {

34 int err, listen_sd;

35 int sd, ret;

36 struct sockaddr_in sa_serv;

37 struct sockaddr_in sa_cli;

38 socklen_t client_len;

39 char topbuf[512];

40 gnutls_session_t session;

41 gnutls_srp_server_credentials_t srp_cred;

42 gnutls_certificate_credentials_t cert_cred;

43 char buffer[MAX_BUF + 1];

220

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

44 int optval = 1;

45 char name[256];

46

47 strcpy(name, "Echo Server");

48

49 if (gnutls_check_version("3.1.4") == NULL) {

50 fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n");

51 exit(1);

52 }

53

54 /* for backwards compatibility with gnutls < 3.3.0 */

55 gnutls_global_init();

56

57 /* SRP_PASSWD a password file (created with the included srptool utility)

58 */

59 gnutls_srp_allocate_server_credentials(&srp_cred);

60 gnutls_srp_set_server_credentials_file(srp_cred, SRP_PASSWD,

61 SRP_PASSWD_CONF);

62

63 gnutls_certificate_allocate_credentials(&cert_cred);

64 gnutls_certificate_set_x509_trust_file(cert_cred, CAFILE,

65 GNUTLS_X509_FMT_PEM);

66 gnutls_certificate_set_x509_key_file(cert_cred, CERTFILE, KEYFILE,

67 GNUTLS_X509_FMT_PEM);

68

69 /* TCP socket operations

70 */

71 listen_sd = socket(AF_INET, SOCK_STREAM, 0);

72 SOCKET_ERR(listen_sd, "socket");

73

74 memset(&sa_serv, ’\0’, sizeof(sa_serv));

75 sa_serv.sin_family = AF_INET;

76 sa_serv.sin_addr.s_addr = INADDR_ANY;

77 sa_serv.sin_port = htons(PORT); /* Server Port number */

78

79 setsockopt(listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,

80 sizeof(int));

81

82 err =

83 bind(listen_sd, (struct sockaddr *) &sa_serv, sizeof(sa_serv));

84 SOCKET_ERR(err, "bind");

85 err = listen(listen_sd, 1024);

86 SOCKET_ERR(err, "listen");

87

88 printf("%s ready. Listening to port ’%d’.\n\n", name, PORT);

89

90 client_len = sizeof(sa_cli);

91 for (;;) {

92 gnutls_init(&session, GNUTLS_SERVER);

93 gnutls_priority_set_direct(session,

94 "NORMAL"

95 ":-KX-ALL:+SRP:+SRP-DSS:+SRP-RSA",

96 NULL);

97 gnutls_credentials_set(session, GNUTLS_CRD_SRP, srp_cred);

98 /* for the certificate authenticated ciphersuites.

99 */

100 gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE,

101 cert_cred);

221

6.2. SERVER EXAMPLES

102

103 /* We don’t request any certificate from the client.

104 * If we did we would need to verify it. One way of

105 * doing that is shown in the "Verifying a certificate"

106 * example.

107 */

108 gnutls_certificate_server_set_request(session,

109 GNUTLS_CERT_IGNORE);

110

111 sd = accept(listen_sd, (struct sockaddr *) &sa_cli,

112 &client_len);

113

114 printf("- connection from %s, port %d\n",

115 inet_ntop(AF_INET, &sa_cli.sin_addr, topbuf,

116 sizeof(topbuf)), ntohs(sa_cli.sin_port));

117

118 gnutls_transport_set_int(session, sd);

119

120 do {

121 ret = gnutls_handshake(session);

122 }

123 while (ret < 0 && gnutls_error_is_fatal(ret) == 0);

124

125 if (ret < 0) {

126 close(sd);

127 gnutls_deinit(session);

128 fprintf(stderr,

129 "*** Handshake has failed (%s)\n\n",

130 gnutls_strerror(ret));

131 continue;

132 }

133 printf("- Handshake was completed\n");

134 printf("- User %s was connected\n",

135 gnutls_srp_server_get_username(session));

136

137 /* print_info(session); */

138

139 for (;;) {

140 ret = gnutls_record_recv(session, buffer, MAX_BUF);

141

142 if (ret == 0) {

143 printf

144 ("\n- Peer has closed the GnuTLS connection\n");

145 break;

146 } else if (ret < 0

147 && gnutls_error_is_fatal(ret) == 0) {

148 fprintf(stderr, "*** Warning: %s\n",

149 gnutls_strerror(ret));

150 } else if (ret < 0) {

151 fprintf(stderr, "\n*** Received corrupted "

152 "data(%d). Closing the connection.\n\n",

153 ret);

154 break;

155 } else if (ret > 0) {

156 /* echo data back to the client

157 */

158 gnutls_record_send(session, buffer, ret);

159 }

222

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

160 }

161 printf("\n");

162 /* do not wait for the peer to close the connection. */

163 gnutls_bye(session, GNUTLS_SHUT_WR);

164

165 close(sd);

166 gnutls_deinit(session);

167

168 }

169 close(listen_sd);

170

171 gnutls_srp_free_server_credentials(srp_cred);

172 gnutls_certificate_free_credentials(cert_cred);

173

174 gnutls_global_deinit();

175

176 return 0;

177

178 }

6.2.4. Echo server with anonymous authentication

This example server supports anonymous authentication, and could be used to serve the ex-
ample client for anonymous authentication.

1 /* This example code is placed in the public domain. */

2

3 #ifdef HAVE_CONFIG_H

4 #include <config.h>

5 #endif

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <errno.h>

10 #include <sys/types.h>

11 #include <sys/socket.h>

12 #include <arpa/inet.h>

13 #include <netinet/in.h>

14 #include <string.h>

15 #include <unistd.h>

16 #include <gnutls/gnutls.h>

17

18 /* This is a sample TLS 1.0 echo server, for anonymous authentication only.

19 */

20

21

22 #define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}

23 #define MAX_BUF 1024

24 #define PORT 5556 /* listen to 5556 port */

25

26 /* These are global */

27 static gnutls_dh_params_t dh_params;

28

29 static int generate_dh_params(void)

30 {

223

6.2. SERVER EXAMPLES

31 unsigned int bits = gnutls_sec_param_to_pk_bits(GNUTLS_PK_DH,

32 GNUTLS_SEC_PARAM_LEGACY);

33 /* Generate Diffie-Hellman parameters - for use with DHE

34 * kx algorithms. These should be discarded and regenerated

35 * once a day, once a week or once a month. Depending on the

36 * security requirements.

37 */

38 gnutls_dh_params_init(&dh_params);

39 gnutls_dh_params_generate2(dh_params, bits);

40

41 return 0;

42 }

43

44 int main(void)

45 {

46 int err, listen_sd;

47 int sd, ret;

48 struct sockaddr_in sa_serv;

49 struct sockaddr_in sa_cli;

50 socklen_t client_len;

51 char topbuf[512];

52 gnutls_session_t session;

53 gnutls_anon_server_credentials_t anoncred;

54 char buffer[MAX_BUF + 1];

55 int optval = 1;

56

57 if (gnutls_check_version("3.1.4") == NULL) {

58 fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n");

59 exit(1);

60 }

61

62 /* for backwards compatibility with gnutls < 3.3.0 */

63 gnutls_global_init();

64

65 gnutls_anon_allocate_server_credentials(&anoncred);

66

67 generate_dh_params();

68

69 gnutls_anon_set_server_dh_params(anoncred, dh_params);

70

71 /* Socket operations

72 */

73 listen_sd = socket(AF_INET, SOCK_STREAM, 0);

74 SOCKET_ERR(listen_sd, "socket");

75

76 memset(&sa_serv, ’\0’, sizeof(sa_serv));

77 sa_serv.sin_family = AF_INET;

78 sa_serv.sin_addr.s_addr = INADDR_ANY;

79 sa_serv.sin_port = htons(PORT); /* Server Port number */

80

81 setsockopt(listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,

82 sizeof(int));

83

84 err =

85 bind(listen_sd, (struct sockaddr *) &sa_serv, sizeof(sa_serv));

86 SOCKET_ERR(err, "bind");

87 err = listen(listen_sd, 1024);

88 SOCKET_ERR(err, "listen");

224

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

89

90 printf("Server ready. Listening to port ’%d’.\n\n", PORT);

91

92 client_len = sizeof(sa_cli);

93 for (;;) {

94 gnutls_init(&session, GNUTLS_SERVER);

95 gnutls_priority_set_direct(session,

96 "NORMAL:+ANON-ECDH:+ANON-DH",

97 NULL);

98 gnutls_credentials_set(session, GNUTLS_CRD_ANON, anoncred);

99

100 sd = accept(listen_sd, (struct sockaddr *) &sa_cli,

101 &client_len);

102

103 printf("- connection from %s, port %d\n",

104 inet_ntop(AF_INET, &sa_cli.sin_addr, topbuf,

105 sizeof(topbuf)), ntohs(sa_cli.sin_port));

106

107 gnutls_transport_set_int(session, sd);

108

109 do {

110 ret = gnutls_handshake(session);

111 }

112 while (ret < 0 && gnutls_error_is_fatal(ret) == 0);

113

114 if (ret < 0) {

115 close(sd);

116 gnutls_deinit(session);

117 fprintf(stderr,

118 "*** Handshake has failed (%s)\n\n",

119 gnutls_strerror(ret));

120 continue;

121 }

122 printf("- Handshake was completed\n");

123

124 /* see the Getting peer’s information example */

125 /* print_info(session); */

126

127 for (;;) {

128 ret = gnutls_record_recv(session, buffer, MAX_BUF);

129

130 if (ret == 0) {

131 printf

132 ("\n- Peer has closed the GnuTLS connection\n");

133 break;

134 } else if (ret < 0

135 && gnutls_error_is_fatal(ret) == 0) {

136 fprintf(stderr, "*** Warning: %s\n",

137 gnutls_strerror(ret));

138 } else if (ret < 0) {

139 fprintf(stderr, "\n*** Received corrupted "

140 "data(%d). Closing the connection.\n\n",

141 ret);

142 break;

143 } else if (ret > 0) {

144 /* echo data back to the client

145 */

146 gnutls_record_send(session, buffer, ret);

225

6.2. SERVER EXAMPLES

147 }

148 }

149 printf("\n");

150 /* do not wait for the peer to close the connection.

151 */

152 gnutls_bye(session, GNUTLS_SHUT_WR);

153

154 close(sd);

155 gnutls_deinit(session);

156

157 }

158 close(listen_sd);

159

160 gnutls_anon_free_server_credentials(anoncred);

161

162 gnutls_global_deinit();

163

164 return 0;

165

166 }

6.2.5. DTLS echo server with X.509 authentication

This example is a very simple echo server using Datagram TLS and X.509 authentication.

1 /* This example code is placed in the public domain. */

2

3 #ifdef HAVE_CONFIG_H

4 #include <config.h>

5 #endif

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <errno.h>

10 #include <sys/types.h>

11 #include <sys/socket.h>

12 #include <arpa/inet.h>

13 #include <netinet/in.h>

14 #include <sys/select.h>

15 #include <netdb.h>

16 #include <string.h>

17 #include <unistd.h>

18 #include <gnutls/gnutls.h>

19 #include <gnutls/dtls.h>

20

21 #define KEYFILE "key.pem"

22 #define CERTFILE "cert.pem"

23 #define CAFILE "/etc/ssl/certs/ca-certificates.crt"

24 #define CRLFILE "crl.pem"

25

26 /* This is a sample DTLS echo server, using X.509 authentication.

27 * Note that error checking is minimal to simplify the example.

28 */

29

30 #define MAX_BUFFER 1024

226

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

31 #define PORT 5557

32

33 typedef struct {

34 gnutls_session_t session;

35 int fd;

36 struct sockaddr *cli_addr;

37 socklen_t cli_addr_size;

38 } priv_data_st;

39

40 static int pull_timeout_func(gnutls_transport_ptr_t ptr, unsigned int ms);

41 static ssize_t push_func(gnutls_transport_ptr_t p, const void *data,

42 size_t size);

43 static ssize_t pull_func(gnutls_transport_ptr_t p, void *data,

44 size_t size);

45 static const char *human_addr(const struct sockaddr *sa, socklen_t salen,

46 char *buf, size_t buflen);

47 static int wait_for_connection(int fd);

48 static int generate_dh_params(void);

49

50 /* Use global credentials and parameters to simplify

51 * the example. */

52 static gnutls_certificate_credentials_t x509_cred;

53 static gnutls_priority_t priority_cache;

54 static gnutls_dh_params_t dh_params;

55

56 int main(void)

57 {

58 int listen_sd;

59 int sock, ret;

60 struct sockaddr_in sa_serv;

61 struct sockaddr_in cli_addr;

62 socklen_t cli_addr_size;

63 gnutls_session_t session;

64 char buffer[MAX_BUFFER];

65 priv_data_st priv;

66 gnutls_datum_t cookie_key;

67 gnutls_dtls_prestate_st prestate;

68 int mtu = 1400;

69 unsigned char sequence[8];

70

71 /* this must be called once in the program

72 */

73 gnutls_global_init();

74

75 gnutls_certificate_allocate_credentials(&x509_cred);

76 gnutls_certificate_set_x509_trust_file(x509_cred, CAFILE,

77 GNUTLS_X509_FMT_PEM);

78

79 gnutls_certificate_set_x509_crl_file(x509_cred, CRLFILE,

80 GNUTLS_X509_FMT_PEM);

81

82 ret =

83 gnutls_certificate_set_x509_key_file(x509_cred, CERTFILE,

84 KEYFILE,

85 GNUTLS_X509_FMT_PEM);

86 if (ret < 0) {

87 printf("No certificate or key were found\n");

88 exit(1);

227

6.2. SERVER EXAMPLES

89 }

90

91 generate_dh_params();

92

93 gnutls_certificate_set_dh_params(x509_cred, dh_params);

94

95 gnutls_priority_init(&priority_cache,

96 "PERFORMANCE:-VERS-TLS-ALL:+VERS-DTLS1.0:%SERVER_PRECEDENCE",

97 NULL);

98

99 gnutls_key_generate(&cookie_key, GNUTLS_COOKIE_KEY_SIZE);

100

101 /* Socket operations

102 */

103 listen_sd = socket(AF_INET, SOCK_DGRAM, 0);

104

105 memset(&sa_serv, ’\0’, sizeof(sa_serv));

106 sa_serv.sin_family = AF_INET;

107 sa_serv.sin_addr.s_addr = INADDR_ANY;

108 sa_serv.sin_port = htons(PORT);

109

110 { /* DTLS requires the IP don’t fragment (DF) bit to be set */

111 #if defined(IP_DONTFRAG)

112 int optval = 1;

113 setsockopt(listen_sd, IPPROTO_IP, IP_DONTFRAG,

114 (const void *) &optval, sizeof(optval));

115 #elif defined(IP_MTU_DISCOVER)

116 int optval = IP_PMTUDISC_DO;

117 setsockopt(listen_sd, IPPROTO_IP, IP_MTU_DISCOVER,

118 (const void *) &optval, sizeof(optval));

119 #endif

120 }

121

122 bind(listen_sd, (struct sockaddr *) &sa_serv, sizeof(sa_serv));

123

124 printf("UDP server ready. Listening to port ’%d’.\n\n", PORT);

125

126 for (;;) {

127 printf("Waiting for connection...\n");

128 sock = wait_for_connection(listen_sd);

129 if (sock < 0)

130 continue;

131

132 cli_addr_size = sizeof(cli_addr);

133 ret = recvfrom(sock, buffer, sizeof(buffer), MSG_PEEK,

134 (struct sockaddr *) &cli_addr,

135 &cli_addr_size);

136 if (ret > 0) {

137 memset(&prestate, 0, sizeof(prestate));

138 ret =

139 gnutls_dtls_cookie_verify(&cookie_key,

140 &cli_addr,

141 sizeof(cli_addr),

142 buffer, ret,

143 &prestate);

144 if (ret < 0) { /* cookie not valid */

145 priv_data_st s;

146

228

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

147 memset(&s, 0, sizeof(s));

148 s.fd = sock;

149 s.cli_addr = (void *) &cli_addr;

150 s.cli_addr_size = sizeof(cli_addr);

151

152 printf

153 ("Sending hello verify request to %s\n",

154 human_addr((struct sockaddr *)

155 &cli_addr,

156 sizeof(cli_addr), buffer,

157 sizeof(buffer)));

158

159 gnutls_dtls_cookie_send(&cookie_key,

160 &cli_addr,

161 sizeof(cli_addr),

162 &prestate,

163 (gnutls_transport_ptr_t)

164 & s, push_func);

165

166 /* discard peeked data */

167 recvfrom(sock, buffer, sizeof(buffer), 0,

168 (struct sockaddr *) &cli_addr,

169 &cli_addr_size);

170 usleep(100);

171 continue;

172 }

173 printf("Accepted connection from %s\n",

174 human_addr((struct sockaddr *)

175 &cli_addr, sizeof(cli_addr),

176 buffer, sizeof(buffer)));

177 } else

178 continue;

179

180 gnutls_init(&session, GNUTLS_SERVER | GNUTLS_DATAGRAM);

181 gnutls_priority_set(session, priority_cache);

182 gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE,

183 x509_cred);

184

185 gnutls_dtls_prestate_set(session, &prestate);

186 gnutls_dtls_set_mtu(session, mtu);

187

188 priv.session = session;

189 priv.fd = sock;

190 priv.cli_addr = (struct sockaddr *) &cli_addr;

191 priv.cli_addr_size = sizeof(cli_addr);

192

193 gnutls_transport_set_ptr(session, &priv);

194 gnutls_transport_set_push_function(session, push_func);

195 gnutls_transport_set_pull_function(session, pull_func);

196 gnutls_transport_set_pull_timeout_function(session,

197 pull_timeout_func);

198

199 do {

200 ret = gnutls_handshake(session);

201 }

202 while (ret == GNUTLS_E_INTERRUPTED

203 || ret == GNUTLS_E_AGAIN);

204 /* Note that DTLS may also receive GNUTLS_E_LARGE_PACKET.

229

6.2. SERVER EXAMPLES

205 * In that case the MTU should be adjusted.

206 */

207

208 if (ret < 0) {

209 fprintf(stderr, "Error in handshake(): %s\n",

210 gnutls_strerror(ret));

211 gnutls_deinit(session);

212 continue;

213 }

214

215 printf("- Handshake was completed\n");

216

217 for (;;) {

218 do {

219 ret =

220 gnutls_record_recv_seq(session, buffer,

221 MAX_BUFFER,

222 sequence);

223 }

224 while (ret == GNUTLS_E_AGAIN

225 || ret == GNUTLS_E_INTERRUPTED);

226

227 if (ret < 0 && gnutls_error_is_fatal(ret) == 0) {

228 fprintf(stderr, "*** Warning: %s\n",

229 gnutls_strerror(ret));

230 continue;

231 } else if (ret < 0) {

232 fprintf(stderr, "Error in recv(): %s\n",

233 gnutls_strerror(ret));

234 break;

235 }

236

237 if (ret == 0) {

238 printf("EOF\n\n");

239 break;

240 }

241

242 buffer[ret] = 0;

243 printf

244 ("received[%.2x%.2x%.2x%.2x%.2x%.2x%.2x%.2x]: %s\n",

245 sequence[0], sequence[1], sequence[2],

246 sequence[3], sequence[4], sequence[5],

247 sequence[6], sequence[7], buffer);

248

249 /* reply back */

250 ret = gnutls_record_send(session, buffer, ret);

251 if (ret < 0) {

252 fprintf(stderr, "Error in send(): %s\n",

253 gnutls_strerror(ret));

254 break;

255 }

256 }

257

258 gnutls_bye(session, GNUTLS_SHUT_WR);

259 gnutls_deinit(session);

260

261 }

262 close(listen_sd);

230

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

263

264 gnutls_certificate_free_credentials(x509_cred);

265 gnutls_priority_deinit(priority_cache);

266

267 gnutls_global_deinit();

268

269 return 0;

270

271 }

272

273 static int wait_for_connection(int fd)

274 {

275 fd_set rd, wr;

276 int n;

277

278 FD_ZERO(&rd);

279 FD_ZERO(&wr);

280

281 FD_SET(fd, &rd);

282

283 /* waiting part */

284 n = select(fd + 1, &rd, &wr, NULL, NULL);

285 if (n == -1 && errno == EINTR)

286 return -1;

287 if (n < 0) {

288 perror("select()");

289 exit(1);

290 }

291

292 return fd;

293 }

294

295 /* Wait for data to be received within a timeout period in milliseconds

296 */

297 static int pull_timeout_func(gnutls_transport_ptr_t ptr, unsigned int ms)

298 {

299 fd_set rfds;

300 struct timeval tv;

301 priv_data_st *priv = ptr;

302 struct sockaddr_in cli_addr;

303 socklen_t cli_addr_size;

304 int ret;

305 char c;

306

307 FD_ZERO(&rfds);

308 FD_SET(priv->fd, &rfds);

309

310 tv.tv_sec = 0;

311 tv.tv_usec = ms * 1000;

312

313 while (tv.tv_usec >= 1000000) {

314 tv.tv_usec -= 1000000;

315 tv.tv_sec++;

316 }

317

318 ret = select(priv->fd + 1, &rfds, NULL, NULL, &tv);

319

320 if (ret <= 0)

231

6.2. SERVER EXAMPLES

321 return ret;

322

323 /* only report ok if the next message is from the peer we expect

324 * from

325 */

326 cli_addr_size = sizeof(cli_addr);

327 ret =

328 recvfrom(priv->fd, &c, 1, MSG_PEEK,

329 (struct sockaddr *) &cli_addr, &cli_addr_size);

330 if (ret > 0) {

331 if (cli_addr_size == priv->cli_addr_size

332 && memcmp(&cli_addr, priv->cli_addr,

333 sizeof(cli_addr)) == 0)

334 return 1;

335 }

336

337 return 0;

338 }

339

340 static ssize_t

341 push_func(gnutls_transport_ptr_t p, const void *data, size_t size)

342 {

343 priv_data_st *priv = p;

344

345 return sendto(priv->fd, data, size, 0, priv->cli_addr,

346 priv->cli_addr_size);

347 }

348

349 static ssize_t pull_func(gnutls_transport_ptr_t p, void *data, size_t size)

350 {

351 priv_data_st *priv = p;

352 struct sockaddr_in cli_addr;

353 socklen_t cli_addr_size;

354 char buffer[64];

355 int ret;

356

357 cli_addr_size = sizeof(cli_addr);

358 ret =

359 recvfrom(priv->fd, data, size, 0,

360 (struct sockaddr *) &cli_addr, &cli_addr_size);

361 if (ret == -1)

362 return ret;

363

364 if (cli_addr_size == priv->cli_addr_size

365 && memcmp(&cli_addr, priv->cli_addr, sizeof(cli_addr)) == 0)

366 return ret;

367

368 printf("Denied connection from %s\n",

369 human_addr((struct sockaddr *)

370 &cli_addr, sizeof(cli_addr), buffer,

371 sizeof(buffer)));

372

373 gnutls_transport_set_errno(priv->session, EAGAIN);

374 return -1;

375 }

376

377 static const char *human_addr(const struct sockaddr *sa, socklen_t salen,

378 char *buf, size_t buflen)

232

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

379 {

380 const char *save_buf = buf;

381 size_t l;

382

383 if (!buf || !buflen)

384 return NULL;

385

386 *buf = ’\0’;

387

388 switch (sa->sa_family) {

389 #if HAVE_IPV6

390 case AF_INET6:

391 snprintf(buf, buflen, "IPv6 ");

392 break;

393 #endif

394

395 case AF_INET:

396 snprintf(buf, buflen, "IPv4 ");

397 break;

398 }

399

400 l = strlen(buf);

401 buf += l;

402 buflen -= l;

403

404 if (getnameinfo(sa, salen, buf, buflen, NULL, 0, NI_NUMERICHOST) !=

405 0)

406 return NULL;

407

408 l = strlen(buf);

409 buf += l;

410 buflen -= l;

411

412 strncat(buf, " port ", buflen);

413

414 l = strlen(buf);

415 buf += l;

416 buflen -= l;

417

418 if (getnameinfo(sa, salen, NULL, 0, buf, buflen, NI_NUMERICSERV) !=

419 0)

420 return NULL;

421

422 return save_buf;

423 }

424

425 static int generate_dh_params(void)

426 {

427 int bits = gnutls_sec_param_to_pk_bits(GNUTLS_PK_DH,

428 GNUTLS_SEC_PARAM_LEGACY);

429

430 /* Generate Diffie-Hellman parameters - for use with DHE

431 * kx algorithms. When short bit length is used, it might

432 * be wise to regenerate parameters often.

433 */

434 gnutls_dh_params_init(&dh_params);

435 gnutls_dh_params_generate2(dh_params, bits);

436

233

6.3. OCSP EXAMPLE

437 return 0;

438 }

6.3. OCSP example

Generate OCSP request

A small tool to generate OCSP requests.

1 /* This example code is placed in the public domain. */

2

3 #ifdef HAVE_CONFIG_H

4 #include <config.h>

5 #endif

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <string.h>

10 #include <gnutls/gnutls.h>

11 #include <gnutls/crypto.h>

12 #include <gnutls/ocsp.h>

13 #ifndef NO_LIBCURL

14 #include <curl/curl.h>

15 #endif

16 #include "read-file.h"

17

18 size_t get_data(void *buffer, size_t size, size_t nmemb, void *userp);

19 static gnutls_x509_crt_t load_cert(const char *cert_file);

20 static void _response_info(const gnutls_datum_t * data);

21 static void

22 _generate_request(gnutls_datum_t * rdata, gnutls_x509_crt_t cert,

23 gnutls_x509_crt_t issuer, gnutls_datum_t *nonce);

24 static int

25 _verify_response(gnutls_datum_t * data, gnutls_x509_crt_t cert,

26 gnutls_x509_crt_t signer, gnutls_datum_t *nonce);

27

28 /* This program queries an OCSP server.

29 It expects three files. argv[1] containing the certificate to

30 be checked, argv[2] holding the issuer for this certificate,

31 and argv[3] holding a trusted certificate to verify OCSP’s response.

32 argv[4] is optional and should hold the server host name.

33

34 For simplicity the libcurl library is used.

35 */

36

37 int main(int argc, char *argv[])

38 {

39 gnutls_datum_t ud, tmp;

40 int ret;

41 gnutls_datum_t req;

42 gnutls_x509_crt_t cert, issuer, signer;

43 #ifndef NO_LIBCURL

44 CURL *handle;

234

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

45 struct curl_slist *headers = NULL;

46 #endif

47 int v, seq;

48 const char *cert_file = argv[1];

49 const char *issuer_file = argv[2];

50 const char *signer_file = argv[3];

51 char *hostname = NULL;

52 unsigned char noncebuf[23];

53 gnutls_datum_t nonce = { noncebuf, sizeof(noncebuf) };

54

55 gnutls_global_init();

56

57 if (argc > 4)

58 hostname = argv[4];

59

60 ret = gnutls_rnd(GNUTLS_RND_NONCE, nonce.data, nonce.size);

61 if (ret < 0)

62 exit(1);

63

64 cert = load_cert(cert_file);

65 issuer = load_cert(issuer_file);

66 signer = load_cert(signer_file);

67

68 if (hostname == NULL) {

69

70 for (seq = 0;; seq++) {

71 ret =

72 gnutls_x509_crt_get_authority_info_access(cert,

73 seq,

74 GNUTLS_IA_OCSP_URI,

75 &tmp,

76 NULL);

77 if (ret == GNUTLS_E_UNKNOWN_ALGORITHM)

78 continue;

79 if (ret == GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE) {

80 fprintf(stderr,

81 "No URI was found in the certificate.\n");

82 exit(1);

83 }

84 if (ret < 0) {

85 fprintf(stderr, "error: %s\n",

86 gnutls_strerror(ret));

87 exit(1);

88 }

89

90 printf("CA issuers URI: %.*s\n", tmp.size,

91 tmp.data);

92

93 hostname = malloc(tmp.size + 1);

94 memcpy(hostname, tmp.data, tmp.size);

95 hostname[tmp.size] = 0;

96

97 gnutls_free(tmp.data);

98 break;

99 }

100

101 }

102

235

6.3. OCSP EXAMPLE

103 /* Note that the OCSP servers hostname might be available

104 * using gnutls_x509_crt_get_authority_info_access() in the issuer’s

105 * certificate */

106

107 memset(&ud, 0, sizeof(ud));

108 fprintf(stderr, "Connecting to %s\n", hostname);

109

110 _generate_request(&req, cert, issuer, &nonce);

111

112 #ifndef NO_LIBCURL

113 curl_global_init(CURL_GLOBAL_ALL);

114

115 handle = curl_easy_init();

116 if (handle == NULL)

117 exit(1);

118

119 headers =

120 curl_slist_append(headers,

121 "Content-Type: application/ocsp-request");

122

123 curl_easy_setopt(handle, CURLOPT_HTTPHEADER, headers);

124 curl_easy_setopt(handle, CURLOPT_POSTFIELDS, (void *) req.data);

125 curl_easy_setopt(handle, CURLOPT_POSTFIELDSIZE, req.size);

126 curl_easy_setopt(handle, CURLOPT_URL, hostname);

127 curl_easy_setopt(handle, CURLOPT_WRITEFUNCTION, get_data);

128 curl_easy_setopt(handle, CURLOPT_WRITEDATA, &ud);

129

130 ret = curl_easy_perform(handle);

131 if (ret != 0) {

132 fprintf(stderr, "curl[%d] error %d\n", __LINE__, ret);

133 exit(1);

134 }

135

136 curl_easy_cleanup(handle);

137 #endif

138

139 _response_info(&ud);

140

141 v = _verify_response(&ud, cert, signer, &nonce);

142

143 gnutls_x509_crt_deinit(cert);

144 gnutls_x509_crt_deinit(issuer);

145 gnutls_x509_crt_deinit(signer);

146 gnutls_global_deinit();

147

148 return v;

149 }

150

151 static void _response_info(const gnutls_datum_t * data)

152 {

153 gnutls_ocsp_resp_t resp;

154 int ret;

155 gnutls_datum buf;

156

157 ret = gnutls_ocsp_resp_init(&resp);

158 if (ret < 0)

159 exit(1);

160

236

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

161 ret = gnutls_ocsp_resp_import(resp, data);

162 if (ret < 0)

163 exit(1);

164

165 ret = gnutls_ocsp_resp_print(resp, GNUTLS_OCSP_PRINT_FULL, &buf);

166 if (ret != 0)

167 exit(1);

168

169 printf("%.*s", buf.size, buf.data);

170 gnutls_free(buf.data);

171

172 gnutls_ocsp_resp_deinit(resp);

173 }

174

175 static gnutls_x509_crt_t load_cert(const char *cert_file)

176 {

177 gnutls_x509_crt_t crt;

178 int ret;

179 gnutls_datum_t data;

180 size_t size;

181

182 ret = gnutls_x509_crt_init(&crt);

183 if (ret < 0)

184 exit(1);

185

186 data.data = (void *) read_binary_file(cert_file, &size);

187 data.size = size;

188

189 if (!data.data) {

190 fprintf(stderr, "Cannot open file: %s\n", cert_file);

191 exit(1);

192 }

193

194 ret = gnutls_x509_crt_import(crt, &data, GNUTLS_X509_FMT_PEM);

195 free(data.data);

196 if (ret < 0) {

197 fprintf(stderr, "Cannot import certificate in %s: %s\n",

198 cert_file, gnutls_strerror(ret));

199 exit(1);

200 }

201

202 return crt;

203 }

204

205 static void

206 _generate_request(gnutls_datum_t * rdata, gnutls_x509_crt_t cert,

207 gnutls_x509_crt_t issuer, gnutls_datum_t *nonce)

208 {

209 gnutls_ocsp_req_t req;

210 int ret;

211

212 ret = gnutls_ocsp_req_init(&req);

213 if (ret < 0)

214 exit(1);

215

216 ret = gnutls_ocsp_req_add_cert(req, GNUTLS_DIG_SHA1, issuer, cert);

217 if (ret < 0)

218 exit(1);

237

6.3. OCSP EXAMPLE

219

220

221 ret = gnutls_ocsp_req_set_nonce(req, 0, nonce);

222 if (ret < 0)

223 exit(1);

224

225 ret = gnutls_ocsp_req_export(req, rdata);

226 if (ret != 0)

227 exit(1);

228

229 gnutls_ocsp_req_deinit(req);

230

231 return;

232 }

233

234 static int

235 _verify_response(gnutls_datum_t * data, gnutls_x509_crt_t cert,

236 gnutls_x509_crt_t signer, gnutls_datum_t *nonce)

237 {

238 gnutls_ocsp_resp_t resp;

239 int ret;

240 unsigned verify;

241 gnutls_datum_t rnonce;

242

243 ret = gnutls_ocsp_resp_init(&resp);

244 if (ret < 0)

245 exit(1);

246

247 ret = gnutls_ocsp_resp_import(resp, data);

248 if (ret < 0)

249 exit(1);

250

251 ret = gnutls_ocsp_resp_check_crt(resp, 0, cert);

252 if (ret < 0)

253 exit(1);

254

255 ret = gnutls_ocsp_resp_get_nonce(resp, NULL, &rnonce);

256 if (ret < 0)

257 exit(1);

258

259 if (rnonce.size != nonce->size || memcmp(nonce->data, rnonce.data,

260 nonce->size) != 0) {

261 exit(1);

262 }

263

264 ret = gnutls_ocsp_resp_verify_direct(resp, signer, &verify, 0);

265 if (ret < 0)

266 exit(1);

267

268 printf("Verifying OCSP Response: ");

269 if (verify == 0)

270 printf("Verification success!\n");

271 else

272 printf("Verification error!\n");

273

274 if (verify & GNUTLS_OCSP_VERIFY_SIGNER_NOT_FOUND)

275 printf("Signer cert not found\n");

276

238

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

277 if (verify & GNUTLS_OCSP_VERIFY_SIGNER_KEYUSAGE_ERROR)

278 printf("Signer cert keyusage error\n");

279

280 if (verify & GNUTLS_OCSP_VERIFY_UNTRUSTED_SIGNER)

281 printf("Signer cert is not trusted\n");

282

283 if (verify & GNUTLS_OCSP_VERIFY_INSECURE_ALGORITHM)

284 printf("Insecure algorithm\n");

285

286 if (verify & GNUTLS_OCSP_VERIFY_SIGNATURE_FAILURE)

287 printf("Signature failure\n");

288

289 if (verify & GNUTLS_OCSP_VERIFY_CERT_NOT_ACTIVATED)

290 printf("Signer cert not yet activated\n");

291

292 if (verify & GNUTLS_OCSP_VERIFY_CERT_EXPIRED)

293 printf("Signer cert expired\n");

294

295 gnutls_free(rnonce.data);

296 gnutls_ocsp_resp_deinit(resp);

297

298 return verify;

299 }

300

301 size_t get_data(void *buffer, size_t size, size_t nmemb, void *userp)

302 {

303 gnutls_datum_t *ud = userp;

304

305 size *= nmemb;

306

307 ud->data = realloc(ud->data, size + ud->size);

308 if (ud->data == NULL) {

309 fprintf(stderr, "Not enough memory for the request\n");

310 exit(1);

311 }

312

313 memcpy(&ud->data[ud->size], buffer, size);

314 ud->size += size;

315

316 return size;

317 }

6.4. Miscellaneous examples

6.4.1. Checking for an alert

This is a function that checks if an alert has been received in the current session.

1 /* This example code is placed in the public domain. */

2

3 #ifdef HAVE_CONFIG_H

4 #include <config.h>

5 #endif

6

239

6.4. MISCELLANEOUS EXAMPLES

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <gnutls/gnutls.h>

10

11 #include "examples.h"

12

13 /* This function will check whether the given return code from

14 * a gnutls function (recv/send), is an alert, and will print

15 * that alert.

16 */

17 void check_alert(gnutls_session_t session, int ret)

18 {

19 int last_alert;

20

21 if (ret == GNUTLS_E_WARNING_ALERT_RECEIVED

22 || ret == GNUTLS_E_FATAL_ALERT_RECEIVED) {

23 last_alert = gnutls_alert_get(session);

24

25 /* The check for renegotiation is only useful if we are

26 * a server, and we had requested a rehandshake.

27 */

28 if (last_alert == GNUTLS_A_NO_RENEGOTIATION &&

29 ret == GNUTLS_E_WARNING_ALERT_RECEIVED)

30 printf("* Received NO_RENEGOTIATION alert. "

31 "Client Does not support renegotiation.\n");

32 else

33 printf("* Received alert ’%d’: %s.\n", last_alert,

34 gnutls_alert_get_name(last_alert));

35 }

36 }

6.4.2. X.509 certificate parsing example

To demonstrate the X.509 parsing capabilities an example program is listed below. That
program reads the peer’s certificate, and prints information about it.

1 /* This example code is placed in the public domain. */

2

3 #ifdef HAVE_CONFIG_H

4 #include <config.h>

5 #endif

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <gnutls/gnutls.h>

10 #include <gnutls/x509.h>

11

12 #include "examples.h"

13

14 static const char *bin2hex(const void *bin, size_t bin_size)

15 {

16 static char printable[110];

17 const unsigned char *_bin = bin;

18 char *print;

19 size_t i;

240

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

20

21 if (bin_size > 50)

22 bin_size = 50;

23

24 print = printable;

25 for (i = 0; i < bin_size; i++) {

26 sprintf(print, "%.2x ", _bin[i]);

27 print += 2;

28 }

29

30 return printable;

31 }

32

33 /* This function will print information about this session’s peer

34 * certificate.

35 */

36 void print_x509_certificate_info(gnutls_session_t session)

37 {

38 char serial[40];

39 char dn[256];

40 size_t size;

41 unsigned int algo, bits;

42 time_t expiration_time, activation_time;

43 const gnutls_datum_t *cert_list;

44 unsigned int cert_list_size = 0;

45 gnutls_x509_crt_t cert;

46 gnutls_datum_t cinfo;

47

48 /* This function only works for X.509 certificates.

49 */

50 if (gnutls_certificate_type_get(session) != GNUTLS_CRT_X509)

51 return;

52

53 cert_list = gnutls_certificate_get_peers(session, &cert_list_size);

54

55 printf("Peer provided %d certificates.\n", cert_list_size);

56

57 if (cert_list_size > 0) {

58 int ret;

59

60 /* we only print information about the first certificate.

61 */

62 gnutls_x509_crt_init(&cert);

63

64 gnutls_x509_crt_import(cert, &cert_list[0],

65 GNUTLS_X509_FMT_DER);

66

67 printf("Certificate info:\n");

68

69 /* This is the preferred way of printing short information about

70 a certificate. */

71

72 ret =

73 gnutls_x509_crt_print(cert, GNUTLS_CRT_PRINT_ONELINE,

74 &cinfo);

75 if (ret == 0) {

76 printf("\t%s\n", cinfo.data);

77 gnutls_free(cinfo.data);

241

6.4. MISCELLANEOUS EXAMPLES

78 }

79

80 /* If you want to extract fields manually for some other reason,

81 below are popular example calls. */

82

83 expiration_time =

84 gnutls_x509_crt_get_expiration_time(cert);

85 activation_time =

86 gnutls_x509_crt_get_activation_time(cert);

87

88 printf("\tCertificate is valid since: %s",

89 ctime(&activation_time));

90 printf("\tCertificate expires: %s",

91 ctime(&expiration_time));

92

93 /* Print the serial number of the certificate.

94 */

95 size = sizeof(serial);

96 gnutls_x509_crt_get_serial(cert, serial, &size);

97

98 printf("\tCertificate serial number: %s\n",

99 bin2hex(serial, size));

100

101 /* Extract some of the public key algorithm’s parameters

102 */

103 algo = gnutls_x509_crt_get_pk_algorithm(cert, &bits);

104

105 printf("Certificate public key: %s",

106 gnutls_pk_algorithm_get_name(algo));

107

108 /* Print the version of the X.509

109 * certificate.

110 */

111 printf("\tCertificate version: #%d\n",

112 gnutls_x509_crt_get_version(cert));

113

114 size = sizeof(dn);

115 gnutls_x509_crt_get_dn(cert, dn, &size);

116 printf("\tDN: %s\n", dn);

117

118 size = sizeof(dn);

119 gnutls_x509_crt_get_issuer_dn(cert, dn, &size);

120 printf("\tIssuer’s DN: %s\n", dn);

121

122 gnutls_x509_crt_deinit(cert);

123

124 }

125 }

6.4.3. Listing the ciphersuites in a priority string

This is a small program to list the enabled ciphersuites by a priority string.

1 /* This example code is placed in the public domain. */

2

242

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

3 #include <config.h>

4 #include <stdio.h>

5 #include <stdlib.h>

6 #include <string.h>

7 #include <gnutls/gnutls.h>

8

9 static void print_cipher_suite_list(const char *priorities)

10 {

11 size_t i;

12 int ret;

13 unsigned int idx;

14 const char *name;

15 const char *err;

16 unsigned char id[2];

17 gnutls_protocol_t version;

18 gnutls_priority_t pcache;

19

20 if (priorities != NULL) {

21 printf("Cipher suites for %s\n", priorities);

22

23 ret = gnutls_priority_init(&pcache, priorities, &err);

24 if (ret < 0) {

25 fprintf(stderr, "Syntax error at: %s\n", err);

26 exit(1);

27 }

28

29 for (i = 0;; i++) {

30 ret =

31 gnutls_priority_get_cipher_suite_index(pcache,

32 i,

33 &idx);

34 if (ret == GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE)

35 break;

36 if (ret == GNUTLS_E_UNKNOWN_CIPHER_SUITE)

37 continue;

38

39 name =

40 gnutls_cipher_suite_info(idx, id, NULL, NULL,

41 NULL, &version);

42

43 if (name != NULL)

44 printf("%-50s\t0x%02x, 0x%02x\t%s\n",

45 name, (unsigned char) id[0],

46 (unsigned char) id[1],

47 gnutls_protocol_get_name(version));

48 }

49

50 return;

51 }

52 }

53

54 int main(int argc, char **argv)

55 {

56 if (argc > 1)

57 print_cipher_suite_list(argv[1]);

58 return 0;

59 }

243

6.4. MISCELLANEOUS EXAMPLES

6.4.4. PKCS #12 structure generation example

This small program demonstrates the usage of the PKCS #12 API, by generating such a
structure.

1 /* This example code is placed in the public domain. */

2

3 #ifdef HAVE_CONFIG_H

4 #include <config.h>

5 #endif

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <gnutls/gnutls.h>

10 #include <gnutls/pkcs12.h>

11

12 #include "examples.h"

13

14 #define OUTFILE "out.p12"

15

16 /* This function will write a pkcs12 structure into a file.

17 * cert: is a DER encoded certificate

18 * pkcs8_key: is a PKCS #8 encrypted key (note that this must be

19 * encrypted using a PKCS #12 cipher, or some browsers will crash)

20 * password: is the password used to encrypt the PKCS #12 packet.

21 */

22 int

23 write_pkcs12(const gnutls_datum_t * cert,

24 const gnutls_datum_t * pkcs8_key, const char *password)

25 {

26 gnutls_pkcs12_t pkcs12;

27 int ret, bag_index;

28 gnutls_pkcs12_bag_t bag, key_bag;

29 char pkcs12_struct[10 * 1024];

30 size_t pkcs12_struct_size;

31 FILE *fd;

32

33 /* A good idea might be to use gnutls_x509_privkey_get_key_id()

34 * to obtain a unique ID.

35 */

36 gnutls_datum_t key_id = { (void *) "\x00\x00\x07", 3 };

37

38 gnutls_global_init();

39

40 /* Firstly we create two helper bags, which hold the certificate,

41 * and the (encrypted) key.

42 */

43

44 gnutls_pkcs12_bag_init(&bag);

45 gnutls_pkcs12_bag_init(&key_bag);

46

47 ret =

48 gnutls_pkcs12_bag_set_data(bag, GNUTLS_BAG_CERTIFICATE, cert);

49 if (ret < 0) {

50 fprintf(stderr, "ret: %s\n", gnutls_strerror(ret));

51 return 1;

52 }

244

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

53

54 /* ret now holds the bag’s index.

55 */

56 bag_index = ret;

57

58 /* Associate a friendly name with the given certificate. Used

59 * by browsers.

60 */

61 gnutls_pkcs12_bag_set_friendly_name(bag, bag_index, "My name");

62

63 /* Associate the certificate with the key using a unique key

64 * ID.

65 */

66 gnutls_pkcs12_bag_set_key_id(bag, bag_index, &key_id);

67

68 /* use weak encryption for the certificate.

69 */

70 gnutls_pkcs12_bag_encrypt(bag, password,

71 GNUTLS_PKCS_USE_PKCS12_RC2_40);

72

73 /* Now the key.

74 */

75

76 ret = gnutls_pkcs12_bag_set_data(key_bag,

77 GNUTLS_BAG_PKCS8_ENCRYPTED_KEY,

78 pkcs8_key);

79 if (ret < 0) {

80 fprintf(stderr, "ret: %s\n", gnutls_strerror(ret));

81 return 1;

82 }

83

84 /* Note that since the PKCS #8 key is already encrypted we don’t

85 * bother encrypting that bag.

86 */

87 bag_index = ret;

88

89 gnutls_pkcs12_bag_set_friendly_name(key_bag, bag_index, "My name");

90

91 gnutls_pkcs12_bag_set_key_id(key_bag, bag_index, &key_id);

92

93

94 /* The bags were filled. Now create the PKCS #12 structure.

95 */

96 gnutls_pkcs12_init(&pkcs12);

97

98 /* Insert the two bags in the PKCS #12 structure.

99 */

100

101 gnutls_pkcs12_set_bag(pkcs12, bag);

102 gnutls_pkcs12_set_bag(pkcs12, key_bag);

103

104

105 /* Generate a message authentication code for the PKCS #12

106 * structure.

107 */

108 gnutls_pkcs12_generate_mac(pkcs12, password);

109

110 pkcs12_struct_size = sizeof(pkcs12_struct);

245

6.4. MISCELLANEOUS EXAMPLES

111 ret =

112 gnutls_pkcs12_export(pkcs12, GNUTLS_X509_FMT_DER,

113 pkcs12_struct, &pkcs12_struct_size);

114 if (ret < 0) {

115 fprintf(stderr, "ret: %s\n", gnutls_strerror(ret));

116 return 1;

117 }

118

119 fd = fopen(OUTFILE, "w");

120 if (fd == NULL) {

121 fprintf(stderr, "cannot open file\n");

122 return 1;

123 }

124 fwrite(pkcs12_struct, 1, pkcs12_struct_size, fd);

125 fclose(fd);

126

127 gnutls_pkcs12_bag_deinit(bag);

128 gnutls_pkcs12_bag_deinit(key_bag);

129 gnutls_pkcs12_deinit(pkcs12);

130

131 return 0;

132 }

246

7
Other included programs

Included with GnuTLS are also a few command line tools that let you use the library for
common tasks without writing an application. The applications are discussed in this chapter.

7.1. Invoking gnutls-cli

Simple client program to set up a TLS connection to some other computer. It sets up a TLS
connection and forwards data from the standard input to the secured socket and vice versa.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the gnutls-cli program. This software is released under the GNU General
Public License, version 3 or later.

gnutls-cli help/usage (“--help”)

This is the automatically generated usage text for gnutls-cli.

The text printed is the same whether selected with the help option (“--help”) or the more-help
option (“--more-help”). more-help will print the usage text by passing it through a pager
program. more-help is disabled on platforms without a working fork(2) function. The PAGER

environment variable is used to select the program, defaulting to “more”. Both will exit with
a status code of 0.

1 gnutls-cli - GnuTLS client

2 Usage: gnutls-cli [-<flag> [<val>] | --<name>[{=| }<val>]]... [hostname]

3

4 -d, --debug=num Enable debugging

5 - it must be in the range:

6 0 to 9999

7 -V, --verbose More verbose output

8 - may appear multiple times

9 --tofu Enable trust on first use authentication

10 - disabled as ’--no-tofu’

11 --strict-tofu Fail to connect if a known certificate has changed

12 - disabled as ’--no-strict-tofu’

13 --dane Enable DANE certificate verification (DNSSEC)

14 - disabled as ’--no-dane’

15 --local-dns Use the local DNS server for DNSSEC resolving

247

7.1. INVOKING GNUTLS-CLI

16 - disabled as ’--no-local-dns’

17 --ca-verification Enable CA certificate verification

18 - disabled as ’--no-ca-verification’

19 - enabled by default

20 --ocsp Enable OCSP certificate verification

21 - disabled as ’--no-ocsp’

22 -r, --resume Establish a session and resume

23 -e, --rehandshake Establish a session and rehandshake

24 -s, --starttls Connect, establish a plain session and start TLS

25 --app-proto=str an alias for the ’starttls-proto’ option

26 --starttls-proto=str The application protocol to be used to obtain the server’s certificate

27 (https, ftp, smtp, imap)

28 - prohibits the option ’starttls’

29 -u, --udp Use DTLS (datagram TLS) over UDP

30 --mtu=num Set MTU for datagram TLS

31 - it must be in the range:

32 0 to 17000

33 --crlf Send CR LF instead of LF

34 --x509fmtder Use DER format for certificates to read from

35 -f, --fingerprint Send the openpgp fingerprint, instead of the key

36 --print-cert Print peer’s certificate in PEM format

37 --save-cert=str Save the peer’s certificate chain in the specified file in PEM format

38 --save-ocsp=str Save the peer’s OCSP status response in the provided file

39 --dh-bits=num The minimum number of bits allowed for DH

40 --priority=str Priorities string

41 --x509cafile=str Certificate file or PKCS #11 URL to use

42 --x509crlfile=file CRL file to use

43 - file must pre-exist

44 --pgpkeyfile=file PGP Key file to use

45 - file must pre-exist

46 --pgpkeyring=file PGP Key ring file to use

47 - file must pre-exist

48 --pgpcertfile=file PGP Public Key (certificate) file to use

49 - requires the option ’pgpkeyfile’

50 - file must pre-exist

51 --x509keyfile=str X.509 key file or PKCS #11 URL to use

52 --x509certfile=str X.509 Certificate file or PKCS #11 URL to use

53 - requires the option ’x509keyfile’

54 --pgpsubkey=str PGP subkey to use (hex or auto)

55 --srpusername=str SRP username to use

56 --srppasswd=str SRP password to use

57 --pskusername=str PSK username to use

58 --pskkey=str PSK key (in hex) to use

59 -p, --port=str The port or service to connect to

60 --insecure Don’t abort program if server certificate can’t be validated

61 --ranges Use length-hiding padding to prevent traffic analysis

62 --benchmark-ciphers Benchmark individual ciphers

63 --benchmark-tls-kx Benchmark TLS key exchange methods

64 -!, --benchmark-tls-ciphers Benchmark TLS ciphers

65 -l, --list Print a list of the supported algorithms and modes

66 - prohibits the option ’port’

67 -", --priority-list Print a list of the supported priority strings

68 -#, --noticket Don’t allow session tickets

69 -$, --srtp-profiles=str Offer SRTP profiles

70 -%, --alpn=str Application layer protocol

71 - may appear multiple times

72 -b, --heartbeat Activate heartbeat support

73 -&, --recordsize=num The maximum record size to advertize

248

CHAPTER 7. OTHER INCLUDED PROGRAMS

74 - it must be in the range:

75 0 to 4096

76 -’, --disable-sni Do not send a Server Name Indication (SNI)

77 -(, --disable-extensions Disable all the TLS extensions

78 -), --inline-commands Inline commands of the form ^<cmd>^

79 -*, --inline-commands-prefix=str Change the default delimiter for inline commands.

80 -+, --provider=file Specify the PKCS #11 provider library

81 - file must pre-exist

82 -,, --fips140-mode Reports the status of the FIPS140-2 mode in gnutls library

83 -v, --version[=arg] output version information and exit

84 -h, --help display extended usage information and exit

85 -!, --more-help extended usage information passed thru pager

86

87 Options are specified by doubled hyphens and their name or by a single

88 hyphen and the flag character.

89 Operands and options may be intermixed. They will be reordered.

90

91 Simple client program to set up a TLS connection to some other computer. It

92 sets up a TLS connection and forwards data from the standard input to the

93 secured socket and vice versa.

94

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

tofu option

This is the “enable trust on first use authentication” option.

This option has some usage constraints. It:

• can be disabled with –no-tofu.

This option will, in addition to certificate authentication, perform authentication based on
previously seen public keys, a model similar to SSH authentication. Note that when tofu
is specified (PKI) and DANE authentication will become advisory to assist the public key
acceptance process.

strict-tofu option

This is the “fail to connect if a known certificate has changed” option.

This option has some usage constraints. It:

• can be disabled with –no-strict-tofu.

This option will perform authentication as with option –tofu; however, while –tofu asks whether
to trust a changed public key, this option will fail in case of public key changes.

249

7.1. INVOKING GNUTLS-CLI

dane option

This is the “enable dane certificate verification (dnssec)” option.

This option has some usage constraints. It:

• can be disabled with –no-dane.

This option will, in addition to certificate authentication using the trusted CAs, verify the
server certificates using on the DANE information available via DNSSEC.

local-dns option

This is the “use the local dns server for dnssec resolving” option.

This option has some usage constraints. It:

• can be disabled with –no-local-dns.

This option will use the local DNS server for DNSSEC. This is disabled by default due to many
servers not allowing DNSSEC.

ca-verification option

This is the “enable ca certificate verification” option.

This option has some usage constraints. It:

• can be disabled with –no-ca-verification.

• It is enabled by default.

This option can be used to enable or disable CA certificate verification. It is to be used with
the –dane or –tofu options.

ocsp option

This is the “enable ocsp certificate verification” option.

This option has some usage constraints. It:

• can be disabled with –no-ocsp.

This option will enable verification of the peer’s certificate using ocsp

resume option (-r)

This is the “establish a session and resume” option. Connect, establish a session, reconnect
and resume.

250

CHAPTER 7. OTHER INCLUDED PROGRAMS

rehandshake option (-e)

This is the “establish a session and rehandshake” option. Connect, establish a session and
rehandshake immediately.

starttls option (-s)

This is the “connect, establish a plain session and start tls” option. The TLS session will be
initiated when EOF or a SIGALRM is received.

app-proto option

This is an alias for the starttls-proto option, section 7.1.

starttls-proto option

This is the “the application protocol to be used to obtain the server’s certificate (https, ftp,
smtp, imap, ldap, xmpp)” option. This option takes a string argument.

This option has some usage constraints. It:

• must not appear in combination with any of the following options: starttls.

Specify the application layer protocol for STARTTLS. If the protocol is supported, gnutls-cli
will proceed to the TLS negotiation.

dh-bits option

This is the “the minimum number of bits allowed for dh” option. This option takes a number
argument. This option sets the minimum number of bits allowed for a Diffie-Hellman key
exchange. You may want to lower the default value if the peer sends a weak prime and you
get an connection error with unacceptable prime.

priority option

This is the “priorities string” option. This option takes a string argument. TLS algorithms
and protocols to enable. You can use predefined sets of ciphersuites such as PERFORMANCE,
NORMAL, PFS, SECURE128, SECURE256. The default is NORMAL.

Check the GnuTLS manual on section “Priority strings” for more information on the allowed
keywords

251

7.1. INVOKING GNUTLS-CLI

ranges option

This is the “use length-hiding padding to prevent traffic analysis” option. When possible (e.g.,
when using CBC ciphersuites), use length-hiding padding to prevent traffic analysis.

benchmark-ciphers option

This is the “benchmark individual ciphers” option. By default the benchmarked ciphers will
utilize any capabilities of the local CPU to improve performance. To test against the raw
software implementation set the environment variable GNUTLS CPUID OVERRIDE to 0x1.

benchmark-tls-ciphers option

This is the “benchmark tls ciphers” option. By default the benchmarked ciphers will utilize
any capabilities of the local CPU to improve performance. To test against the raw software
implementation set the environment variable GNUTLS CPUID OVERRIDE to 0x1.

list option (-l)

This is the “print a list of the supported algorithms and modes” option.

This option has some usage constraints. It:

• must not appear in combination with any of the following options: port.

Print a list of the supported algorithms and modes. If a priority string is given then only the
enabled ciphersuites are shown.

priority-list option

This is the “print a list of the supported priority strings” option. Print a list of the supported
priority strings. The ciphersuites corresponding to each priority string can be examined using
-l -p.

alpn option

This is the “application layer protocol” option. This option takes a string argument.

This option has some usage constraints. It:

• may appear an unlimited number of times.

This option will set and enable the Application Layer Protocol Negotiation (ALPN) in the
TLS protocol.

252

CHAPTER 7. OTHER INCLUDED PROGRAMS

disable-extensions option

This is the “disable all the tls extensions” option. This option disables all TLS extensions.
Deprecated option. Use the priority string.

inline-commands option

This is the “inline commands of the form
textasciicircum<cmd>
textasciicircum” option. Enable inline commands of the form
textasciicircum<cmd>
textasciicircum. The inline commands are expected to be in a line by themselves. The available
commands are: resume and renegotiate.

inline-commands-prefix option

This is the “change the default delimiter for inline commands.” option. This option takes a
string argument. Change the default delimiter (
textasciicircum) used for inline commands. The delimiter is expected to be a single US-ASCII
character (octets 0 - 127). This option is only relevant if inline commands are enabled via the
inline-commands option

provider option

This is the “specify the pkcs #11 provider library” option. This option takes a file argument.
This will override the default options in /etc/gnutls/pkcs11.conf

gnutls-cli exit status

One of the following exit values will be returned:

• 0 (EXIT SUCCESS) Successful program execution.

• 1 (EXIT FAILURE) The operation failed or the command syntax was not valid.

gnutls-cli See Also

gnutls-cli-debug(1), gnutls-serv(1)

253

7.1. INVOKING GNUTLS-CLI

gnutls-cli Examples

Connecting using PSK authentication

To connect to a server using PSK authentication, you need to enable the choice of PSK by
using a cipher priority parameter such as in the example below.

1 $./gnutls-cli -p 5556 localhost --pskusername psk_identity \

2 --pskkey 88f3824b3e5659f52d00e959bacab954b6540344 \

3 --priority NORMAL:-KX-ALL:+ECDHE-PSK:+DHE-PSK:+PSK

4 Resolving ’localhost’...

5 Connecting to ’127.0.0.1:5556’...

6 - PSK authentication.

7 - Version: TLS1.1

8 - Key Exchange: PSK

9 - Cipher: AES-128-CBC

10 - MAC: SHA1

11 - Compression: NULL

12 - Handshake was completed

13

14 - Simple Client Mode:

By keeping the –pskusername parameter and removing the –pskkey parameter, it will query
only for the password during the handshake.

Listing ciphersuites in a priority string

To list the ciphersuites in a priority string:

1 $./gnutls-cli --priority SECURE192 -l

2 Cipher suites for SECURE192

3 TLS_ECDHE_ECDSA_AES_256_CBC_SHA384 0xc0, 0x24 TLS1.2

4 TLS_ECDHE_ECDSA_AES_256_GCM_SHA384 0xc0, 0x2e TLS1.2

5 TLS_ECDHE_RSA_AES_256_GCM_SHA384 0xc0, 0x30 TLS1.2

6 TLS_DHE_RSA_AES_256_CBC_SHA256 0x00, 0x6b TLS1.2

7 TLS_DHE_DSS_AES_256_CBC_SHA256 0x00, 0x6a TLS1.2

8 TLS_RSA_AES_256_CBC_SHA256 0x00, 0x3d TLS1.2

9

10 Certificate types: CTYPE-X.509

11 Protocols: VERS-TLS1.2, VERS-TLS1.1, VERS-TLS1.0, VERS-SSL3.0, VERS-DTLS1.0

12 Compression: COMP-NULL

13 Elliptic curves: CURVE-SECP384R1, CURVE-SECP521R1

14 PK-signatures: SIGN-RSA-SHA384, SIGN-ECDSA-SHA384, SIGN-RSA-SHA512, SIGN-ECDSA-SHA512

Connecting using a PKCS #11 token

To connect to a server using a certificate and a private key present in a PKCS #11 token you
need to substitute the PKCS 11 URLs in the x509certfile and x509keyfile parameters.

254

CHAPTER 7. OTHER INCLUDED PROGRAMS

Those can be found using ”p11tool –list-tokens” and then listing all the objects in the needed
token, and using the appropriate.

1 $ p11tool --list-tokens

2

3 Token 0:

4 URL: pkcs11:model=PKCS15;manufacturer=MyMan;serial=1234;token=Test

5 Label: Test

6 Manufacturer: EnterSafe

7 Model: PKCS15

8 Serial: 1234

9

10 $ p11tool --login --list-certs "pkcs11:model=PKCS15;manufacturer=MyMan;serial=1234;token=Test"

11

12 Object 0:

13 URL: pkcs11:model=PKCS15;manufacturer=MyMan;serial=1234;token=Test;object=client;type=cert

14 Type: X.509 Certificate

15 Label: client

16 ID: 2a:97:0d:58:d1:51:3c:23:07:ae:4e:0d:72:26:03:7d:99:06:02:6a

17

18 $ MYCERT="pkcs11:model=PKCS15;manufacturer=MyMan;serial=1234;token=Test;object=client;type=cert"

19 $ MYKEY="pkcs11:model=PKCS15;manufacturer=MyMan;serial=1234;token=Test;object=client;type=private"

20 $ export MYCERT MYKEY

21

22 $ gnutls-cli www.example.com --x509keyfile $MYKEY --x509certfile $MYCERT

Notice that the private key only differs from the certificate in the type.

7.2. Invoking gnutls-serv

Server program that listens to incoming TLS connections.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the gnutls-serv program. This software is released under the GNU General
Public License, version 3 or later.

gnutls-serv help/usage (“--help”)

This is the automatically generated usage text for gnutls-serv.

The text printed is the same whether selected with the help option (“--help”) or the more-help
option (“--more-help”). more-help will print the usage text by passing it through a pager
program. more-help is disabled on platforms without a working fork(2) function. The PAGER

environment variable is used to select the program, defaulting to “more”. Both will exit with
a status code of 0.

1 gnutls-serv - GnuTLS server

2 Usage: gnutls-serv [-<flag> [<val>] | --<name>[{=| }<val>]]...

3

4 -d, --debug=num Enable debugging

5 - it must be in the range:

255

7.2. INVOKING GNUTLS-SERV

6 0 to 9999

7 --noticket Don’t accept session tickets

8 -g, --generate Generate Diffie-Hellman parameters

9 -q, --quiet Suppress some messages

10 --nodb Do not use a resumption database

11 --http Act as an HTTP server

12 --echo Act as an Echo server

13 -u, --udp Use DTLS (datagram TLS) over UDP

14 --mtu=num Set MTU for datagram TLS

15 - it must be in the range:

16 0 to 17000

17 --srtp-profiles=str Offer SRTP profiles

18 -a, --disable-client-cert Do not request a client certificate

19 -r, --require-client-cert Require a client certificate

20 --verify-client-cert If a client certificate is sent then verify it.

21 -b, --heartbeat Activate heartbeat support

22 --x509fmtder Use DER format for certificates to read from

23 --priority=str Priorities string

24 --dhparams=file DH params file to use

25 - file must pre-exist

26 --x509cafile=str Certificate file or PKCS #11 URL to use

27 --x509crlfile=file CRL file to use

28 - file must pre-exist

29 --pgpkeyfile=file PGP Key file to use

30 - file must pre-exist

31 --pgpkeyring=file PGP Key ring file to use

32 - file must pre-exist

33 --pgpcertfile=file PGP Public Key (certificate) file to use

34 - file must pre-exist

35 --x509keyfile=str X.509 key file or PKCS #11 URL to use

36 --x509certfile=str X.509 Certificate file or PKCS #11 URL to use

37 --x509dsakeyfile=str Alternative X.509 key file or PKCS #11 URL to use

38 --x509dsacertfile=str Alternative X.509 Certificate file or PKCS #11 URL to use

39 --x509ecckeyfile=str Alternative X.509 key file or PKCS #11 URL to use

40 --x509ecccertfile=str Alternative X.509 Certificate file or PKCS #11 URL to use

41 --pgpsubkey=str PGP subkey to use (hex or auto)

42 --srppasswd=file SRP password file to use

43 - file must pre-exist

44 --srppasswdconf=file SRP password configuration file to use

45 - file must pre-exist

46 --pskpasswd=file PSK password file to use

47 - file must pre-exist

48 --pskhint=str PSK identity hint to use

49 --ocsp-response=file The OCSP response to send to client

50 - file must pre-exist

51 -p, --port=num The port to connect to

52 -l, --list Print a list of the supported algorithms and modes

53 --provider=file Specify the PKCS #11 provider library

54 - file must pre-exist

55 -v, --version[=arg] output version information and exit

56 -h, --help display extended usage information and exit

57 -!, --more-help extended usage information passed thru pager

58

59 Options are specified by doubled hyphens and their name or by a single

60 hyphen and the flag character.

61

62 Server program that listens to incoming TLS connections.

256

CHAPTER 7. OTHER INCLUDED PROGRAMS

63

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

verify-client-cert option

This is the “if a client certificate is sent then verify it.” option. Do not require, but if a client
certificate is sent then verify it and close the connection if invalid.

heartbeat option (-b)

This is the “activate heartbeat support” option. Regularly ping client via heartbeat extension
messages

priority option

This is the “priorities string” option. This option takes a string argument. TLS algorithms
and protocols to enable. You can use predefined sets of ciphersuites such as PERFORMANCE,
NORMAL, SECURE128, SECURE256. The default is NORMAL.

Check the GnuTLS manual on section “Priority strings” for more information on allowed
keywords

ocsp-response option

This is the “the ocsp response to send to client” option. This option takes a file argument. If
the client requested an OCSP response, return data from this file to the client.

list option (-l)

This is the “print a list of the supported algorithms and modes” option. Print a list of the
supported algorithms and modes. If a priority string is given then only the enabled ciphersuites
are shown.

257

7.2. INVOKING GNUTLS-SERV

provider option

This is the “specify the pkcs #11 provider library” option. This option takes a file argument.
This will override the default options in /etc/gnutls/pkcs11.conf

gnutls-serv exit status

One of the following exit values will be returned:

• 0 (EXIT SUCCESS) Successful program execution.

• 1 (EXIT FAILURE) The operation failed or the command syntax was not valid.

gnutls-serv See Also

gnutls-cli-debug(1), gnutls-cli(1)

gnutls-serv Examples

Running your own TLS server based on GnuTLS can be useful when debugging clients and/or
GnuTLS itself. This section describes how to use gnutls-serv as a simple HTTPS server.

The most basic server can be started as:

1 gnutls-serv --http --priority "NORMAL:+ANON-ECDH:+ANON-DH"

It will only support anonymous ciphersuites, which many TLS clients refuse to use.

The next step is to add support for X.509. First we generate a CA:

1 $ certtool --generate-privkey > x509-ca-key.pem

2 $ echo ’cn = GnuTLS test CA’ > ca.tmpl

3 $ echo ’ca’ >> ca.tmpl

4 $ echo ’cert_signing_key’ >> ca.tmpl

5 $ certtool --generate-self-signed --load-privkey x509-ca-key.pem \

6 --template ca.tmpl --outfile x509-ca.pem

7 ...

Then generate a server certificate. Remember to change the dns name value to the name of
your server host, or skip that command to avoid the field.

1 $ certtool --generate-privkey > x509-server-key.pem

2 $ echo ’organization = GnuTLS test server’ > server.tmpl

3 $ echo ’cn = test.gnutls.org’ >> server.tmpl

4 $ echo ’tls_www_server’ >> server.tmpl

5 $ echo ’encryption_key’ >> server.tmpl

6 $ echo ’signing_key’ >> server.tmpl

7 $ echo ’dns_name = test.gnutls.org’ >> server.tmpl

8 $ certtool --generate-certificate --load-privkey x509-server-key.pem \

9 --load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \

258

CHAPTER 7. OTHER INCLUDED PROGRAMS

10 --template server.tmpl --outfile x509-server.pem

11 ...

For use in the client, you may want to generate a client certificate as well.

1 $ certtool --generate-privkey > x509-client-key.pem

2 $ echo ’cn = GnuTLS test client’ > client.tmpl

3 $ echo ’tls_www_client’ >> client.tmpl

4 $ echo ’encryption_key’ >> client.tmpl

5 $ echo ’signing_key’ >> client.tmpl

6 $ certtool --generate-certificate --load-privkey x509-client-key.pem \

7 --load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \

8 --template client.tmpl --outfile x509-client.pem

9 ...

To be able to import the client key/certificate into some applications, you will need to convert
them into a PKCS#12 structure. This also encrypts the security sensitive key with a password.

1 $ certtool --to-p12 --load-ca-certificate x509-ca.pem \

2 --load-privkey x509-client-key.pem --load-certificate x509-client.pem \

3 --outder --outfile x509-client.p12

For icing, we’ll create a proxy certificate for the client too.

1 $ certtool --generate-privkey > x509-proxy-key.pem

2 $ echo ’cn = GnuTLS test client proxy’ > proxy.tmpl

3 $ certtool --generate-proxy --load-privkey x509-proxy-key.pem \

4 --load-ca-certificate x509-client.pem --load-ca-privkey x509-client-key.pem \

5 --load-certificate x509-client.pem --template proxy.tmpl \

6 --outfile x509-proxy.pem

7 ...

Then start the server again:

1 $ gnutls-serv --http \

2 --x509cafile x509-ca.pem \

3 --x509keyfile x509-server-key.pem \

4 --x509certfile x509-server.pem

Try connecting to the server using your web browser. Note that the server listens to port 5556
by default.

While you are at it, to allow connections using DSA, you can also create a DSA key and
certificate for the server. These credentials will be used in the final example below.

1 $ certtool --generate-privkey --dsa > x509-server-key-dsa.pem

2 $ certtool --generate-certificate --load-privkey x509-server-key-dsa.pem \

3 --load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \

4 --template server.tmpl --outfile x509-server-dsa.pem

5 ...

The next step is to create OpenPGP credentials for the server.

259

7.3. INVOKING GNUTLS-CLI-DEBUG

1 gpg --gen-key

2 ...enter whatever details you want, use ’test.gnutls.org’ as name...

Make a note of the OpenPGP key identifier of the newly generated key, here it was 5D1D14D8.
You will need to export the key for GnuTLS to be able to use it.

1 gpg -a --export 5D1D14D8 > openpgp-server.txt

2 gpg --export 5D1D14D8 > openpgp-server.bin

3 gpg --export-secret-keys 5D1D14D8 > openpgp-server-key.bin

4 gpg -a --export-secret-keys 5D1D14D8 > openpgp-server-key.txt

Let’s start the server with support for OpenPGP credentials:

1 gnutls-serv --http --priority NORMAL:+CTYPE-OPENPGP \

2 --pgpkeyfile openpgp-server-key.txt \

3 --pgpcertfile openpgp-server.txt

The next step is to add support for SRP authentication. This requires an SRP password file
created with srptool. To start the server with SRP support:

1 gnutls-serv --http --priority NORMAL:+SRP-RSA:+SRP \

2 --srppasswdconf srp-tpasswd.conf \

3 --srppasswd srp-passwd.txt

Let’s also start a server with support for PSK. This would require a password file created with
psktool.

1 gnutls-serv --http --priority NORMAL:+ECDHE-PSK:+PSK \

2 --pskpasswd psk-passwd.txt

Finally, we start the server with all the earlier parameters and you get this command:

1 gnutls-serv --http --priority NORMAL:+PSK:+SRP:+CTYPE-OPENPGP \

2 --x509cafile x509-ca.pem \

3 --x509keyfile x509-server-key.pem \

4 --x509certfile x509-server.pem \

5 --x509dsakeyfile x509-server-key-dsa.pem \

6 --x509dsacertfile x509-server-dsa.pem \

7 --pgpkeyfile openpgp-server-key.txt \

8 --pgpcertfile openpgp-server.txt \

9 --srppasswdconf srp-tpasswd.conf \

10 --srppasswd srp-passwd.txt \

11 --pskpasswd psk-passwd.txt

7.3. Invoking gnutls-cli-debug

TLS debug client. It sets up multiple TLS connections to a server and queries its capabilities.
It was created to assist in debugging GnuTLS, but it might be useful to extract a TLS server’s
capabilities. It connects to a TLS server, performs tests and print the server’s capabilities. If

260

CHAPTER 7. OTHER INCLUDED PROGRAMS

called with the ‘-v’ parameter more checks will be performed. Can be used to check for servers
with special needs or bugs.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the gnutls-cli-debug program. This software is released under the GNU
General Public License, version 3 or later.

gnutls-cli-debug help/usage (“--help”)

This is the automatically generated usage text for gnutls-cli-debug.

The text printed is the same whether selected with the help option (“--help”) or the more-help
option (“--more-help”). more-help will print the usage text by passing it through a pager
program. more-help is disabled on platforms without a working fork(2) function. The PAGER

environment variable is used to select the program, defaulting to “more”. Both will exit with
a status code of 0.

1 gnutls-cli-debug - GnuTLS debug client

2 Usage: gnutls-cli-debug [-<flag> [<val>] | --<name>[{=| }<val>]]...

3

4 -d, --debug=num Enable debugging

5 - it must be in the range:

6 0 to 9999

7 -V, --verbose More verbose output

8 - may appear multiple times

9 -p, --port=num The port to connect to

10 - it must be in the range:

11 0 to 65536

12 --app-proto=str an alias for the ’starttls-proto’ option

13 --starttls-proto=str The application protocol to be used to obtain the server’s certificate

14 (https, ftp, smtp, imap, ldap, xmpp)

15 -v, --version[=arg] output version information and exit

16 -h, --help display extended usage information and exit

17 -!, --more-help extended usage information passed thru pager

18

19 Options are specified by doubled hyphens and their name or by a single

20 hyphen and the flag character.

21 Operands and options may be intermixed. They will be reordered.

22

23 TLS debug client. It sets up multiple TLS connections to a server and

24 queries its capabilities. It was created to assist in debugging GnuTLS,

25 but it might be useful to extract a TLS server’s capabilities. It connects

26 to a TLS server, performs tests and print the server’s capabilities. If

27 called with the ‘-v’ parameter more checks will be performed. Can be used

28 to check for servers with special needs or bugs.

29

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

261

7.3. INVOKING GNUTLS-CLI-DEBUG

app-proto option

This is an alias for the starttls-proto option, section 7.3.

starttls-proto option

This is the “the application protocol to be used to obtain the server’s certificate (https, ftp,
smtp, imap, ldap, xmpp)” option. This option takes a string argument. Specify the application
layer protocol for STARTTLS. If the protocol is supported, gnutls-cli will proceed to the TLS
negotiation.

gnutls-cli-debug exit status

One of the following exit values will be returned:

• 0 (EXIT SUCCESS) Successful program execution.

• 1 (EXIT FAILURE) The operation failed or the command syntax was not valid.

gnutls-cli-debug See Also

gnutls-cli(1), gnutls-serv(1)

gnutls-cli-debug Examples

1 $../src/gnutls-cli-debug localhost

2 GnuTLS debug client 3.5.0

3 Checking localhost:443

4 for SSL 3.0 (RFC6101) support... yes

5 whether we need to disable TLS 1.2... no

6 whether we need to disable TLS 1.1... no

7 whether we need to disable TLS 1.0... no

8 whether %NO_EXTENSIONS is required... no

9 whether %COMPAT is required... no

10 for TLS 1.0 (RFC2246) support... yes

11 for TLS 1.1 (RFC4346) support... yes

12 for TLS 1.2 (RFC5246) support... yes

13 fallback from TLS 1.6 to... TLS1.2

14 for RFC7507 inappropriate fallback... yes

15 for HTTPS server name... Local

16 for certificate chain order... sorted

17 for safe renegotiation (RFC5746) support... yes

18 for Safe renegotiation support (SCSV)... no

19 for encrypt-then-MAC (RFC7366) support... no

20 for ext master secret (RFC7627) support... no

21 for heartbeat (RFC6520) support... no

22 for version rollback bug in RSA PMS... dunno

23 for version rollback bug in Client Hello... no

262

CHAPTER 7. OTHER INCLUDED PROGRAMS

24 whether the server ignores the RSA PMS version... yes

25 whether small records (512 bytes) are tolerated on handshake... yes

26 whether cipher suites not in SSL 3.0 spec are accepted... yes

27 whether a bogus TLS record version in the client hello is accepted... yes

28 whether the server understands TLS closure alerts... partially

29 whether the server supports session resumption... yes

30 for anonymous authentication support... no

31 for ephemeral Diffie-Hellman support... no

32 for ephemeral EC Diffie-Hellman support... yes

33 ephemeral EC Diffie-Hellman group info... SECP256R1

34 for AES-128-GCM cipher (RFC5288) support... yes

35 for AES-128-CCM cipher (RFC6655) support... no

36 for AES-128-CCM-8 cipher (RFC6655) support... no

37 for AES-128-CBC cipher (RFC3268) support... yes

38 for CAMELLIA-128-GCM cipher (RFC6367) support... no

39 for CAMELLIA-128-CBC cipher (RFC5932) support... no

40 for 3DES-CBC cipher (RFC2246) support... yes

41 for ARCFOUR 128 cipher (RFC2246) support... yes

42 for MD5 MAC support... yes

43 for SHA1 MAC support... yes

44 for SHA256 MAC support... yes

45 for ZLIB compression support... no

46 for max record size (RFC6066) support... no

47 for OCSP status response (RFC6066) support... no

48 for OpenPGP authentication (RFC6091) support... no

263

8
Internal Architecture of GnuTLS

This chapter is to give a brief description of the way GnuTLS works. The focus is to give an
idea to potential developers and those who want to know what happens inside the black box.

8.1. The TLS Protocol

The main use case for the TLS protocol is shown in Figure 8.1. A user of a library implementing
the protocol expects no less than this functionality, i.e., to be able to set parameters such as
the accepted security level, perform a negotiation with the peer and be able to exchange data.

Client
Server

Handshake

Send data

Receive data

set session
parameters

Figure 8.1.: TLS protocol use case.

265

8.2. TLS HANDSHAKE PROTOCOL

8.2. TLS Handshake Protocol

The GnuTLS handshake protocol is implemented as a state machine that waits for input or
returns immediately when the non-blocking transport layer functions are used. The main idea
is shown in Figure 8.2.

gnutls_handshake

Awaiting handshake
message

Processing handshake
message

Figure 8.2.: GnuTLS handshake state machine.

Also the way the input is processed varies per ciphersuite. Several implementations of the
internal handlers are available and gnutls handshake only multiplexes the input to the ap-
propriate handler. For example a PSK ciphersuite has a different implementation of the
process client key exchange than a certificate ciphersuite. We illustrate the idea in Fig-
ure 8.3.

handshake authentication_method
transport
layer

peer

Figure 8.3.: GnuTLS handshake process sequence.

266

CHAPTER 8. INTERNAL ARCHITECTURE OF GNUTLS

8.3. TLS Authentication Methods

In GnuTLS authentication methods can be implemented quite easily. Since the required
changes to add a new authentication method affect only the handshake protocol, a simple
interface is used. An authentication method needs to implement the functions shown below.

typedef struct

{

const char *name;

int (*gnutls_generate_server_certificate) (gnutls_session_t, gnutls_buffer_st*);

int (*gnutls_generate_client_certificate) (gnutls_session_t, gnutls_buffer_st*);

int (*gnutls_generate_server_kx) (gnutls_session_t, gnutls_buffer_st*);

int (*gnutls_generate_client_kx) (gnutls_session_t, gnutls_buffer_st*);

int (*gnutls_generate_client_cert_vrfy) (gnutls_session_t, gnutls_buffer_st *);

int (*gnutls_generate_server_certificate_request) (gnutls_session_t,

gnutls_buffer_st *);

int (*gnutls_process_server_certificate) (gnutls_session_t, opaque *,

size_t);

int (*gnutls_process_client_certificate) (gnutls_session_t, opaque *,

size_t);

int (*gnutls_process_server_kx) (gnutls_session_t, opaque *, size_t);

int (*gnutls_process_client_kx) (gnutls_session_t, opaque *, size_t);

int (*gnutls_process_client_cert_vrfy) (gnutls_session_t, opaque *, size_t);

int (*gnutls_process_server_certificate_request) (gnutls_session_t,

opaque *, size_t);

} mod_auth_st;

Those functions are responsible for the interpretation of the handshake protocol messages. It
is common for such functions to read data from one or more credentials t structures1 and
write data, such as certificates, usernames etc. to auth info t structures.

Simple examples of existing authentication methods can be seen in auth/psk.c for PSK ci-
phersuites and auth/srp.c for SRP ciphersuites. After implementing these functions the
structure holding its pointers has to be registered in gnutls algorithms.c in the gnutls -

kx algorithms structure.

8.4. TLS Extension Handling

As with authentication methods, the TLS extensions handlers can be implemented using the
interface shown below.

typedef int (*gnutls_ext_recv_func) (gnutls_session_t session,

const unsigned char *data, size_t len);

typedef int (*gnutls_ext_send_func) (gnutls_session_t session,

1such as the gnutls certificate credentials t structures

267

8.4. TLS EXTENSION HANDLING

gnutls_buffer_st *extdata);

Here there are two functions, one for receiving the extension data and one for sending. These
functions have to check internally whether they operate in client or server side.

A simple example of an extension handler can be seen in ext/srp.c in GnuTLS’ source code.
After implementing these functions, together with the extension number they handle, they
have to be registered using gnutls ext register in gnutls extensions.c typically within
gnutls ext init.

Adding a new TLS extension

Adding support for a new TLS extension is done from time to time, and the process to do so
is not difficult. Here are the steps you need to follow if you wish to do this yourself. For sake
of discussion, let’s consider adding support for the hypothetical TLS extension foobar. The
following section is about adding an extension to GnuTLS, for custom application extensions
you should check the exported function gnutls ext register.

Add configure option like --enable-foobar or --disable-foobar.

This step is useful when the extension code is large and it might be desirable to disable the
extension under some circumstances. Otherwise it can be safely skipped.

Whether to chose enable or disable depends on whether you intend to make the extension be
enabled by default. Look at existing checks (i.e., SRP, authz) for how to model the code. For
example:

1 AC_MSG_CHECKING([whether to disable foobar support])

2 AC_ARG_ENABLE(foobar,

3 AS_HELP_STRING([--disable-foobar],

4 [disable foobar support]),

5 ac_enable_foobar=no)

6 if test x$ac_enable_foobar != xno; then

7 AC_MSG_RESULT(no)

8 AC_DEFINE(ENABLE_FOOBAR, 1, [enable foobar])

9 else

10 ac_full=0

11 AC_MSG_RESULT(yes)

12 fi

13 AM_CONDITIONAL(ENABLE_FOOBAR, test "$ac_enable_foobar" != "no")

These lines should go in m4/hooks.m4.

Add IANA extension value to extensions t in gnutls int.h.

A good name for the value would be GNUTLS EXTENSION FOOBAR. Check with http:

//www.iana.org/assignments/tls-extensiontype-values for allocated values. For exper-
iments, you could pick a number but remember that some consider it a bad idea to deploy

268

http://www.iana.org/assignments/tls-extensiontype-values
http://www.iana.org/assignments/tls-extensiontype-values

CHAPTER 8. INTERNAL ARCHITECTURE OF GNUTLS

such modified version since it will lead to interoperability problems in the future when the
IANA allocates that number to someone else, or when the foobar protocol is allocated another
number.

Add an entry to gnutls extensions in gnutls extensions.c.

A typical entry would be:

1 int ret;

2

3 #if ENABLE_FOOBAR

4 ret = _gnutls_ext_register (&foobar_ext);

5 if (ret != GNUTLS_E_SUCCESS)

6 return ret;

7 #endif

Most likely you’ll need to add an #include "ext/foobar.h", that will contain something like
like:

1 extension_entry_st foobar_ext = {

2 .name = "FOOBAR",

3 .type = GNUTLS_EXTENSION_FOOBAR,

4 .parse_type = GNUTLS_EXT_TLS,

5 .recv_func = _foobar_recv_params,

6 .send_func = _foobar_send_params,

7 .pack_func = _foobar_pack,

8 .unpack_func = _foobar_unpack,

9 .deinit_func = NULL

10 }

The GNUTLS EXTENSION FOOBAR is the integer value you added to gnutls int.h earlier.
In this structure you specify the functions to read the extension from the hello message, the
function to send the reply to, and two more functions to pack and unpack from stored session
data (e.g. when resumming a session). The deinit function will be called to deinitialize the
extension’s private parameters, if any.

Note that the conditional ENABLE FOOBAR definition should only be used if step 1 with the
configure options has taken place.

Add new files that implement the extension.

The functions you are responsible to add are those mentioned in the previous step. They should
be added in a file such as ext/foobar.c and headers should be placed in ext/foobar.h. As
a starter, you could add this:

1 int

2 _foobar_recv_params (gnutls_session_t session, const opaque * data,

3 size_t data_size)

4 {

5 return 0;

6 }

269

8.4. TLS EXTENSION HANDLING

7

8 int

9 _foobar_send_params (gnutls_session_t session, gnutls_buffer_st* data)

10 {

11 return 0;

12 }

13

14 int

15 _foobar_pack (extension_priv_data_t epriv, gnutls_buffer_st * ps)

16 {

17 /* Append the extension’s internal state to buffer */

18 return 0;

19 }

20

21 int

22 _foobar_unpack (gnutls_buffer_st * ps, extension_priv_data_t * epriv)

23 {

24 /* Read the internal state from buffer */

25 return 0;

26 }

The foobar recv params function is responsible for parsing incoming extension data (both
in the client and server).

The foobar send params function is responsible for sending extension data (both in the client
and server).

If you receive length fields that don’t match, return GNUTLS E UNEXPECTED PACKET LENGTH. If
you receive invalid data, return GNUTLS E RECEIVED ILLEGAL PARAMETER. You can use other
error codes from the list in Appendix D. Return 0 on success.

An extension typically stores private information in the session data for later usage. That can
be done using the functions gnutls ext set session data and gnutls ext get session -

data. You can check simple examples at ext/max record.c and ext/server name.c exten-
sions. That private information can be saved and restored across session resumption if the
following functions are set:

The foobar pack function is responsible for packing internal extension data to save them in
the session resumption storage.

The foobar unpack function is responsible for restoring session data from the session resump-
tion storage.

Recall that both the client and server, send and receive parameters, and your code most likely
will need to do different things depending on which mode it is in. It may be useful to make
this distinction explicit in the code. Thus, for example, a better template than above would
be:

1 int

2 _gnutls_foobar_recv_params (gnutls_session_t session,

3 const opaque * data,

4 size_t data_size)

5 {

6 if (session->security_parameters.entity == GNUTLS_CLIENT)

7 return foobar_recv_client (session, data, data_size);

270

CHAPTER 8. INTERNAL ARCHITECTURE OF GNUTLS

8 else

9 return foobar_recv_server (session, data, data_size);

10 }

11

12 int

13 _gnutls_foobar_send_params (gnutls_session_t session,

14 gnutls_buffer_st * data)

15 {

16 if (session->security_parameters.entity == GNUTLS_CLIENT)

17 return foobar_send_client (session, data);

18 else

19 return foobar_send_server (session, data);

20 }

The functions used would be declared as static functions, of the appropriate prototype, in
the same file. When adding the files, you’ll need to add them to ext/Makefile.am as well, for
example:

1 if ENABLE_FOOBAR

2 libgnutls_ext_la_SOURCES += ext/foobar.c ext/foobar.h

3 endif

Add API functions to enable/disable the extension.

It might be desirable to allow users of the extension to request use of the extension, or set
extension specific data. This can be implemented by adding extension specific function calls
that can be added to includes/gnutls/gnutls.h, as long as the LGPLv2.1+ applies. The
implementation of the function should lie in the ext/foobar.c file.

To make the API available in the shared library you need to add the symbol in lib/-

libgnutls.map, so that the symbol is exported properly.

When writing GTK-DOC style documentation for your new APIs, don’t forget to add Since:

tags to indicate the GnuTLS version the API was introduced in.

Heartbeat extension.

One such extension is HeartBeat protocol (RFC6520: https://tools.ietf.org/html/rfc6520)
implementation. To enable it use option –heartbeat with example client and server supplied
with gnutls:

1 ./doc/credentials/gnutls-http-serv --priority "NORMAL:-CIPHER-ALL:+NULL" -d 100 \

2 --heartbeat --echo

3 ./src/gnutls-cli --priority "NORMAL:-CIPHER-ALL:+NULL" -d 100 localhost -p 5556 \

4 --insecure --heartbeat

After that pasting

1 **HEARTBEAT**

271

https://tools.ietf.org/html/rfc6520

8.4. TLS EXTENSION HANDLING

command into gnutls-cli will trigger corresponding command on the server and it will send
HeartBeat Request with random length to client.

Another way is to run capabilities check with:

1 ./doc/credentials/gnutls-http-serv -d 100 --heartbeat

2 ./src/gnutls-cli-debug localhost -p 5556

Adding a new Supplemental Data Handshake Message

TLS handshake extensions allow to send so called supplemental data handshake messages [34].
This short section explains how to implement a supplemental data handshake message for a
given TLS extension.

First of all, modify your extension foobar in the way, to instruct the handshake process to
send and receive supplemental data, as shown below.

1 int

2 _gnutls_foobar_recv_params (gnutls_session_t session, const opaque * data,

3 size_t _data_size)

4 {

5 ...

6 gnutls_supplemental_recv(session, 1);

7 ...

8 }

9

10 int

11 _gnutls_foobar_send_params (gnutls_session_t session, gnutls_buffer_st *extdata)

12 {

13 ...

14 gnutls_supplemental_send(session, 1);

15 ...

16 }

Furthermore you’ll need two new functions foobar supp recv params and foobar supp -

send params, which must conform to the following prototypes.

1 typedef int (*gnutls_supp_recv_func)(gnutls_session_t session,

2 const unsigned char *data,

3 size_t data_size);

4 typedef int (*gnutls_supp_send_func)(gnutls_session_t session,

5 gnutls_buffer_t buf);

The following example code shows how to send a “Hello World” string in the supplemental
data handshake message.

1 int

2 _foobar_supp_recv_params(gnutls_session_t session, const opaque *data, size_t _data_size)

3 {

4 uint8_t len = _data_size;

5 unsigned char *msg;

6

7 msg = gnutls_malloc(len);

272

CHAPTER 8. INTERNAL ARCHITECTURE OF GNUTLS

8 if (msg == NULL) return GNUTLS_E_MEMORY_ERROR;

9

10 memcpy(msg, data, len);

11 msg[len]=’\0’;

12

13 /* do something with msg */

14 gnutls_free(msg);

15

16 return len;

17 }

18

19 int

20 _foobar_supp_send_params(gnutls_session_t session, gnutls_buffer_t buf)

21 {

22 unsigned char *msg = "hello world";

23 int len = strlen(msg);

24

25 if (gnutls_buffer_append_data(buf, msg, len) < 0)

26 abort();

27

28 return len;

29 }

Afterwards, register the new supplemental data using gnutls supplemental register, at
some point in your program.

8.5. Cryptographic Backend

Today most new processors, either for embedded or desktop systems include either instructions
intended to speed up cryptographic operations, or a co-processor with cryptographic capabil-
ities. Taking advantage of those is a challenging task for every cryptographic application or
library. GnuTLS handles the cryptographic provider in a modular way, following a layered
approach to access cryptographic operations as in Figure 8.4.

The TLS layer uses a cryptographic provider layer, that will in turn either use the default
crypto provider – a software crypto library, or use an external crypto provider, if available in
the local system. The reason of handling the external cryptographic provider in GnuTLS and
not delegating it to the cryptographic libraries, is that none of the supported cryptographic
libraries support /dev/crypto or CPU-optimized cryptography in an efficient way.

Cryptographic library layer

The Cryptographic library layer, currently supports only libnettle. Older versions of GnuTLS
used to support libgcrypt, but it was switched with nettle mainly for performance reasons2

and secondary because it is a simpler library to use. In the future other cryptographic libraries
might be supported as well.

2See http://lists.gnu.org/archive/html/gnutls-devel/2011-02/msg00079.html.

273

http://lists.gnu.org/archive/html/gnutls-devel/2011-02/msg00079.html

8.5. CRYPTOGRAPHIC BACKEND

TLS layer

Cryptography
Provider Layer

Cryptographic
Library

External cryptographic
provider

/dev/crypto
Kernel optimized
cryptography

libgcrypt nettle CPU-optimized
cryptography

Figure 8.4.: GnuTLS cryptographic back-end design.

External cryptography provider

Systems that include a cryptographic co-processor, typically come with kernel drivers to utilize
the operations from software. For this reason GnuTLS provides a layer where each individual
algorithm used can be replaced by another implementation, i.e., the one provided by the driver.
The FreeBSD, OpenBSD and Linux kernels3 include already a number of hardware assisted
implementations, and also provide an interface to access them, called /dev/crypto. GnuTLS
will take advantage of this interface if compiled with special options. That is because in
most systems where hardware-assisted cryptographic operations are not available, using this
interface might actually harm performance.

In systems that include cryptographic instructions with the CPU’s instructions set, using the
kernel interface will introduce an unneeded layer. For this reason GnuTLS includes such opti-
mizations found in popular processors such as the AES-NI or VIA PADLOCK instruction sets.
This is achieved using a mechanism that detects CPU capabilities and overrides parts of crypto
back-end at runtime. The next section discusses the registration of a detected algorithm opti-
mization. For more information please consult the GnuTLS source code in lib/accelerated/.

3Check http://home.gna.org/cryptodev-linux/ for the Linux kernel implementation of /dev/crypto.

274

http://home.gna.org/cryptodev-linux/

CHAPTER 8. INTERNAL ARCHITECTURE OF GNUTLS

Overriding specific algorithms

When an optimized implementation of a single algorithm is available, say a hardware assisted
version of AES-CBC then the following functions, from crypto.h, can be used to register those
algorithms.

• gnutls crypto register cipher: To register a cipher algorithm.

• gnutls crypto register aead cipher: To register an AEAD cipher algorithm.

• gnutls crypto register mac: To register a MAC algorithm.

• gnutls crypto register digest: To register a hash algorithm.

Those registration functions will only replace the specified algorithm and leave the rest of
subsystem intact.

275

A
Upgrading from previous versions

The GnuTLS library typically maintains binary and source code compatibility across versions.
The releases that have the major version increased break binary compatibility but source
compatibility is provided. This section lists exceptional cases where changes to existing code
are required due to library changes.

Upgrading to 2.12.x from previous versions

GnuTLS 2.12.x is binary compatible with previous versions but changes the semantics of
gnutls transport set lowat, which might cause breakage in applications that relied on its
default value be 1. Two fixes are proposed:

• Quick fix. Explicitly call gnutls transport set lowat (session, 1); after gnutls -

init.

• Long term fix. Because later versions of gnutls abolish the functionality of using the
system call select to check for gnutls pending data, the function gnutls record check -

pending has to be used to achieve the same functionality as described in subsection 5.5.1.

Upgrading to 3.0.x from 2.12.x

GnuTLS 3.0.x is source compatible with previous versions except for the functions listed below.

277

Old function Replacement

gnutls transport set -

lowat

To replace its functionality the function gnutls -

record check pending has to be used, as described in
subsection 5.5.1

gnutls session get -

server random, gnutls -

session get client -

random

They are replaced by the safer function gnutls -

session get random

gnutls session get -

master secret

Replaced by the keying material exporters discussed in
subsection 5.12.5

gnutls transport set -

global errno

Replaced by using the system’s errno facility or gnutls -

transport set errno.
gnutls x509 privkey -

verify data

Replaced by gnutls pubkey verify data2.

gnutls certificate -

verify peers

Replaced by gnutls certificate verify peers2.

gnutls psk netconf -

derive key

Removed. The key derivation function was never stan-
dardized.

gnutls session set -

finished function

Removed.

gnutls ext register Removed. Extension registration API is now internal to
allow easier changes in the API.

gnutls certificate -

get x509 crls, gnutls -

certificate get x509 cas

Removed to allow updating the internal structures. Re-
placed by gnutls certificate get issuer.

gnutls certificate get -

openpgp keyring

Removed.

gnutls ia Removed. The inner application extensions were com-
pletely removed (they failed to be standardized).

Upgrading to 3.1.x from 3.0.x

GnuTLS 3.1.x is source and binary compatible with GnuTLS 3.0.x releases. Few functions
have been deprecated and are listed below.

Old function Replacement

gnutls pubkey verify -

hash

The function gnutls pubkey verify hash2 is provided
and is functionally equivalent and safer to use.

gnutls pubkey verify -

data

The function gnutls pubkey verify data2 is provided
and is functionally equivalent and safer to use.

278

APPENDIX A. UPGRADING FROM PREVIOUS VERSIONS

Upgrading to 3.2.x from 3.1.x

GnuTLS 3.2.x is source and binary compatible with GnuTLS 3.1.x releases. Few functions
have been deprecated and are listed below.

Old function Replacement

gnutls privkey sign -

raw data

The function gnutls privkey sign hash is equivalent
when the flag GNUTLS PRIVKEY SIGN FLAG TLS1 RSA is
specified.

Upgrading to 3.3.x from 3.2.x

GnuTLS 3.3.x is source and binary compatible with GnuTLS 3.2.x releases; however there few
changes in semantics which are listed below.

Old function Replacement

gnutls global init No longer required. The library is initialized using a
constructor.

gnutls global deinit No longer required. The library is deinitialized using a
destructor.

Upgrading to 3.4.x from 3.3.x

GnuTLS 3.4.x is source compatible with GnuTLS 3.3.x releases; however, several deprecated
functions were removed, and are listed below.

279

Old function Replacement

Priority string ”NORMAL”
has been modified

The following string emulates the 3.3.x behav-
ior ”NORMAL:+VERS-SSL3.0:+ARCFOUR-
128:+DHE-DSS:+SIGN-DSA-SHA512:+SIGN-DSA-
SHA256:+SIGN-DSA-SHA1”

gnutls certificate -

client set retrieve -

function, gnutls -

certificate server -

set retrieve function

gnutls certificate set retrieve function

gnutls certificate -

set rsa export params,
gnutls rsa export get -

modulus bits, gnutls -

rsa export get pubkey,
gnutls rsa params cpy,
gnutls rsa params -

deinit, gnutls rsa -

params export pkcs1,
gnutls rsa params -

export raw, gnutls -

rsa params generate2,
gnutls rsa params -

import pkcs1, gnutls -

rsa params import raw,
gnutls rsa params init

No replacement; the library does not support the RSA-
EXPORT ciphersuites.

gnutls pubkey verify -

hash,
gnutls pubkey verify hash2.

gnutls pubkey verify -

data,
gnutls pubkey verify data2.

gnutls x509 crt get -

verify algorithm,
No replacement; a similar function is gnutls x509 crt -

get signature algorithm.
gnutls pubkey get -

verify algorithm,
No replacement; a similar function is gnutls pubkey -

get preferred hash algorithm.
gnutls certificate -

type set priority,
gnutls cipher set -

priority, gnutls -

compression set -

priority, gnutls kx set -

priority, gnutls mac -

set priority, gnutls -

protocol set priority

gnutls priority set direct.

gnutls sign callback -

get, gnutls sign -

callback set

gnutls privkey import ext3

gnutls x509 crt verify -

hash

gnutls pubkey verify hash2

gnutls x509 crt verify -

data

gnutls pubkey verify data2

gnutls privkey sign -

raw data

gnutls privkey sign hash with the flag
GNUTLS PRIVKEY SIGN FLAG TLS1 RSA

280

B
Support

B.1. Getting Help

A mailing list where users may help each other exists, and you can reach it by sending e-
mail to gnutls-help@gnutls.org. Archives of the mailing list discussions, and an interface to
manage subscriptions, is available through the World Wide Web at http://lists.gnutls.

org/pipermail/gnutls-help/.

A mailing list for developers are also available, see http://www.gnutls.org/lists.html. Bug
reports should be sent to bugs@gnutls.org, see section B.3.

B.2. Commercial Support

Commercial support is available for users of GnuTLS. The kind of support that can be pur-
chased may include:

• Implement new features. Such as a new TLS extension.

• Port GnuTLS to new platforms. This could include porting to an embedded platforms
that may need memory or size optimization.

• Integrating TLS as a security environment in your existing project.

• System design of components related to TLS.

If you are interested, please write to:

Simon Josefsson Datakonsult

Hagagatan 24

113 47 Stockholm

Sweden

E-mail: simon@josefsson.org

If your company provides support related to GnuTLS and would like to be mentioned here,
contact the authors.

281

http://lists.gnutls.org/pipermail/gnutls-help/
http://lists.gnutls.org/pipermail/gnutls-help/
http://www.gnutls.org/lists.html

B.3. BUG REPORTS

B.3. Bug Reports

If you think you have found a bug in GnuTLS, please investigate it and report it.

• Please make sure that the bug is really in GnuTLS, and preferably also check that it
hasn’t already been fixed in the latest version.

• You have to send us a test case that makes it possible for us to reproduce the bug.

• You also have to explain what is wrong; if you get a crash, or if the results printed are
not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that can be
tested or debugged. Vague queries or piecemeal messages are difficult to act on and don’t help
the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of the
software; if the bug report is poor, we won’t do anything about it (apart from asking you to
send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:

bugs@gnutls.org

B.4. Contributing

If you want to submit a patch for inclusion – from solving a typo you discovered, up to
adding support for a new feature – you should submit it as a bug report, using the process in
section B.3. There are some things that you can do to increase the chances for it to be included
in the official package.

Unless your patch is very small (say, under 10 lines) we require that you assign the copyright
of your work to the Free Software Foundation. This is to protect the freedom of the project.
If you have not already signed papers, we will send you the necessary information when you
submit your contribution.

For contributions that doesn’t consist of actual programming code, the only guidelines are
common sense. For code contributions, a number of style guides will help you:

• Coding Style. Follow the GNU Standards document.

If you normally code using another coding standard, there is no problem, but you should
use indent to reformat the code before submitting your work.

• Use the unified diff format diff -u.

282

APPENDIX B. SUPPORT

• Return errors. No reason whatsoever should abort the execution of the library. Even
memory allocation errors, e.g. when malloc return NULL, should work although result
in an error code.

• Design with thread safety in mind. Don’t use global variables. Don’t even write to per-
handle global variables unless the documented behaviour of the function you write is to
write to the per-handle global variable.

• Avoid using the C math library. It causes problems for embedded implementations, and
in most situations it is very easy to avoid using it.

• Document your functions. Use comments before each function headers, that, if properly
formatted, are extracted into Texinfo manuals and GTK-DOC web pages.

• Supply a ChangeLog and NEWS entries, where appropriate.

B.5. Certification

Many cryptographic libraries claim certifications from national or international bodies. These
certifications are tied on a specific (and often restricted) version of the library or a specific
product using the library, and typically in the case of software they assure that the algorithms
implemented are correct. The major certifications known are:

• USA’s FIPS 140-2 at Level 1 which certifies that approved algorithms are used (see
http://en.wikipedia.org/wiki/FIPS_140-2);

• Common Criteria for Information Technology Security Evaluation (CC), an international
standard for verification of elaborate security claims (see http://en.wikipedia.org/

wiki/Common_Criteria).

Obtaining such a certification is an expensive and elaborate job that has no immediate value
for a continuously developed free software library (as the certification is tied to the particular
version tested). While, as a free software project, we are not actively pursuing this kind of
certification, GnuTLS has been FIPS-140-2 certified in several systems by third parties. If you
are, interested, see section B.2.

283

http://en.wikipedia.org/wiki/FIPS_140-2
http://en.wikipedia.org/wiki/Common_Criteria
http://en.wikipedia.org/wiki/Common_Criteria

C
Supported Ciphersuites

Ciphersuite name TLS ID Since
TLS RSA NULL MD5 0x00 0x01 SSL3.0
TLS RSA NULL SHA1 0x00 0x02 SSL3.0
TLS RSA NULL SHA256 0x00 0x3B TLS1.2
TLS RSA ARCFOUR 128 SHA1 0x00 0x05 SSL3.0
TLS RSA ARCFOUR 128 MD5 0x00 0x04 SSL3.0
TLS RSA 3DES EDE CBC SHA1 0x00 0x0A SSL3.0
TLS RSA AES 128 CBC SHA1 0x00 0x2F SSL3.0
TLS RSA AES 256 CBC SHA1 0x00 0x35 SSL3.0
TLS RSA CAMELLIA 128 CBC SHA256 0x00 0xBA TLS1.2
TLS RSA CAMELLIA 256 CBC SHA256 0x00 0xC0 TLS1.2
TLS RSA CAMELLIA 128 CBC SHA1 0x00 0x41 SSL3.0
TLS RSA CAMELLIA 256 CBC SHA1 0x00 0x84 SSL3.0
TLS RSA AES 128 CBC SHA256 0x00 0x3C TLS1.2
TLS RSA AES 256 CBC SHA256 0x00 0x3D TLS1.2
TLS RSA AES 128 GCM SHA256 0x00 0x9C TLS1.2
TLS RSA AES 256 GCM SHA384 0x00 0x9D TLS1.2
TLS RSA CAMELLIA 128 GCM SHA256 0xC0 0x7A TLS1.2
TLS RSA CAMELLIA 256 GCM SHA384 0xC0 0x7B TLS1.2
TLS RSA AES 128 CCM 0xC0 0x9C TLS1.2
TLS RSA AES 256 CCM 0xC0 0x9D TLS1.2
TLS RSA AES 128 CCM 8 0xC0 0xA0 TLS1.2
TLS RSA AES 256 CCM 8 0xC0 0xA1 TLS1.2
TLS DHE DSS ARCFOUR 128 SHA1 0x00 0x66 SSL3.0
TLS DHE DSS 3DES EDE CBC SHA1 0x00 0x13 SSL3.0
TLS DHE DSS AES 128 CBC SHA1 0x00 0x32 SSL3.0
TLS DHE DSS AES 256 CBC SHA1 0x00 0x38 SSL3.0
TLS DHE DSS CAMELLIA 128 CBC SHA256 0x00 0xBD TLS1.2
TLS DHE DSS CAMELLIA 256 CBC SHA256 0x00 0xC3 TLS1.2
TLS DHE DSS CAMELLIA 128 CBC SHA1 0x00 0x44 SSL3.0
TLS DHE DSS CAMELLIA 256 CBC SHA1 0x00 0x87 SSL3.0

285

TLS DHE DSS AES 128 CBC SHA256 0x00 0x40 TLS1.2
TLS DHE DSS AES 256 CBC SHA256 0x00 0x6A TLS1.2
TLS DHE DSS AES 128 GCM SHA256 0x00 0xA2 TLS1.2
TLS DHE DSS AES 256 GCM SHA384 0x00 0xA3 TLS1.2
TLS DHE DSS CAMELLIA 128 GCM SHA256 0xC0 0x80 TLS1.2
TLS DHE DSS CAMELLIA 256 GCM SHA384 0xC0 0x81 TLS1.2
TLS DHE RSA 3DES EDE CBC SHA1 0x00 0x16 SSL3.0
TLS DHE RSA AES 128 CBC SHA1 0x00 0x33 SSL3.0
TLS DHE RSA AES 256 CBC SHA1 0x00 0x39 SSL3.0
TLS DHE RSA CAMELLIA 128 CBC SHA256 0x00 0xBE TLS1.2
TLS DHE RSA CAMELLIA 256 CBC SHA256 0x00 0xC4 TLS1.2
TLS DHE RSA CAMELLIA 128 CBC SHA1 0x00 0x45 SSL3.0
TLS DHE RSA CAMELLIA 256 CBC SHA1 0x00 0x88 SSL3.0
TLS DHE RSA AES 128 CBC SHA256 0x00 0x67 TLS1.2
TLS DHE RSA AES 256 CBC SHA256 0x00 0x6B TLS1.2
TLS DHE RSA AES 128 GCM SHA256 0x00 0x9E TLS1.2
TLS DHE RSA AES 256 GCM SHA384 0x00 0x9F TLS1.2
TLS DHE RSA CAMELLIA 128 GCM SHA256 0xC0 0x7C TLS1.2
TLS DHE RSA CAMELLIA 256 GCM SHA384 0xC0 0x7D TLS1.2
TLS DHE RSA CHACHA20 POLY1305 0xCC 0xAA TLS1.2
TLS DHE RSA AES 128 CCM 0xC0 0x9E TLS1.2
TLS DHE RSA AES 256 CCM 0xC0 0x9F TLS1.2
TLS DHE RSA AES 128 CCM 8 0xC0 0xA2 TLS1.2
TLS DHE RSA AES 256 CCM 8 0xC0 0xA3 TLS1.2
TLS ECDHE RSA NULL SHA1 0xC0 0x10 SSL3.0
TLS ECDHE RSA 3DES EDE CBC SHA1 0xC0 0x12 SSL3.0
TLS ECDHE RSA AES 128 CBC SHA1 0xC0 0x13 SSL3.0
TLS ECDHE RSA AES 256 CBC SHA1 0xC0 0x14 SSL3.0
TLS ECDHE RSA AES 256 CBC SHA384 0xC0 0x28 TLS1.2
TLS ECDHE RSA ARCFOUR 128 SHA1 0xC0 0x11 SSL3.0
TLS ECDHE RSA CAMELLIA 128 CBC SHA256 0xC0 0x76 TLS1.2
TLS ECDHE RSA CAMELLIA 256 CBC SHA384 0xC0 0x77 TLS1.2
TLS ECDHE ECDSA NULL SHA1 0xC0 0x06 SSL3.0
TLS ECDHE ECDSA 3DES EDE CBC SHA1 0xC0 0x08 SSL3.0
TLS ECDHE ECDSA AES 128 CBC SHA1 0xC0 0x09 SSL3.0
TLS ECDHE ECDSA AES 256 CBC SHA1 0xC0 0x0A SSL3.0
TLS ECDHE ECDSA ARCFOUR 128 SHA1 0xC0 0x07 SSL3.0
TLS ECDHE ECDSA CAMELLIA 128 CBC SHA256 0xC0 0x72 TLS1.2
TLS ECDHE ECDSA CAMELLIA 256 CBC SHA384 0xC0 0x73 TLS1.2
TLS ECDHE ECDSA AES 128 CBC SHA256 0xC0 0x23 TLS1.2
TLS ECDHE RSA AES 128 CBC SHA256 0xC0 0x27 TLS1.2

286

APPENDIX C. SUPPORTED CIPHERSUITES

TLS ECDHE ECDSA CAMELLIA 128 GCM SHA256 0xC0 0x86 TLS1.2
TLS ECDHE ECDSA CAMELLIA 256 GCM SHA384 0xC0 0x87 TLS1.2
TLS ECDHE ECDSA AES 128 GCM SHA256 0xC0 0x2B TLS1.2
TLS ECDHE ECDSA AES 256 GCM SHA384 0xC0 0x2C TLS1.2
TLS ECDHE RSA AES 128 GCM SHA256 0xC0 0x2F TLS1.2
TLS ECDHE RSA AES 256 GCM SHA384 0xC0 0x30 TLS1.2
TLS ECDHE ECDSA AES 256 CBC SHA384 0xC0 0x24 TLS1.2
TLS ECDHE RSA CAMELLIA 128 GCM SHA256 0xC0 0x8A TLS1.2
TLS ECDHE RSA CAMELLIA 256 GCM SHA384 0xC0 0x8B TLS1.2
TLS ECDHE RSA CHACHA20 POLY1305 0xCC 0xA8 TLS1.2
TLS ECDHE ECDSA CHACHA20 POLY1305 0xCC 0xA9 TLS1.2
TLS ECDHE ECDSA AES 128 CCM 0xC0 0xAC TLS1.2
TLS ECDHE ECDSA AES 256 CCM 0xC0 0xAD TLS1.2
TLS ECDHE ECDSA AES 128 CCM 8 0xC0 0xAE TLS1.2
TLS ECDHE ECDSA AES 256 CCM 8 0xC0 0xAF TLS1.2
TLS ECDHE PSK 3DES EDE CBC SHA1 0xC0 0x34 SSL3.0
TLS ECDHE PSK AES 128 CBC SHA1 0xC0 0x35 SSL3.0
TLS ECDHE PSK AES 256 CBC SHA1 0xC0 0x36 SSL3.0
TLS ECDHE PSK AES 128 CBC SHA256 0xC0 0x37 TLS1.2
TLS ECDHE PSK AES 256 CBC SHA384 0xC0 0x38 TLS1.2
TLS ECDHE PSK ARCFOUR 128 SHA1 0xC0 0x33 SSL3.0
TLS ECDHE PSK NULL SHA1 0xC0 0x39 SSL3.0
TLS ECDHE PSK NULL SHA256 0xC0 0x3A TLS1.2
TLS ECDHE PSK NULL SHA384 0xC0 0x3B TLS1.0
TLS ECDHE PSK CAMELLIA 128 CBC SHA256 0xC0 0x9A TLS1.2
TLS ECDHE PSK CAMELLIA 256 CBC SHA384 0xC0 0x9B TLS1.2
TLS PSK ARCFOUR 128 SHA1 0x00 0x8A SSL3.0
TLS PSK 3DES EDE CBC SHA1 0x00 0x8B SSL3.0
TLS PSK AES 128 CBC SHA1 0x00 0x8C SSL3.0
TLS PSK AES 256 CBC SHA1 0x00 0x8D SSL3.0
TLS PSK AES 128 CBC SHA256 0x00 0xAE TLS1.2
TLS PSK AES 256 GCM SHA384 0x00 0xA9 TLS1.2
TLS PSK CAMELLIA 128 GCM SHA256 0xC0 0x8E TLS1.2
TLS PSK CAMELLIA 256 GCM SHA384 0xC0 0x8F TLS1.2
TLS PSK AES 128 GCM SHA256 0x00 0xA8 TLS1.2
TLS PSK NULL SHA1 0x00 0x2C SSL3.0
TLS PSK NULL SHA256 0x00 0xB0 TLS1.2
TLS PSK CAMELLIA 128 CBC SHA256 0xC0 0x94 TLS1.2
TLS PSK CAMELLIA 256 CBC SHA384 0xC0 0x95 TLS1.2
TLS PSK AES 256 CBC SHA384 0x00 0xAF TLS1.2
TLS PSK NULL SHA384 0x00 0xB1 TLS1.2

287

TLS RSA PSK ARCFOUR 128 SHA1 0x00 0x92 TLS1.0
TLS RSA PSK 3DES EDE CBC SHA1 0x00 0x93 TLS1.0
TLS RSA PSK AES 128 CBC SHA1 0x00 0x94 TLS1.0
TLS RSA PSK AES 256 CBC SHA1 0x00 0x95 TLS1.0
TLS RSA PSK CAMELLIA 128 GCM SHA256 0xC0 0x92 TLS1.2
TLS RSA PSK CAMELLIA 256 GCM SHA384 0xC0 0x93 TLS1.2
TLS RSA PSK AES 128 GCM SHA256 0x00 0xAC TLS1.2
TLS RSA PSK AES 128 CBC SHA256 0x00 0xB6 TLS1.2
TLS RSA PSK NULL SHA1 0x00 0x2E TLS1.0
TLS RSA PSK NULL SHA256 0x00 0xB8 TLS1.2
TLS RSA PSK AES 256 GCM SHA384 0x00 0xAD TLS1.2
TLS RSA PSK AES 256 CBC SHA384 0x00 0xB7 TLS1.2
TLS RSA PSK NULL SHA384 0x00 0xB9 TLS1.2
TLS RSA PSK CAMELLIA 128 CBC SHA256 0xC0 0x98 TLS1.2
TLS RSA PSK CAMELLIA 256 CBC SHA384 0xC0 0x99 TLS1.2
TLS DHE PSK ARCFOUR 128 SHA1 0x00 0x8E SSL3.0
TLS DHE PSK 3DES EDE CBC SHA1 0x00 0x8F SSL3.0
TLS DHE PSK AES 128 CBC SHA1 0x00 0x90 SSL3.0
TLS DHE PSK AES 256 CBC SHA1 0x00 0x91 SSL3.0
TLS DHE PSK AES 128 CBC SHA256 0x00 0xB2 TLS1.2
TLS DHE PSK AES 128 GCM SHA256 0x00 0xAA TLS1.2
TLS DHE PSK NULL SHA1 0x00 0x2D SSL3.0
TLS DHE PSK NULL SHA256 0x00 0xB4 TLS1.2
TLS DHE PSK NULL SHA384 0x00 0xB5 TLS1.2
TLS DHE PSK AES 256 CBC SHA384 0x00 0xB3 TLS1.2
TLS DHE PSK AES 256 GCM SHA384 0x00 0xAB TLS1.2
TLS DHE PSK CAMELLIA 128 CBC SHA256 0xC0 0x96 TLS1.2
TLS DHE PSK CAMELLIA 256 CBC SHA384 0xC0 0x97 TLS1.2
TLS DHE PSK CAMELLIA 128 GCM SHA256 0xC0 0x90 TLS1.2
TLS DHE PSK CAMELLIA 256 GCM SHA384 0xC0 0x91 TLS1.2
TLS PSK AES 128 CCM 0xC0 0xA4 TLS1.2
TLS PSK AES 256 CCM 0xC0 0xA5 TLS1.2
TLS DHE PSK AES 128 CCM 0xC0 0xA6 TLS1.2
TLS DHE PSK AES 256 CCM 0xC0 0xA7 TLS1.2
TLS PSK AES 128 CCM 8 0xC0 0xA8 TLS1.2
TLS PSK AES 256 CCM 8 0xC0 0xA9 TLS1.2
TLS DHE PSK AES 128 CCM 8 0xC0 0xAA TLS1.2
TLS DHE PSK AES 256 CCM 8 0xC0 0xAB TLS1.2
TLS DHE PSK CHACHA20 POLY1305 0xCC 0xAD TLS1.2
TLS ECDHE PSK CHACHA20 POLY1305 0xCC 0xAC TLS1.2
TLS RSA PSK CHACHA20 POLY1305 0xCC 0xAE TLS1.2

288

APPENDIX C. SUPPORTED CIPHERSUITES

TLS PSK CHACHA20 POLY1305 0xCC 0xAB TLS1.2
TLS DH ANON ARCFOUR 128 MD5 0x00 0x18 SSL3.0
TLS DH ANON 3DES EDE CBC SHA1 0x00 0x1B SSL3.0
TLS DH ANON AES 128 CBC SHA1 0x00 0x34 SSL3.0
TLS DH ANON AES 256 CBC SHA1 0x00 0x3A SSL3.0
TLS DH ANON CAMELLIA 128 CBC SHA256 0x00 0xBF TLS1.2
TLS DH ANON CAMELLIA 256 CBC SHA256 0x00 0xC5 TLS1.2
TLS DH ANON CAMELLIA 128 CBC SHA1 0x00 0x46 SSL3.0
TLS DH ANON CAMELLIA 256 CBC SHA1 0x00 0x89 SSL3.0
TLS DH ANON AES 128 CBC SHA256 0x00 0x6C TLS1.2
TLS DH ANON AES 256 CBC SHA256 0x00 0x6D TLS1.2
TLS DH ANON AES 128 GCM SHA256 0x00 0xA6 TLS1.2
TLS DH ANON AES 256 GCM SHA384 0x00 0xA7 TLS1.2
TLS DH ANON CAMELLIA 128 GCM SHA256 0xC0 0x84 TLS1.2
TLS DH ANON CAMELLIA 256 GCM SHA384 0xC0 0x85 TLS1.2
TLS ECDH ANON NULL SHA1 0xC0 0x15 SSL3.0
TLS ECDH ANON 3DES EDE CBC SHA1 0xC0 0x17 SSL3.0
TLS ECDH ANON AES 128 CBC SHA1 0xC0 0x18 SSL3.0
TLS ECDH ANON AES 256 CBC SHA1 0xC0 0x19 SSL3.0
TLS ECDH ANON ARCFOUR 128 SHA1 0xC0 0x16 SSL3.0
TLS SRP SHA 3DES EDE CBC SHA1 0xC0 0x1A SSL3.0
TLS SRP SHA AES 128 CBC SHA1 0xC0 0x1D SSL3.0
TLS SRP SHA AES 256 CBC SHA1 0xC0 0x20 SSL3.0
TLS SRP SHA DSS 3DES EDE CBC SHA1 0xC0 0x1C SSL3.0
TLS SRP SHA RSA 3DES EDE CBC SHA1 0xC0 0x1B SSL3.0
TLS SRP SHA DSS AES 128 CBC SHA1 0xC0 0x1F SSL3.0
TLS SRP SHA RSA AES 128 CBC SHA1 0xC0 0x1E SSL3.0
TLS SRP SHA DSS AES 256 CBC SHA1 0xC0 0x22 SSL3.0
TLS SRP SHA RSA AES 256 CBC SHA1 0xC0 0x21 SSL3.0

Table C.1.: The ciphersuites table

289

D
Error Codes and Descriptions

The error codes used throughout the library are described below. The return code GNUTLS E SUCCESS

indicates a successful operation, and is guaranteed to have the value 0, so you can use it in
logical expressions.

Code Name Description
0 GNUTLS E SUCCESS Success.
-3 GNUTLS E UNKNOWN COMPRESSION -

ALGORITHM

Could not negotiate a supported compres-
sion method.

-6 GNUTLS E UNKNOWN CIPHER TYPE The cipher type is unsupported.
-7 GNUTLS E LARGE PACKET The transmitted packet is too large (EMS-

GSIZE).
-8 GNUTLS E UNSUPPORTED VERSION -

PACKET

A packet with illegal or unsupported ver-
sion was received.

-9 GNUTLS E UNEXPECTED PACKET -

LENGTH

A TLS packet with unexpected length was
received.

-10 GNUTLS E INVALID SESSION The specified session has been invalidated
for some reason.

-12 GNUTLS E FATAL ALERT RECEIVED A TLS fatal alert has been received.
-15 GNUTLS E UNEXPECTED PACKET An unexpected TLS packet was received.
-16 GNUTLS E WARNING ALERT RECEIVED A TLS warning alert has been received.
-18 GNUTLS E ERROR IN FINISHED PACKET An error was encountered at the TLS Fin-

ished packet calculation.
-19 GNUTLS E UNEXPECTED HANDSHAKE -

PACKET

An unexpected TLS handshake packet was
received.

-21 GNUTLS E UNKNOWN CIPHER SUITE Could not negotiate a supported cipher
suite.

-22 GNUTLS E UNWANTED ALGORITHM An algorithm that is not enabled was ne-
gotiated.

-23 GNUTLS E MPI SCAN FAILED The scanning of a large integer has failed.
-24 GNUTLS E DECRYPTION FAILED Decryption has failed.
-25 GNUTLS E MEMORY ERROR Internal error in memory allocation.
-26 GNUTLS E DECOMPRESSION FAILED Decompression of the TLS record packet

has failed.

291

-27 GNUTLS E COMPRESSION FAILED Compression of the TLS record packet has
failed.

-28 GNUTLS E AGAIN Resource temporarily unavailable, try
again.

-29 GNUTLS E EXPIRED The requested session has expired.
-30 GNUTLS E DB ERROR Error in Database backend.
-31 GNUTLS E SRP PWD ERROR Error in password file.
-32 GNUTLS E INSUFFICIENT CREDENTIALS Insufficient credentials for that request.
-33 GNUTLS E HASH FAILED Hashing has failed.
-34 GNUTLS E BASE64 DECODING ERROR Base64 decoding error.
-35 GNUTLS E MPI PRINT FAILED Could not export a large integer.
-37 GNUTLS E REHANDSHAKE Rehandshake was requested by the peer.
-38 GNUTLS E GOT APPLICATION DATA TLS Application data were received, while

expecting handshake data.
-39 GNUTLS E RECORD LIMIT REACHED The upper limit of record packet sequence

numbers has been reached. Wow!
-40 GNUTLS E ENCRYPTION FAILED Encryption has failed.
-43 GNUTLS E CERTIFICATE ERROR Error in the certificate.
-44 GNUTLS E PK ENCRYPTION FAILED Public key encryption has failed.
-45 GNUTLS E PK DECRYPTION FAILED Public key decryption has failed.
-46 GNUTLS E PK SIGN FAILED Public key signing has failed.
-47 GNUTLS E X509 UNSUPPORTED -

CRITICAL EXTENSION

Unsupported critical extension in X.509
certificate.

-48 GNUTLS E KEY USAGE VIOLATION Key usage violation in certificate has been
detected.

-49 GNUTLS E NO CERTIFICATE FOUND No certificate was found.
-50 GNUTLS E INVALID REQUEST The request is invalid.
-51 GNUTLS E SHORT MEMORY BUFFER The given memory buffer is too short to

hold parameters.
-52 GNUTLS E INTERRUPTED Function was interrupted.
-53 GNUTLS E PUSH ERROR Error in the push function.
-54 GNUTLS E PULL ERROR Error in the pull function.
-55 GNUTLS E RECEIVED ILLEGAL -

PARAMETER

An illegal parameter has been received.

-56 GNUTLS E REQUESTED DATA NOT -

AVAILABLE

The requested data were not available.

-57 GNUTLS E PKCS1 WRONG PAD Wrong padding in PKCS1 packet.
-58 GNUTLS E RECEIVED ILLEGAL -

EXTENSION

An illegal TLS extension was received.

-59 GNUTLS E INTERNAL ERROR GnuTLS internal error.
-60 GNUTLS E CERTIFICATE KEY -

MISMATCH

The certificate and the given key do not
match.

292

APPENDIX D. ERROR CODES AND DESCRIPTIONS

-61 GNUTLS E UNSUPPORTED -

CERTIFICATE TYPE

The certificate type is not supported.

-62 GNUTLS E X509 UNKNOWN SAN Unknown Subject Alternative name in
X.509 certificate.

-63 GNUTLS E DH PRIME UNACCEPTABLE The Diffie-Hellman prime sent by the
server is not acceptable (not long enough).

-64 GNUTLS E FILE ERROR Error while reading file.
-67 GNUTLS E ASN1 ELEMENT NOT FOUND ASN1 parser: Element was not found.
-68 GNUTLS E ASN1 IDENTIFIER NOT -

FOUND

ASN1 parser: Identifier was not found

-69 GNUTLS E ASN1 DER ERROR ASN1 parser: Error in DER parsing.
-70 GNUTLS E ASN1 VALUE NOT FOUND ASN1 parser: Value was not found.
-71 GNUTLS E ASN1 GENERIC ERROR ASN1 parser: Generic parsing error.
-72 GNUTLS E ASN1 VALUE NOT VALID ASN1 parser: Value is not valid.
-73 GNUTLS E ASN1 TAG ERROR ASN1 parser: Error in TAG.
-74 GNUTLS E ASN1 TAG IMPLICIT ASN1 parser: error in implicit tag
-75 GNUTLS E ASN1 TYPE ANY ERROR ASN1 parser: Error in type ’ANY’.
-76 GNUTLS E ASN1 SYNTAX ERROR ASN1 parser: Syntax error.
-77 GNUTLS E ASN1 DER OVERFLOW ASN1 parser: Overflow in DER parsing.
-78 GNUTLS E TOO MANY EMPTY PACKETS Too many empty record packets have been

received.
-79 GNUTLS E OPENPGP UID REVOKED The OpenPGP User ID is revoked.
-80 GNUTLS E UNKNOWN PK ALGORITHM An unknown public key algorithm was en-

countered.
-81 GNUTLS E TOO MANY HANDSHAKE -

PACKETS

Too many handshake packets have been re-
ceived.

-84 GNUTLS E NO TEMPORARY RSA -

PARAMS

No temporary RSA parameters were
found.

-86 GNUTLS E NO COMPRESSION -

ALGORITHMS

No supported compression algorithms have
been found.

-87 GNUTLS E NO CIPHER SUITES No supported cipher suites have been
found.

-88 GNUTLS E OPENPGP GETKEY FAILED Could not get OpenPGP key.
-89 GNUTLS E PK SIG VERIFY FAILED Public key signature verification has failed.
-90 GNUTLS E ILLEGAL SRP USERNAME The SRP username supplied is illegal.
-91 GNUTLS E SRP PWD PARSING ERROR Parsing error in password file.
-93 GNUTLS E NO TEMPORARY DH PARAMS No temporary DH parameters were found.
-94 GNUTLS E OPENPGP FINGERPRINT -

UNSUPPORTED

The OpenPGP fingerprint is not sup-
ported.

-95 GNUTLS E X509 UNSUPPORTED -

ATTRIBUTE

The certificate has unsupported attributes.

293

-96 GNUTLS E UNKNOWN HASH -

ALGORITHM

The hash algorithm is unknown.

-97 GNUTLS E UNKNOWN PKCS CONTENT -

TYPE

The PKCS structure’s content type is un-
known.

-98 GNUTLS E UNKNOWN PKCS BAG TYPE The PKCS structure’s bag type is un-
known.

-99 GNUTLS E INVALID PASSWORD The given password contains invalid char-
acters.

-100 GNUTLS E MAC VERIFY FAILED The Message Authentication Code verifi-
cation failed.

-101 GNUTLS E CONSTRAINT ERROR Some constraint limits were reached.
-104 GNUTLS E IA VERIFY FAILED Verifying TLS/IA phase checksum failed
-105 GNUTLS E UNKNOWN ALGORITHM The specified algorithm or protocol is un-

known.
-106 GNUTLS E UNSUPPORTED SIGNATURE -

ALGORITHM

The signature algorithm is not supported.

-107 GNUTLS E SAFE RENEGOTIATION -

FAILED

Safe renegotiation failed.

-108 GNUTLS E UNSAFE RENEGOTIATION -

DENIED

Unsafe renegotiation denied.

-109 GNUTLS E UNKNOWN SRP USERNAME The SRP username supplied is unknown.
-110 GNUTLS E PREMATURE TERMINATION The TLS connection was non-properly ter-

minated.
-201 GNUTLS E BASE64 ENCODING ERROR Base64 encoding error.
-202 GNUTLS E INCOMPATIBLE GCRYPT -

LIBRARY

The crypto library version is too old.

-203 GNUTLS E INCOMPATIBLE LIBTASN1 -

LIBRARY

The tasn1 library version is too old.

-204 GNUTLS E OPENPGP KEYRING ERROR Error loading the keyring.
-205 GNUTLS E X509 UNSUPPORTED OID The OID is not supported.
-206 GNUTLS E RANDOM FAILED Failed to acquire random data.
-207 GNUTLS E BASE64 UNEXPECTED -

HEADER ERROR

Base64 unexpected header error.

-208 GNUTLS E OPENPGP SUBKEY ERROR Could not find OpenPGP subkey.
-209 GNUTLS E CRYPTO ALREADY -

REGISTERED

There is already a crypto algorithm with
lower priority.

-210 GNUTLS E HANDSHAKE TOO LARGE The handshake data size is too large.
-211 GNUTLS E CRYPTODEV IOCTL ERROR Error interfacing with /dev/crypto
-212 GNUTLS E CRYPTODEV DEVICE ERROR Error opening /dev/crypto
-213 GNUTLS E CHANNEL BINDING NOT -

AVAILABLE

Channel binding data not available

-214 GNUTLS E BAD COOKIE The cookie was bad.
-215 GNUTLS E OPENPGP PREFERRED KEY -

ERROR

The OpenPGP key has not a preferred key
set.

294

APPENDIX D. ERROR CODES AND DESCRIPTIONS

-216 GNUTLS E INCOMPAT DSA KEY WITH -

TLS PROTOCOL

The given DSA key is incompatible with
the selected TLS protocol.

-217 GNUTLS E INSUFFICIENT SECURITY One of the involved algorithms has insuffi-
cient security level.

-292 GNUTLS E HEARTBEAT PONG -

RECEIVED

A heartbeat pong message was received.

-293 GNUTLS E HEARTBEAT PING RECEIVED A heartbeat ping message was received.
-300 GNUTLS E PKCS11 ERROR PKCS #11 error.
-301 GNUTLS E PKCS11 LOAD ERROR PKCS #11 initialization error.
-302 GNUTLS E PARSING ERROR Error in parsing.
-303 GNUTLS E PKCS11 PIN ERROR Error in provided PIN.
-305 GNUTLS E PKCS11 SLOT ERROR PKCS #11 error in slot
-306 GNUTLS E LOCKING ERROR Thread locking error
-307 GNUTLS E PKCS11 ATTRIBUTE ERROR PKCS #11 error in attribute
-308 GNUTLS E PKCS11 DEVICE ERROR PKCS #11 error in device
-309 GNUTLS E PKCS11 DATA ERROR PKCS #11 error in data
-310 GNUTLS E PKCS11 UNSUPPORTED -

FEATURE ERROR

PKCS #11 unsupported feature

-311 GNUTLS E PKCS11 KEY ERROR PKCS #11 error in key
-312 GNUTLS E PKCS11 PIN EXPIRED PKCS #11 PIN expired
-313 GNUTLS E PKCS11 PIN LOCKED PKCS #11 PIN locked
-314 GNUTLS E PKCS11 SESSION ERROR PKCS #11 error in session
-315 GNUTLS E PKCS11 SIGNATURE ERROR PKCS #11 error in signature
-316 GNUTLS E PKCS11 TOKEN ERROR PKCS #11 error in token
-317 GNUTLS E PKCS11 USER ERROR PKCS #11 user error
-318 GNUTLS E CRYPTO INIT FAILED The initialization of crypto backend has

failed.
-319 GNUTLS E TIMEDOUT The operation timed out
-320 GNUTLS E USER ERROR The operation was cancelled due to user

error
-321 GNUTLS E ECC NO SUPPORTED CURVES No supported ECC curves were found
-322 GNUTLS E ECC UNSUPPORTED CURVE The curve is unsupported
-323 GNUTLS E PKCS11 REQUESTED -

OBJECT NOT AVAILBLE

The requested PKCS #11 object is not
available

-324 GNUTLS E CERTIFICATE LIST -

UNSORTED

The provided X.509 certificate list is not
sorted (in subject to issuer order)

-325 GNUTLS E ILLEGAL PARAMETER An illegal parameter was found.
-326 GNUTLS E NO PRIORITIES WERE SET No or insufficient priorities were set.
-327 GNUTLS E X509 UNSUPPORTED -

EXTENSION

Unsupported extension in X.509 certifi-
cate.

-328 GNUTLS E SESSION EOF Peer has terminated the connection

295

-329 GNUTLS E TPM ERROR TPM error.
-330 GNUTLS E TPM KEY PASSWORD ERROR Error in provided password for key to be

loaded in TPM.
-331 GNUTLS E TPM SRK PASSWORD ERROR Error in provided SRK password for TPM.
-332 GNUTLS E TPM SESSION ERROR Cannot initialize a session with the TPM.
-333 GNUTLS E TPM KEY NOT FOUND TPM key was not found in persistent stor-

age.
-334 GNUTLS E TPM UNINITIALIZED TPM is not initialized.
-335 GNUTLS E TPM NO LIB The TPM library (trousers) cannot be

found.
-340 GNUTLS E NO CERTIFICATE STATUS There is no certificate status (OCSP).
-341 GNUTLS E OCSP RESPONSE ERROR The OCSP response is invalid
-342 GNUTLS E RANDOM DEVICE ERROR Error in the system’s randomness device.
-343 GNUTLS E AUTH ERROR Could not authenticate peer.
-344 GNUTLS E NO APPLICATION PROTOCOL No common application protocol could be

negotiated.
-345 GNUTLS E SOCKETS INIT ERROR Error in sockets initialization.
-346 GNUTLS E KEY IMPORT FAILED Failed to import the key into store.
-347 GNUTLS E INAPPROPRIATE FALLBACK A connection with inappropriate fallback

was attempted.
-348 GNUTLS E CERTIFICATE -

VERIFICATION ERROR

Error in the certificate verification.

-400 GNUTLS E SELF TEST ERROR Error while performing self checks.
-401 GNUTLS E NO SELF TEST There is no self test for this algorithm.
-402 GNUTLS E LIB IN ERROR STATE An error has been detected in the library

and cannot continue operations.
-403 GNUTLS E PK GENERATION ERROR Error in public key generation.

Table D.1.: The error codes table

296

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing

it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But
this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the conditions stated herein. The “Document”, below, refers
to any such manual or work. Any member of the public is a licensee, and is addressed as “you”. You accept the
license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with
the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in
the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words,
and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification
is available to the general public, that is suitable for revising the document straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

297

http://fsf.org/

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX
input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or
PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML
for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any
title page as such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains
XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section
name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To
“Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled
XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the

Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards

disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on

the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that
this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering
more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as
fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

298

APPENDIX D. ERROR CODES AND DESCRIPTIONS

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may
use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Docu-
ment’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year,
new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve
in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant
Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain
no material copied from the Document, you may at your option designate some or all of these sections as invariant.
To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must
be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Ver-
sion by various parties—for example, statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you
are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity

for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4
above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice,
and that you preserve all their Warranty Disclaimers.

299

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list
of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one

section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled

“Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace
the individual copies of this License in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided

you insert a copy of this License into the extracted document, and follow this License in all other respects regarding

verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on
a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation
is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less

than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document

within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must

appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms
of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4)

to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your
rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently,
if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you
of the violation by some reasonable means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or

rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a

copy of some or all of the same material does not give you any rights to use it.

300

APPENDIX D. ERROR CODES AND DESCRIPTIONS

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular

numbered version of this License “or any later version” applies to it, you have the option of following the terms and

conditions either of that specified version or of any later version that has been published (not as a draft) by the Free

Software Foundation. If the Document does not specify a version number of this License, you may choose any version

ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide

which future versions of this License can be used, that proxy’s public statement of acceptance of a version permanently

authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that publishes copy-
rightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody
can edit is an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site
means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Cor-
poration, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future
copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first published under
this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1)
had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any

time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this docu-
ment under the terms of the GNU Free Documentation License, Version 1.3 or any later version published
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and
with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alterna-
tives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

301

Bibliography

[1] NIST Special Publication 800-57, Recommendation for Key Management - Part 1: General
(Revised), March 2007.

[2] PKCS #11 Base Functionality v2.30: Cryptoki Draft 4, July 2009.

[3] ECRYPT II Yearly Report on Algorithms and Keysizes (2009-2010), 2010.

[4] J. Altman, N. Williams, and L. Zhu. Channel bindings for TLS, July 2010. Available
from http://www.ietf.org/rfc/rfc5929.

[5] R. J. Anderson. Security Engineering: A Guide to Building Dependable Distributed Sys-
tems. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 2001.

[6] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, and T. Wright. Transport
layer security (TLS) extensions, June 2003. Available from http://www.ietf.org/rfc/

rfc3546.

[7] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. OpenPGP message format,
November 2007. Available from http://www.ietf.org/rfc/rfc4880.

[8] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
RFC 5280 (Proposed Standard), May 2008. Available from http://www.ietf.org/rfc/

rfc5280.

[9] T. Dierks and E. Rescorla. The TLS protocol version 1.1, April 2006. Available from
http://www.ietf.org/rfc/rfc4346.

[10] T. Dierks and E. Rescorla. The TLS Protocol Version 1.2, August 2008. Available from
http://www.ietf.org/rfc/rfc5246.

[11] P. Eronen and H. Tschofenig. Pre-shared key ciphersuites for TLS, December 2005. Avail-
able from http://www.ietf.org/rfc/rfc4279.

[12] C. Evans and C. Palmer. Public Key Pinning Extension for HTTP, December 2011.
Available from http://tools.ietf.org/html/draft-ietf-websec-key-pinning-01.

[13] A. Freier, P. Karlton, and P. Kocher. The secure sockets layer (ssl) protocol version 3.0,
August 2011. Available from http://www.ietf.org/rfc/rfc6101.

[14] P. Gutmann. Everything you never wanted to know about PKI but were forced to find out,
2002. Available from http://www.cs.auckland.ac.nz/~pgut001/pubs/pkitutorial.

pdf.

[15] S. Hollenbeck. Transport layer security protocol compression methods, May 2004. Avail-
able from http://www.ietf.org/rfc/rfc3749.

[16] R. Housley, T. Polk, W. Ford, and D. Solo. Internet X.509 public key infrastructure

303

http://www.ietf.org/rfc/rfc5929
http://www.ietf.org/rfc/rfc3546
http://www.ietf.org/rfc/rfc3546
http://www.ietf.org/rfc/rfc4880
http://www.ietf.org/rfc/rfc5280
http://www.ietf.org/rfc/rfc5280
http://www.ietf.org/rfc/rfc4346
http://www.ietf.org/rfc/rfc5246
http://tools.ietf.org/html/draft-ietf-websec-key-pinning-01
http://www.ietf.org/rfc/rfc6101
http://www.cs.auckland.ac.nz/~pgut001/pubs/pkitutorial.pdf
http://www.cs.auckland.ac.nz/~pgut001/pubs/pkitutorial.pdf
http://www.ietf.org/rfc/rfc3749

Bibliography

certificate and certificate revocation list (CRL) profile, April 2002. Available from http:

//www.ietf.org/rfc/rfc3280.

[17] R. Khare and S. Lawrence. Upgrading to TLS within HTTP/1.1, May 2000. Available
from http://www.ietf.org/rfc/rfc2817.

[18] R. Laboratories. PKCS 12 v1.0: Personal information exchange syntax, June 1999.

[19] C. Latze and N. Mavrogiannopoulos. The TPMKEY URI Scheme, Jan-
uary 2013. Work in progress, available from http://tools.ietf.org/html/

draft-mavrogiannopoulos-tpmuri-01.

[20] A. Lenstra, X. Wang, and B. de Weger. Colliding X.509 Certificates, 2005. Available from
http://eprint.iacr.org/2005/067.

[21] M. Mathis and J. Heffner. Packetization Layer Path MTU Discovery, March 2007. Avail-
able from http://www.ietf.org/rfc/rfc4821.

[22] D. McGrew and E. Rescorla. Datagram Transport Layer Security (DTLS) Extension to
Establish Keys for the Secure Real-time Transport Protocol (SRTP), May 2010. Available
from http://www.ietf.org/rfc/rfc5764.

[23] B. Moeller. Security of CBC ciphersuites in SSL/TLS: Problems and countermeasures,
2002. Available from http://www.openssl.org/~bodo/tls-cbc.txt.

[24] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509 Internet Public
Key Infrastructure Online Certificate Status Protocol - OCSP, June 1999. Available from
http://www.ietf.org/rfc/rfc2560.

[25] M. Nystrom and B. Kaliski. PKCS 10 v1.7: certification request syntax specification,
November 2000. Available from http://www.ietf.org/rfc/rfc2986.

[26] J. Pechanec and D. J. Moffat. The PKCS 11 URI Scheme. RFC 7512 (Standards Track),
Apr. 2015.

[27] M. T. R. Seggelmann and M. Williams. Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS) Heartbeat Extension, February 2012. Available from
http://www.ietf.org/rfc/rfc6520.

[28] E. Rescola. HTTP over TLS, May 2000. Available from http://www.ietf.org/rfc/

rfc2818.

[29] E. Rescorla and N. Modadugu. Datagram transport layer security, April 2006. Available
from http://www.ietf.org/rfc/rfc4347.

[30] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov. Transport layer security (TLS) renego-
tiation indication extension, February 2010. Available from http://www.ietf.org/rfc/

rfc5746.

[31] R. L. Rivest. Can We Eliminate Certificate Revocation Lists?, Febru-
ary 1998. Available from http://people.csail.mit.edu/rivest/

Rivest-CanWeEliminateCertificateRevocationLists.pdf.

304

http://www.ietf.org/rfc/rfc3280
http://www.ietf.org/rfc/rfc3280
http://www.ietf.org/rfc/rfc2817
http://tools.ietf.org/html/draft-mavrogiannopoulos-tpmuri-01
http://tools.ietf.org/html/draft-mavrogiannopoulos-tpmuri-01
http://eprint.iacr.org/2005/067
http://www.ietf.org/rfc/rfc4821
http://www.ietf.org/rfc/rfc5764
http://www.openssl.org/~bodo/tls-cbc.txt
http://www.ietf.org/rfc/rfc2560
http://www.ietf.org/rfc/rfc2986
http://www.ietf.org/rfc/rfc6520
http://www.ietf.org/rfc/rfc2818
http://www.ietf.org/rfc/rfc2818
http://www.ietf.org/rfc/rfc4347
http://www.ietf.org/rfc/rfc5746
http://www.ietf.org/rfc/rfc5746
http://people.csail.mit.edu/rivest/Rivest-CanWeEliminateCertificateRevocationLists.pdf
http://people.csail.mit.edu/rivest/Rivest-CanWeEliminateCertificateRevocationLists.pdf

Bibliography

[32] P. Saint-Andre and J. Hodges. Representation and Verification of Domain-Based Appli-
cation Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX)
Certificates in the Context of Transport Layer Security (TLS), March 2011. Available
from http://www.ietf.org/rfc/rfc6125.

[33] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig. Transport layer security (TLS) session
resumption without server-side state, January 2008. Available from http://www.ietf.

org/rfc/rfc5077.

[34] S. Santesson. TLS Handshake Message for Supplemental Data, September 2006. Available
from http://www.ietf.org/rfc/rfc4680.

[35] W. R. Stevens. UNIX Network Programming, Volume 1. Prentice Hall, 1998.

[36] D. Taylor, T. Perrin, T. Wu, and N. Mavrogiannopoulos. Using SRP for TLS authentica-
tion, November 2007. Available from http://www.ietf.org/rfc/rfc5054.

[37] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson. Internet X.509 public
key infrastructure (PKI) proxy certificate profile, June 2004. Available from http://www.

ietf.org/rfc/rfc3820.

[38] N. Williams. On the use of channel bindings to secure channels, November 2007. Available
from http://www.ietf.org/rfc/rfc5056.

[39] T. Wu. The stanford SRP authentication project. Available from http://srp.stanford.

edu/.

[40] T. Wu. The SRP authentication and key exchange system, September 2000. Available
from http://www.ietf.org/rfc/rfc2945.

[41] K. D. Zeilenga. Lightweight Directory Access Protocol (LDAP): String Representation of
Distinguished Names, June 2006. Available from http://www.ietf.org/rfc/rfc4514.

305

http://www.ietf.org/rfc/rfc6125
http://www.ietf.org/rfc/rfc5077
http://www.ietf.org/rfc/rfc5077
http://www.ietf.org/rfc/rfc4680
http://www.ietf.org/rfc/rfc5054
http://www.ietf.org/rfc/rfc3820
http://www.ietf.org/rfc/rfc3820
http://www.ietf.org/rfc/rfc5056
http://srp.stanford.edu/
http://srp.stanford.edu/
http://www.ietf.org/rfc/rfc2945
http://www.ietf.org/rfc/rfc4514

Index

abstract types, 97
alert protocol, 9
ALPN, 17
anonymous authentication, 88
Application Layer Protocol Negotiation, 17
Application-specific keys, 105
authentication methods, 21

bad record mac, 9

callback functions, 138
certificate authentication, 21, 41
certificate requests, 41
certificate revocation lists, 44
certificate status, 47
Certificate status request, 15
Certificate verification, 38
certification, 283
certtool, 55
certtool help, 56
channel bindings, 178
ciphersuites, 285
client certificate authentication, 11
compression algorithms, 8
contributing, 282
CRL, 44

DANE, 39, 172
dane strerror, 175
dane verify crt, 175
dane verify session crt, 175
dane verify status t, 176
danetool, 77
danetool help, 77
deriving keys, 178
digital signatures, 39
DNSSEC, 39, 172
download, 1

Encrypted keys, 51
error codes, 291

example programs, 181
examples, 181
exporting keying material, 178

fork, 138

generating parameters, 177
gnutls-cli, 247
gnutls-cli help, 247
gnutls-cli-debug, 260
gnutls-cli-debug help, 261
gnutls-serv, 255
gnutls-serv help, 255
gnutls alert get, 162
gnutls alert get name, 162
gnutls alert send, 162
gnutls alpn get selected protocol, 17
gnutls alpn set protocols, 17
gnutls anon allocate client credentials, 151
gnutls anon allocate server credentials, 151
gnutls anon free client credentials, 151
gnutls anon free server credentials, 151
gnutls anon set server dh params, 177
gnutls bye, 160
gnutls certificate allocate credentials, 142
gnutls certificate free credentials, 142
gnutls certificate send x509 rdn sequence, 146
gnutls certificate server set request, 145
gnutls certificate set dh params, 177
gnutls certificate set key, 144
gnutls certificate set ocsp status request file,

15
gnutls certificate set ocsp status request function,

15
gnutls certificate set openpgp key, 143
gnutls certificate set openpgp key file, 143
gnutls certificate set openpgp key mem, 143
gnutls certificate set openpgp keyring file, 38,

146
gnutls certificate set params function, 178

307

Index

gnutls certificate set pin function, 110, 143
gnutls certificate set retrieve function, 144
gnutls certificate set retrieve function2, 144
gnutls certificate set verify function, 147
gnutls certificate set x509 crl file, 35
gnutls certificate set x509 key, 143
gnutls certificate set x509 key file2, 114, 143
gnutls certificate set x509 key mem2, 143
gnutls certificate set x509 system trust, 35,

114, 146
gnutls certificate set x509 trust dir, 35, 146
gnutls certificate set x509 trust file, 35, 114,

146
gnutls certificate status t, 91
gnutls certificate verify flags, 34, 92, 172
gnutls certificate verify peers2, 158
gnutls certificate verify peers3, 147
gnutls compression method t, 8
gnutls credentials set, 141
gnutls db check entry, 171
gnutls db set ptr, 171
gnutls db set remove function, 171
gnutls db set retrieve function, 171
gnutls db set store function, 171
gnutls deinit, 161
gnutls dh params generate2, 177
gnutls dh params import pkcs3, 177
gnutls dh set prime bits, 170
gnutls dtls cookie send, 156
gnutls dtls cookie verify, 156
gnutls dtls get data mtu, 156
gnutls dtls get mtu, 156
gnutls dtls get timeout, 154
gnutls dtls prestate set, 156
gnutls dtls set mtu, 156
gnutls error is fatal, 159
gnutls error to alert, 163
gnutls global set audit log function, 136
gnutls global set log function, 135
gnutls global set log level, 135
gnutls global set mutex, 137
gnutls handshake, 157
gnutls handshake set timeout, 157
gnutls heartbeat allowed, 13
gnutls heartbeat enable, 13
gnutls heartbeat get timeout, 13

gnutls heartbeat ping, 13
gnutls heartbeat pong, 13
gnutls heartbeat set timeouts, 13
gnutls hex decode, 87
gnutls hex encode, 87
gnutls init, 141
gnutls key generate, 87, 156
gnutls ocsp req add cert, 49
gnutls ocsp req add cert id, 49
gnutls ocsp req deinit, 49
gnutls ocsp req export, 49
gnutls ocsp req get cert id, 49
gnutls ocsp req get extension, 49
gnutls ocsp req get nonce, 50
gnutls ocsp req import, 49
gnutls ocsp req init, 49
gnutls ocsp req print, 49
gnutls ocsp req randomize nonce, 50
gnutls ocsp req set extension, 49
gnutls ocsp req set nonce, 50
gnutls ocsp resp check crt, 51
gnutls ocsp resp deinit, 50
gnutls ocsp resp export, 50
gnutls ocsp resp get single, 51
gnutls ocsp resp import, 50
gnutls ocsp resp init, 50
gnutls ocsp resp print, 50
gnutls ocsp resp verify, 51
gnutls ocsp resp verify direct, 51
gnutls ocsp status request enable client, 15
gnutls ocsp status request is checked, 15
gnutls openpgp crt verify ring, 38
gnutls openpgp crt verify self, 38
gnutls pcert deinit, 145
gnutls pcert import openpgp, 145
gnutls pcert import openpgp raw, 145
gnutls pcert import x509, 145
gnutls pcert import x509 raw, 145
gnutls pin flag t, 109
gnutls pk bits to sec param, 169
gnutls pkcs11 add provider, 109
gnutls pkcs11 copy x509 crt2, 113
gnutls pkcs11 copy x509 privkey2, 113
gnutls pkcs11 delete url, 114
gnutls pkcs11 get pin function, 109
gnutls pkcs11 init, 108

308

Index

gnutls pkcs11 obj export url, 110
gnutls pkcs11 obj get info, 111
gnutls pkcs11 obj import url, 110
gnutls pkcs11 obj set pin function, 110
gnutls pkcs11 set pin function, 109
gnutls pkcs11 set token function, 109
gnutls pkcs11 token get flags, 111
gnutls pkcs11 token get info, 111
gnutls pkcs11 token get url, 111
gnutls pkcs11 token init, 111
gnutls pkcs11 token set pin, 111
gnutls pkcs12 bag decrypt, 53
gnutls pkcs12 bag encrypt, 55
gnutls pkcs12 bag get count, 53
gnutls pkcs12 bag get data, 54
gnutls pkcs12 bag get friendly name, 54
gnutls pkcs12 bag get key id, 54
gnutls pkcs12 bag set crl, 55
gnutls pkcs12 bag set crt, 55
gnutls pkcs12 bag set data, 55
gnutls pkcs12 bag set friendly name, 55
gnutls pkcs12 bag set key id, 55
gnutls pkcs12 generate mac, 55
gnutls pkcs12 get bag, 53
gnutls pkcs12 set bag, 55
gnutls pkcs12 simple parse, 54
gnutls pkcs12 verify mac, 53
gnutls pkcs encrypt flags t, 95
gnutls priority set, 163
gnutls priority set direct, 163
gnutls privkey decrypt data, 104
gnutls privkey get pk algorithm, 101
gnutls privkey get type, 101
gnutls privkey import ext3, 102
gnutls privkey import openpgp, 101
gnutls privkey import openpgp raw, 101
gnutls privkey import pkcs11, 101
gnutls privkey import tpm raw, 126
gnutls privkey import tpm url, 127
gnutls privkey import url, 101
gnutls privkey import x509, 101
gnutls privkey import x509 raw, 52, 101
gnutls privkey set pin function, 110
gnutls privkey sign data, 103
gnutls privkey sign hash, 104
gnutls privkey status, 101

gnutls psk allocate client credentials, 149
gnutls psk allocate server credentials, 149
gnutls psk client get hint, 150
gnutls psk free client credentials, 149
gnutls psk free server credentials, 149
gnutls psk set client credentials, 149
gnutls psk set client credentials function, 150
gnutls psk set server credentials file, 150
gnutls psk set server credentials function, 150
gnutls psk set server credentials hint, 150
gnutls pubkey encrypt data, 103
gnutls pubkey export, 99
gnutls pubkey export2, 99
gnutls pubkey export dsa raw, 100
gnutls pubkey export ecc raw, 100
gnutls pubkey export ecc x962, 100
gnutls pubkey export rsa raw, 100
gnutls pubkey get key id, 100
gnutls pubkey get pk algorithm, 100
gnutls pubkey get preferred hash algorithm,

100
gnutls pubkey import, 99
gnutls pubkey import openpgp, 98
gnutls pubkey import openpgp raw, 99
gnutls pubkey import pkcs11, 98
gnutls pubkey import privkey, 99
gnutls pubkey import tpm raw, 126
gnutls pubkey import tpm url, 127
gnutls pubkey import url, 99
gnutls pubkey import x509, 98
gnutls pubkey import x509 raw, 99
gnutls pubkey set pin function, 110
gnutls pubkey verify data2, 102
gnutls pubkey verify hash2, 103
gnutls random art, 100
gnutls record check pending, 160
gnutls record cork, 161
gnutls record get direction, 155, 160
gnutls record get max size, 12
gnutls record recv, 159
gnutls record recv seq, 159
gnutls record send, 158
gnutls record set max size, 12
gnutls record uncork, 161
gnutls register custom url, 106
gnutls rehandshake, 177

309

Index

gnutls safe renegotiation status, 176
gnutls sec param get name, 170
gnutls sec param to pk bits, 169
gnutls server name get, 12
gnutls server name set, 12
gnutls session get data2, 170
gnutls session get id2, 170
gnutls session is resumed, 171
gnutls session resumption requested, 172
gnutls session set data, 170
gnutls session set verify cert, 147, 158
gnutls session ticket enable server, 172
gnutls session ticket key generate, 172
gnutls sign algorithm get requested, 144
gnutls srp allocate client credentials, 147
gnutls srp allocate server credentials, 147
gnutls srp base64 decode2, 84
gnutls srp base64 encode2, 84
gnutls srp free client credentials, 147
gnutls srp free server credentials, 147
gnutls srp set client credentials, 147
gnutls srp set client credentials function, 148
gnutls srp set prime bits, 170
gnutls srp set server credentials file, 148
gnutls srp set server credentials function, 149
gnutls srp verifier, 83
gnutls srtp get keys, 17
gnutls srtp get profile id, 17
gnutls srtp get profile name, 17
gnutls srtp get selected profile, 17
gnutls srtp profile t, 16
gnutls srtp set profile, 16
gnutls srtp set profile direct, 16
gnutls store commitment, 174
gnutls store pubkey, 173
gnutls subject alt names get, 25
gnutls subject alt names init, 25
gnutls subject alt names set, 25
gnutls system key add x509, 105
gnutls system key delete, 105
gnutls system key iter deinit, 105
gnutls system key iter get info, 105
gnutls tdb deinit, 174
gnutls tdb init, 174
gnutls tdb set store commitment func, 174
gnutls tdb set store func, 174

gnutls tdb set verify func, 174
gnutls tpm get registered, 126, 127
gnutls tpm key list deinit, 126, 127
gnutls tpm key list get url, 126, 127
gnutls tpm privkey delete, 126, 128
gnutls tpm privkey generate, 125
gnutls transport set errno, 153
gnutls transport set int, 151
gnutls transport set int2, 151
gnutls transport set ptr, 151
gnutls transport set ptr2, 151
gnutls transport set pull function, 138, 152
gnutls transport set pull timeout function, 153,

154
gnutls transport set push function, 138, 152
gnutls transport set vec push function, 152
gnutls url is supported, 100
gnutls verify stored pubkey, 173
gnutls x509 crl export, 45
gnutls x509 crl get crt count, 46
gnutls x509 crl get crt serial, 45
gnutls x509 crl get issuer dn, 46
gnutls x509 crl get issuer dn2, 46
gnutls x509 crl get next update, 46
gnutls x509 crl get this update, 46
gnutls x509 crl get version, 46
gnutls x509 crl import, 45
gnutls x509 crl init, 45
gnutls x509 crl privkey sign, 47, 103
gnutls x509 crl reason t, 95
gnutls x509 crl set authority key id, 47
gnutls x509 crl set crt, 46
gnutls x509 crl set crt serial, 46
gnutls x509 crl set next update, 46
gnutls x509 crl set number, 47
gnutls x509 crl set this update, 46
gnutls x509 crl set version, 46
gnutls x509 crl sign2, 47
gnutls x509 crq privkey sign, 103
gnutls x509 crq set basic constraints, 42
gnutls x509 crq set dn, 42
gnutls x509 crq set dn by oid, 42
gnutls x509 crq set key, 42
gnutls x509 crq set key purpose oid, 42
gnutls x509 crq set key usage, 42
gnutls x509 crq set pubkey, 104

310

Index

gnutls x509 crq set version, 42
gnutls x509 crq sign2, 42
gnutls x509 crt deinit, 24
gnutls x509 crt get authority info access, 48
gnutls x509 crt get basic constraints, 30
gnutls x509 crt get dn, 25
gnutls x509 crt get dn2, 25
gnutls x509 crt get dn by oid, 25
gnutls x509 crt get dn oid, 25
gnutls x509 crt get extension by oid2, 27
gnutls x509 crt get extension data2, 27
gnutls x509 crt get extension info, 27
gnutls x509 crt get issuer, 26
gnutls x509 crt get issuer dn, 26
gnutls x509 crt get issuer dn2, 26
gnutls x509 crt get issuer dn by oid, 26
gnutls x509 crt get issuer dn oid, 26
gnutls x509 crt get key id, 30
gnutls x509 crt get key usage, 30
gnutls x509 crt get subject, 26
gnutls x509 crt get subject alt name2, 24
gnutls x509 crt import, 24
gnutls x509 crt import pkcs11, 111
gnutls x509 crt import url, 111
gnutls x509 crt init, 24
gnutls x509 crt list import, 24
gnutls x509 crt list import2, 24
gnutls x509 crt list import pkcs11, 111
gnutls x509 crt privkey sign, 103
gnutls x509 crt set basic constraints, 30
gnutls x509 crt set key usage, 30
gnutls x509 crt set pin function, 110
gnutls x509 crt set pubkey, 104
gnutls x509 crt set subject alt name, 24
gnutls x509 dn get rdn ava, 26
gnutls x509 ext export basic constraints, 27
gnutls x509 ext export key usage, 27
gnutls x509 ext export name constraints, 28
gnutls x509 ext import basic constraints, 27
gnutls x509 ext import key usage, 27
gnutls x509 ext import name constraints, 28
gnutls x509 name constraints add excluded,

28
gnutls x509 name constraints add permitted,

28
gnutls x509 name constraints check, 28

gnutls x509 name constraints check crt, 28
gnutls x509 name constraints deinit, 28
gnutls x509 name constraints get excluded,

28
gnutls x509 name constraints get permitted,

28
gnutls x509 name constraints init, 28
gnutls x509 privkey export2 pkcs8, 53
gnutls x509 privkey export dsa raw, 31
gnutls x509 privkey export ecc raw, 31
gnutls x509 privkey export pkcs8, 53
gnutls x509 privkey export rsa raw2, 31
gnutls x509 privkey get key id, 31
gnutls x509 privkey get pk algorithm2, 31
gnutls x509 privkey import2, 52
gnutls x509 privkey import openssl, 56
gnutls x509 privkey import pkcs8, 53
gnutls x509 trust list add cas, 31
gnutls x509 trust list add crls, 32
gnutls x509 trust list add named crt, 32
gnutls x509 trust list add system trust, 34
gnutls x509 trust list add trust file, 34
gnutls x509 trust list add trust mem, 34
gnutls x509 trust list verify crt, 32
gnutls x509 trust list verify crt2, 33
gnutls x509 trust list verify named crt, 33

hacking, 282
handshake protocol, 10
hardware security modules, 107
hardware tokens, 107
heartbeat, 13

installation, 1, 2
internal architecture, 265
isolated mode, 137

key extraction, 178
Key pinning, 39, 172
key sizes, 168
keying material exporters, 178

maximum fragment length, 12

OCSP, 47
OCSP status request, 15
ocsptool, 73

311

Index

ocsptool help, 73
Online Certificate Status Protocol, 47
OpenPGP certificates, 36
OpenPGP server, 216
OpenSSL, 180
OpenSSL encrypted keys, 55

p11tool, 114
p11tool help, 115
parameter generation, 177
PCT, 20
PKCS #10, 41
PKCS #11 tokens, 107
PKCS #12, 53
PKCS #8, 52
Priority strings, 163
PSK authentication, 86
psktool, 87
psktool help, 87

reauthentication, 175
record padding, 9
record protocol, 6
renegotiation, 14, 175
reporting bugs, 282
resuming sessions, 11, 170

safe renegotiation, 14
seccomp, 137
Secure RTP, 16
server name indication, 12
session resumption, 11, 170
session tickets, 13
Smart card example, 200
smart cards, 107
SRP authentication, 83
srptool, 84
srptool help, 84
SRTP, 16
SSH-style authentication, 39, 172
SSL 2, 20
Supplemental data, 18
symmetric encryption algorithms, 6
System-specific keys, 105

thread safety, 136
tickets, 13

TLS extensions, 12, 13
TLS layers, 5
TPM, 124
tpmtool, 127
tpmtool help, 128
transport layer, 5
transport protocol, 5
Trust on first use, 39, 172
trusted platform module, 124

upgrading, 277

verifying certificate paths, 31, 34, 39
verifying certificate with pkcs11, 35

X.509 certificate name, 24
X.509 certificates, 21
X.509 distinguished name, 25
X.509 extensions, 27

312

	Preface
	Introduction to GnuTLS
	Downloading and installing
	Installing for a software distribution
	Overview

	Introduction to TLS and DTLS
	TLS Layers
	The Transport Layer
	The TLS record protocol
	Encryption algorithms used in the record layer
	Compression algorithms used in the record layer
	Weaknesses and countermeasures
	On record padding

	The TLS alert protocol
	The TLS handshake protocol
	TLS ciphersuites
	Authentication
	Client authentication
	Resuming sessions

	TLS extensions
	Maximum fragment length negotiation
	Server name indication
	Session tickets
	HeartBeat
	Safe renegotiation
	OCSP status request
	SRTP
	Application Layer Protocol Negotiation (ALPN)
	Extensions and Supplemental Data

	How to use TLS in application protocols
	Separate ports
	Upward negotiation

	On SSL 2 and older protocols

	Authentication methods
	Certificate authentication
	X.509 certificates
	OpenPGP certificates
	Advanced certificate verification
	Digital signatures

	More on certificate authentication
	PKCS #10 certificate requests
	PKIX certificate revocation lists
	OCSP certificate status checking
	Managing encrypted keys
	Invoking certtool
	Invoking ocsptool
	Invoking danetool

	Shared-key and anonymous authentication
	SRP authentication
	PSK authentication
	Anonymous authentication

	Selecting an appropriate authentication method
	Two peers with an out-of-band channel
	Two peers without an out-of-band channel
	Two peers and a trusted third party

	Abstract keys types and Hardware security modules
	Abstract key types
	Public keys
	Private keys
	Operations

	System and application-specific keys
	System-specific keys
	Application-specific keys

	Smart cards and HSMs
	Initialization
	Accessing objects that require a PIN
	Reading objects
	Writing objects
	Using a PKCS #11 token with TLS
	Invoking p11tool
	p11tool help/usage (``–help'')
	token-related-options options
	object-list-related-options options
	keygen-related-options options
	write-object-related-options options
	other-options options
	p11tool exit status
	p11tool See Also
	p11tool Examples

	Trusted Platform Module (TPM)
	Keys in TPM
	Key generation
	Using keys
	Invoking tpmtool
	tpmtool help/usage (``–help'')
	debug option (-d)
	generate-rsa option
	user option
	system option
	test-sign option
	sec-param option
	inder option
	outder option
	tpmtool exit status
	tpmtool See Also
	tpmtool Examples

	How to use GnuTLS in applications
	Introduction
	General idea
	Error handling
	Common types
	Debugging and auditing
	Thread safety
	Running in a sandbox
	Sessions and fork
	Callback functions

	Preparation
	Headers
	Initialization
	Version check
	Building the source

	Session initialization
	Associating the credentials
	Certificates
	SRP
	PSK
	Anonymous

	Setting up the transport layer
	Asynchronous operation
	DTLS sessions

	TLS handshake
	Data transfer and termination
	Buffered data transfer
	Handling alerts
	Priority strings
	Selecting cryptographic key sizes
	Advanced topics
	Session resumption
	Certificate verification
	Re-authentication
	Parameter generation
	Deriving keys for other applications/protocols
	Channel bindings
	Interoperability
	Compatibility with the OpenSSL library

	GnuTLS application examples
	Client examples
	Simple client example with X.509 certificate support
	Simple client example with SSH-style certificate verification
	Simple client example with anonymous authentication
	Simple datagram TLS client example
	Obtaining session information
	Using a callback to select the certificate to use
	Verifying a certificate
	Using a smart card with TLS
	Client with resume capability example
	Simple client example with SRP authentication
	Simple client example using the C++ API
	Helper functions for TCP connections
	Helper functions for UDP connections

	Server examples
	Echo server with X.509 authentication
	Echo server with OpenPGP authentication
	Echo server with SRP authentication
	Echo server with anonymous authentication
	DTLS echo server with X.509 authentication

	OCSP example
	Miscellaneous examples
	Checking for an alert
	X.509 certificate parsing example
	Listing the ciphersuites in a priority string
	PKCS #12 structure generation example

	Other included programs
	Invoking gnutls-cli
	Invoking gnutls-serv
	Invoking gnutls-cli-debug

	Internal Architecture of GnuTLS
	The TLS Protocol
	TLS Handshake Protocol
	TLS Authentication Methods
	TLS Extension Handling
	Cryptographic Backend

	Upgrading from previous versions
	Support
	Getting Help
	Commercial Support
	Bug Reports
	Contributing
	Certification

	Supported Ciphersuites
	Error Codes and Descriptions
	GNU Free Documentation License
	Bibliography

