This document includes text contributed by Nikos Mavrogiannopoulos, Simon
Josefsson, Daiki Ueno, Carolin Latze, Alfredo Pironti, Ted Zlatanov and Andrew
McDonald. Several corrections are due to Patrick Pelletier and Andreas Metzler.

ISBN 978-1-326-00266-4
Copyright (© 2001-2015 Free Software Foundation, Inc.
Copyright (© 2001-2015 Nikos Mavrogiannopoulos

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation
License”.

Contents

Preface xiii
1. Introduction to GnuTLS 1
1.1. Downloading and installing 1
1.2. Imstalling for a software distribution 2
1.3, Overview oL e 3

2. Introduction to TLS and DTLS 5
2.1. TLS Layers o o o i e 5
2.2. The Transport Layer 5
2.3. The TLS record protocol 6
2.3.1. Encryption algorithms used in the record layer 6

2.3.2. Compression algorithms used in the record layer 8

2.3.3. Weaknesses and countermeasures 8

2.3.4. Onrecord padding L 9

2.4. The TLS alert protocol 9
2.5. The TLS handshake protocol 10
2.5.1. TLS ciphersuites 11

2.5.2. Authentication L L 11

2.5.3. Client authentication L 11

2.5.4. Resuming sessions L oo 11

2.6. TLS extensions e 12
2.6.1. Maximum fragment length negotiation 12

2.6.2. Server name indication 12

2.6.3. Session tickets 13

2.6.4. HeartBeat 13

2.6.5. Safe renegotiation oL Lo 14

2.6.6. OCSP status request 15

2.6.7. SRTP e 16

2.6.8. Application Layer Protocol Negotiation (ALPN) 17

2.6.9. Extensions and Supplemental Data 18

2.7. How to use TLS in application protocols 18
2.7.1. Separate ports 18

2.7.2. Upward negotiation Lo 18

2.8. On SSL 2 and older protocols 20

3. Authentication methods 21
3.1. Certificate authentication L 0oL 21
3.1.1. X.509 certificates 21

3.1.2. OpenPGP certificates 36

3.1.3. Advanced certificate verification 0L 38

3.1.4. Digital signatures Lo 39

iii

Contents

iv

3.2. More on certificate authentication 0oL 41
3.2.1. PKCS #10 certificate requests oL 41
3.2.2. PKIX certificate revocation lists 44
3.2.3. OCSP certificate status checking 47
3.2.4. Managing encrypted keys L oo o 51
3.2.5. Invoking certtool 55
3.2.6. Invoking ocsptool L oL 72
3.2.7. Invoking danetool L 76

3.3. Shared-key and anonymous authentication 82
3.3.1. SRP authentication 82
3.3.2. PSK authentication 85
3.3.3. Anonymous authentication 0. 88

3.4. Selecting an appropriate authentication method 88
3.4.1. Two peers with an out-of-band channel 88
3.4.2. Two peers without an out-of-band channel 89
3.4.3. Two peers and a trusted third party 89

Abstract keys types and Hardware security modules 95

4.1. Abstract key types 95
4.1.1. Publickeys 96
4.1.2. Private keys 98
4.1.3. Operations e 100

4.2. System and application-specific keys 103
4.2.1. System-specifickeys L 103
4.2.2. Application-specific keys L Lo 103

4.3. Smart cards and HSMs. 105
4.3.1. Imitialization L L 105
4.3.2. Accessing objects that requirea PIN 107
4.3.3. Reading objects. L L 108
4.3.4. Writing objects L o 111
4.3.5. Using a PKCS #11 token with TLS 112
4.3.6. Invoking plltool L 112
4.3.7. plltool help/usage (“~=help”) 113
4.3.8. token-related-options options L Lo 115
4.3.9. object-list-related-options options 115
4.3.10. keygen-related-options options 116
4.3.11. write-object-related-options options 117
4.3.12. other-options options 119
4.3.13. plltool exit status 121
4.3.14. plltool See Also 121
4.3.15. plltool Examples 121

4.4. Trusted Platform Module (TPM) 122
4.4.1. Keysin TPM e 122
4.4.2. Key generationo o 123
4.4.3. Using keys e 124
4.4.4. Invoking tpmtool L oL 125

Contents

4.4.5. tpmtool help/usage (“-=help”) 126
4.4.6. debugoption (-d) 127
4.4.7. generate-rsa optionol 127
4.4.8. useroption 127
4.4.9. systemoption 127
4.4.10. test-sign option 128
4.4.11. sec-param option oL Lo e 128
4.4.12. inder option L. 128
4.4.13. outder option 128
4.4.14. tpmtool exit statuso 128
4.4.15. tpmtool See Also 128
4.4.16. tpmtool Examples oL 129

5. How to use GnuTLS in applications 131
5.1. Introduction L 131
5.1.1. General idea 131
5.1.2. Error handling 132
5.1.3. Common types i o e e 133
5.1.4. Debugging and auditing L Lo Lo 133
5.1.5. Thread safety 134
5.1.6. Running in asandbox L oo 135
5.1.7. Sessionsand fork L oL 136
5.1.8. Callback functions 136

5.2. Preparation Lo 137
5.2.1. Headers e 137
5.2.2. Inmitialization 137
5.2.3. Version check L 137
5.2.4. Building the source Lo 138

5.3. Session initialization L oL L 138
5.4. Associating the credentials oL o 140
5.4.1. Certificates 140
54.2. SRP . . . 145
54.3. PSK . . . 147
5.4.4. Anonymous 148

5.5. Setting up the transport layer Lo oo 149
5.5.1. Asynchronous operation L. 152
5.5.2. DTLS sessions« .o i i i it 153

5.6. TLS handshake 154
5.7. Data transfer and termination 156
5.8. Buffered data transfer L o o 159
5.9. Handling alerts 159
5.10. Priority strings L 161
5.11. Selecting cryptographic key sizes oo oL 166
5.12. Advanced topics 168
5.12.1. Session resumption Lo 168
5.12.2. Certificate verification Lo 170

Contents

5.12.3. Re-authentication 0oL
5.12.4. Parameter generation L Lo
5.12.5. Deriving keys for other applications/protocols
5.12.6. Channel bindings
5.12.7. Interoperabilityo
5.12.8. Compatibility with the OpenSSL library

6. GnuTLS application examples

vi

6.1.

6.2.

6.3.
6.4.

Client examples e
6.1.1. Simple client example with X.509 certificate support
6.1.2. Simple client example with SSH-style certificate verification
6.1.3. Simple client example with anonymous authentication
6.1.4. Simple datagram TLS client example
6.1.5. Obtaining session information 0.
6.1.6. Using a callback to select the certificate touse
6.1.7. Verifying a certificate o o o
6.1.8. Using a smart card with TLS
6.1.9. Client with resume capability example
6.1.10. Simple client example with SRP authentication
6.1.11. Simple client example using the C++ API.
6.1.12. Helper functions for TCP connections
6.1.13. Helper functions for UDP connections
Server examples L.
6.2.1. Echo server with X.509 authentication
6.2.2. Echo server with OpenPGP authentication
6.2.3. Echo server with SRP authentication
6.2.4. Echo server with anonymous authentication
6.2.5. DTLS echo server with X.509 authentication
OCSP example e
Miscellaneous exampleso
6.4.1. Checking for analert L
6.4.2. X.509 certificate parsing exampleo
6.4.3. Listing the ciphersuites in a priority string
6.4.4. PKCS #12 structure generation example

Other included programs

7.1.
7.2.
7.3.

Invoking gnutls-cli L
Invoking gnutls-serv
Invoking gnutls-cli-debug Lo

Internal Architecture of GnuTLS

8.1.
8.2.
8.3.
8.4.
8.5.

The TLS Protocol
TLS Handshake Protocol
TLS Authentication Methods
TLS Extension Handling
Cryptographic Backend oo

179
179
179
182
184
186
189
191
196
198
201
204
207
208
209
211
211
214
218
221
224
232
237
237
238
240
242

245
245
253
258

Contents

A. Upgrading from previous versions 275
B. Support 279
B.1. Getting Help 279
B.2. Commercial Support 279
B.3. Bug Reportso 280
B.4. Contributing e 280
B.5. Certification e e e e 281
C. Supported Ciphersuites 283
D. Error Codes and Descriptions 289
GNU Free Documentation License 295
Bibliography 303

vii

2.1.
2.2.
2.3.
2.4.
2.5.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.
3.11.
3.12.

4.1.

o.1.
5.2.
5.3.
5.4.
9.5.
5.6.
5.7.
5.8.

C.1.

D.1.

List of Tables

Supported ciphers. 7
Supported MAC algorithms. L 7
Supported compression algorithms 0oL 8
The TLS alert table 10
Supported SRTP profiles o 16
Supported key exchange algorithms. L. 22
X.509 certificate fields. L 22
Supported X.509 certificate extensions. L 29
The gnutls_certificate_status_t enumeration.. 90
The gnutls_certificate_verify flags enumeration. 91
Key purpose object identifiers. oo L 92
OpenPGP certificate fields. oL 92
The types of (sub)keys required for the various TLS key exchange methods. . . 92
Certificate revocation list fields. 93
The most important OCSP response fields. 93
The revocation reasons o 94
Encryption flags oo 94
The gnutls_pin flag t enumeration. 107
Environment variables used by the library.00 0L 134
Key exchange algorithms and the corresponding credential types. 140
Supported initial keywords.o 162
The supported algorithm keywords in priority strings. 163
Special priority string keywords.o 0oL 164
More priority string keywords. oL L oo 165
Key sizes and security parameters. L oL 166
The DANE verification status flags. 174
The ciphersuites table oo 287
The error codes table L 294

ix

2.1.

3.1.
3.2.

4.1.

5.1.

8.1.
8.2.
8.3.
8.4.

List of Figures

The TLS protocol layers. o 6
An example of the X.509 hierarchical trust model. 23
An example of the OpenPGP trust model. 36
PKCS #11 module usage. 105
High level design of GnuTLS. 132
TLS protocol use case. v vt i 263
GnuTLS handshake state machine. 264
GnuTLS handshake process sequence. 264
GnuTLS cryptographic back-end design. 272

xi

Preface

This document demonstrates and explains the GnuTLS library API. A brief introduction to
the protocols and the technology involved is also included so that an application programmer
can better understand the GnuTLS purpose and actual offerings. Even if GnuTLS is a typical
library software, it operates over several security and cryptographic protocols which require the
programmer to make careful and correct usage of them. Otherwise it is likely to only obtain
a false sense of security. The term of security is very broad even if restricted to computer
software, and cannot be confined to a single cryptographic library. For that reason, do not
consider any program secure just because it uses GnuTLS; there are several ways to compromise
a program or a communication line and GnuTLS only helps with some of them.

Although this document tries to be self contained, basic network programming and public key
infrastructure (PKI) knowledge is assumed in most of it. A good introduction to networking
can be found in [35], to public key infrastructure in [14] and to security engineering in [5].

Updated versions of the GnuTLS software and this document will be available from http:
//www.gnutls.org/.

xiii

http://www.gnutls.org/
http://www.gnutls.org/

Introduction to GnuTLS

In brief GnuTLS can be described as a library which offers an API to access secure commu-
nication protocols. These protocols provide privacy over insecure lines, and were designed to
prevent eavesdropping, tampering, or message forgery.

Technically GnuTLS is a portable ANSI C based library which implements the protocols rang-
ing from SSL 3.0 to TLS 1.2 (see chapter 2, for a detailed description of the protocols), accompa-
nied with the required framework for authentication and public key infrastructure. Important
features of the GnuTLS library include:

e Support for TLS 1.2, TLS 1.1, TLS 1.0 and SSL 3.0 protocols.

Support for Datagram TLS 1.0 and 1.2.

Support for handling and verification of X.509 and OpenPGP certificates.

Support for password authentication using TLS-SRP.

Support for keyed authentication using TLS-PSK.

Support for TPM, PKCS #11 tokens and smart-cards.

The GnuTLS library consists of three independent parts, namely the “TLS protocol part”,
the “Certificate part”, and the “Cryptographic back-end” part. The “TLS protocol part” is
the actual protocol implementation, and is entirely implemented within the GnuTLS library.
The “Certificate part” consists of the certificate parsing, and verification functions and it uses
functionality from the libtasnl library. The “Cryptographic back-end” is provided by the nettle
and gmplib libraries.

1.1. Downloading and installing

GnuTLS is available for download at: http://www.gnutls.org/download.html

GnuTLS uses a development cycle where even minor version numbers indicate a stable release
and a odd minor version number indicate a development release. For example, GnuTLS 1.6.3
denote a stable release since 6 is even, and GnuTLS 1.7.11 denote a development release since
7 is odd.

http://www.gnutls.org/download.html

1.2. INSTALLING FOR A SOFTWARE DISTRIBUTION

GnuTLS depends on nettle and gmplib, and you will need to install it before installing
GnuTLS. The nettle library is available from http: //www.lysator.liu.se/~nisse/nettle/,
while gmplib is available from http://www.gmplib.org/. Don’t forget to verify the crypto-
graphic signature after downloading source code packages.

The package is then extracted, configured and built like many other packages that use Autoconf.
For detailed information on configuring and building it, refer to the “INSTALL” file that is part
of the distribution archive. Typically you invoke ./configure and then make check install.
There are a number of compile-time parameters, as discussed below.

Several parts of GnuTLS require ASN.1 functionality, which is provided by a library called
libtasnl. A copy of libtasnl is included in GnuTLS. If you want to install it separately (e.g.,
to make it possibly to use libtasnl in other programs), you can get it from http://www.gnu.
org/software/libtasnl/.

The compression library, 1ibz, the PKCS #11 helper library pli-kit, the TPM library
trousers, as well as the IDN library 1ibidn! are optional dependencies. Check the README
file in the distribution on how to obtain these libraries.

A few configure options may be relevant, summarized below. They disable or enable partic-
ular features, to create a smaller library with only the required features. Note however, that
although a smaller library is generated, the included programs are not guaranteed to compile
if some of these options are given.

-—disable-srp-authentication
--disable-psk-authentication
--disable-anon-authentication
--disable-openpgp-authentication
--disable-dhe

-—disable-ecdhe
--disable-openssl-compatibility
--disable-dtls-srtp-support
--disable-alpn-support
--disable-heartbeat-support
-—disable-libdane
--without-pl1-kit

--without-tpm

--without-zlib

For the complete list, refer to the output from configure --help.

1.2. Installing for a software distribution

When installing for a software distribution, it is often desirable to preconfigure GnuTLS with
the system-wide paths and files. There two important configuration options, one sets the trust

INeeded to use RFC6125 name comparison in internationalized domains.

http://www.lysator.liu.se/~nisse/nettle/
http://www.gmplib.org/
http://www.gnu.org/software/libtasn1/
http://www.gnu.org/software/libtasn1/

CHAPTER 1. INTRODUCTION TO GNUTLS

store in system, which are the CA certificates to be used by programs by default (if they
don’t override it), and the other sets to DNSSEC root key file used by unbound for DNSSEC
verification.

For the latter the following configuration option is available, and if not specified GnuTLS will
try to auto-detect the location of that file.

--with-unbound-root-key-file

To set the trust store the following options are available.

—--with-default-trust-store-file
—-with-default-trust-store-dir
--with-default-trust-store-pkcsil

The first option is used to set a PEM file which contains a list of trusted certificates, while the
second will read all certificates in the given path. The recommended option is the last, which
allows to use a PKCS #11 trust policy module. That module not only provides the trusted
certificates, but allows the categorization of them using purpose, e.g., CAs can be restricted
for e-mail usage only, or administrative restrictions of CAs, for examples by restricting a CA
to only issue certificates for a given DNS domain using NameConstraints. A publicly available
PKCS #11 trust module is pl1-kit’s trust module?.

1.3. Overview

In this document we present an overview of the supported security protocols in chapter 2,
and continue by providing more information on the certificate authentication in section 3.1,
and shared-key as well anonymous authentication in section 3.3. We elaborate on certificate
authentication by demonstrating advanced usage of the API in section 3.2. The core of the
TLS library is presented in chapter 5 and example applications are listed in chapter 6. In
chapter 7 the usage of few included programs that may assist debugging is presented. The last
chapter is chapter 8 that provides a short introduction to GnuTLS’ internal architecture.

2http://pli-glue.freedesktop.org/doc/pil-kit/trust-module.html

http://p11-glue.freedesktop.org/doc/p11-kit/trust-module.html

Introduction to TLS and DTLS

TLS stands for “Transport Layer Security” and is the successor of SSL, the Secure Sockets
Layer protocol [13] designed by Netscape. TLS is an Internet protocol, defined by IETF?!,
described in [10]. The protocol provides confidentiality, and authentication layers over any
reliable transport layer. The description, above, refers to TLS 1.0 but applies to all other TLS
versions as the differences between the protocols are not major.

The DTLS protocol, or “Datagram TLS” [29] is a protocol with identical goals as TLS, but
can operate under unreliable transport layers such as UDP. The discussions below apply to
this protocol as well, except when noted otherwise.

2.1. TLS Layers

TLS is a layered protocol, and consists of the record protocol, the handshake protocol and the
alert protocol. The record protocol is to serve all other protocols and is above the transport
layer. The record protocol offers symmetric encryption, data authenticity, and optionally
compression. The alert protocol offers some signaling to the other protocols. It can help
informing the peer for the cause of failures and other error conditions. section 2.4, for more
information. The alert protocol is above the record protocol.

The handshake protocol is responsible for the security parameters’ negotiation, the initial key
exchange and authentication. section 2.5, for more information about the handshake protocol.
The protocol layering in TLS is shown in Figure 2.1.

2.2. The Transport Layer

TLS is not limited to any transport layer and can be used above any transport layer, as long as
it is a reliable one. DTLS can be used over reliable and unreliable transport layers. GnuTLS
supports TCP and UDP layers transparently using the Berkeley sockets API. However, any
transport layer can be used by providing callbacks for GnuTLS to access the transport layer
(for details see section 5.5).

HETF, or Internet Engineering Task Force, is a large open international community of network designers,
operators, vendors, and researchers concerned with the evolution of the Internet architecture and the smooth
operation of the Internet. It is open to any interested individual.

2.3. THE TLS RECORD PROTOCOL

— —

'IID'LStHar;dshake TLS Alert Application
rotoco Protocol Protocol

—_— ———

TLS Record
Protocol

—_—— ————

Transport Layer

Figure 2.1.: The TLS protocol layers.

2.3. The TLS record protocol

The record protocol is the secure communications provider. Its purpose is to encrypt, authen-
ticate and —optionally— compress packets. The record layer functions can be called at any
time after the handshake process is finished, when there is need to receive or send data. In
DTLS however, due to re-transmission timers used in the handshake out-of-order handshake

data might be received for some time (maximum 60 seconds) after the handshake process is
finished.

The functions to access the record protocol are limited to send and receive functions, which
might, given the importance of this protocol in TLS, seem awkward. This is because the record
protocol’s parameters are all set by the handshake protocol. The record protocol initially starts
with NULL parameters, which means no encryption, and no MAC is used. Encryption and
authentication begin just after the handshake protocol has finished.

2.3.1. Encryption algorithms used in the record layer

Confidentiality in the record layer is achieved by using symmetric block encryption algorithms
like 3DES, AES or stream algorithms like ARCFOUR_128. Ciphers are encryption algorithms
that use a single, secret, key to encrypt and decrypt data. Block algorithms in CBC mode
also provide protection against statistical analysis of the data. Thus, if you're using the TLS
protocol, a random number of blocks will be appended to data, to prevent eavesdroppers from
guessing the actual data size.

The supported in GnuTLS ciphers and MAC algorithms are shown in Table 2.1 and Table 2.2.

CHAPTER 2. INTRODUCTION TO TLS AND DTLS

|

Algorithm

Description ‘

AES_CBC

AES or RIJNDAEL is the block cipher algorithm that replaces the
old DES algorithm. Has 128 bits block size and is used in CBC

mode.

AES_GCM

This is the AES algorithm in the authenticated encryption GCM
mode. This mode combines message authentication and encryp-
tion and can be extremely fast on CPUs that support hardware
acceleration.

AES_CCM

This is the AES algorithm in the authenticated encryption CCM
mode. This mode combines message authentication and encryp-
tion and is often used by systems without AES or GCM accelera-
tion support.

AES_CCM_8

This is the AES algorithm in the authenticated encryption CCM
mode with a truncated to 64-bit authentication tag. This mode is
for communication with restricted systems.

CAMELLIA_CBC

This is an 128-bit block cipher developed by Mitsubishi and NTT.
It is one of the approved ciphers of the European NESSIE and
Japanese CRYPTREC projects.

CHACHA20._-
POLY1305

CHACHA20-POLY1305 is an authenticated encryption algorithm
based on CHACHAZ20 cipher and POLY1305 MAC. CHACHA20
is a refinement of SALSA20 algorithm, an approved cipher by the
European ESTREAM project. POLY1305 is Wegman-Carter, one-
time authenticator. The combination provides a fast stream cipher

suitable for systems where a hardware AES accelerator is not avail-
able.

3DES_CBC

This is the DES block cipher algorithm used with triple encryption
(EDE). Has 64 bits block size and is used in CBC mode.

ARCFOUR_ 128

ARCFOUR-128 is a compatible algorithm with RSA’s RC4 algo-
rithm, which is considered to be a trade secret. It is a fast cipher
but considered weak today, and thus it is not enabled by default.

Table 2.1.: Supported ciphers.

Algorithm \ Description ‘

MAC_MD5 This is an HMAC based on MD5 a cryptographic hash algorithm
designed by Ron Rivest. Outputs 128 bits of data.

MAC_SHA1 An HMAC based on the SHA1 cryptographic hash algorithm de-
signed by NSA. Outputs 160 bits of data.

MAC_SHA256 An HMAC based on SHA256. Outputs 256 bits of data.

MAC_AEAD This indicates that an authenticated encryption algorithm, such

as GCM, is in use.

Table 2.2.: Supported MAC algorithms.

2.3. THE TLS RECORD PROTOCOL

2.3.2. Compression algorithms used in the record layer

The TLS record layer also supports compression. The algorithms implemented in GnuTLS can
be found in the table below. The included algorithms perform really good when text, or other
compressible data are to be transferred, but offer nothing on already compressed data, such as
compressed images, zipped archives etc. These compression algorithms, may be useful in high
bandwidth TLS tunnels, and in cases where network usage has to be minimized. It should be
noted however that compression increases latency.

The record layer compression in GnuTLS is implemented based on [15]. The supported algo-
rithms are shown below.

enum gnutls_compression_method_t:

GNUTLS_COMP_UNKNOWN Unknown compression method.
GNUTLS_COMP_NULL The NULL compression method (no compression).
GNUTLS_COMP_DEFLATE The DEFLATE compression method from zlib.
GNUTLS_COMP_ZLIB Same as GNUTLS_COMP_DEFLATE.

Table 2.3.: Supported compression algorithms

Note that compression enables attacks such as traffic analysis, or even plaintext recovery under
certain circumstances. To avoid some of these attacks GnuTLS allows each record to be com-
pressed independently (i.e., stateless compression), by using the ” %STATELESS_ COMPRESSION”
priority string, in order to be used in cases where the attacker controlled data are pt in separate
records.

2.3.3. Weaknesses and countermeasures

Some weaknesses that may affect the security of the record layer have been found in TLS 1.0
protocol. These weaknesses can be exploited by active attackers, and exploit the facts that

1. TLS has separate alerts for “decryption_failed” and “bad_record_mac”
2. The decryption failure reason can be detected by timing the response time.
3. The IV for CBC encrypted packets is the last block of the previous encrypted packet.

Those weaknesses were solved in TLS 1.1 [9] which is implemented in GnuTLS. For this reason
we suggest to always negotiate the highest supported TLS version with the peer?. For a detailed
discussion of the issues see the archives of the TLS Working Group mailing list and [23].

2If this is not possible then please consult subsection 5.12.7.

CHAPTER 2. INTRODUCTION TO TLS AND DTLS

2.3.4. On record padding

The TLS protocol allows for extra padding of records in CBC ciphers, to prevent statistical
analysis based on the length of exchanged messages (see [10] section 6.2.3.2). GnuTLS appears
to be one of few implementations that take advantage of this feature: the user can provide some
plaintext data with a range of lengths she wishes to hide, and GnuTLS adds extra padding
to make sure the attacker cannot tell the real plaintext length is in a range smaller than
the user-provided one. Use gnutls_record_send range to send length-hidden messages and
gnutls_record_can_use_length hiding to check whether the current session supports length
hiding. Using the standard gnutls_record_send will only add minimal padding.

The TLS implementation in the Symbian operating system, frequently used by Nokia and Sony-
Ericsson mobile phones, cannot handle non-minimal record padding. What happens when one
of these clients handshake with a GnuTLS server is that the client will fail to compute the
correct MAC for the record. The client sends a TLS alert (bad_record mac) and disconnects.
Typically this will result in error messages such as A TLS fatal alert has been received’, 'Bad
record MAC’, or both, on the GnuTLS server side.

If compatibility with such devices is a concern, not sending length-hidden messages solves the
problem by using minimal padding.

If you implement an application that has a configuration file, we recommend that you make it
possible for users or administrators to specify a GnuTLS protocol priority string, which is used
by your application via gnutls_priority_set. To allow the best flexibility, make it possible
to have a different priority string for different incoming IP addresses.

2.4. The TLS alert protocol

The alert protocol is there to allow signals to be sent between peers. These signals are mostly
used to inform the peer about the cause of a protocol failure. Some of these signals are used
internally by the protocol and the application protocol does not have to cope with them (e.g.
GNUTLS_A_CLOSE_NOTIFY), and others refer to the application protocol solely (e.g. GNUTLS_A_-
USER_CANCELLED). An alert signal includes a level indication which may be either fatal or warn-
ing. Fatal alerts always terminate the current connection, and prevent future re-negotiations
using the current session ID. All alert messages are summarized in the table below.

The alert messages are protected by the record protocol, thus the information that is included
does not leak. You must take extreme care for the alert information not to leak to a possible
attacker, via public log files etc.

Alert 1D Description
GNUTLS_A_CLOSE_NOTIFY 0 Close notify
GNUTLS_A_UNEXPECTED_MESSAGE 10 Unexpected message
GNUTLS_A_.BAD_RECORD_MAC 20 Bad record MAC
GNUTLS_A_DECRYPTION_FAILED 21 Decryption failed

2.5. THE TLS HANDSHAKE PROTOCOL

GNUTLS_A_RECORD_OVERFLOW
GNUTLS_-A_DECOMPRESSION_FAILURE
GNUTLS_A_HANDSHAKE_FAILURE
GNUTLS_A_SSL3_NO_CERTIFICATE
GNUTLS_A_BAD_CERTIFICATE
GNUTLS_A_UNSUPPORTED_CERTIFICATE
GNUTLS_A_CERTIFICATE_REVOKED
GNUTLS_A_CERTIFICATE_EXPIRED
GNUTLS_A_CERTIFICATE_UNKNOWN
GNUTLS_A_ILLEGAL_PARAMETER
GNUTLS_A_UNKNOWN_CA
GNUTLS_A_ACCESS_DENIED
GNUTLS_A_DECODE_ERROR
GNUTLS_A_DECRYPT_ERROR
GNUTLS_A_EXPORT_RESTRICTION
GNUTLS_A_PROTOCOL_VERSION
GNUTLS_A_INSUFFICIENT_SECURITY
GNUTLS_A_INTERNAL_ERROR
GNUTLS_A_INAPPROPRIATE_FALLBACK
GNUTLS_A_USER_CANCELED
GNUTLS_A_NO_RENEGOTIATION
GNUTLS_A_UNSUPPORTED_EXTENSION

GNUTLS_A_CERTIFICATE_UNOBTAINABLE

GNUTLS_A_UNRECOGNIZED_NAME

GNUTLS_A_UNKNOWN_PSK_IDENTITY

GNUTLS_A_NO_APPLICATION_PROTOCOL

22 Record overflow

30 Decompression failed

40 Handshake failed

41 No certificate (SSL 3.0)

42 Certificate is bad

43 Certificate is not supported

44 Certificate was revoked

45 Certificate is expired

46 Unknown certificate

47 Illegal parameter

48 CA is unknown

49 Access was denied

50 Decode error

51 Decrypt error

60 Export restriction

70 Error in protocol version

71 Insufficient security

80 Internal error

86 Inappropriate fallback

90 User canceled

100 No renegotiation is allowed

110 An unsupported extension was
sent

111 Could not retrieve the specified
certificate

112 The server name sent was not
recognized

115 The SRP/PSK username is
missing or not known

120 No supported application proto-
col could be negotiated

Table 2.4.: The TLS alert table

2.5. The TLS handshake protocol

The handshake protocol is responsible for the ciphersuite negotiation, the initial key exchange,

and the authentication of the two peers.

This is fully controlled by the application layer,

thus your program has to set up the required parameters. The main handshake function is
gnutls_handshake. In the next paragraphs we elaborate on the handshake protocol, i.e., the

ciphersuite negotiation.

10

CHAPTER 2. INTRODUCTION TO TLS AND DTLS

2.5.1. TLS ciphersuites

The handshake protocol of TLS negotiates cipher suites of a special form illustrated by the
TLS_DHE_RSA_WITH_3DES_CBC_SHA cipher suite name. A typical cipher suite contains these pa-
rameters:

e The key exchange algorithm. DHE_RSA in the example.
e The Symmetric encryption algorithm and mode 3DES_CBC in this example.
e The MAC? algorithm used for authentication. MAC_SHA is used in the above example.

The cipher suite negotiated in the handshake protocol will affect the record protocol, by en-
abling encryption and data authentication. Note that you should not over rely on TLS to
negotiate the strongest available cipher suite. Do not enable ciphers and algorithms that you
consider weak.

All the supported ciphersuites are listed in Appendix C.

2.5.2. Authentication

The key exchange algorithms of the TLS protocol offer authentication, which is a prerequisite
for a secure connection. The available authentication methods in GnuTLS follow.

Certificate authentication: Authenticated key exchange using public key infrastructure
and certificates (X.509 or OpenPGP).

SRP authentication: Authenticated key exchange using a password.

PSK authentication: Authenticated key exchange using a pre-shared key.

e Anonymous authentication: Key exchange without peer authentication.

2.5.3. Client authentication

In the case of ciphersuites that use certificate authentication, the authentication of the client
is optional in TLS. A server may request a certificate from the client using the gnutls_-
certificate_server_set_request function. We elaborate in subsection 5.4.1.

2.5.4. Resuming sessions

The TLS handshake process performs expensive calculations and a busy server might easily
be put under load. To reduce the load, session resumption may be used. This is a feature
of the TLS protocol which allows a client to connect to a server after a successful handshake,
without the expensive calculations. This is achieved by re-using the previously established

3MAC stands for Message Authentication Code. It can be described as a keyed hash algorithm. See RFC2104.

11

2.6. TLS EXTENSIONS

keys, meaning the server needs to store the state of established connections (unless session
tickets are used — subsection 2.6.3).

Session resumption is an integral part of GnuTLS, and subsection 5.12.1, subsection 6.1.9
illustrate typical uses of it.

2.6. TLS extensions

A number of extensions to the TLS protocol have been proposed mainly in [6]. The extensions
supported in GnuTLS are discussed in the subsections that follow.

2.6.1. Maximum fragment length negotiation

This extension allows a TLS implementation to negotiate a smaller value for record packet
maximum length. This extension may be useful to clients with constrained capabilities. The
functions shown below can be used to control this extension.

size_t gnutls_record_get_max_size (gnutls_session_t session)

ssize-t gnutls_record_set_max_size (gnutls_session_t session, size_t size)

2.6.2. Server name indication

A common problem in HTTPS servers is the fact that the TLS protocol is not aware of the
hostname that a client connects to, when the handshake procedure begins. For that reason the
TLS server has no way to know which certificate to send.

This extension solves that problem within the TLS protocol, and allows a client to send the
HTTP hostname before the handshake begins within the first handshake packet. The functions
gnutls_server_name_set and gnutls_server_name_get can be used to enable this extension,
or to retrieve the name sent by a client.

int gnutls_server_name_set (gnutls_session_t session, gnutls_server_name_type_t
type, const void * name, size.t name_length)

int gnutls_server_name_get (gnutls_session_t session, wvoid * data, size_t
data_length, unsigned int * type, unsigned int indx)

12

CHAPTER 2. INTRODUCTION TO TLS AND DTLS

2.6.3. Session tickets

To resume a TLS session, the server normally stores session parameters. This complicates
deployment, and can be avoided by delegating the storage to the client. Because session
parameters are sensitive they are encrypted and authenticated with a key only known to the
server and then sent to the client. The Session Tickets extension is described in RFC 5077 [33].

A disadvantage of session tickets is that they eliminate the effects of forward secrecy when a
server uses the same key for long time. That is, the secrecy of all sessions on a server using
tickets depends on the ticket key being kept secret. For that reason server keys should be
rotated and discarded regularly.

Since version 3.1.3 GnuTLS clients transparently support session tickets, unless forward secrecy
is explicitly requested (with the PFS priority string).

2.6.4. HeartBeat

This is a TLS extension that allows to ping and receive confirmation from the peer, and is
described in [27]. The extension is disabled by default and gnutls_heartbeat_enable can be
used to enable it. A policy may be negotiated to only allow sending heartbeat messages or
sending and receiving. The current session policy can be checked with gnutls_heartbeat_-
allowed. The requests coming from the peer result to GNUTLS_E_HEARTBEAT PING_RECEIVED
being returned from the receive function. Ping requests to peer can be send via gnutls_-
heartbeat_ping.

int gnutls_heartbeat_allowed (gnutls_session_t session, unsigned int type)

void gnutls_heartbeat_enable (gnutls_session_t session, unsigned int type)

int gnutls_heartbeat_ping (gnutls_session_t session, size_.t data_size, unsigned int
max_tries, unsigned int flags)

int gnutls_heartbeat_pong (gnutls_session_t session, unsigned int flags)

void gnutls_heartbeat_set_timeouts (gnutls_session_t session, unsigned int re-
trans_timeout, unsigned int total_timeout)

unsigned int gnutls_heartbeat_get_timeout (gnutls_session_t session)

13

2.6. TLS EXTENSIONS

2.6.5. Safe renegotiation

TLS gives the option to two communicating parties to renegotiate and update their security
parameters. One useful example of this feature was for a client to initially connect using
anonymous negotiation to a server, and the renegotiate using some authenticated ciphersuite.
This occurred to avoid having the client sending its credentials in the clear.

However this renegotiation, as initially designed would not ensure that the party one is renego-
tiating is the same as the one in the initial negotiation. For example one server could forward
all renegotiation traffic to an other server who will see this traffic as an initial negotiation
attempt.

This might be seen as a valid design decision, but it seems it was not widely known or under-
stood, thus today some application protocols use the TLS renegotiation feature in a manner
that enables a malicious server to insert content of his choice in the beginning of a TLS session.

The most prominent vulnerability was with HT'TPS. There servers request a renegotiation to
enforce an anonymous user to use a certificate in order to access certain parts of a web site.
The attack works by having the attacker simulate a client and connect to a server, with server-
only authentication, and send some data intended to cause harm. The server will then require
renegotiation from him in order to perform the request. When the proper client attempts to
contact the server, the attacker hijacks that connection and forwards traffic to the initial server
that requested renegotiation. The attacker will not be able to read the data exchanged between
the client and the server. However, the server will (incorrectly) assume that the initial request
sent by the attacker was sent by the now authenticated client. The result is a prefix plain-text
injection attack.

The above is just one example. Other vulnerabilities exists that do not rely on the TLS
renegotiation to change the client’s authenticated status (either TLS or application layer).

While fixing these application protocols and implementations would be one natural reaction,
an extension to TLS has been designed that cryptographically binds together any renegotiated
handshakes with the initial negotiation. When the extension is used, the attack is detected
and the session can be terminated. The extension is specified in [30].

GnuTLS supports the safe renegotiation extension. The default behavior is as follows. Clients
will attempt to negotiate the safe renegotiation extension when talking to servers. Servers
will accept the extension when presented by clients. Clients and servers will permit an initial
handshake to complete even when the other side does not support the safe renegotiation exten-
sion. Clients and servers will refuse renegotiation attempts when the extension has not been
negotiated.

Note that permitting clients to connect to servers when the safe renegotiation extension is not
enabled, is open up for attacks. Changing this default behavior would prevent interoperability
against the majority of deployed servers out there. We will reconsider this default behavior in
the future when more servers have been upgraded. Note that it is easy to configure clients to
always require the safe renegotiation extension from servers.

To modify the default behavior, we have introduced some new priority strings (see section 5.10).
The % UNSAFE RENEGOTIATION priority string permits (re-)handshakes even when the safe rene-

14

CHAPTER 2. INTRODUCTION TO TLS AND DTLS

gotiation extension was not negotiated. The default behavior is %PARTIAL_RENEGOTIATION that
will prevent renegotiation with clients and servers not supporting the extension. This is secure
for servers but leaves clients vulnerable to some attacks, but this is a trade-off between security
and compatibility with old servers. The %SAFE_RENEGOTIATION priority string makes clients
and servers require the extension for every handshake. The latter is the most secure option for
clients, at the cost of not being able to connect to legacy servers. Servers will also deny clients
that do not support the extension from connecting.

It is possible to disable use of the extension completely, in both clients and servers, by using the
%DISABLE_SAFE_RENEGOTIATION priority string however we strongly recommend you to only do
this for debugging and test purposes.

The default values if the flags above are not specified are:
e Server: YPARTIAL_RENEGOTIATION
e Client: %PARTIAL_ RENEGOTIATION

For applications we have introduced a new API related to safe renegotiation. The gnutls_-
safe_renegotiation_status function is used to check if the extension has been negotiated on
a session, and can be used both by clients and servers.

2.6.6. OCSP status request

The Online Certificate Status Protocol (OCSP) is a protocol that allows the client to verify the
server certificate for revocation without messing with certificate revocation lists. Its drawback
is that it requires the client to connect to the server’'s CA OCSP server and request the status
of the certificate. This extension however, enables a TLS server to include its CA OCSP server
response in the handshake. That is an HTTPS server may periodically run ocsptool (see
subsection 3.2.6) to obtain its certificate revocation status and serve it to the clients. That
way a client avoids an additional connection to the OCSP server.

void gnutls_certificate_set_ocsp_status_request_function
(gnutls_certificate_credentials_t sc, gnutls_status_request_ocsp_func ocsp_func, wvoid
*

ptr)

int gnutls_certificate_set_ocsp_status_request_file (gnutls_certificate_credentials_t
sc, const char * response_file, unsigned int flags)

int gnutls_ocsp_status_request_enable_client (gnutls_session_t session,
gnutls_datum_t * responder_id, size_t responder_id_size, gnutls_datum_t * ex-
tensions)

int gnutls_ocsp_status_request_is_checked (gnutls_session_t session, unsigned int
flags)

A server is required to provide the OCSP server’s response using the gnutls_certificate_-

15

[

2.6. TLS EXTENSIONS

set_ocsp_status_request_file. The response may be obtained periodically using the follow-
ing command.

ocsptool --ask --load-cert server_cert.pem --load-issuer the_issuer.pem
--load-signer the_issuer.pem --outfile ocsp.response

Since version 3.1.3 GnuTLS clients transparently support the certificate status request.

2.6.7. SRTP

The TLS protocol was extended in [22] to provide keying material to the Secure RTP (SRTP)
protocol. The SRTP protocol provides an encapsulation of encrypted data that is optimized for
voice data. With the SRTP TLS extension two peers can negotiate keys using TLS or DTLS
and obtain keying material for use with SRTP. The available SRTP profiles are listed below.

enum gnutls_srtp_profile_t:

GNUTLS_SRTP_AES128 . CM_HMAC _- 128 bit AES with a 80 bit HMAC-SHA1
SHA1_80
GNUTLS_SRTP_AES128_ CM_HMAC _- 128 bit AES with a 32 bit HMAC-SHA1
SHA1_32

GNUTLS_SRTP_NULL_HMAC_SHA1_80 NULL cipher with a 80 bit HMAC-SHA1
GNUTLS_SRTP_NULL_HMAC_SHA1_32 NULL cipher with a 32 bit HMAC-SHA1

Table 2.5.: Supported SRTP profiles

To enable use the following functions.

int gnutls_srtp_set_profile (gnutls_session_t session, gnutls_srtp_profile_t profile)

int gnutls_srtp_set_profile_direct (gnutls_session_t session, const char * profiles,
const char ** err_pos)

To obtain the negotiated keys use the function below.

Other helper functions are listed below.

16

CHAPTER 2. INTRODUCTION TO TLS AND DTLS

it gnutls_srtp_get_keys (gnutls_session_t session, void * key_material, unsigned
int key_material size, gnutls_datum_t * client_key, gnutls_datum_t * client_salt,
gnutls_datum_t * server_key, gnutls_datum_t * server_salt)

Description: This is a helper function to generate the keying material for SRTP. It
requires the space of the key material to be pre-allocated (should be at least 2x the
maximum key size and salt size). The client_key, client_salt, server_key and server_salt are

convenience datums that point inside the key material. They may be NULL.

Returns: 0n success the size of the key material is returned, otherwise, GNUTLS_E_-
SHORT_MEMORY_BUFFER if the buffer given is not sufficient, or a negative error

code. Since 3.1.4

it gnutls_srtp_get_selected_profile (gnutls_session_t session, gnutls_srtp_profile_t *
profile)

const char * gnutls_srtp_get_profile_name (gnutls_srtp_profile_t profile)

int gnutls_srtp_get_profile_id (const char * name, gnutls_srtp_profile_t * profile)

2.6.8. Application Layer Protocol Negotiation (ALPN)

The TLS protocol was extended in RFC7301 to provide the application layer a method of
negotiating the application protocol version. This allows for negotiation of the application
protocol during the TLS handshake, thus reducing round-trips. The application protocol is
described by an opaque string. To enable, use the following functions.

int gnutls_alpn_set_protocols (gnutls_session_t session, const gnutls_datum_t * pro-
tocols, wunsigned protocols_size, unsigned int flags)

int gnutls_alpn_get_selected_protocol (gnutls_session_t session, gnutls_datum_t *

protocol)

Note that these functions are intended to be used with protocols that are registered in the
Application Layer Protocol Negotiation TANA registry. While you can use them for other
protocols (at the risk of collisions), it is preferable to register them.

17

2.7. HOW TO USE TLS IN APPLICATION PROTOCOLS

2.6.9. Extensions and Supplemental Data

It is possible to transfer supplemental data during the TLS handshake, following [34]. This is
for ” custom” protocol modifications for applications which may want to transfer additional data
(e.g. additional authentication messages). Such an exchange requires a custom extension to
be registered. The provided API for this functionality is low-level and described in section 8.4.

2.7. How to use TLS in application protocols

This chapter is intended to provide some hints on how to use TLS over simple custom made
application protocols. The discussion below mainly refers to the TCP/IP transport layer but
may be extended to other ones too.

2.7.1. Separate ports

Traditionally SSL was used in application protocols by assigning a new port number for the
secure services. By doing this two separate ports were assigned, one for the non-secure sessions,
and one for the secure sessions. This method ensures that if a user requests a secure session
then the client will attempt to connect to the secure port and fail otherwise. The only possible
attack with this method is to perform a denial of service attack. The most famous example of
this method is “HTTP over TLS” or HTTPS protocol [28].

Despite its wide use, this method has several issues. This approach starts the TLS Handshake
procedure just after the client connects on the —so called— secure port. That way the TLS
protocol does not know anything about the client, and popular methods like the host advertising
in HTTP do not work*. There is no way for the client to say “I connected to YYY server”
before the Handshake starts, so the server cannot possibly know which certificate to use.

Other than that it requires two separate ports to run a single service, which is unnecessary
complication. Due to the fact that there is a limitation on the available privileged ports, this
approach was soon deprecated in favor of upward negotiation.

2.7.2. Upward negotiation

Other application protocols® use a different approach to enable the secure layer. They use
something often called as the “TLS upgrade” method. This method is quite tricky but it is
more flexible. The idea is to extend the application protocol to have a “STARTTLS” request,
whose purpose it to start the TLS protocols just after the client requests it. This approach
does not require any extra port to be reserved. There is even an extension to HTTP protocol
to support this method [17].

4See also the Server Name Indication extension on subsection 2.6.2.
5See LDAP, IMAP etc.

18

CHAPTER 2. INTRODUCTION TO TLS AND DTLS

The tricky part, in this method, is that the “STARTTLS” request is sent in the clear, thus
is vulnerable to modifications. A typical attack is to modify the messages in a way that the
client is fooled and thinks that the server does not have the “STARTTLS” capability. See a
typical conversation of a hypothetical protocol:

(client connects to the server)

CLIENT: HELLO I'M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

SERVER: OK

ek TLS STARTS

CLIENT: HERE ARE SOME CONFIDENTIAL DATA
And an example of a conversation where someone is acting in between:

(client connects to the server)

CLIENT: HELLO I'M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

(here someone inserts this message)

SERVER: SORRY I DON'T HAVE THIS CAPABILITY

CLIENT: HERE ARE SOME CONFIDENTIAL DATA

As you can see above the client was fooled, and was naive enough to send the confidential data
in the clear, despite the server telling the client that it does not support “STARTTLS”.

How do we avoid the above attack? As you may have already noticed this situation is easy to
avoid. The client has to ask the user before it connects whether the user requests TLS or not.
If the user answered that he certainly wants the secure layer the last conversation should be:

(client connects to the server)

CLIENT: HELLO I'M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

(here someone inserts this message)

SERVER: SORRY I DON'T HAVE THIS CAPABILITY
CLIENT: BYE

(the client notifies the user that the secure connection was not possible)

19

2.8. ON SSL 2 AND OLDER PROTOCOLS

This method, if implemented properly, is far better than the traditional method, and the
security properties remain the same, since only denial of service is possible. The benefit is that
the server may request additional data before the TLS Handshake protocol starts, in order to
send the correct certificate, use the correct password file, or anything else!

2.8. On SSL 2 and older protocols

One of the initial decisions in the GnuTLS development was to implement the known security
protocols for the transport layer. Initially TLS 1.0 was implemented since it was the latest at
that time, and was considered to be the most advanced in security properties. Later the SSL
3.0 protocol was implemented since it is still the only protocol supported by several servers
and there are no serious security vulnerabilities known.

One question that may arise is why we didn’t implement SSL 2.0 in the library. There are
several reasons, most important being that it has serious security flaws, unacceptable for a
modern security library. Other than that, this protocol is barely used by anyone these days
since it has been deprecated since 1996. The security problems in SSL 2.0 include:

e Message integrity compromised. The SSLv2 message authentication uses the MD5 func-
tion, and is insecure.

e Man-in-the-middle attack. There is no protection of the handshake in SSLv2, which
permits a man-in-the-middle attack.

e Truncation attack. SSLv2 relies on TCP FIN to close the session, so the attacker can
forge a TCP FIN, and the peer cannot tell if it was a legitimate end of data or not.

o Weak message integrity for export ciphers. The cryptographic keys in SSLv2 are used
for both message authentication and encryption, so if weak encryption schemes are nego-
tiated (say 40-bit keys) the message authentication code uses the same weak key, which
isn’t necessary.

Other protocols such as Microsoft’s PCT 1 and PCT 2 were not implemented because they
were also abandoned and deprecated by SSL 3.0 and later TLS 1.0.

20

Authentication methods

The initial key exchange of the TLS protocol performs authentication of the peers. In typical
scenarios the server is authenticated to the client, and optionally the client to the server.

While many associate TLS with X.509 certificates and public key authentication, the protocol
supports various authentication methods, including pre-shared keys, and passwords. In this
chapter a description of the existing authentication methods is provided, as well as some
guidance on which use-cases each method can be used at.

3.1. Certificate authentication

The most known authentication method of TLS are certificates. The PKIX [16] public key
infrastructure is daily used by anyone using a browser today. GnuTLS supports both X.509
certificates [16] and OpenPGP certificates using a common API.

The key exchange algorithms supported by certificate authentication are shown in Table 3.1.

3.1.1. X.509 certificates

The X.509 protocols rely on a hierarchical trust model. In this trust model Certification
Authorities (CAs) are used to certify entities. Usually more than one certification authorities
exist, and certification authorities may certify other authorities to issue certificates as well,
following a hierarchical model.

One needs to trust one or more CAs for his secure communications. In that case only the
certificates issued by the trusted authorities are acceptable. The framework is illustrated on
Figure 3.1.

X.509 certificate structure

An X.509 certificate usually contains information about the certificate holder, the signer, a
unique serial number, expiration dates and some other fields [16] as shown in Table 3.2.

The certificate’s subject or issuer name is not just a single string. It is a Distinguished name
and in the ASN.1 notation is a sequence of several object identifiers with their corresponding

21

3.1. CERTIFICATE AUTHENTICATION

Key exchange

Description

RSA

The RSA algorithm is used to encrypt a key and send it to the
peer. The certificate must allow the key to be used for encryption.

DHE_RSA

The RSA algorithm is used to sign ephemeral Diffie-Hellman pa-
rameters which are sent to the peer. The key in the certificate
must allow the key to be used for signing. Note that key exchange
algorithms which use ephemeral Diffie-Hellman parameters, offer
perfect forward secrecy. That means that even if the private key
used for signing is compromised, it cannot be used to reveal past
session data.

ECDHE_RSA

The RSA algorithm is used to sign ephemeral elliptic curve Diffie-
Hellman parameters which are sent to the peer. The key in the
certificate must allow the key to be used for signing. It also offers
perfect forward secrecy. That means that even if the private key
used for signing is compromised, it cannot be used to reveal past
session data.

DHE_DSS

The DSA algorithm is used to sign ephemeral Diffie-Hellman pa-
rameters which are sent to the peer. The certificate must contain
DSA parameters to use this key exchange algorithm. DSA is the
algorithm of the Digital Signature Standard (DSS).

ECDHE_ECDSA

The Elliptic curve DSA algorithm is used to sign ephemeral elliptic
curve Diffie-Hellman parameters which are sent to the peer. The
certificate must contain ECDSA parameters (i.e., EC and marked
for signing) to use this key exchange algorithm.

Table 3.1.: Supported key exchange algorithms.

’ Field \ Description
version The field that indicates the version of the certificate.
serialNumber This field holds a unique serial number per certificate.
signature The issuing authority’s signature.
issuer Holds the issuer’s distinguished name.
validity The activation and expiration dates.
subject The subject’s distinguished name of the certificate.
extensions The extensions are fields only present in version 3 certificates.

Table 3.2.: X.509 certificate fields.

22

CHAPTER 3. AUTHENTICATION METHODS

i l Web Server
Bob

Alice

Figure 3.1.: An example of the X.509 hierarchical trust model.

values. Some of available OIDs to be used in an X.509 distinguished name are defined in
“gnutls/x509.h".

The Version field in a certificate has values either 1 or 3 for version 3 certificates. Version 1
certificates do not support the extensions field so it is not possible to distinguish a CA from a
person, thus their usage should be avoided.

The validity dates are there to indicate the date that the specific certificate was activated and
the date the certificate’s key would be considered invalid.

In GnuTLS the X.509 certificate structures are handled using the gnutls_x509_crt_t type
and the corresponding private keys with the gnutls_x509_privkey_t type. All the available

functions for X.509 certificate handling have their prototypes in “gnutls/x509.h”. An example
program to demonstrate the X.509 parsing capabilities can be found in subsection 6.4.2.

Importing an X.509 certificate

The certificate structure should be initialized using gnutls_x509_crt_init, and a certificate
structure can be imported using gnutls_x509_crt_import.

23

3.1. CERTIFICATE AUTHENTICATION

int gnutls x509_crt_init (gnutls_x509_crt_t * cert)

int gnutls_x509_crt_import (gnutls_z509_crt_t cert, const gnutls_datum_t * data,
gnutls_z509_crt_fmt_t format)

void gnutls_ x509_crt_deinit (gnutls_z509_crt_t cert)

In several functions an array of certificates is required. To assist in initialization and import
the following two functions are provided.

int gnutls_x509_crt_list_import (gnutls_x509-crt_t * certs, unsigned mt *

cert_max, const gnutls_datum_t * data, gnutls_z509_crt_fmi_t format, unsigned
int flags)

it gnutls_x509_crt_list_import2 (gnutls_z509_crt_t ** certs, unsigned int * size,
const gnutls_datum_t * data, gnutls_z509_crt_fmt_t format, unsigned int flags)

In all cases after use a certificate must be deinitialized using gnutls _x509_crt_deinit. Note
that although the functions above apply to gnutls_x509_crt_t structure, similar functions
exist for the CRL structure gnutls_x509_crl_t.

X.509 certificate names

X.509 certificates allow for multiple names and types of names to be specified. CA certificates
often rely on X.509 distinguished names (see section 3.1.1) for unique identification, while end-
user and server certificates rely on the ’subject alternative names’. The subject alternative
names provide a typed name, e.g., a DNS name, or an email address, which identifies the
owner of the certificate. The following functions provide access to that names.

int gnutls_x509_crt_get_subject_alt_name2 (gnutls_x509_crt_t cert, unsigned
int seq, void * san, size.t * san_size, unsigned int * san_type, unsigned int *
critical)

int gnutls_x509_crt_set_subject_alt_name (gnutls_z509_crt_t crt,
gnutls_z509_subject_alt_name_t type, const wvoid * data, unsigned int data_size,
unsigned int flags)

24

CHAPTER 3. AUTHENTICATION METHODS

int gnutls_subject_alt_names_init (gnutls_subject_alt_names_t * sans)

int gnutls_subject_alt_names_get (gnutls_subject_alt_names_t sans, unsigned mi
seq, unsigned int * san_type, gnutls_datum_t * san, gnutls_.datum_t * other-
name_oid)

int gnutls_subject_alt_names_set (gnutls_subject_alt_names_t sans, unsigned nt
san_type, const gnutls_datum_t * san, const char * othername_oid)

Note however, that server certificates often used the Common Name (CN), part of the certificate
DistinguishedName to place a single DNS address. That practice is discouraged (see [32]),
because only a single address can be specified, and the CN field is free-form making matching
ambiguous.

X.509 distinguished names

The “subject” of an X.509 certificate is not described by a single name, but rather with a
distinguished name. This in X.509 terminology is a list of strings each associated an object
identifier. To make things simple GnuTLS provides gnutls_x509_crt_get_dn2 which follows
the rules in [41] and returns a single string. Access to each string by individual object identifiers
can be accessed using gnutls_x509_crt_get_dn_by_oid.

int gnutls_ x509_crt_get_dn2 (gnutls_x509_crt_t cert, gnutls_datum_t * dn)

DeSCI‘iptiOIl: This function will allocate buffer and copy the name of the Certificate.
The name will be in the form "C=xxxx,0=yyyy,CN=zzzz" as described in RFC4514. The output
string will be ASCII or UTF-8 encoded, depending on the certificate data.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls_x509_crt_get_dn (gnutls_x509_crt_t cert, char * buf, size_t * buf_size)

int gnutls x509_crt_get_dn_by_oid (gnutls_z509_crt_t cert, const char * oid, int
indx, unsigned int raw_flag, void * buf, size_t * buf_size)

int gnutls_x509_crt_get_dn_oid (gnutls_z509_crt_t cert, int indx, void * oid,

size_t * oid_size)

25

3.1. CERTIFICATE AUTHENTICATION

Similar functions exist to access the distinguished name of the issuer of the certificate.

int gnutls_x509_crt_get_issuer_dn (gnutls_x509_crt_t cert, char * buf, size_t *
buf_size)

int gnutls_x509_crt_get_issuer_dn2 (gnutls_x509_crt_t cert, gnutls_datum_t * dn)

int gnutls_x509_crt_get_issuer_dn_by_oid (gnutls_z509_crt_t cert, const char *

oid, int indx, unsigned int raw_flag, void * buf, size_t * buf_size)
int gnutls_x509_crt_get_issuer_dn_oid (gnutls_z509_crt_t cert, int indx, void *

oid, size_t * oid_size)

int gnutls_x509_crt_get_issuer (gnutls_z509_cri_t cert, gnutls_z509_-dn_t * dn)

The more powerful gnutls x509_crt_get_subject and gnutls x509_dn_get_rdn_ava provide
efficient but low-level access to the contents of the distinguished name structure.

it gnutls_x509_crt_get_subject (gnutls_zd09_cri_t cert, gnutls_z509_dn_t * dn)

int gnutls_x509_crt_get_issuer (gnutls_z509_cri_t cert, gnutls_x509_-dn_t * dn)

int gnutls_x509_dn_get_rdn_ava (gnutls_z509-dn_t dn, int irdn, int iava,
gnutls_z509_ava_st * ava)

DeSCI‘iptiOl’l: Get pointers to data within the DN. The format of the ava structure is
shown below. struct gnutls x509_ava_st gnutls_datum t oid; gnutls_datum_t value; unsigned
long value_tag; ; The X.509 distinguished name is a sequence of sequences of strings and
this is what the irdn and iava indexes model. Note that ava will contain pointers into the
dn structure which in turns points to the original certificate. Thus you should not modify
any data or deallocate any of those. This is a low-level function that requires the caller

to do the value conversions when necessary (e.g. from UCS-2).

Returns: Returns 0 on success, or an error code.

26

CHAPTER 3. AUTHENTICATION METHODS

X.509 extensions

X.509 version 3 certificates include a list of extensions that can be used to obtain additional
information on the subject or the issuer of the certificate. Those may be e-mail addresses, flags
that indicate whether the belongs to a CA etc. All the supported X.509 version 3 extensions
are shown in Table 3.3.

The certificate extensions access is split into two parts. The first requires to retrieve the
extension, and the second is the parsing part.

To enumerate and retrieve the DER-encoded extension data available in a certificate the fol-
lowing two functions are available.

int gnutls_x509_crt_get_extension_info (gnutls_z509_crt_t cert, int indx, void *
oid, size_t * oid_size, unsigned int * critical)

int gnutls_x509_crt_get_extension_data2 (gnutls_.z509_crt_t cert, unsigned indx,
gnutls_datum_t * data)

it gnutls_x509_crt_get_extension_by_oid2 (gnutls_x509_crt_t cert, const char *
oid, int indx, gnutls_.datum_t * output, unsigned int * critical)

After a supported DER-encoded extension is retrieved it can be parsed using the APIs in
x509-ext.h. Complex extensions may require initializing an intermediate structure that holds
the parsed extension data. Examples of simple parsing functions are shown below.

it gnutls_x509_ext_import_basic_constraints (const gnutls_datum_t * ext, un-
signed int * ca, int * pathlen)
int gnutls_x509_ext_export_basic_constraints (unsigned int ca, int pathlen,

gnutls_datum_t * ext)

it gnutls_x509_ext_import_key_usage (const gnutls_datum_t * ext, unsigned int *
key_usage)

it gnutls_x509_ext_export_key_usage (unsigned int usage, gnutls_datum_t * ext)

More complex extensions, such as Name Constraints, require an intermediate structure, in that
case gnutls_x509_name_constraints_t to be initialized in order to store the parsed extension
data.

27

3.1. CERTIFICATE AUTHENTICATION

*

int gnutls_x509_ext_import_name_constraints (const gnutls_datum_t ext,

gnutls_t509_name_constraints_t nc, unsigned int flags)

int gnutls_x509_ext_export_name_constraints (gnutls_.z509-name_constraints_t nc,
gnutls_datum_t * ext)

After the name constraints are extracted in the structure, the following functions can be used
to access them.

int gnutls_x509_name_constraints_get_permitted (gnutls_-z509_-name_constraints_t
nc, unsigned idx, unsigned * type, gnutls_datum_t * name)

int gnutls_x509_name_constraints_get_excluded (gnutls_x509_name_constraints_t
nc, unsigned idx, unsigned * type, gnutls_datum_t * name)

int gnutls_x509_name_constraints_add_permitted (gnutls_z509_name_constraints_t
nc, gnutls_.z509_subject_alt_name_t type, const gnutls_datum_t * name)

int gnutls_x509_name_constraints_add_excluded (gnutls_x509_name_constraints_t
nc, gnutls_z509_subject_alt_name_t type, const gnutls_datum_t * name)

unsigned gnutls_x509_name_constraints_check (gnutls_x509_name_constraints_t nc,
gnutls_z509_subject_alt_name_t type, const gnutls_datum_t * name)

unsigned gnutls_x509_name_constraints_check_crt (gnutls_z509_-name_constraints_t
nc, gnutls_x509_subject_alt_-name_t type, gnutls_x509_crt_t cert)

Other utility functions are listed below.

int gnutls x509_name_constraints_init (gnutls_t509_name_constraints_t * nc)

void gnutls_x509_name_constraints_deinit (gnutls_x509_name_constraints_t nc)

Similar functions exist for all of the other supported extensions, listed in Table 3.3.

Note, that there are also direct APIs to access extensions that may be simpler to use for
non-complex extensions. They are available in x509.h and some examples are listed below.

28

CHAPTER 3. AUTHENTICATION METHODS

Extension

| OID

Description

Subject key id

2.5.29.14

An identifier of the key of the subject.

Key usage

2.5.29.15

Constraints the key’s usage of the cer-
tificate.

Private key usage period

2.5.29.16

Constraints the validity time of the
private key.

Subject alternative name

2.5.29.17

Alternative names to subject’s distin-
guished name.

Issuer alternative name

2.5.29.18

Alternative names to the issuer’s dis-
tinguished name.

Basic constraints

2.5.29.19

Indicates whether this is a CA certifi-
cate or not, and specify the maximum
path lengths of certificate chains.

Name constraints

2.5.29.30

A field in CA certificates that restricts
the scope of the name of issued certifi-
cates.

CRL distribution points

2.5.29.31

This extension is set by the CA, in or-
der to inform about the issued CRLs.

Certificate policy

2.5.29.32

This extension is set to indicate the
certificate policy as object identifier
and may contain a descriptive string
or URL.

Authority key identifier

2.5.29.35

An identifier of the key of the issuer
of the certificate. That is used to dis-
tinguish between different keys of the
same issuer.

Extended key usage

2.5.29.37

Constraints the purpose of the certifi-
cate.

Authority information ac-
cess

1.3.6.1.5.5.7.1.1

Information on services by the issuer
of the certificate.

Proxy Certification Informa-
tion

1.3.6.1.5.5.7.1.14

Proxy Certificates includes this ex-
tension that contains the OID of
the proxy policy language used, and
can specify limits on the maximum
lengths of proxy chains. Proxy Cer-
tificates are specified in [37].

Table 3.3.:

Supported X.509 certificate extensions.

29

3.1. CERTIFICATE AUTHENTICATION

it gnutls_x509_crt_get_basic_constraints (gnutls_z509_crt_t cert, unsigned int *

critical, unsigned int * ca, int * pathlen)

int gnutls_x509_crt_set_basic_constraints (gnutls_z509_crt_t crt, unsigned int ca,
int pathLenConstraint)

int gnutls_x509_crt_get_key_usage (gnutls_z509_crt_t cert, unsigned int
key_usage, unsigned int * critical)

int gnutls_x509_crt_set_key_usage (gnutls_z509_crt_t crt, unsigned int usage)

Accessing public and private keys

Each X.509 certificate contains a public key that corresponds to a private key. To get a
unique identifier of the public key the gnutls_x509_crt_get _key_id function is provided. To
export the public key or its parameters you may need to convert the X.509 structure to a
gnutls_pubkey_t. See subsection 4.1.1 for more information.

int gnutls_x509_crt_get_key_id (gnutls_z509_crt_t crt, unsigned int flags, unsigned
char * output_data, size_t * output_data_size)

Description: This function will return a unique ID that depends on the public key
parameters. This ID can be used in checking whether a certificate corresponds to the
given private key. If the buffer provided is not long enough to hold the output, then
*output_data_size is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned. The output
will normally be a SHA-1 hash output, which is 20 bytes.

Returns: 1In case of failure a negative error code will be returned, and O on success.

The private key parameters may be directly accessed by using one of the following functions.

30

CHAPTER 3. AUTHENTICATION METHODS

int gnutls_x509_privkey_get_pk_algorithm2 (gnutls_x509_privkey_t key, unsigned
int * bits)

int gnutls_x509_privkey _export_rsa_raw2 (gnutls_z509_privkey_t key,
gnutls_datum_t * m, gnutls_.datum_t * e, gnutls_datum_t * d, gnutls_datum_t
P, gnutls_datum_t * q, gnutls_datum_t * u, gnutls_datum_t * el, gnutls_datum_t *
e2)

int gnutls_x509_privkey_export_ecc_raw (gnutls_x509_privkey-t key,
gnutls_ecc_curve_t * curve, gnutls_datum_t * x, gnutls_.datum_t * y, gnutls_datum_t *
k)

int gnutls_x509_privkey_export_dsa_raw (gnutls_x509_privkey-t key,
gnutls_datum_t * p, gnutls.datum_t * q, gnutls_.datum_t * g, gnutls_datum_t
gnutls_datum_t * x)

*

* v,

int gnutls_x509_privkey _get_key_id (gnutls_z509_privkey_t key, unsigned int flags,
unsigned char * output_data, size_t * output_data_size)

Verifying X.509 certificate paths

Verifying certificate paths is important in X.509 authentication. For this purpose the following
functions are provided.

int gnutls_x509_trust_list_add_cas (gnutls_-z509_trust_list_t list, const
gnutls_z509_crt_t * clist, unsigned clist_size, unsigned int flags)

DeSCI‘iptiOIl: This function will add the given certificate authorities to the trusted
list. The list of CAs must not be deinitialized during this structure’s lifetime. If the
flag GNUTLS_TL_NO_DUPLICATES is specified, then the provided clist entries that

are duplicates will not be added to the list and will be deinitialized.

Returns: The number of added elements is returned.

The verification function will verify a given certificate chain against a list of certificate author-
ities and certificate revocation lists, and output a bit-wise OR of elements of the gnutls_-
certificate_status_t enumeration shown in Table 3.4. The GNUTLS_CERT_INVALID flag is
always set on a verification error and more detailed flags will also be set when appropriate.

An example of certificate verification is shown in subsection 6.1.7. It is also possible to have a
set of certificates that are trusted for a particular server but not to authorize other certificates.
This purpose is served by the functions gnutls_x509_trust_list_add named_crt and gnutls_-
xb09_trust_list_verify named_crt.

31

3.1. CERTIFICATE AUTHENTICATION

int gnutls_x509_trust_list_add _named _crt (gnutls_z509_trust_list_t list,
gnutls_x509_crt_t cert, const void * name, size_t name_size, unsigned int flags)

DeSCI‘iptiOIl: This function will add the given certificate to the trusted list and
associate it with a name. The certificate will not be be used for verification with
gnutls_x509_trust_list_verify_crt() but with gnutls_x509_trust_list_verify named_crt() or
gnutls _x509_trust_list_verify_crt2() - the latter only since GnuTLS 3.4.0 and if a hostname
is provided. In principle this function can be used to set individual "server" certificates
that are trusted by the user for that specific server but for no other purposes. The

certificate must not be deinitialized during the lifetime of the trusted list.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls_x509_trust_list_add_crls (gnutls_z509_trust_list_t list, const
gnutls_z509_crlt * crllist, int crl_size, unsigned int flags, unsigned int verifi-
cation_flags)

DeSCI‘iptiOl’l: This function will add the given certificate revocation lists to the
trusted list. The list of CRLs must not be deinitialized during this structure’s lifetime.
This function must be called after gnutls_x509_trust_list_add_cas() to allow verifying

the CRLs for validity. If the flag GNUTLS_TL_NO_DUPLICATES is given, then any
provided CRLs that are a duplicate, will be deinitialized and not added to the list (that
assumes that gnutls_x509_trust_list_deinit() will be called with all=1).

Returns: The number of added elements is returned.

int gnutls_x509_trust_list_verify_crt (gnutls_x509_trust_list_t list, gnutls_z509_crt_t
* cert_list, unsigned int cert_list_size, unsigned int flags, unsigned int * voutput,
gnutls_verify_output_function func)

Description: This function will try to verify the given certificate and return its
status. The voutput parameter will hold an OR’ed sequence of gnutls_certificate_status_t
flags. The details of the verification are the same as in gnutls x509_trust_list_verify_ -
crt20) .

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

32

CHAPTER 3. AUTHENTICATION METHODS

int gnutls_x509_trust_list_verify_crt2 (gnutls_x509_trust_list_t list, gnutls_x509_crt_t
* cert_list, unsigned int cert_list_size, gnutls_typed_vdata_st * data, unsigned int
elements, unsigned int flags, unsigned int * voutput, gnutls_verify_output_function
func)

DeSCI‘iptiOIl: This function will attempt to verify the given certificate and return

its status. The voutput parameter will hold an OR’ed sequence of gnutls_certificate_-
status_t flags. When a chain of cert_list_size with more than one certificates is provided,
the verification status will apply to the first certificate in the chain that failed
verification. The verification process starts from the end of the chain (from CA to end
certificate). Additionally a certificate verification profile can be specified from the
ones in gnutls_certificate_verification_profiles_t by ORing the result of GNUTLS_PROFILE_-
TO_VFLAGS() to the verification flags. The acceptable data types are GNUTLS_DT_-
DNS_HOSTNAME and GNUTLS_DT_KEY_PURPOSE_OID. The former accepts as data
a null-terminated hostname, and the latter a null-terminated object identifier (e.g.,
GNUTLS_KP_.TLS . WWW_SERVER). If a DNS hostname is provided then this function
will compare the hostname in the certificate against the given. If names do not match the
GNUTLS_CERT_UNEXPECTED_OWNER status flag will be set. In addition it will
consider certificates provided with gnutls_x509_trust_list_add named_crt(). If a key purpose
0ID is provided and the end-certificate contains the extended key usage PKIX extension,

it will be required to match the provided OID or be marked for any purpose, otherwise
verification will fail with GNUTLS_CERT_PURPOSE_MISMATCH status.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. Note that verification failure will not result to an error code, only voutput will
be updated.

int gnutls_x509_trust_list_verify_named_crt (gnutls_z509_trust_list_t list,
gnutls_z509_crt_t cert, const wvoid * name, size.t name_size, unsigned int flags,
unsigned int * voutput, gnutls_verify_output_function func)

Description: This function will try to find a certificate that is associated with

the provided name --see gnutls_x509_trust_list_add-named-crt(). If a match is found the
certificate is considered valid. In addition to that this function will also check CRLs.
The voutput parameter will hold an OR’ed sequence of gnutls_certificate_status_t flags.
Additionally a certificate verification profile can be specified from the ones in gnutls_-
certificate_verification_profiles_t by ORing the result of GNUTLS_PROFILE_TO_VFLAGS() to the

verification flags.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

33

3.1. CERTIFICATE AUTHENTICATION

it gnutls_x509_trust_list_add_trust_file (gnutls_x509_trust_list_t list, const char *
ca_file, const char * crl_file, gnutls_z509_crt_fmt_t type, unsigned int tl_flags, un-
signed int tl_vflags)

Description: This function will add the given certificate authorities to the trusted
list. PKCS #11 URLs are also accepted, instead of files, by this function. A PKCS #11 URL
implies a trust database (a specially marked module in pl1-kit); the URL "pkcsil:" implies
all trust databases in the system. Only a single URL specifying trust databases can be set;

they cannot be stacked with multiple calls.

Returns: The number of added elements is returned.

int gnutls_x509_trust_list_add_trust_mem (gnutls_x509_trust_list_t list, const
gnutls_datum_t * cas, const gnutls_datum_t * crls, gnutls_z509_crt_fmt_t type, un-
signed int tl_flags, unsigned int tl_vflags)

DESCI'iptiOIl: This function will add the given certificate authorities to the trusted
list.

Returns: The number of added elements is returned.

Verifying a certificate in the context of TLS session

When operating in the context of a TLS session, the trusted certificate authority list may also
be set using:

int gnutls_x509_trust_list_add_system_trust (gnutls_x509_trust_list_t list, unsigned
int tl_flags, wunsigned int tl_vflags)

Description: This function adds the system’s default trusted certificate authorities
to the trusted list. Note that on unsupported systems this function returns GNUTLS -
E_UNIMPLEMENTED_FEATURE. This function implies the flag GNUTLS_TL_NO_-
DUPLICATES.

Returns: The number of added elements or a negative error code on error.

34

CHAPTER 3. AUTHENTICATION METHODS

int gnutls_certificate_set_x509_trust_file (gnutls_certificate_credentials_t cred,
const char * cafile, gnutls_z509_crt_fmt_t type)

int gnutls_certificate_set_x509_trust_dir (gnutls_certificate_credentials_t cred,
const char * ca_dir, gnutls_x509_crt_fmi_t type)

int gnutls_certificate_set_x509_crl_file (gnutls_certificate_credentials_t res, const
char * crlfile, gnutls_z509_crt_fmi_t type)

int gnutls_certificate_set_x509_system_trust (gnutls_certificate_credentials_t cred)

These functions allow the specification of the trusted certificate authorities, either via a file,
a directory or use the system-specified certificate authories. Unless the authorities are ap-
plication specific, it is generally recommended to use the system trust storage (see gnutls -
certificate_set_x509_system_trust).

Unlike the previous section it is not required to setup a trusted list, and there are two ap-
proaches to verify the peer’s certificate and identity. The recommended in GnuTLS 3.5.0 and
later is via the gnutls_session_set_verify_cert, but for older GnuTLS versions you may
use an explicit callback set via gnutls_certificate_set_verify function and then utilize
gnutls_certificate_verify_peers3 for verification. The reported verification status is iden-
tical to the verification functions described in the previous section.

Note that in certain cases it is required to check the marked purpose of the end certificate (e.g.
GNUTLS_KP_TLS_WWW_SERVER); in these cases the more advanced gnutls_session_set_verify -
cert2 and gnutls_certificate_verify_ peers should be used instead.

There is also the possibility to pass some input to the verification functions in the form of flags.
For gnutls x509_trust_list_verify_crt2 the flags are passed directly, but for gnutls_-
certificate_verify_peers3, the flags are set using gnutls_certificate_set_verify _flags.
All the available flags are part of the enumeration gnutls_certificate_verify flags shown
in Table 3.5.

Verifying a certificate using PKCS #11

Some systems provide a system wide trusted certificate storage accessible using the PKCS #11
API. That is, the trusted certificates are queried and accessed using the PKCS #11 API, and
trusted certificate properties, such as purpose, are marked using attached extensions. One
example is the p11-kit trust module!.

These special PKCS #11 modules can be used for GnuTLS certificate verification if marked
as trust policy modules, i.e., with trust-policy: yes in the pll-kit module file. The way

Isee http://pil-glue.freedesktop.org/trust-module.html.

35

http://p11-glue.freedesktop.org/trust-module.html

3.1. CERTIFICATE AUTHENTICATION

to use them is by specifying to the file verification function (e.g., gnutls_certificate_set_-
x509_trust_file), a pkesll URL, or simply pkcsil: to use all the marked with trust policy
modules.

The trust modules of pll-kit assign a purpose to trusted authorities using the extended key
usage object identifiers. The common purposes are shown in Table 3.6. Note that typically
according to [8] the extended key usage object identifiers apply to end certificates. Their
application to CA certificates is an extension used by the trust modules.

With such modules, it is recommended to use the verification functions gnutls_x509_trust_-
list_verify crt2, or gnutls certificate verify peers, which allow to explicitly specify
the key purpose. The other verification functions which do not allow setting a purpose, would
operate as if GNUTLS_KP_TLS_WWW_SERVER was requested from the trusted authorities.

3.1.2. OpenPGP certificates

The OpenPGP key authentication relies on a distributed trust model, called the “web of trust”.
The “web of trust” uses a decentralized system of trusted introducers, which are the same as a
CA. OpenPGP allows anyone to sign anyone else’s public key. When Alice signs Bob’s key, she
is introducing Bob’s key to anyone who trusts Alice. If someone trusts Alice to introduce keys,
then Alice is a trusted introducer in the mind of that observer. For example in Figure 3.2,
David trusts Alice to be an introducer and Alice signed Bob’s key thus Dave trusts Bob’s key
to be the real one.

XL

{Trust}
N
N

{Trdst}
|

Charlie

Figure 3.2.: An example of the OpenPGP trust model.

There are some key points that are important in that model. In the example Alice has to sign
Bob’s key, only if she is sure that the key belongs to Bob. Otherwise she may also make Dave
falsely believe that this is Bob’s key. Dave has also the responsibility to know who to trust.
This model is similar to real life relations.

36

CHAPTER 3. AUTHENTICATION METHODS

Just see how Charlie behaves in the previous example. Although he has signed Bob’s key -
because he knows, somehow, that it belongs to Bob - he does not trust Bob to be an introducer.
Charlie decided to trust only Kevin, for some reason. A reason could be that Bob is lazy enough,
and signs other people’s keys without being sure that they belong to the actual owner.

OpenPGP certificate structure

In GnuTLS the OpenPGP certificate structures [7] are handled using the gnutls_openpgp_crt_t
type. A typical certificate contains the user ID, which is an RFC 2822 mail and name address,

a public key, possibly a number of additional public keys (called subkeys), and a number of
signatures. The various fields are shown in Table 3.7.

The additional subkeys may provide key for various different purposes, e.g. one key to encrypt
mail, and another to sign a TLS key exchange. Each subkey is identified by a unique key
ID. The keys that are to be used in a TLS key exchange that requires signatures are called
authentication keys in the OpenPGP jargon. The mapping of TLS key exchange methods to
public keys is shown in Table 3.8.

The corresponding private keys are stored in the gnutls_openpgp_privkey_t type. All the
prototypes for the key handling functions can be found in “gnutls/openpgp.h”.

Verifying an OpenPGP certificate

The verification functions of OpenPGP keys, included in GnuTLS, are simple ones, and do not
use the features of the “web of trust”. For that reason, if the verification needs are complex,
the assistance of external tools like GnuPG and GPGME? is recommended.

In GnuTLS there is a verification function for OpenPGP certificates, the gnutls_openpgp_-
crt_verify ring. This checks an OpenPGP key against a given set of public keys (keyring)
and returns the key status. The key verification status is the same as in X.509 certificates,
although the meaning and interpretation are different. For example an OpenPGP key may be
valid, if the self signature is ok, even if no signers were found. The meaning of verification
status flags is the same as in the X.509 certificates (see Table 3.5).

Verifying a certificate in the context of a TLS session

Similarly with X.509 certificates, one needs to specify the OpenPGP keyring file in the creden-
tials structure. The certificates in this file will be used by gnutls_certificate _verify_peers3
to verify the signatures in the certificate sent by the peer.

2http://www.gnupg.org/related_software/gpgme/

37

http://www.gnupg.org/related_software/gpgme/

3.1. CERTIFICATE AUTHENTICATION

int gnutls_openpgp_crt_verify _ring (gnutls_openpgp_crt_t key,
gnutls_openpgp_keyring_t keyring, unsigned int flags, unsigned int * verify)

Description: Verify all signatures in the key, using the given set of keys (keyring).
The key verification output will be put in verify and will be one or more of the gnutls_-
certificate_status_t enumerated elements bitwise or’d. Note that this function does not verify
using any "web of trust". You may use GnuPG for that purpose, or any other external PGP

application.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

int gnutls_openpgp_crt_verify_self (gnutls_openpgp_crt_t key, unsigned int flags,
unsigned int * verify)

Description: vVerifies the self signature in the key. The key verification output will
be put in verify and will be one or more of the gnutls_certificate_status_t enumerated

elements bitwise or’d.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

3.1.3. Advanced certificate verification

The verification of X.509 certificates in the HTTPS and other Internet protocols is typically
done by loading a trusted list of commercial Certificate Authorities (see gnutls_certificate_-
set_x509_system_trust), and using them as trusted anchors. However, there are several ex-
amples (eg. the Diginotar incident) where one of these authorities was compromised. This risk
can be mitigated by using in addition to CA certificate verification, other verification methods.
In this section we list the available in GnuTLS methods.

int gnutls_certificate_set_openpgp_keyring_file (gnutls_certificate_credentials_t c,
const char * file, gnutls_openpgp_crt_fmt_t format)

DeSCI’iptiOl’l: The function is used to set keyrings that will be used internally by
various OpenPGP functions. For example to find a key when it is needed for an operatioms.

The keyring will also be used at the verification functions.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

38

CHAPTER 3. AUTHENTICATION METHODS

Verifying a certificate using trust on first use authentication

It is possible to use a trust on first use (TOFU) authentication method in GnuTLS. That is the
concept used by the SSH programs, where the public key of the peer is not verified, or verified
in an out-of-bound way, but subsequent connections to the same peer require the public key to
remain the same. Such a system in combination with the typical CA verification of a certificate,
and OCSP revocation checks, can help to provide multiple factor verification, where a single
point of failure is not enough to compromise the system. For example a server compromise
may be detected using OCSP, and a CA compromise can be detected using the trust on first
use method. Such a hybrid system with X.509 and trust on first use authentication is shown
in subsection 6.1.2.

See subsection 5.12.2 on how to use the available functionality.

Verifying a certificate using DANE (DNSSEC)

The DANE protocol is a protocol that can be used to verify TLS certificates using the DNS (or
better DNSSEC) protocols. The DNS security extensions (DNSSEC) provide an alternative
public key infrastructure to the commercial CAs that are typically used to sign TLS certificates.
The DANE protocol takes advantage of the DNSSEC infrastructure to verify TLS certificates.
This can be in addition to the verification by CA infrastructure or may even replace it where
DNSSEC is fully deployed. Note however, that DNSSEC deployment is fairly new and it would
be better to use it as an additional verification method rather than the only one.

The DANE functionality is provided by the libgnutls-dane library that is shipped with
GnuTLS and the function prototypes are in gnutls/dane.h. See subsection 5.12.2 for infor-
mation on how to use the library.

Note however, that the DANE RFC mandates the verification methods one should use in ad-
dition to the validation via DNSSEC TLSA entries. GnuTLS doesn’t follow that RFC require-
ment, and the term DANE verification in this manual refers to the TLSA entry verification. In
GnuTLS any other verification methods can be used (e.g., PKIX or TOFU) on top of DANE.

3.1.4. Digital signatures

In this section we will provide some information about digital signatures, how they work, and
give the rationale for disabling some of the algorithms used.

Digital signatures work by using somebody’s secret key to sign some arbitrary data. Then
anybody else could use the public key of that person to verify the signature. Since the data
may be arbitrary it is not suitable input to a cryptographic digital signature algorithm. For
this reason and also for performance cryptographic hash algorithms are used to preprocess the
input to the signature algorithm. This works as long as it is difficult enough to generate two
different messages with the same hash algorithm output. In that case the same signature could
be used as a proof for both messages. Nobody wants to sign an innocent message of donating
1 euro to Greenpeace and find out that they donated 1.000.000 euros to Bad Inc.

39

3.1. CERTIFICATE AUTHENTICATION

For a hash algorithm to be called cryptographic the following three requirements must hold:

1. Preimage resistance. That means the algorithm must be one way and given the output
of the hash function H(x), it is impossible to calculate x.

2. 2nd preimage resistance. That means that given a pair x,y with y = H(x) it is impossible
to calculate an 2’ such that y = H ().

3. Collision resistance. That means that it is impossible to calculate random x and z’ such
H(x") = H(z).

The last two requirements in the list are the most important in digital signatures. These pro-
tect against somebody who would like to generate two messages with the same hash output.
When an algorithm is considered broken usually it means that the Collision resistance of the
algorithm is less than brute force. Using the birthday paradox the brute force attack takes 2
textasciicircum(hash size)/2 operations. Today colliding certificates using the MD5 hash al-
gorithm have been generated as shown in [20].

There has been cryptographic results for the SHA-1 hash algorithms as well, although they are
not yet critical. Before 2004, MD5 had a presumed collision strength of 2

textasciicircumb64, but it has been showed to have a collision strength well under 2
textasciicircumb0. As of November 2005, it is believed that SHA-1’s collision strength is
around 2

textasciicircum63. We consider this sufficiently hard so that we still support SHA-1. We
anticipate that SHA-256/386/512 will be used in publicly-distributed certificates in the future.
When 2

textasciicircum63 can be considered too weak compared to the computer power available
sometime in the future, SHA-1 will be disabled as well. The collision attacks on SHA-1 may
also get better, given the new interest in tools for creating them.

Trading security for interoperability

If you connect to a server and use GnuTLS’ functions to verify the certificate chain, and
get a GNUTLS_CERT_INSECURE_ALGORITHM validation error (see section 3.1.1), it means that
somewhere in the certificate chain there is a certificate signed using RSA-MD2 or RSA-MD5.
These two digital signature algorithms are considered broken, so GnuTLS fails verifying the
certificate. In some situations, it may be useful to be able to verify the certificate chain anyway,
assuming an attacker did not utilize the fact that these signatures algorithms are broken. This
section will give help on how to achieve that.

It is important to know that you do not have to enable any of the flags discussed here to be
able to use trusted root CA certificates self-signed using RSA-MD2 or RSA-MD5. The certificates
in the trusted list are considered trusted irrespective of the signature.

If you are using gnutls_certificate_verify_peers3 to verify the certificate chain, you can
call gnutls_certificate_set_verify_flags with the flags:

e GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD2
e GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5

40

-

CHAPTER 3. AUTHENTICATION METHODS

as in the following example:

gnutls_certificate_set_verify_flags (x509cred,
GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5) ;

This will signal the verifier algorithm to enable RSA-MD5 when verifying the certificates.

If you are using gnutls_x509_crt_verify or gnutls x509_crt_list_verify, you can pass the
GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5 parameter directly in the flags parameter.

If you are using these flags, it may also be a good idea to warn the user when verification
failure occur for this reason. The simplest is to not use the flags by default, and only fall
back to using them after warning the user. If you wish to inspect the certificate chain your-
self, you can use gnutls_certificate_get_peers to extract the raw server’s certificate chain,
gnutls x509_crt_list_import to parse each of the certificates, and then gnutls_x509_crt_-
get_signature_algorithm to find out the signing algorithm used for each certificate. If any
of the intermediary certificates are using GNUTLS_SIGN_RSA _MD2 or GNUTLS_SIGN_RSA_MD5, you
could present a warning.

3.2. More on certificate authentication

Certificates are not the only structures involved in a public key infrastructure. Several other
structures that are used for certificate requests, encrypted private keys, revocation lists, GnuTLS
abstract key structures, etc., are discussed in this chapter.

3.2.1. PKCS #10 certificate requests

A certificate request is a structure, which contain information about an applicant of a certificate
service. It usually contains a private key, a distinguished name and secondary data such as a
challenge password. GnuTLS supports the requests defined in PKCS #10 [25]. Other formats
of certificate requests are not currently supported.

A certificate request can be generated by associating it with a private key, setting the subject’s
information and finally self signing it. The last step ensures that the requester is in possession
of the private key.

41

3.2. MORE ON CERTIFICATE AUTHENTICATION

int gnutls_ x509_crq_set_version (gnutls_x509_crq_t crq, unsigned int version)

int gnutls_x509_crq_set_dn (gnutls_z509_crg_t crq, const char * dn, const char **

err)

int gnutls_x509_crq_set_dn_by_oid (gnutls_z509_crq_t crq, const char * oid, un-
signed int raw_flag, const void * data, unsigned int sizeof_data)

int gnutls_x509_crq_set_key_usage (gnutls-z509-crq-t crq, unsigned int usage)
it gnutls_x509_crq_set_key_purpose_oid (gnutls_z509_crq_t crq, const void * oid,
unsigned int critical)

int gnutls_x509_crq_set_basic_constraints (gnutls_z509-crq-t crq, unsigned int ca,
int pathLenConstraint)

The gnutls_x509_crq_set_key and gnutls_x509_crq_sign2 functions associate the request
with a private key and sign it. If a request is to be signed with a key residing in a PKCS #11
token it is recommended to use the signing functions shown in section 4.1.

int gnutls_ x509_crq_set_key (gnutls_x509_crq_t crq, gnutls_x509_privkey_t key)

Description: This function will set the public parameters from the given private key to

the request.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls_x509_crq_sign2 (gnutls_x509-crqg-t crq, gnutls-x509_privkey-t key,
gnutls_digest_algorithm_t dig, wunsigned int flags)

DeSCI’iptiOl’l: This function will sign the certificate request with a private key. This
must be the same key as the one used in gnutls_x509_crt_set_key() since a certificate request
is self signed. This must be the last step in a certificate request generation since all

the previously set parameters are now signed.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.
GNUTLS_E_ASN1_VALUE.NOT_FOUND is returned if you didn’t set all information in the

certificate request (e.g., the version using gnutls_x509_crq_set_version()).

42

CHAPTER 3. AUTHENTICATION METHODS

The following example is about generating a certificate request, and a private key. A certificate
request can be later be processed by a CA which should return a signed certificate.

1| /* This example code is placed in the public domain. */

2

3 | #ifdef HAVE_CONFIG_H

4 | #include <config.h>

5 | #endif

6

7 | #include <stdio.h>

8 | #include <stdlib.h>

9 | #include <string.h>

10 | #include <gnutls/gnutls.h>

11 | #include <gnutls/x509.h>

12 | #include <gnutls/abstract.h>

13 | #include <time.h>

14

15 | /* This example will generate a private key and a certificate
16 | * request.

17| */

18

19 | int main(void)

20 | {

21 gnutls_x509_crq_t crq;

22 gnutls_x509_privkey_t key;

23 unsigned char buffer[10 * 1024];

24 size_t buffer_size = sizeof (buffer);

25 unsigned int bits;

26

27 gnutls_global_init();

28

29 /* Initialize an empty certificate request, and

30 * an empty private key.

31 */

32 gnutls_x509_crq_init (&crq);

33

34 gnutls_x509_privkey_init (&key) ;

35

36 /* Generate an RSA key of moderate security.

37 */

38 bits =

39 gnutls_sec_param_to_pk_bits(GNUTLS_PK_RSA,

40 GNUTLS_SEC_PARAM_MEDIUM) ;
41 gnutls_x509_privkey_generate(key, GNUTLS_PK_RSA, bits, 0);
42

43 /* Add stuff to the distinguished name

44 */

45 gnutls_x509_crq_set_dn_by_oid(crq, GNUTLS_OID_X520_COUNTRY_NAME,
46 0, "GR", 2);

47

48 gnutls_x509_crq_set_dn_by_oid(crq, GNUTLS_0ID_X520_COMMON_NAME,
49 0, "Nikos", strlen("Nikos"));
50

51 /* Set the request version.

52 */

53 gnutls_x509_crq_set_version(crqg, 1);

54

55 /* Set a challenge password.

43

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

3.2. MORE ON CERTIFICATE AUTHENTICATION

*/
gnutls_x509_crq_set_challenge_password(crq,
"something to remember here");

/* Associate the request with the private key
*/
gnutls_x509_crq_set_key(crq, key);

/* Self sign the certificate request.
*/
gnutls_x509_crq_sign2(crq, key, GNUTLS_DIG_SHA1, 0);

/* Export the PEM encoded certificate request, and
* display it.
*/
gnutls_x509_crq_export(crq, GNUTLS_X509_FMT_PEM, buffer,
&buffer_size);

printf("Certificate Request: \nJs", buffer);

/* Export the PEM encoded private key, and
* display it.
*/
buffer_size = sizeof (buffer);
gnutls_x509_privkey_export (key, GNUTLS_X509_FMT_PEM, buffer,
&buffer_size);

printf ("\n\nPrivate key: \n%s", buffer);

gnutls_x509_crq_deinit(crq);
gnutls_x509_privkey_deinit (key);

return O;

3.2.2. PKIX certificate revocation lists

A certificate revocation list (CRL) is a structure issued by an authority periodically containing
a list of revoked certificates serial numbers. The CRL structure is signed with the issuing au-
thorities’ keys. A typical CRL contains the fields as shown in Table 3.9. Certificate revocation
lists are used to complement the expiration date of a certificate, in order to account for other
reasons of revocation, such as compromised keys, etc.

Each CRL is valid for limited amount of time and is required to provide, except for the current
issuing time, also the issuing time of the next update.

The basic CRL structure functions follow.

44

CHAPTER 3. AUTHENTICATION METHODS

int gnutls x509_crl init (gnutls_z509_cri_t * crl)
int gnutls_x509_crl_import (gnutis_z509_cri_t crl, const gnutls_datum_t * data,
gnutls_z509_crt_fmt_t format)

int gnutls_x509_crl_export (gnutls_x509-crl_t crl, gnutls_z509_crt_fmi_t format,
void * output_data, size_t * output_data_size)

int gnutls_x509_crl_export (gnutls_x509_cri_t crl, gnutls_x509_crt_fmt_t format,
void * output_data, size_t * output_data_size)

Reading a CRL

The most important function that extracts the certificate revocation information from a CRL
is gnutls_x509_crl_get_crt_serial. Other functions that return other fields of the CRL
structure are also provided.

int gnutls_x509_crl_get_crt_serial (gnutls_x509_cri_t crl, int indx, unsigned char *
serial, size_t * serial_size, time.t * t)

DeSCI‘iptiOIl: This function will retrieve the serial number of the specified, by the
index, revoked certificate. Note that this function will have performance issues in large

sequences of revoked certificates. In that case use gnutls_xb09_crl_iter_crt_serial().

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

45

3.2. MORE ON CERTIFICATE AUTHENTICATION

int gnutls x509_crl_get_version (gnutls_x509_cri_t crl)

int gnutls_x509_crl_get_issuer_dn (const gnutls_z509_cri_t crl, char * buf, size_t *
sizeof_buf)

it gnutls_x509_crl_get_issuer_dn2 (gnutls_z509_cri_t crl, gnutls_datum_t * dn)

time_t gnutls_x509_crl_get_this_update (gnutls_z509_crl_t crl)

time_t gnutls_x509_crl_get_next_update (gnutls_z509-cri_t crl)

int gnutls_x509_crl_get_crt_count (gnutls_z509_cri_t crl)

Generation of a CRL

The following functions can be used to generate a CRL.

int gnutls_x509_crl_set_version (gnutls_z509_cri_t crl, unsigned int version)

int gnutls_x509_crl_set_crt_serial (gnutls_x509_cri_t crl, const void * serial, size_t
serial_size, time_t revocation_time)

int gnutls_x509_crl_set_crt (gnutls_z509_crl_t crl, gnutls_z509-crt_t crt, time_t
revocation_time)

int gnutls_x509_crl_set_next_update (gnutls_z509_cri_t crl, time_t exp_time)

int gnutls_x509_crl_set_this_update (gnutls_z509_cri_t crl, time_t act_time)

The gnutls_x509_crl_sign2 and gnutls_x509_crl privkey_sign functions sign the revoca-
tion list with a private key. The latter function can be used to sign with a key residing in a
PKCS #11 token.

Few extensions on the CRL structure are supported, including the CRL number extension and
the authority key identifier.

46

CHAPTER 3. AUTHENTICATION METHODS

int gnutls_x509_crl_sign2 (gnutls_x509_cri_t crl, gnutls_x509_crt_t issuer,
gnutls_z509_privkey_t issuer_key, gnutls_digest_algorithm_t dig, unsigned int flags)

DeSCI‘iptiOIl: This function will sign the CRL with the issuer’s private key, and will
copy the issuer’s information into the CRL. This must be the last step in a certificate CRL

since all the previously set parameters are now signed.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls x509_crl_privkey_sign (gnutls_z509_crl_t crl, gnutls_x509_crt_t issuer,
gnutls_privkey_t issuer_key, gnutls_digest_algorithm_t dig, unsigned int flags)

DeSCI‘iptiOH: This function will sign the CRL with the issuer’s private key, and will
copy the issuer’s information into the CRL. This must be the last step in a certificate CRL

since all the previously set parameters are now signed.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value. Since 2.12.0

*

int gnutls_x509_crl_set_number (gnutls_x509_cri_t crl, const wvoid nr, size_t

nr_size)

int gnutls_x509_crl_set_authority_key_id (gnutls_x509_cri_t crl, const wvoid * id,
size_t id_size)

3.2.3. OCSP certificate status checking

Certificates may be revoked before their expiration time has been reached. There are several
reasons for revoking certificates, but a typical situation is when the private key associated with
a certificate has been compromised. Traditionally, Certificate Revocation Lists (CRLs) have
been used by application to implement revocation checking, however, several problems with
CRLs have been identified [31].

The Ouline Certificate Status Protocol, or OCSP [24], is a widely implemented protocol which
performs certificate revocation status checking. An application that wish to verify the identity
of a peer will verify the certificate against a set of trusted certificates and then check whether
the certificate is listed in a CRL and/or perform an OCSP check for the certificate.

Note that in the context of a TLS session the server may provide an OCSP response that
will be used during the TLS certificate verification (see gnutls _certificate verify peers2).

47

15

3.2. MORE ON CERTIFICATE AUTHENTICATION

You may obtain this response using gnutls_ocsp-status_request_get.

Before performing the OCSP query, the application will need to figure out the address of
the OCSP server. The OCSP server address can be provided by the local user in manual
configuration or may be stored in the certificate that is being checked. When stored in a
certificate the OCSP server is in the extension field called the Authority Information Access
(AIA). The following function extracts this information from a certificate.

int gnutls_x509_crt_get_authority_info_access (gnutls_.z509_crt_t crt, unsigned int
seq, int what, gnutls_datum_t * data, unsigned int * critical)

There are several functions in GnuTLS for creating and manipulating OCSP requests and
responses. The general idea is that a client application creates an OCSP request object, stores
some information about the certificate to check in the request, and then exports the request
in DER format. The request will then need to be sent to the OCSP responder, which needs
to be done by the application (GnuTLS does not send and receive OCSP packets). Normally
an OCSP response is received that the application will need to import into an OCSP response
object. The digital signature in the OCSP response needs to be verified against a set of trust
anchors before the information in the response can be trusted.

The ASN.1 structure of OCSP requests are briefly as follows. It is useful to review the structures
to get an understanding of which fields are modified by GnuTLS functions.

O0CSPRequest 1= SEQUENCE {

tbsRequest TBSRequest,

optionalSignature [o] EXPLICIT Signature OPTIONAL }
TBSRequest Li= SEQUENCE {

version [o] EXPLICIT Version DEFAULT vi1,

requestorName [1] EXPLICIT GeneralName OPTIONAL,

requestlList SEQUENCE OF Request,

requestExtensions [2] EXPLICIT Extensions OPTIONAL }
Request 1:= SEQUENCE {

reqCert CertID,

singleRequestExtensions [0] EXPLICIT Extensions OPTIONAL }
CertID = SEQUENCE {

hashAlgorithm AlgorithmIdentifier,

issuerNameHash OCTET STRING, -- Hash of Issuer’s DN

issuerKeyHash OCTET STRING, -- Hash of Issuers public key

serialNumber CertificateSerialNumber }

The basic functions to initialize, import, export and deallocate OCSP requests are the following.

48

CHAPTER 3. AUTHENTICATION METHODS

int gnutls_ocsp_req_init (gnutls_ocsp_req_t * req)
void gnutls_ocsp_req_deinit (gnutls_ocsp_req_t req)
int gnutls_ocsp_req_import (gnutls_ocsp_req_t req, const gnutls_datum_t * data)

int gnutls_ocsp_req_export (gnutls_ocsp_req_t req, gnutls_datum_t * data)

int gnutls_ocsp_req_print (gnutls_ocsp_req_t req, gnutls_ocsp_print_formats_t for-
mat, gnutls_datum_t * out)

To generate an OCSP request the issuer name hash, issuer key hash, and the checked certifi-
cate’s serial number are required. There are two interfaces available for setting those in an
OCSP request. The is a low-level function when you have the issuer name hash, issuer key
hash, and certificate serial number in binary form. The second is more useful if you have the
certificate (and its issuer) in a gnutls x509_crt_t type. There is also a function to extract
this information from existing an OCSP request.

int gnutls_ocsp_req_add_cert_id (gnutls_ocsp_-req-t req, gnutls_digest_algorithm_t
digest, const gnutls_.datum_t * issuer_name_hash, const gnutls_datum_t *
suer_key_hash, const gnutls_datum_t * serial_number)

is-

int gnutls_ocsp_req_add_cert (gnutls_ocsp_req_t req, gnutls_digest_algorithm_t di-
gest, gnutls_x509_crt_t issuer, gnutls_x509_crt_t cert)

int gnutls_ocsp_req_get_cert_id (gnutls_ocsp_req_-t req, unsigned indx,
gnutls_digest_algorithm._t * digest, gnutls_datum_t * issuer_name_hash,
gnutls_datum_t * issuer_key_hash, gnutls_datum_t * serial number)

Each OCSP request may contain a number of extensions. Extensions are identified by an
Object Identifier (OID) and an opaque data buffer whose syntax and semantics is implied by
the OID. You can extract or set those extensions using the following functions.

int gnutls_ocsp_req_get_extension (gnutls_ocsp_req-t req, unsigned indx,
gnutls_datum_t * oid, unsigned int * critical, gnutls_datum_t * data)

*

int gnutls_ocsp_req_set_extension (gnutls_ocsp_req_t req, const char oid, un-

signed int critical, const gnutls_datum_t * data)

49

3.2. MORE ON CERTIFICATE AUTHENTICATION

A common OCSP Request extension is the nonce extension (OID 1.3.6.1.5.5.7.48.1.2), which is
used to avoid replay attacks of earlier recorded OCSP responses. The nonce extension carries
a value that is intended to be sufficiently random and unique so that an attacker will not be
able to give a stale response for the same nonce.

*

int gnutls_ocsp_req_get_nonce (gnutls_ocsp_req-t req, unsigned int critical,

gnutls_datum_t * nonce)

int gnutls_ocsp_req_set_nonce (gnutls_ocsp_req_t req, unsigned int critical, const
gnutls_datum_t * nonce)

int gnutls_ocsp_req_randomize_nonce (gnutls_ocsp_req_t req)

The OCSP response structures is a complex structure. A simplified overview of it is in Ta-
ble 3.10. Note that a response may contain information on multiple certificates.

We provide basic functions for initialization, importing, exporting and deallocating OCSP
responses.

int gnutls_ocsp_resp_init (gnutls_ocsp_resp_t * resp)
void gnutls_ocsp_resp_deinit (gnutls_ocsp_resp_t resp)
int gnutls_ocsp_resp_import (gnutls_ocsp_resp_t resp, const gnutls_datum_t * data)

int gnutls_ocsp_resp_export (gnutls_ocsp_resp_t resp, gnutls_datum_t * data)

int gnutls_ocsp_resp_print (gnutls_ocsp_resp_t resp, gnutls_ocsp_print_formats_t
format, gnutls_.datum_t * out)

The utility function that extracts the revocation as well as other information from a response
is shown below.

The possible revocation reasons available in an OCSP response are shown below.

Note, that the OCSP response needs to be verified against some set of trust anchors before
it can be relied upon. It is also important to check whether the received OCSP response
corresponds to the certificate being checked.

50

CHAPTER 3. AUTHENTICATION METHODS

int gnutls_ocsp_resp_get_single (gnutls_ocsp_resp_t resp, unsigned indx,
gnutls_digest_algorithm_t * digest, gnutls_datum_t * issuer_name_hash,
gnutls_datum_t * issuer_key_hash, gnutls_datum_t * serial_number, unsigned
it * cert_status, time_t * this_update, time_t * next_update, time_t * revoca-
tion_time, wunsigned int * revocation_reason)

Description: This function will return the certificate information of the indx’ed
response in the Basic OCSP Response resp. The information returned corresponds to the OCSP
SingleResponse structure except the final singleExtensions. Each of the pointers to output

variables may be NULL to indicate that the caller is not interested in that value.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative
error code is returned. If you have reached the last CertID available GNUTLS_E._-
REQUESTED _DATA _NOT_AVAILABLE will be returned.

int gnutls_ocsp_resp_verify (gnutls_ocsp_resp_t resp, gnutls_x509_-trust_list_t
trustlist, unsigned int * verify, unsigned int flags)

int gnutls_ocsp_resp_verify _direct (gnutls_ocsp_resp_t resp, gnutls_z509_crt_t is-
suer, unsigned int * verify, unsigned int flags)

int gnutls_ocsp_resp_check _crt (gnutls_ocsp_resp_t resp, unsigned int indx,
gnutls_x509_crt_t crt)

3.2.4. Managing encrypted keys

Transferring or storing private keys in plain may not be a good idea, since any compromise
is irreparable. Storing the keys in hardware security modules (see section 4.3) could solve the
storage problem but it is not always practical or efficient enough. This section describes ways
to store and transfer encrypted private keys.

There are methods for key encryption, namely the PKCS #8, PKCS #12 and OpenSSL’s
custom encrypted private key formats. The PKCS #8 and the OpenSSL’s method allow
encryption of the private key, while the PKCS #12 method allows, in addition, the bundling of
accompanying data into the structure. That is typically the corresponding certificate, as well
as a trusted CA certificate.

High level functionality

Generic and higher level private key import functions are available, that import plain or en-
crypted keys and will auto-detect the encrypted key format.

51

3.2. MORE ON CERTIFICATE AUTHENTICATION

int gnutls_privkey_import_x509_raw (gnutls_privkey_t pkey, const gnutls_datum_t *
data, gnutls_z509_crt_fmt_t format, const char * password, unsigned int flags)

Description: This function will import the given private key to the abstract gnutls_-
privkey_t type. The supported formats are basic unencrypted key, PKCS8, PKCS12, and the

openssl format.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls_x509_privkey_import2 (gnutls_z509_privkey_t key, const gnutls_datum_t *
data, gnutls_z509_crt_fmt_t format, const char * password, unsigned int flags)

DeSCI’iptiOl’l: This function will import the given DER or PEM encoded key, to the

native gnutls_z509_privkey_t format, irrespective of the input format. The input format

is auto-detected. The supported formats are basic unencrypted key, PKCS8, PKCS12, and
the openssl format. If the provided key is encrypted but no password was given, then
GNUTLS_E_DECRYPTION_FAILED is returned. Since GnuTLS 3.4.0 this function will
utilize the PIN callbacks if any.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

Any keys imported using those functions can be imported to a certificate credentials struc-
ture using gnutls_certificate_set_key, or alternatively they can be directly imported using

gnutls_certificate_set_x509 key_file2.

PKCS #38 structures

PKCS #8 keys can be imported and exported as normal private keys using the functions below.
An addition to the normal import functions, are a password and a flags argument. The flags
can be any element of the gnutls_pkcs_encrypt_flags_t enumeration. Note however, that
GnuTLS only supports the PKCS #5 PBES2 encryption scheme. Keys encrypted with the
obsolete PBES1 scheme cannot be decrypted.

52

CHAPTER 3. AUTHENTICATION METHODS

int gnutls_x509_privkey_import_pkcs8 (gnutls_z509_privkey_t key, const
gnutls_datum_t ~ * data, gnutls_z509_crt_fmt_t format, const char * password,
unsigned int flags)

int gnutls_x509_privkey_export_pkcs8 (gnutls_x509_privkey_t key,
gnutls_z509_crt_fmt_t format, const char * password, unsigned int flags, wvoid
* output_data, size_t * output_data_size)

int gnutls_x509_privkey _export2_pkcs8 (gnutls_x509_privkey_t key,
gnutls_z509_crt_fmt_t format, const char * password, unsigned int flags,
gnutls_datum_t * out)

PKCS #12 structures

A PKCS #12 structure [18] usually contains a user’s private keys and certificates. It is com-
monly used in browsers to export and import the user’s identities. A file containing such a key
can be directly imported to a certificate credentials structure by using gnutls_certificate -
set_xb09_simple pkcsl2 file.

In GnuTLS the PKCS #12 structures are handled using the gnutls_pkcs12_t type. This is
an abstract type that may hold several gnutls_pkcsi12_bag t types. The bag types are the
holders of the actual data, which may be certificates, private keys or encrypted data. A bag
of type encrypted should be decrypted in order for its data to be accessed.

To reduce the complexity in parsing the structures the simple helper function gnutls_pkcs12_-
simple_parse is provided. For more advanced uses, manual parsing of the structure is required
using the functions below.

int gnutls_pkcsl2_get_bag (gnutls_pkcsi2-t pkcesl2, int indx, gnutls_pkcs12_bag_t
bag)

* pass)

int gnutls_pkesl12_verify_mac (gnutls_pkcs12-t pkesl2, const char
int gnutls_pkes12_bag_decrypt (gnutls_pkcsi2_bag_t bag, const char * pass)

int gnutls_pkcs12_bag_get_count (gnutls_pkcs12_bag_-t bag)

53

3.2. MORE ON CERTIFICATE AUTHENTICATION

int gnutls_pkes12_simple_parse (gnutls_pkcs12_t p12, const char * password,
gnutls_z509_privkey_t * key, gnutls_z509_crt_t ** chain, unsigned int * chain_len,
gnutls_t509_crt_t ** extra_certs, unsigned int * extra_certs_len, gnutls_x509_cri.t *
crl, unsigned int flags)

DeSCI‘iptiOIl: This function parses a PKCS12 structure in pkcsl12 and extracts the private
key, the corresponding certificate chain, any additional certificates and a CRL. The ex-
tra_certs and extra_certs_len parameters are optional and both may be set to NULL. If
either is non-NULL, then both must be set. The value for extra_certs is allocated

using gnutlsmalloc(). Encrypted PKCS12 bags and PKCS8 private keys are supported, but
only with password based security and the same password for all operations. Note that

a PKCS12 structure may contain many keys and/or certificates, and there is no way to
identify which key/certificate pair you want. For this reason this function is useful

for PKCS12 files that contain only one key/certificate pair and/or one CRL. If the provided
structure has encrypted fields but no password is provided then this function returns
GNUTLS_E_DECRYPTION_FAILED. Note that normally the chain constructed does not
include self signed certificates, to comply with TLS’ requirements. If, however, the flag
GNUTLS_PKCS12_SP_INCLUDE_SELF_SIGNED is specified then self signed certificates will be
included in the chain. Prior to using this function the PKCS #12 structure integrity must

be verified using gnutls_pkcsl2 verify mac().

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls_pkcsl12_bag get_data (gnutls_pkcsi2_bag-t bag, int indx,
gnutls_datum_t * data)

int gnutls_pkcsl2_bag get _key_id (gnutls_pkcsi2_bag-t bag, int indx,
gnutls_datum_t * id)

int gnutls_pkes12_bag_get_friendly_name (gnutls_pkcs12_bag-t bag, int indx,
char ** name)

The functions below are used to generate a PKCS #12 structure. An example of their usage
is shown at subsection 6.4.4.

54

CHAPTER 3. AUTHENTICATION METHODS

int gnutls_pkesl12_set_bag (gnutls_pkcsi2_-t pkesl2, gnutls_pkcs12_bag_t bag)

int gnutls_pkcsl12_bag_encrypt (gnutls_pkcs12_bag_t bag, const char * pass, un-
signed int flags)

int gnutls_pkcs12_generate_mac (gnutls_pkcs12-t pkesl2, const char * pass)

int gnutls_pkes12_bag set_data (gnutls_pkcs12_bag_t bag, gnutls_pkcs12_bag_type_t
type, const gnutls_datum_t * data)

int gnutls_pkcs12_bag set_crl (gnutls_pkcs12_bag-t bag, gnutls_z509_crl_t crl)

int gnutls_pkcsl2_bag set_crt (gnutls_pkcsi2_bag_t bag, gnutls_z509_crt_t crt)

int gnutls_pkes12_bag_set_key_id (gnutls_pkcsi2_bag-t bag, int indx, const
gnutls_datum_t * id)

int gnutls_pkcs12_bag_set_friendly name (gnutls_pkcsi2_bag-t bag, int indx,
const char * name)

OpenSSL encrypted keys

Unfortunately the structures discussed in the previous sections are not the only structures
that may hold an encrypted private key. For example the OpenSSL library offers a custom
key encryption method. Those structures are also supported in GnuTLS with gnutls_x509_-
privkey_import_openssl.

3.2.5. Invoking certtool
Tool to parse and generate X.509 certificates, requests and private keys. It can be used inter-
actively or non interactively by specifying the template command line option.

The tool accepts files or URLs supported by GnuTLS. In case PIN is required for the URL access
you can provide it using the environment variables GNUTLS_PIN and GNUTLS_SO_PIN.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the certtool program. This software is released under the GNU General
Public License, version 3 or later.

55

3.2. MORE ON CERTIFICATE AUTHENTICATION

int gnutls_x509_privkey_import_openssl (gnutls_x509_privkey_t key, const
gnutls_datum_t * data, const char * password)

Description:
x509_privkey_t format.

will be returned.

KEY"

Returns:

value.

This function will convert the given PEM encrypted to the native gnutls_-
The output will be stored in key. The password should be in
ASCII. If the password is not provided or wrong then GNUTLS_E_DECRYPTION_FAILED
If the Certificate is PEM encoded it should have a header of "PRIVATE
and the "DEK-Info" header.

On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

certtool help/usage (“--help”)

This is the automatically generated usage text for certtool.

The text printed is the same whether selected with the help option (“~-help”) or the more-help
option (“--more-help”). more-help will print the usage text by passing it through a pager
program. more-help is disabled on platforms without a working fork(2) function. The PAGER
environment variable is used to select the program, defaulting to “more”. Both will exit with
a status code of 0.

certtool - GnuTLS certificate tool
certtool [-<flag> [<val>] | --<name>[{=| }<val>]]...

Usage:

-d,

-v,

-c,

-u,
-p,
-q,

-e,

--debug=num

--verbose
--infile=file

--outfile=str
--generate-self-signed
--generate-certificate
—--generate-proxy
--generate-crl
--update-certificate
--generate-privkey
—--generate-request

--verify-chain
--verify
--verify-crl

--verify-hostname=str
--verify-email=str

--verify-purpose=str
--generate-dh-params

Enable debugging

- it must be in the range:

0 to 9999

More verbose output

- may appear multiple times
Input file

- file must pre-exist
Output file

Generate a self-signed certificate

Generate a signed certificate
Generates a proxy certificate
Generate a CRL
Update a signed certificate
Generate a private key
Generate a PKCS #10 certificate request

- prohibits the option ’infile’
Verify a PEM encoded certificate chain
Verify a PEM encoded certificate chain using a trusted list
Verify a CRL using a trusted list

- requires the option ’load-ca-certificate’
Specify a hostname to be used for certificate chain verification
Specify a email to be used for certificate chain verification

- prohibits the option ’verify-hostname’
Specify a purpose 0ID to be used for certificate chain verification
Generate PKCS #3 encoded Diffie-Hellman parameters

56

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

47
48
49
50
51
52
53
54
55

57
58
59
60
61
62
63
64

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

86

CHAPTER 3. AUTHENTICATION METHODS

--get-dh-params
--dh-info
--load-privkey=str
--load-pubkey=str
--load-request=str
--load-certificate=str
--load-ca-privkey=str

Get the included PKCS #3 encoded Diffie-Hellman parameters
Print information PKCS #3 encoded Diffie-Hellman parameters
Loads a private key file

Loads a public key file

Loads a certificate request file

Loads a certificate file

Loads the certificate authority’s private key file

--load-ca-certificate=str Loads the certificate authority’s certificate file

--load-crl=str
--load-data=str
--password=str
--null-password
--empty-password
--hex-numbers
--cprint

-i, --certificate-info
--fingerprint
--key-id
--certificate-pubkey
--pgp-certificate-info
--pgp-ring-info

-1, --crl-info
--crq-info
--no-crq-extensions

-!, --pl2-info

-", --pl2-name=str

-#, —--p7-generate

-$, —-p7-sign

-%, —-p7-detached-sign
-&, --p7-time

-’, —--p7-info

-(, --p7-verify

-), --p8-info

—-%, —--smime-to-p7

-k, --key-info

-+, --pgp-key-info
-,, ——pubkey-info
--, —--vil

-., ——to-pil2

-/, ——to-p8

-8, —-pkcs8

-0, --rsa

-1, --dsa

-2, --ecc

-3, --ecdsa

-4, --hash=str
-5, --inder

-6, ——inraw

-7, —--outder

-8, —--outraw

-9, --bits=num

-:, ——-curve=str

-;, ——sec-param=str

-<, --disable-quick-random
-=, ——template=str

Loads the provided CRL

Loads auxilary data

Password to use

Enforce a NULL password

Enforce an empty password

Print big number in an easier format to parse

In certain operations it prints the information in C-friendly forn

Print information on the given certificate

Print the fingerprint of the given certificate

Print the key ID of the given certificate

Print certificate’s public key

Print information on the given OpenPGP certificate

Print information on the given OpenPGP keyring structure

Print information on the given CRL structure

Print information on the given certificate request

Do not use extensions in certificate requests

Print information on a PKCS #12 structure

The PKCS #12 friendly name to use

Generate a PKCS #7 structure

Signs using a PKCS #7 structure

Signs using a detached PKCS #7 structure

Will include a timestamp in the PKCS #7 structure

Print information on a PKCS #7 structure

Verify the provided PKCS #7 structure

Print information on a PKCS #8 structure

Convert S/MIME to PKCS #7 structure

Print information on a private key

Print information on an OpenPGP private key

Print information on a public key

Generate an X.509 version 1 certificate (with no extensions)

Generate a PKCS #12 structure
- requires the option ’load-certificate’

Generate a PKCS #8 structure

Use PKCS #8 format for private keys

Generate RSA key

Generate DSA key

Generate ECC (ECDSA) key

an alias for the ’ecc’ option

Hash algorithm to use for signing

Use DER format for input certificates, private keys, and DH parame
- disabled as ’--no-inder’

an alias for the ’inder’ option

Use DER format for output certificates, private keys, and DH paran
- disabled as ’--no-outder’

an alias for the ’outder’ option

Specify the number of bits for key generate

Specify the curve used for EC key generation

Specify the security level [low, legacy, medium, high, ultral
No effect

Template file to use for non-interactive operation

o7

nat

ters

neters

3.2. MORE ON CERTIFICATE AUTHENTICATION

->, --stdout-info Print information to stdout instead of stderr

-7, ——ask-pass Enable interaction for entering password when in batch mode.
-@, --pkcs-cipher=str Cipher to use for PKCS #8 and #12 operations

-A, --provider=str Specify the PKCS #11 provider library

-v, --version[=arg] output version information and exit

-h, --help display extended usage information and exit

-!, --more-help extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single
hyphen and the flag character.

Tool to parse and generate X.509 certificates, requests and private keys.
It can be used interactively or non interactively by specifying the
template command line option.

The tool accepts files or URLs supported by GnuTLS. In case PIN is
required for the URL access you can provide it using the environment
variables GNUTLS_PIN and GNUTLS_SO_PIN.

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

generate-crl option

This is the “generate a crl” option. This option generates a CRL. When combined with —load-
crl it would use the loaded CRL as base for the generated (i.e., all revoked certificates in the
base will be copied to the new CRL).

generate-request option (-q)

This is the “generate a pkcs #10 certificate request” option.
This option has some usage constraints. It:
e must not appear in combination with any of the following options: infile.

Will generate a PKCS #10 certificate request. To specify a private key use —load-privkey.

verify-chain option (-e)

This is the “verify a pem encoded certificate chain” option. The last certificate in the chain
must be a self signed one. It can be combined with —verify-purpose or —verify-hostname.

58

CHAPTER 3. AUTHENTICATION METHODS

verify option

This is the “verify a pem encoded certificate chain using a trusted list” option. The trusted
certificate list can be loaded with —load-ca-certificate. If no certificate list is provided, then the
system’s certificate list is used. Note that during verification multiple paths may be explored.
On a successful verification the successful path will be the last one. It can be combined with
—verify-purpose or —verify-hostname.

verify-crl option

This is the “verify a crl using a trusted list” option.
This option has some usage constraints. It:
e must appear in combination with the following options: load-ca-certificate.

The trusted certificate list must be loaded with —load-ca-certificate.

verify-hostname option

This is the “specify a hostname to be used for certificate chain verification” option. This option
takes a string argument. This is to be combined with one of the verify certificate options.

verify-email option
This is the “specify a email to be used for certificate chain verification” option. This option
takes a string argument.
This option has some usage constraints. It:
e must not appear in combination with any of the following options: verify-hostname.

This is to be combined with one of the verify certificate options.

verify-purpose option

This is the “specify a purpose oid to be used for certificate chain verification” option. This
option takes a string argument. This object identifier restricts the purpose of the certificates
to be verified. Example purposes are 1.3.6.1.5.5.7.3.1 (TLS WWW), 1.3.6.1.5.5.7.3.4 (EMAIL)
etc. Note that a CA certificate without a purpose set (extended key usage) is valid for any
purpose.

59

3.2. MORE ON CERTIFICATE AUTHENTICATION

get-dh-params option

This is the “get the included pkcs #3 encoded diffie-hellman parameters” option. Returns
stored DH parameters in GnuTLS. Those parameters are used in the SRP protocol. The
parameters returned by fresh generation are more efficient since GnuTLS 3.0.9.

load-privkey option

This is the “loads a private key file” option. This option takes a string argument. This can be
either a file or a PKCS #11 URL

load-pubkey option

This is the “loads a public key file” option. This option takes a string argument. This can be
either a file or a PKCS #11 URL

load-certificate option

This is the “loads a certificate file” option. This option takes a string argument. This can be
either a file or a PKCS #11 URL

load-ca-privkey option

This is the “loads the certificate authority’s private key file” option. This option takes a string
argument. This can be either a file or a PKCS #11 URL

load-ca-certificate option

This is the “loads the certificate authority’s certificate file” option. This option takes a string
argument. This can be either a file or a PKCS #11 URL

password option

This is the “password to use” option. This option takes a string argument. You can use this
option to specify the password in the command line instead of reading it from the tty. Note,
that the command line arguments are available for view in others in the system. Specifying
password as ” is the same as specifying no password.

60

CHAPTER 3. AUTHENTICATION METHODS

null-password option

This is the “enforce a null password” option. This option enforces a NULL password. This is
different than the empty or no password in schemas like PKCS #8.

empty-password option

This is the “enforce an empty password” option. This option enforces an empty password.
This is different than the NULL or no password in schemas like PKCS #8.

cprint option

This is the “in certain operations it prints the information in c-friendly format” option. In
certain operations it prints the information in C-friendly format, suitable for including into C
programs.

fingerprint option

This is the “print the fingerprint of the given certificate” option. This is a simple hash of the
DER encoding of the certificate. It can be combined with the ~hash parameter. However, it is
recommended for identification to use the key-id which depends only on the certificate’s key.

key-id option

This is the “print the key id of the given certificate” option. This is a hash of the public key of
the given certificate. It identifies the key uniquely, remains the same on a certificate renewal
and depends only on signed fields of the certificate.

pl2-info option

This is the “print information on a pkecs #12 structure” option. This option will dump the
contents and print the metadata of the provided PKCS #12 structure.

pl2-name option

This is the “the pkes #12 friendly name to use” option. This option takes a string argument.
The name to be used for the primary certificate and private key in a PKCS #12 file.

61

3.2. MORE ON CERTIFICATE AUTHENTICATION

p7-generate option

This is the “generate a pkcs #7 structure” option. This option generates a PKCS #7 certificate
container structure. To add certificates in the structure use —load-certificate and —load-crl.

p7-sign option

This is the “signs using a pkcs #7 structure” option. This option generates a PKCS #7
structure containing a signature for the provided data. The data are stored within the structure.
The signer certificate has to be specified using —load-certificate and —load-privkey.

p7-detached-sign option

This is the “signs using a detached pkcs #7 structure” option. This option generates a PKCS
#7 structure containing a signature for the provided data. The signer certificate has to be
specified using —load-certificate and —load-privkey.

p7-time option

This is the “will include a timestamp in the pkcs #7 structure” option. This option will include
a timestamp in the generated signature

p7-verify option

This is the “verify the provided pkcs #7 structure” option. This option verifies the signed
PKCS #7 structure. The certificate list to use for verification can be specified with —load-
ca-certificate. When no certificate list is provided, then the system’s certificate list is used.
Alternatively a direct signer can be provided using —load-certificate. A key purpose can be
enforced with the —verify-purpose option, and the —load-data option will utilize detached data.

p8-info option
This is the “print information on a pkcs #8 structure” option. This option will print infor-

mation about encrypted PKCS #8 structures. That option does not require the decryption of
the structure.

pubkey-info option
This is the “print information on a public key” option. The option combined with —load-

request, —load-pubkey, —load-privkey and —load-certificate will extract the public key of the
object in question.

62

CHAPTER 3. AUTHENTICATION METHODS

to-pl2 option

This is the “generate a pkes #12 structure” option.
This option has some usage constraints. It:
e must appear in combination with the following options: load-certificate.

It requires a certificate, a private key and possibly a CA certificate to be specified.

rsa option

This is the “generate rsa key” option. When combined with —generate-privkey generates an
RSA private key.

dsa option

This is the “generate dsa key” option. When combined with —generate-privkey generates a
DSA private key.

ecc option

This is the “generate ecc (ecdsa) key” option. When combined with —generate-privkey generates
an elliptic curve private key to be used with ECDSA.

ecdsa option

This is an alias for the ecc option, section 3.2.5.

hash option

This is the “hash algorithm to use for signing” option. This option takes a string argument.
Available hash functions are SHA1, RMD160, SHA256, SHA384, SHA512.

inder option

)

This is the “use der format for input certificates, private keys, and dh parameters ” option.
This option has some usage constraints. It:
e can be disabled with —no-inder.

The input files will be assumed to be in DER or RAW format. Unlike options that in PEM
input would allow multiple input data (e.g. multiple certificates), when reading in DER format
a single data structure is read.

63

3.2. MORE ON CERTIFICATE AUTHENTICATION

inraw option

This is an alias for the inder option, section 3.2.5.

outder option

This is the “use der format for output certificates, private keys, and dh parameters” option.
This option has some usage constraints. It:
e can be disabled with —no-outder.

The output will be in DER or RAW format.

outraw option

This is an alias for the outder option, section 3.2.5.

curve option

This is the “specify the curve used for ec key generation” option. This option takes a string
argument. Supported values are secp192rl, secp224rl, secp256rl, secp384rl and secp521rl.

sec-param option

This is the “specify the security level [low, legacy, medium, high, ultra]” option. This option
takes a string argument “Security parameter”. This is alternative to the bits option.

ask-pass option

This is the “enable interaction for entering password when in batch mode.” option. This
option will enable interaction to enter password when in batch mode. That is useful when the
template option has been specified.

pkcs-cipher option

This is the “cipher to use for pkcs #8 and #12 operations” option. This option takes a string
argument “Cipher”. Cipher may be one of 3des, 3des-pkcs12,; aes-128, aes-192, aes-256, rc2-40,
arcfour.

64

-

[

[

CHAPTER 3. AUTHENTICATION METHODS

provider option

This is the “specify the pkes #11 provider library” option. This option takes a string argument.
This will override the default options in /etc/gnutls/pkes1l.conf

certtool exit status

One of the following exit values will be returned:
e 0 (EXIT_SUCCESS) Successful program execution.

e 1 (EXIT_FAILURE) The operation failed or the command syntax was not valid.

certtool See Also

plltool (1)

certtool Examples
Generating private keys

To create an RSA private key, run:

$ certtool --generate-privkey --outfile key.pem --rsa

To create a DSA or elliptic curves (ECDSA) private key use the above command combined
with ’dsa’ or ’ecc’ options.

Generating certificate requests

To create a certificate request (needed when the certificate is issued by another party), run:

certtool --generate-request --load-privkey key.pem \
--outfile request.pem

If the private key is stored in a smart card you can generate a request by specifying the private
key object URL.

$./certtool --generate-request --load-privkey "pkcsil:..." \
--load-pubkey "pkcsll:..." --outfile request.pem

65

3.2. MORE ON CERTIFICATE AUTHENTICATION

Generating a self-signed certificate

To create a self signed certificate, use the command:

-

$ certtool --generate-privkey --outfile ca-key.pem
$ certtool --generate-self-signed --load-privkey ca-key.pem \
3 --outfile ca-cert.pem

N

Note that a self-signed certificate usually belongs to a certificate authority, that signs other
certificates.

Generating a certificate

To generate a certificate using the previous request, use the command:

$ certtool --generate-certificate --load-request request.pem \
--outfile cert.pem --load-ca-certificate ca-cert.pem \
--load-ca-privkey ca-key.pem

w N e

To generate a certificate using the private key only, use the command:

-

$ certtool --generate-certificate --load-privkey key.pem \
2 --outfile cert.pem --load-ca-certificate ca-cert.pem \
--load-ca-privkey ca-key.pem

Certificate information

To view the certificate information, use:

1|$ certtool --certificate-info --infile cert.pem

PKCS #12 structure generation

To generate a PKCS #12 structure using the previous key and certificate, use the command:

$ certtool --load-certificate cert.pem --load-privkey key.pem \
2 --to-pl2 --outder --outfile key.pl2

-

Some tools (reportedly web browsers) have problems with that file because it does not contain
the CA certificate for the certificate. To work around that problem in the tool, you can use
the —load-ca-certificate parameter as follows:

[

$ certtool --load-ca-certificate ca.pem \
--load-certificate cert.pem --load-privkey key.pem \
--to-pl12 --outder --outfile key.pl2

w N

66

CHAPTER 3. AUTHENTICATION METHODS

Diffie-Hellman parameter generation

To generate parameters for Diffie-Hellman key exchange, use the command:

1|$ certtool --generate-dh-params --outfile dh.pem --sec-param medium

Proxy certificate generation

Proxy certificate can be used to delegate your credential to a temporary, typically short-lived,
certificate. To create one from the previously created certificate, first create a temporary key
and then generate a proxy certificate for it, using the commands:

$ certtool --generate-privkey > proxy-key.pem

$ certtool --generate-proxy --load-ca-privkey key.pem \
--load-privkey proxy-key.pem --load-certificate cert.pem \
--outfile proxy-cert.pem

N N

Certificate revocation list generation

To create an empty Certificate Revocation List (CRL) do:

$ certtool --generate-crl --load-ca-privkey x509-ca-key.pem \
2 --load-ca-certificate x509-ca.pem

-

To create a CRL that contains some revoked certificates, place the certificates in a file and use
--load-certificate as follows:

$ certtool --generate-crl --load-ca-privkey x509-ca-key.pem \
2 --load-ca-certificate x509-ca.pem --load-certificate revoked-certs.pem

[

To verify a Certificate Revocation List (CRL) do:

1|$ certtool --verify-crl --load-ca-certificate x509-ca.pem < crl.pem

certtool Files
Certtool’s template file format

A template file can be used to avoid the interactive questions of certtool. Initially create a file
named ’cert.cfg’ that contains the information about the certificate. The template can be used
as below:

$ certtool --generate-certificate --load-privkey key.pem \
--template cert.cfg --outfile cert.pem \
--load-ca-certificate ca-cert.pem --load-ca-privkey ca-key.pem

[CI

w

67

I = T I SR R

oA A A R R R R R R R W W W W W W W W W NNNNNNNNNNR B e e E R e e
S © ®» N O Ok W N R OO ® IO AR ®NR OO ® IO AR ®N RO O ® N OO A ®WN RO

51
52
53
54

3.2. MORE ON CERTIFICATE AUTHENTICATION

An example certtool template file that can be used to generate a certificate request or a self
signed certificate follows.

X.509 Certificate options
#
DN options

The organization of the subject.
organization = "Koko inc."

The organizational unit of the subject.
unit = "sleeping dept."

The locality of the subject.
locality =

The state of the certificate owner.
state = "Attiki"

The country of the subject. Two letter code.
country = GR

The common name of the certificate owner.
cn = "Cindy Lauper"

A user id of the certificate owner.
#uid = "clauper"

Set domain components
#dc = "name"
#dc = "domain"

If the supported DN OIDs are not adequate you can set

any O0ID here.

For example set the X.520 Title and the X.520 Pseudonym
by using O0ID and string pairs.

#dn_oid = 2.5.4.12 Dr.

#dn_oid = 2.5.4.65 jackal

This is deprecated and should not be used in new
certificates.
pkcs9_email = "none@none.org"

An alternative way to set the certificate’s distinguished name directly
is with the "dn" option. The attribute names allowed are:

C (country), street, 0 (organization), OU (unit), title, CN (common name),
L (locality), ST (state), placeOfBirth, gender, country0fCitizenship,
countryOfResidence, serialNumber, telephoneNumber, surName, initials,
generationQualifier, givenName, pseudonym, dnQualifier, postalCode, name,
businessCategory, DC, UID, jurisdictionOfIncorporationLocalityName,
jurisdictionOfIncorporationStateOrProvinceName,
jurisdictionOfIncorporationCountryName, XmppAddr, and numeric OIDs.

H OH OH HOHE R HE

#dn = "cn = Nikos,st = New\, Something,C=GR,surName=Mavrogiannopoulos,2.5.4.9=Arkadias"

The serial number of the certificate
Comment the field for a time-based serial number.
serial = 007

68

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

82
83
84

85

110
111
112
113

CHAPTER 3. AUTHENTICATION METHODS

In how many days,

counting from today, this certificate will expire.

Use -1 if there is no expiration date.

expiration_days =

700

Alternatively you may set concrete dates and time. The GNU date string
formats are accepted. See:
http://www.gnu.org/software/tar/manual/html_node/Date-input-formats.html

#activation_date =
#expiration_date

"2004-02-29 16:21:42"
"2025-02-29 16:24:41"

X.509 v3 extensions

A dnsname in case of a WWW server.
#dns_name = "www.none.org"
#dns_name = "www.morethanone.org"

A subject alternative name URI

#uri = "http://wuw.

An IP address in

#ip_address = "192.

An email in case

email = "none@none.

example.com"

case of a server.
168.1.1"

of a person
org"

Challenge password used in certificate requests

challenge_password

= 123456

Password when encrypting a private key

#password = secret

An URL that has CRLs (certificate revocation lists)
available. Needed in CA certificates.

#crl_dist_points =

"http://www.getcrl.crl/getcrl/"

Whether this is a CA certificate or not

#ca

Subject Unique ID (in hex)

#subject_unique_id

Issuer Unique ID

#issuer_unique_id =

Key usage

= 00153224

(in hex)
00153225

The following key usage flags are used by CAs and end certificates

Whether this certificate will be used to sign data (needed
in TLS DHE ciphersuites). This is the digitalSignature flag
in RFC5280 terminology.

signing_key

Whether this certificate will be used to encrypt data (needed
in TLS RSA ciphersuites). Note that it is preferred to use different
keys for encryption and signing. This is the keyEncipherment flag

69

3.2. MORE ON CERTIFICATE AUTHENTICATION

114 | # in RFC5280 terminology.
115 | encryption_key

116
117 | # Whether this key will be used to sign other certificates. The
118 | # keyCertSign flag in RFC5280 terminology.

119 | #cert_signing_key

121 | # Whether this key will be used to sign CRLs. The
122 | # cRLSign flag in RFC5280 terminology.
123 | #crl_signing_key

125 | # The keyAgreement flag of RFC5280. It’s purpose is loosely
126 | # defined. Not use it unless required by a protocol.
127 | #key_agreement

129 | # The dataEncipherment flag of RFC5280. It’s purpose is loosely
130 | # defined. Not use it unless required by a protocol.
131 | #data_encipherment

133 | # The nonRepudiation flag of RFC5280. It’s purpose is loosely
134 | # defined. Not use it unless required by a protocol.
135 | #non_repudiation

137 | #### Extended key usage (key purposes)

139 | # The following extensions are used in an end certificate
140 | # to clarify its purpose. Some CAs also use it to indicate
141 | # the types of certificates they are purposed to sign.

144 | # Whether this certificate will be used for a TLS client;
145 | # this sets the id-kp-serverAuth (1.3.6.1.5.5.7.3.1) of
146 | # extended key usage.

147 | #tls_www_client

149 | # Whether this certificate will be used for a TLS server;
150 | # This sets the id-kp-clientAuth (1.3.6.1.5.5.7.3.2) of
151 | # extended key usage.

152 | #t1ls_www_server

153
154 | # Whether this key will be used to sign code. This sets the
155 | # id-kp-codeSigning (1.3.6.1.5.5.7.3.3) of extended key usage
156 | # extension.

157 | #code_signing_key

159 | # Whether this key will be used to sign OCSP data. This sets the
160 | # id-kp-0CSPSigning (1.3.6.1.5.5.7.3.9) of extended key usage extension.
161 | #ocsp_signing_key

163 | # Whether this key will be used for time stamping. This sets the
164 | # id-kp-timeStamping (1.3.6.1.5.5.7.3.8) of extended key usage extension.
165 | #time_stamping_key

167 | # Whether this key will be used for email protection. This sets the
168 | # id-kp-emailProtection (1.3.6.1.5.5.7.3.4) of extended key usage extension.
169 | #email_protection_key

171 | # Whether this key will be used for IPsec IKE operations (1.3.6.1.5.5.7.3.17).

70

CHAPTER 3. AUTHENTICATION METHODS

172 | #ipsec_ike_key
174 | ## adding custom key purpose 0IDs

176 | # for microsoft smart card logon
177 | # key_purpose_oid = 1.3.6.1.4.1.311.20.2.2

179 | # for email protection
180 | # key_purpose_oid = 1.3.6.1.5.5.7.3.4

182 | # for any purpose (must not be used in intermediate CA certificates)
183 | # key_purpose_oid = 2.5.29.37.0

185 | ### end of key purpose 0IDs

187 | # When generating a certificate from a certificate

188 | # request, then honor the extensions stored in the request
189 | # and store them in the real certificate.

190 | #honor_crq_extensions

192 | # Path length contraint. Sets the maximum number of

193 | # certificates that can be used to certify this certificate.
194 |# (i.e. the certificate chain length)

195 | #path_len = -1

196 | #path_len = 2

198 | # OCSP URI
199 | # ocsp_uri = http://my.ocsp.server/ocsp

201 | # CA issuers URI
202 | # ca_issuers_uri = http://my.ca.issuer

204 | # Certificate policies

205 | #policyl = 1.3.6.1.4.1.5484.1.10.99.1.0

206 | #policyl_txt = "This is a long policy to summarize"
207 | #policyl_url = http://www.example.com/a-policy-to-read

209 | #policy2 = 1.3.6.1.4.1.5484.1.10.99.1.1

210 | #policy2_txt = "This is a short policy"

211 | #policy2_url = http://www.example.com/another-policy-to-read
213 | # Name constraints

215 | # DNS

216 | #nc_permit_dns = example.com

217 | #nc_exclude_dns = test.example.com

219 | # EMAIL
220 | #nc_permit_email = "nmav@ex.net"

222 | # Exclude subdomains of example.com
223 | #nc_exclude_email = .example.com

225 | # Exclude all e-mail addresses of example.com
226 | #nc_exclude_email = example.com

229 | # Options for proxy certificates

71

3.2. MORE ON CERTIFICATE AUTHENTICATION

#proxy_policy_language = 1.3.6.1.5.5.7.21.1

Options for generating a CRL

The number of days the next CRL update will be due.
next CRL update will be in 43 days
#crl_next_update = 43

this is the 5th CRL by this CA
Comment the field for a time-based number.
#crl_number = 5

Specify the update dates more precisely.
#crl_this_update_date = "2004-02-29 16:21:42"
#crl_next_update_date = "2025-02-29 16:24:41"

The date that the certificates will be made seen as
being revoked.
#crl_revocation_date = "2025-02-29 16:24:41"

3.2.6. Invoking ocsptool

Ocsptool is a program that can parse and print information about OCSP requests/responses,
generate requests and verify responses.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the ocsptool program. This software is released under the GNU General
Public License, version 3 or later.

ocsptool help/usage (“--help”)

This is the automatically generated usage text for ocsptool.

The text printed is the same whether selected with the help option (“--help”) or the more-help
option (“--more-help”). more-help will print the usage text by passing it through a pager
program. more-help is disabled on platforms without a working fork(2) function. The PAGER
environment variable is used to select the program, defaulting to “more”. Both will exit with
a status code of 0.

ocsptool - GnuTLS OCSP tool
Usage: ocsptool [-<flag> [<val>] | --<name>[{=| }<val>] 1]...
-d, --debug=num Enable debugging
- it must be in the range:
0 to 9999
-V, --verbose More verbose output
- may appear multiple times
--infile=file Input file
- file must pre-exist
--outfile=str Output file

72

CHAPTER 3. AUTHENTICATION METHODS

12 --ask[=arg] Ask an OCSP/HTTP server on a certificate validity
13 - requires these options:

14 load-cert

15 load-issuer

16 -e, —-verify-response Verify response

17 -i, --request-info Print information on a OCSP request

18 -j, ——response-info Print information on a OCSP response

19 -q, —-generate-request Generate an OCSP request

20 --nonce Use (or not) a nonce to OCSP request

21 - disabled as ’--no-nonce’

22 --load-issuer=file Read issuer certificate from file

23 - file must pre-exist

24 --load-cert=file Read certificate to check from file

25 - file must pre-exist

26 --load-trust=file Read OCSP trust anchors from file

27 - prohibits the option ’load-signer’

28 - file must pre-exist

29 --load-signer=file Read OCSP response signer from file

30 - prohibits the option ’load-trust’

31 - file must pre-exist

32 —--inder Use DER format for input certificates and private keys
33 - disabled as ’--no-inder’

34 -Q, --load-request=file Read DER encoded OCSP request from file

35 - file must pre-exist

36 -S, —--load-response=file Read DER encoded OCSP response from file

37 - file must pre-exist

38 -v, --version[=arg] output version information and exit

39 -h, --help display extended usage information and exit
40 -!, --more-help extended usage information passed thru pager
41

42 | Options are specified by doubled hyphens and their name or by a single

43 | hyphen and the flag character.

44

45 | Ocsptool is a program that can parse and print information about OCSP

46 | requests/responses, generate requests and verify responses.

a7

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

ask option
This is the “ask an ocsp/http server on a certificate validity” option. This option takes an
optional string argument Q@fileserver name—url.
This option has some usage constraints. It:
e must appear in combination with the following options: load-cert, load-issuer.

Connects to the specified HTTP OCSP server and queries on the validity of the loaded certifi-
cate.

73

[

-

(S

-

3.2. MORE ON CERTIFICATE AUTHENTICATION

ocsptool exit status

One of the following exit values will be returned:
e 0 (EXIT_SUCCESS) Successful program execution.
e 1 (EXIT_FAILURE) The operation failed or the command syntax was not valid.

ocsptool See Also

certtool (1)

ocsptool Examples
Print information about an OCSP request
To parse an OCSP request and print information about the content, the -i or --request-info

parameter may be used as follows. The -Q parameter specify the name of the file containing
the OCSP request, and it should contain the OCSP request in binary DER format.

’$ ocsptool -i -Q ocsp-request.der

The input file may also be sent to standard input like this:

$ cat ocsp-request.der | ocsptool --request-info ‘

Print information about an OCSP response

Similar to parsing OCSP requests, OCSP responses can be parsed using the —j or --response-info

as follows.

$ ocsptool -j -Q ocsp-response.der
$ cat ocsp-response.der | ocsptool --response-info

Generate an OCSP request

The -q or -—generate-request parameters are used to generate an OCSP request. By default
the OCSP request is written to standard output in binary DER format, but can be stored in a
file using ——outfile. To generate an OCSP request the issuer of the certificate to check needs
to be specified with —-1load-issuer and the certificate to check with -—load-cert. By default
PEM format is used for these files, although --inder can be used to specify that the input
files are in DER format.

$ ocsptool -q --load-issuer issuer.pem --load-cert client.pem \
--outfile ocsp-request.der

74

CHAPTER 3. AUTHENTICATION METHODS

When generating OCSP requests, the tool will add an OCSP extension containing a nonce.
This behaviour can be disabled by specifying -—-no-nonce.

Verify signature in OCSP response

To verify the signature in an OCSP response the -e or --verify-response parameter is used.
The tool will read an OCSP response in DER format from standard input, or from the file
specified by --load-response. The OCSP response is verified against a set of trust anchors,
which are specified using --load-trust. The trust anchors are concatenated certificates in
PEM format. The certificate that signed the OCSP response needs to be in the set of trust
anchors, or the issuer of the signer certificate needs to be in the set of trust anchors and the
OCSP Extended Key Usage bit has to be asserted in the signer certificate.

-

$ ocsptool -e --load-trust issuer.pem \
2 --load-response ocsp-response.der

The tool will print status of verification.

Verify signature in OCSP response against given certificate

It is possible to override the normal trust logic if you know that a certain certificate is supposed
to have signed the OCSP response, and you want to use it to check the signature. This is
achieved using --load-signer instead of --load-trust. This will load one certificate and it
will be used to verify the signature in the OCSP response. It will not check the Extended Key
Usage bit.

-

$ ocsptool -e --load-signer ocsp-signer.pem \
2 --load-response ocsp-response.der

This approach is normally only relevant in two situations. The first is when the OCSP response
does not contain a copy of the signer certificate, so the -—-load-trust code would fail. The
second is if you want to avoid the indirect mode where the OCSP response signer certificate is
signed by a trust anchor.

Real-world example

Here is an example of how to generate an OCSP request for a certificate and to verify the
response. For illustration we’ll use the blog. josefsson.org host, which (as of writing) uses
a certificate from CACert. First we’ll use gnutls-cli to get a copy of the server certificate
chain. The server is not required to send this information, but this particular one is configured
to do so.

1|$ echo | gnutls-cli -p 443 blog.josefsson.org —-print-cert > chain.pem

75

w N e

-

3.2. MORE ON CERTIFICATE AUTHENTICATION

Use a text editor on chain.pem to create three files for each separate certificates, called
cert.pem for the first certificate for the domain itself, secondly issuer.pem for the inter-
mediate certificate and root.pem for the final root certificate.

The domain certificate normally contains a pointer to where the OCSP responder is located,
in the Authority Information Access Information extension. For example, from certtool -i
< cert.pen there is this information:

Authority Information Access Information (not critical):
Access Method: 1.3.6.1.5.5.7.48.1 (id-ad-ocsp)
Access Location URI: http://ocsp.CAcert.org/

This means the CA support OCSP queries over HTTP. We are now ready to create a OCSP
request for the certificate.

$ ocsptool --ask ocsp.CAcert.org --load-issuer issuer.pem \
--load-cert cert.pem --outfile ocsp-response.der

The request is sent via HT'TP to the OCSP server address specified. If the address is ommited
ocsptool will use the address stored in the certificate.

3.2.7. Invoking danetool

Tool to generate and check DNS resource records for the DANE protocol.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the danetool program. This software is released under the GNU General
Public License, version 3 or later.

danetool help/usage (“--help”)

This is the automatically generated usage text for danetool.

The text printed is the same whether selected with the help option (“--help”) or the more-help
option (“--more-help”). more-help will print the usage text by passing it through a pager
program. more-help is disabled on platforms without a working fork(2) function. The PAGER
environment variable is used to select the program, defaulting to “more”. Both will exit with
a status code of 0.

danetool - GnuTLS DANE tool
Usage: danetool [-<flag> [<val>] | --<name>[{=| }<val>] 1]...
-d, --debug=num Enable debugging
- it must be in the range:
0 to 9999
-V, --verbose More verbose output
- may appear multiple times
--infile=file Input file
- file must pre-exist
--outfile=str Output file

76

= o

ooooo

o

CHAPTER 3. AUTHENTICATION METHODS

--load-pubkey=str Loads a public key file

--load-certificate=str Loads a certificate file

--dlv=str Sets a DLV file

--hash=str Hash algorithm to use for signing

--check=str Check a host’s DANE TLSA entry

--check-ee Check only the end-entity’s certificate

--check-ca Check only the CA’s certificate

--tlsa-rr Print the DANE RR data on a certificate or public key
- requires the option ’host’

--host=str Specify the hostname to be used in the DANE RR

--proto=str The protocol set for DANE data (tcp, udp etc.)

—-port=num Specify the port number for the DANE data

--app-proto=str an alias for the ’starttls-proto’ option

--starttls-proto=str The application protocol to be used to obtain the server’s certifi
(https, ftp, smtp, imap, ldap, xmpp)

--ca Whether the provided certificate or public key is a Certificate
Authority
--x509 Use the hash of the X.509 certificate, rather than the public key
--local an alias for the ’domain’ option
- enabled by default
--domain The provided certificate or public key is issued by the local domai
- disabled as ’--no-domain’
- enabled by default
--local-dns Use the local DNS server for DNSSEC resolving
- disabled as ’--no-local-dns’
--insecure Do not verify any DNSSEC signature
--inder Use DER format for input certificates and private keys
- disabled as ’--no-inder’
--inraw an alias for the ’inder’ option
--print-raw Print the received DANE data in raw format
- disabled as ’--no-print-raw’
--quiet Suppress several informational messages
-v, --version[=arg] output version information and exit
-h, --help display extended usage information and exit
-!, --more-help extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single
hyphen and the flag character.

Tool to generate and check DNS resource records for the DANE protocol.

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

load-pubkey option

This is the “loads a public key file” option. This option takes a string argument. This can be
either a file or a PKCS #11 URL

7

3.2. MORE ON CERTIFICATE AUTHENTICATION

load-certificate option

This is the “loads a certificate file” option. This option takes a string argument. This can be
either a file or a PKCS #11 URL

dlv option

This is the “sets a dlv file” option. This option takes a string argument. This sets a DLV file
to be used for DNSSEC verification.

hash option

This is the “hash algorithm to use for signing” option. This option takes a string argument.
Available hash functions are SHA1, RMD160, SHA256, SHA384, SHA512.

check option

Y

This is the “check a host’s dane tlsa entry” option. This option takes a string argument.
Obtains the DANE TLSA entry from the given hostname and prints information. Note that
the actual certificate of the host can be provided using —load-certificate, otherwise danetool
will connect to the server to obtain it. The exit code on verification success will be zero.

check-ee option

This is the “check only the end-entity’s certificate” option. Checks the end-entity’s certificate
only. Trust anchors or CAs are not considered.

check-ca option

This is the “check only the ca’s certificate” option. Checks the trust anchor’s and CA’s certifi-
cate only. End-entities are not considered.

tlsa-rr option

)

This is the “print the dane rr data on a certificate or public key” option.
This option has some usage constraints. It:
e must appear in combination with the following options: host.

This command prints the DANE RR data needed to enable DANE on a DNS server.

78

CHAPTER 3. AUTHENTICATION METHODS

host option

This is the “specify the hostname to be used in the dane rr” option. This option takes a string
argument “Hostname”. This command sets the hostname for the DANE RR.

proto option

This is the “the protocol set for dane data (tcp, udp etc.)” option. This option takes a string
argument “Protocol”. This command specifies the protocol for the service set in the DANE
data.

app-proto option

This is an alias for the starttls-proto option, section 3.2.7.

starttls-proto option

This is the “the application protocol to be used to obtain the server’s certificate (https, ftp,
smtp, imap, ldap, xmpp)” option. This option takes a string argument. When the server’s
certificate isn’t provided danetool will connect to the server to obtain the certificate. In that
case it is required to known the protocol to talk with the server prior to initiating the TLS
handshake.

ca option

This is the “whether the provided certificate or public key is a certificate authority” option.
Marks the DANE RR as a CA certificate if specified.

x509 option

This is the “use the hash of the x.509 certificate, rather than the public key” option. This
option forces the generated record to contain the hash of the full X.509 certificate. By default
only the hash of the public key is used.

local option

This is an alias for the domain option, section 3.2.7.

79

3.2. MORE ON CERTIFICATE AUTHENTICATION

domain option

This is the “the provided certificate or public key is issued by the local domain” option.
This option has some usage constraints. It:

e can be disabled with —no-domain.

e It is enabled by default.

DANE distinguishes certificates and public keys offered via the DNSSEC to trusted and local
entities. This flag indicates that this is a domain-issued certificate, meaning that there could
be no CA involved.

local-dns option

This is the “use the local dns server for dnssec resolving” option.
This option has some usage constraints. It:
e can be disabled with —no-local-dns.

This option will use the local DNS server for DNSSEC. This is disabled by default due to many
servers not allowing DNSSEC.

insecure option

This is the “do not verify any dnssec signature” option. Ignores any DNSSEC signature
verification results.

inder option

This is the “use der format for input certificates and private keys” option.
This option has some usage constraints. It:
e can be disabled with —no-inder.

The input files will be assumed to be in DER or RAW format. Unlike options that in PEM
input would allow multiple input data (e.g. multiple certificates), when reading in DER format
a single data structure is read.

inraw option

This is an alias for the inder option, section 3.2.7.

80

-

[SE

CHAPTER 3. AUTHENTICATION METHODS

print-raw option

This is the “print the received dane data in raw format” option.
This option has some usage constraints. It:
e can be disabled with —no-print-raw.

This option will print the received DANE data.

quiet option

This is the “suppress several informational messages” option. In that case on the exit code can
be used as an indication of verification success

danetool exit status

One of the following exit values will be returned:
e 0 (EXIT_SUCCESS) Successful program execution.
e 1 (EXIT_FAILURE) The operation failed or the command syntax was not valid.

danetool See Also

certtool (1)

danetool Examples
DANE TLSA RR generation

To create a DANE TLSA resource record for a certificate (or public key) that was issued localy
and may or may not be signed by a CA use the following command.

$ danetool --tlsa-rr --host www.example.com --load-certificate cert.pem

To create a DANE TLSA resource record for a CA signed certificate, which will be marked as
such use the following command.

$ danetool --tlsa-rr --host www.example.com --load-certificate cert.pem \
--no-domain

The former is useful to add in your DNS entry even if your certificate is signed by a CA. That
way even users who do not trust your CA will be able to verify your certificate using DANE.

In order to create a record for the CA signer of your certificate use the following.

81

3.3. SHARED-KEY AND ANONYMOUS AUTHENTICATION

-

$ danetool --tlsa-rr --host www.example.com --load-certificate cert.pem \
--ca --no-domain

M)

To read a server’s DANE TLSA entry, use:

1

$ danetool --check www.example.com --proto tcp —-port 443 ‘

To verify a server’s DANE TLSA entry, use:

1

$ danetool --check www.example.com --proto tcp --port 443 --load-certificate chain.pem ‘

3.3. Shared-key and anonymous authentication

In addition to certificate authentication, the TLS protocol may be used with password, shared-
key and anonymous authentication methods. The rest of this chapter discusses details of these
methods.

3.3.1. SRP authentication
Authentication using SRP

GnuTLS supports authentication via the Secure Remote Password or SRP protocol (see [40, 39]
for a description). The SRP key exchange is an extension to the TLS protocol, and it provides
an authenticated with a password key exchange. The peers can be identified using a single
password, or there can be combinations where the client is authenticated using SRP and the
server using a certificate.

The advantage of SRP authentication, over other proposed secure password authentication
schemes, is that SRP is not susceptible to off-line dictionary attacks. Moreover, SRP does
not require the server to hold the user’s password. This kind of protection is similar to the
one used traditionally in the UNIX “/etc/passwd” file, where the contents of this file did
not cause harm to the system security if they were revealed. The SRP needs instead of the
plain password something called a verifier, which is calculated using the user’s password, and
if stolen cannot be used to impersonate the user.

Typical conventions in SRP are a password file, called “tpasswd” that holds the SRP verifiers
(encoded passwords) and another file, “tpasswd.conf”, which holds the allowed SRP parame-
ters. The included in GnuTLS helper follow those conventions. The srptool program, discussed
in the next section is a tool to manipulate the SRP parameters.

The implementation in GnuTLS is based on [36]. The supported key exchange methods are
shown below.

e SRP: Authentication using the SRP protocol.

82

CHAPTER 3. AUTHENTICATION METHODS

e SRP_DSS: Client authentication using the SRP protocol. Server is authenticated using
a certificate with DSA parameters.

e SRP_RSA: Client authentication using the SRP protocol. Server is authenticated using
a certificate with RSA parameters.

* username, const char * password, const

*

int gnutls_srp_verifier (const char
gnutls_datum_t * salt, const gnutls_datum_t * generator, const gnutls_datum_t
prime, gnutls_datum_t * res)

DeSCI‘iptiOIl: This function will create an SRP verifier, as specified in RFC2945. The
prime and generator should be one of the static parameters defined in gnutls/gnutls.h or
may be generated. The verifier will be allocated with gnutls_malloc() and will be stored

in res using binary format.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

int gnutls_srp_base64_encode2 (const gnutls_datum_t * data, gnutls_datum_t * re-
sult)

int gnutls_srp_base64_decode2 (const gnutls_datum_t * b64_data, gnutls_datum_t *
result)

Invoking srptool

Simple program that emulates the programs in the Stanford SRP (Secure Remote Password)
libraries using GnuTLS. It is intended for use in places where you don’t expect SRP authenti-
cation to be the used for system users.

In brief, to use SRP you need to create two files. These are the password file that holds
the users and the verifiers associated with them and the configuration file to hold the group
parameters (called tpasswd.conf).

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the srptool program. This software is released under the GNU General
Public License, version 3 or later.

srptool help/usage (“--help”)

This is the automatically generated usage text for srptool.

The text printed is the same whether selected with the help option (“--help”) or the more-help
option (“--more-help”). more-help will print the usage text by passing it through a pager

83

3.3. SHARED-KEY AND ANONYMOUS AUTHENTICATION

program. more-help is disabled on platforms without a working fork(2) function. The PAGER
environment variable is used to select the program, defaulting to “more”. Both will exit with
a status code of 0.

Usage:

-d,

_i’
-u,
-p,
-s,

-v,
-v,

-h,

-1
L

srptool - GnuTLS SRP tool
srptool [-<flag> [<val>] | --<name>[{=| }<val>]]...

--debug=num

--index=num
—-username=str
--passwd=str
--salt=num
--verify
--passwd-conf=str
--create-conf=str
--version[=arg]
--help
--more-help

Options are specified by doubled hyphens and their name or by a single
hyphen and the flag character.

Simple program that emulates the programs in the Stanford SRP (Secure
Remote Password) libraries using GnuTLS. It is intended for use in places
where you don’t expect SRP authentication to be the used for system users.

In brief, to use SRP you need to create two files. These are the password
file that holds the users and the verifiers associated with them and the
configuration file to hold the group parameters (called tpasswd.conf).

Enable debugging

- it must be in the range:

0 to 9999

specify the index of the group parameters in tpasswd.conf to use
specify a username
specify a password file
specify salt size
just verify the password.
specify a password conf file.
Generate a password configuration file.
output version information and exit
display extended usage information and exit
extended usage information passed thru pager

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

verify option

This is the “just verify the password.” option. Verifies the password provided against the
password file.

passwd-conf option (-v)

This is the “specify a password conf file.” option. This option takes a string argument. Specify
a filename or a PKCS #11 URL to read the CAs from.

84

[

-

[

CHAPTER 3. AUTHENTICATION METHODS

create-conf option
This is the “generate a password configuration file.” option. This option takes a string argu-

ment. This generates a password configuration file (tpasswd.conf) containing the required for
TLS parameters.

srptool exit status

One of the following exit values will be returned:
e 0 (EXIT_SUCCESS) Successful program execution.
o 1 (EXIT_FAILURE) The operation failed or the command syntax was not valid.

srptool See Also

gnutls-cli-debug (1), gnutls-serv (1), srptool (1), psktool (1), certtool (1)

srptool Examples

To create “tpasswd.conf” which holds the g and n values for SRP protocol (generator and a
large prime), run:

’$ srptool --create-conf /etc/tpasswd.conf ‘

This command will create “/etc/tpasswd” and will add user ’test’ (you will also be prompted
for a password). Verifiers are stored by default in the way libsrp expects.

’$ srptool --passwd /etc/tpasswd --passwd-conf /etc/tpasswd.conf -u test

This command will check against a password. If the password matches the one in “/etc/tpasswd”
you will get an ok.

’$ srptool --passwd /etc/tpasswd --passwd\-conf /etc/tpasswd.conf --verify -u test

3.3.2. PSK authentication
Authentication using PSK

Authentication using Pre-shared keys is a method to authenticate using usernames and binary
keys. This protocol avoids making use of public key infrastructure and expensive calculations,
thus it is suitable for constraint clients.

The implementation in GnuTLS is based on [11]. The supported PSK key exchange methods
are:

85

® N e R W N

3.3. SHARED-KEY AND ANONYMOUS AUTHENTICATION

PSK: Authentication using the PSK protocol.

DHE-PSK: Authentication using the PSK protocol and Diffie-Hellman key exchange.
This method offers perfect forward secrecy.

e ECDHE-PSK: Authentication using the PSK protocol and Elliptic curve Diffie-Hellman
key exchange. This method offers perfect forward secrecy.

RSA-PSK: Authentication using the PSK protocol for the client and an RSA certificate
for the server.

Helper functions to generate and maintain PSK keys are also included in GnuTLS.

int gnutls_key_generate (gnutls_datum_t * key, unsigned int key_size)

*

int gnutls_hex_encode (const gnutls_datum_t * data, char * result, size.t * re-

sult_size)

it gnutls_hex_decode (const gnutls_datum_t * hex_data, void * result, size.t *
result_size)

Invoking psktool

Program that generates random keys for use with TLS-PSK. The keys are stored in hexadecimal
format in a key file.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the psktool program. This software is released under the GNU General
Public License, version 3 or later.

psktool help/usage (“--help”)

This is the automatically generated usage text for psktool.

The text printed is the same whether selected with the help option (“--help”) or the more-help
option (“--more-help”). more-help will print the usage text by passing it through a pager
program. more-help is disabled on platforms without a working fork(2) function. The PAGER
environment variable is used to select the program, defaulting to “more”. Both will exit with
a status code of 0.

psktool - GnuTLS PSK tool
Usage: psktool [-<flag> [<val>] | --<name>[{=| }<val>]]...
-d, --debug=num Enable debugging
- it must be in the range:
0 to 9999
-s, ——keysize=num specify the key size in bytes
- it must be in the range:

86

R

o o

CHAPTER 3. AUTHENTICATION METHODS

0 to 512
-u, --username=str specify a username
-p, ——passwd=str specify a password file
-v, --version[=arg] output version information and exit
-h, --help display extended usage information and exit
-!, --more-help extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single
hyphen and the flag character.

Program that generates random keys for use with TLS-PSK. The keys are
stored in hexadecimal format in a key file.

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

psktool exit status

One of the following exit values will be returned:
e 0 (EXIT_SUCCESS) Successful program execution.
e 1 (EXIT_FAILURE) The operation failed or the command syntax was not valid.

psktool See Also

gnutls-cli-debug (1), gnutls-serv (1), srptool (1), certtool (1)

psktool Examples

To add a user 'psk_identity’ in “passwd.psk” for use with GnuTLS run:

$./psktool -u psk_identity -p passwd.psk

Generating a random key for user ’psk_identity’

Key stored to passwd.psk

$ cat psks.txt
psk_identity:88f3824b3e5659f£52d00e959bacab954b6540344
$

This command will create “passwd.psk” if it does not exist and will add user 'psk_identity’
(you will also be prompted for a password).

87

3.4. SELECTING AN APPROPRIATE AUTHENTICATION METHOD

3.3.3. Anonymous authentication

The anonymous key exchange offers encryption without any indication of the peer’s identity.
This kind of authentication is vulnerable to a man in the middle attack, but can be used even if
there is no prior communication or shared trusted parties with the peer. It is useful to establish
a session over which certificate authentication will occur in order to hide the indentities of the
participants from passive eavesdroppers.

Unless in the above case, it is not recommended to use anonymous authentication. In the cases
where there is no prior communication with the peers, an alternative with better properties,
such as key continuity, is trust on first use (see section 3.1.3).

The available key exchange algorithms for anonymous authentication are shown below, but
note that few public servers support them, and they have to be explicitly enabled.

e ANON_DH: This algorithm exchanges Diffie-Hellman parameters.

o ANON_ECDH: This algorithm exchanges elliptic curve Diffie-Hellman parameters. It is
more efficient than ANON_DH on equivalent security levels.

3.4. Selecting an appropriate authentication method

This section provides some guidance on how to use the available authentication methods in
GnuTLS in various scenarios.

3.4.1. Two peers with an out-of-band channel

Let’s consider two peers who need to communicate over an untrusted channel (the Internet), but
have an out-of-band channel available. The latter channel is considered safe from eavesdropping
and message modification and thus can be used for an initial bootstrapping of the protocol.
The options available are:

e Pre-shared keys (see subsection 3.3.2). The server and a client communicate a shared
randomly generated key over the trusted channel and use it to negotiate further sessions
over the untrusted channel.

e Passwords (see subsection 3.3.1). The client communicates to the server its username and
password of choice and uses it to negotiate further sessions over the untrusted channel.

e Public keys (see section 3.1). The client and the server exchange their public keys (or
fingerprints of them) over the trusted channel. On future sessions over the untrusted
channel they verify the key being the same (similar to section 3.1.3).

Provided that the out-of-band channel is trusted all of the above provide a similar level of
protection. An out-of-band channel may be the initial bootstrapping of a user’s PC in a
corporate environment, in-person communication, communication over an alternative network
(e.g. the phone network), etc.

88

CHAPTER 3. AUTHENTICATION METHODS

3.4.2. Two peers without an out-of-band channel

When an out-of-band channel is not available a peer cannot be reliably authenticated. What
can be done, however, is to allow some form of registration of users connecting for the first
time and ensure that their keys remain the same after that initial connection. This is termed
key continuity or trust on first use (TOFU).

The available option is to use public key authentication (see section 3.1). The client and the
server store each other’s public keys (or fingerprints of them) and associate them with their
identity. On future sessions over the untrusted channel they verify the keys being the same
(see section 3.1.3).

To mitigate the uncertainty of the information exchanged in the first connection other channels
over the Internet may be used, e.g., DNSSEC (see section 3.1.3).

3.4.3. Two peers and a trusted third party

When a trusted third party is available (or a certificate authority) the most suitable option is
to use certificate authentication (see section 3.1). The client and the server obtain certificates
that associate their identity and public keys using a digital signature by the trusted party
and use them to on the subsequent communications with each other. Each party verifies the
peer’s certificate using the trusted third party’s signature. The parameters of the third party’s
signature are present in its certificate which must be available to all communicating parties.

While the above is the typical authentication method for servers in the Internet by using the
commercial CAs, the users that act as clients in the protocol rarely possess such certificates. In
that case a hybrid method can be used where the server is authenticated by the client using the
commercial CAs and the client is authenticated based on some information the client provided
over the initial server-authenticated channel. The available options are:

e Passwords (see subsection 3.3.1). The client communicates to the server its username and
password of choice on the initial server-authenticated connection and uses it to negotiate
further sessions. This is possible because the SRP protocol allows for the server to be
authenticated using a certificate and the client using the password.

e Public keys (see section 3.1). The client sends its public key to the server (or a fingerprint
of it) over the initial server-authenticated connection. On future sessions the client verifies
the server using the third party certificate and the server verifies that the client’s public
key remained the same (see section 3.1.3).

89

3.4. SELECTING AN APPROPRIATE AUTHENTICATION METHOD

enum gnutls_certificate_status_t:

GNUTLS_CERT_INVALID The certificate is not signed by one of the known
authorities or the signature is invalid (deprecated by
the flags GNUTLS_CERT_SIGNATURE_FAILURE
and GNUTLS_CERT_SIGNER_NOT_FOUND).

GNUTLS_CERT_REVOKED Certificate is revoked by its authority. In X.509 this
will be set only if CRLs are checked.

GNUTLS_CERT_SIGNER_NOT_FOUND The certificate’s issuer is not known. This is the
case if the issuer is not included in the trusted
certificate list.

GNUTLS_CERT_SIGNER_NOT_CA The certificate’s signer was not a CA. This may happen
if this was a version 1 certificate, which is common
with some CAs, or a version 3 certificate without the

basic constrains extension.

GNUTLS_CERT_INSECURE._- The certificate was signed using an insecure algorithm

ALGORITHM such as MD2 or MD5. These algorithms have been broken
and should not be trusted.

GNUTLS_CERT_NOT_ACTIVATED The certificate is not yet activated.

GNUTLS_CERT_EXPIRED The certificate has expired.

GNUTLS_CERT_SIGNATURE_FAILURE The signature verification failed.

GNUTLS_CERT_REVOCATION_DATA - The revocation data are old and have been superseded.

SUPERSEDED

GNUTLS_CERT_UNEXPECTED_- The owner is not the expected one.

OWNER

GNUTLS_CERT_REVOCATION_DATA - The revocation data have a future issue date.

ISSUED_IN_FUTURE

GNUTLS_CERT_SIGNER _- The certificate’s signer constraints were violated.

CONSTRAINTS_FAILURE

GNUTLS_CERT_MISMATCH The certificate presented isn’t the expected one (TOFU)

GNUTLS_CERT_PURPOSE_MISMATCH The certificate or an intermediate does not match the

intended purpose (extended key usage).

Table 3.4.: The gnutls_certificate_status_t enumeration.

90

CHAPTER 3. AUTHENTICATION METHODS

enum gnutls_certificate_verify_flags:
GNUTLS_VERIFY_DISABLE_CA_SIGN

GNUTLS_VERIFY_DO_NOT_ALLOW _-
SAME

GNUTLS_VERIFY_ALLOW_ANY_X509_-
V1_CA_CRT

GNUTLS_VERIFY_ALLOW_SIGN_RSA _-
MD2
GNUTLS_VERIFY_ALLOW_SIGN_RSA _-
MD5
GNUTLS_VERIFY_DISABLE_TIME _-
CHECKS

GNUTLS_VERIFY _DISABLE. -
TRUSTED_TIME_CHECKS
GNUTLS_VERIFY_DO_NOT_ALLOW _-
X509_V1_CA_CRT

GNUTLS_VERIFY_DISABLE_CRL_-
CHECKS
GNUTLS_VERIFY_ALLOW _-
UNSORTED_CHAIN

GNUTLS_VERIFY_DO_NOT_ALLOW _-
UNSORTED_CHAIN
GNUTLS_VERIFY_DO_NOT_ALLOW _-
WILDCARDS
GNUTLS_VERIFY_USE_TLS1_RSA

If set a signer does not have to be a certificate
authority. This flag should normally be disabled,
unless you know what this means.

If a certificate is not signed by anyone trusted

but exists in the trusted CA list do not treat it as
trusted.

Allow CA certificates that have version 1 (both root
and intermediate). This might be dangerous since those
haven’t the basicConstraints extension.

Allow certificates to be signed using the broken MD2
algorithm.

Allow certificates to be signed using the broken MD5
algorithm.

Disable checking of activation and expiration validity
periods of certificate chains. Don’t set this unless
you understand the security implications.

If set a signer in the trusted list is never checked
for expiration or activation.

Do not allow trusted CA certificates that have

version 1. This option is to be used to deprecate

all certificates of version 1.

Disable checking for validity using certificate
revocation lists or the available OCSP data.

A certificate chain is tolerated if unsorted (the case
with many TLS servers out there). This is the default
since GnuTLS 3.1.4.

Do not tolerate an unsorted certificate chain.

When including a hostname check in the verification, do
not consider any wildcards.

This indicates that a (raw) RSA signature is provided
as in the TLS 1.0 protocol. Not all functions accept

this flag.

Table 3.5.: The gnutls_certificate_verify flags enumeration.

91

3.4. SELECTING AN APPROPRIATE AUTHENTICATION METHOD

Purpose

[OID

Description

GNUTLS_KP_TLS_WNVBW ISERVER

The certificate is to be used for TLS WWW authentica-
tion. When in a CA certificate, it indicates that the CA
is allowed to sign certificates for TLS WWW authentica-
tion.

GNUTLS_KP_TLS_WIVS W 1CLIFNSI2

The certificate is to be used for TLS WWW client au-
thentication. When in a CA certificate, it indicates that
the CA is allowed to sign certificates for TLS WWW
client authentication.

GNUTLS_KP_CODEISB@&NING:7.3.3

The certificate is to be used for code signing. When in a
CA certificate, it indicates that the CA is allowed to sign
certificates for code signing.

GNUTLS_KP_EMA

11 BROBECTTIAN

The certificate is to be used for email protection. When
in a CA certificate, it indicates that the CA is allowed to
sign certificates for email users.

GNUTLS_KP_OCSH

_BRANING.7.3.9

The certificate is to be used for signing OCSP responses.
When in a CA certificate, it indicates that the CA is
allowed to sign certificates which sign OCSP reponses.

GNUTLS_KP_ANY

2.5.29.37.0

The certificate is to be used for any purpose. When in a
CA certificate, it indicates that the CA is allowed to sign
any kind of certificates.

Table 3.6.: Key purpose object identifiers.

Field \ Description

version The field that indicates the version of the OpenPGP structure.

user 1D An RFC 2822 string that identifies the owner of the key. There
may be multiple user identifiers in a key.

public key The main public key of the certificate.

expiration The expiration time of the main public key.

public subkey

An additional public key of the certificate. There may be multiple
subkeys in a certificate.

public subkey ex-
piration

The expiration time of the subkey.

Table 3.7.: OpenPGP certificate fields.

Key exchange

\ Public key requirements

RSA An RSA public key that allows encryption.
DHE_RSA An RSA public key that is marked for authentication.
ECDHE_RSA An RSA public key that is marked for authentication.
DHE_DSS A DSA public key that is marked for authentication.

Table 3.8.: The types of (sub)keys required for the various TLS key exchange methods.

92

CHAPTER 3. AUTHENTICATION METHODS

’ Field \ Description
version The field that indicates the version of the CRL structure.
signature A signature by the issuing authority.
issuer Holds the issuer’s distinguished name.
thisUpdate The issuing time of the revocation list.
nextUpdate The issuing time of the revocation list that will update that one.
revokedCertificates | List of revoked certificates serial numbers.
extensions Optional CRL structure extensions.
Table 3.9.: Certificate revocation list fields.
Field \ Description
version The OCSP response version number (typically 1).
responder 1D An identifier of the responder (DN name or a hash of its key).
issue time The time the response was generated.
thisUpdate The issuing time of the revocation information.
nextUpdate The issuing time of the revocation information that will update

that one.

Revoked certificates

certificate status

The status of the certificate.

certificate serial

The certificate’s serial number.

revocationTime

The time the certificate was revoked.

revocationReason

The reason the certificate was revoked.

Table 3.10.: The most important OCSP response fields.

93

3.4. SELECTING AN APPROPRIATE AUTHENTICATION METHOD

enum gnutls_x509_crl_reason_t:
GNUTLS_X509_CRLREASON -
UNSPECIFIED
GNUTLS_X509_CRLREASON -
KEYCOMPROMISE
GNUTLS_X509_CRLREASON _-
CACOMPROMISE
GNUTLS_X509_CRLREASON -
AFFILIATIONCHANGED
GNUTLS_X509_CRLREASON -
SUPERSEDED
GNUTLS_X509_CRLREASON -
CESSATIONOFOPERATION
GNUTLS_X509_CRLREASON -
CERTIFICATEHOLD
GNUTLS_X509_CRLREASON -
REMOVEFROMCRL
GNUTLS_X509_CRLREASON -
PRIVILEGEWITHDRAWN
GNUTLS_X509_CRLREASON -
AACOMPROMISE

Unspecified reason.

Private key compromised.

CA compromised.

Affiliation has changed.

Certificate superseded.

Operation has ceased.

Certificate is on hold.

Will be removed from delta CRL.

Privilege withdrawn.

AA compromised.

Table 3.11.: The revocation reasons

enum gnutls_pkcs_encrypt_flags_t:
GNUTLS_PKCS_PLAIN
GNUTLS_PKCS_PKCS12_3DES
GNUTLS_PKCS_PKCS12_ARCFOUR
GNUTLS_PKCS_PKCS12_RC2_40
GNUTLS_PKCS_PBES2_3DES
GNUTLS_PKCS_PBES2_AES_128
GNUTLS_PKCS_PBES2_AES_192
GNUTLS_PKCS_PBES2_AES_256
GNUTLS_PKCS_NULL_PASSWORD

GNUTLS_PKCS_PBES2_DES

Unencrypted private key.

PKCS-12 3DES.

PKCS-12 ARCFOUR.

PKCS-12 RC2-40.

PBES2 3DES.

PBES2 AES-128.

PBES2 AES-192.

PBES2 AES-256.

Some schemas distinguish between an empty and a NULL
password.

PBES2 single DES.

Table 3.12.:

Encryption flags

94

Abstract keys types and Hardware security
modaules

In several cases storing the long term cryptographic keys in a hard disk or even in memory poses
a significant risk. Once the system they are stored is compromised the keys must be replaced
as the secrecy of future sessions is no longer guarranteed. Moreover, past sessions that were not
protected by a perfect forward secrecy offering ciphersuite are also to be assumed compromised.

If such threats need to be addressed, then it may be wise storing the keys in a security module
such as a smart card, an HSM or the TPM chip. Those modules ensure the protection of the
cryptographic keys by only allowing operations on them and preventing their extraction. The
purpose of the abstract key API is to provide an API that will allow the handle of keys in
memory and files, as well as keys stored in such modules.

In GnuTLS the approach is to handle all keys transparently by the high level API, e.g., the
API that loads a key or certificate from a file. The high-level API will accept URIs in addition
to files that specify keys on an HSM or in TPM, and a callback function will be used to obtain
any required keys. The URI format is defined in [19] and the standardized [26].

More information on the API is provided in the next sections. Examples of a URI of a certificate
stored in an HSM, as well as a key stored in the TPM chip are shown below. To discover the
URISs of the objects the p11tool (see subsection 4.3.6), or tpmtool (see subsection 4.4.4) may
be used.

pkcsil:token=Nikos;serial=307521161601031;model=PKCS2315; \
manufacturer=EnterSafe;object=testl;type=cert

tpmkey:uuid=42309df8-d101-11e1-a89a-97bb33c23adl;storage=user

4.1. Abstract key types

Since there are many forms of a public or private keys supported by GnuTLS such as X.509,
OpenPGP, PKCS #11 or TPM it is desirable to allow common operations on them. For these
reasons the abstract gnutls_privkey_t and gnutls_pubkey_t were introduced in gnutls/-
abstract.h header. Those types are initialized using a specific type of key and then can be
used to perform operations in an abstract way. For example in order to sign an X.509 certificate
with a key that resides in a token the following steps can be used.

95

4.1. ABSTRACT KEY TYPES

#inlude <gnutls/abstract.h>

void sign_cert(gnutls_x509_crt_t to_be_signed)
{

gnutls_x509_crt_t ca_cert;

gnutls_privkey_t abs_key;

/* initialize the abstract key */
gnutls_privkey_init(&abs_key) ;

/* keys stored in tokens are identified by URLs */
gnutls_privkey_import_url(abs_key, key_url);

gnutls_x509_crt_init(&ca_cert);
gnutls_x509_crt_import_url(&ca_cert, cert_url);

/* sign the certificate to be signed */
gnutls_x509_crt_privkey_sign(to_be_signed, ca_cert, abs_key,
GNUTLS_DIG_SHA256, 0);

4.1.1. Public keys

An abstract gnutls_pubkey_t can be initialized using the functions below. It can be imported
through an existing structure like gnutls_x509_crt_t, or through an ASN.1 encoding of the
X.509 SubjectPublicKeyInfo sequence.

int gnutls_pubkey_import_x509 (gnutls_pubkey_t key, gnutls_z509-crt_t crt, un-
signed int flags)

int gnutls_pubkey_import_openpgp (gnutls_pubkey_t key, gnutls_openpgp_crt_t
crt, unsigned int flags)

int gnutls_pubkey_import_pkcsll (gnutls_pubkey-t key, gnutls_pkcsi1_obj_t obj,
unsigned int flags)

96

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

*

int gnutls_pubkey_import_url (gnutls_pubkey_t key, const char * url, unsigned int

flags)

int gnutls_pubkey_import_privkey (gnutls_pubkey_t key, gnutls_privkey_t pkey,
unsigned int usage, unsigned int flags)

int gnutls_pubkey_import (gnutls_pubkey_t key, const gnutls_.datum_t * data,
gnutls_x509_crt_fmt_t format)

int gnutls_pubkey_export (gnutls_pubkey_t key, gnutls_z509_crt_fmt_t format,
void ¥ output_data, size_t * output_data_size)

int gnutls_pubkey_export2 (gnutls_pubkey_t key, gnutls_x509_crt_fmt_t format,
gnutls_datum_t * out)

Description: This function will export the public key to DER or PEM format. The
contents of the exported data is the SubjectPublicKeyInfo X.509 structure. The output
buffer will be allocated using gnutlsmalloc(). If the structure is PEM encoded, it will
have a header of "BEGIN CERTIFICATE".

Returns: 1In case of failure a negative error code will be returned, and O on success.

Other helper functions that allow directly importing from raw X.509 or OpenPGP structures
are shown below.

int gnutls_pubkey_import_x509_raw (gnutls_pubkey_t pkey, const gnutls_datum_t *
data, gnutls_z509_crt_fmt_t format, unsigned int flags)

int gnutls_pubkey_import_openpgp_raw (gnutls_pubkey_t pkey, const
gnutls_datum_t * data, gnutls_openpgp_crt_fmi_t format, const gnutls_openpgp_keyid_t
keyid, wunsigned int flags)

An important function is gnutls_pubkey_import_url which will import public keys from URLs
that identify objects stored in tokens (see section 4.3 and section 4.4). A function to check for
a supported by GnuTLS URL is gnutls_url_is_supported.

Additional functions are available that will return information over a public key, such as a
unique key ID, as well as a function that given a public key fingerprint would provide a
memorable sketch.

Note that gnutls_pubkey get_key_id calculates a SHA1 digest of the public key as a DER-
formatted, subjectPublicKeyInfo object. Other implementations use different approaches, e.g.,

97

4.1. ABSTRACT KEY TYPES

*

int gnutls_url_is_supported (const char * url)

DeSCI'iptiOIl: Check whether url is supported. Depending on the system libraries GnuTLS
may support pkcsll or tpmkey URLs.

Returns: return non-zero if the given URL is supported, and zero if it is not known.

some use the “common method” described in section 4.2.1.2 of [8] which calculates a digest on
a part of the subjectPublicKeyInfo object.

int gnutls_pubkey_get_pk_algorithm (gnutls_pubkey_t key, unsigned int * bits)

int gnutls_pubkey_get_preferred_hash_algorithm (gnutls_pubkey_t key,
gnutls_digest_algorithm_t * hash, unsigned int * mand)

int gnutls_pubkey_get_key_id (gnutls_pubkey_t key, unsigned int flags, unsigned
char * output_data, size_t * output_data_size)

int gnutls_random_art (gnutls_random_art_t type, const char * key_type, un-
signed int key_size, wvoid * fpr, size_t fpr_size, gnutls_datum_t * art)

To export the key-specific parameters, or obtain a unique key ID the following functions are
provided.

int gnutls_pubkey_export_rsa_raw (gnutls_pubkey_t key, gnutls_datum_t *m,
gnutls_datum_t * e)

int gnutls_pubkey_export_dsa_raw (gnutls_pubkey_t key, gnutls_datum_t *p,
gnutls_datum_t * q, gnutls_datum_t * g, gnutls_datum_t * y)

int gnutls_pubkey_export_ecc_raw (gnutls_pubkey_t key, gnutls_ecc_curve_t *
curve, gnutls_datum_t * x, gnutls_datum_t * y)

int gnutls_pubkey_export_ecc_x962 (gnutis_pubkey_t key, gnutls_datum_t * pa-
rameters, gnutls_datum_t * ecpoint)

4.1.2. Private keys

An abstract gnutls_privkey_t can be initialized using the functions below. It can be imported
through an existing structure like gnutls x509_privkey_t, but unlike public keys it cannot be

98

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

exported. That is to allow abstraction over keys stored in hardware that makes available only
operations.

int gnutls_privkey_import_x509 (gnutls_privkey_t pkey, gnutls_z509_privkey_t key,
unsigned int flags)

int gnutls_privkey_import_openpgp (gnutls_privkey_-t pkey,
gnutls_openpgp_privkey_t key, unsigned int flags)

int gnutls_privkey_import_pkesll (gnutls_privkey_t pkey, gnutls_pkcsl1_privkey_t
key, unsigned int flags)

Other helper functions that allow directly importing from raw X.509 or OpenPGP structures
are shown below. Again, as with public keys, private keys can be imported from a hardware
module using URLs.

int gnutls_privkey_import_x509_raw (gnutls_privkey_t pkey, const gnutls_datum_t *
data, gnutls_z509_crt_fmt_t format, const char * password, unsigned int flags)

int gnutls_privkey_import_openpgp_raw (gnutls_privkey_t pkey, const
gnutls_datum_t * data, gnutls_openpgp_cri_fmi_t format, const gnutls_openpgp_keyid_t
keyid, const char * password)

int gnutls_privkey_import_url (gnutls_privkey_t key, const char * url, unsigned int
flags)

DeSCI‘iptiOIl: This function will import a PKCS11 or TPM URL as a private key. The
supported URL types can be checked using gnutls_url_is_supported().

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls_privkey_get_pk_algorithm (gnutls_privkey_t key, unsigned int * bits)

gnutls_privkey_type_t gnutls_privkey_get_type (gnutls_privkey_t key)

int gnutls_privkey _status (gnutls_privkey_t key)

99

4.1. ABSTRACT KEY TYPES

In order to support cryptographic operations using an external API, the following function is
provided. This allows for a simple extensibility API without resorting to PKCS #11.

int gnutls_privkey_import_ext3 (gnutls_privkey_t pkey, wvoid * userdata,
gnutls_privkey_sign_func sign_fn, gnutls_privkey_decrypt_func decrypt_fn,
gnutls_privkey_deinit_func deinit_fn, gnutls_privkey_info_func info_fn, unsigned int
flags)

Description: This function will associate the given callbacks with the gnutls_privkey-t
type. At least one of the two callbacks must be non-null. If a deinitialization function
is provided then flags is assumed to contain GNUTLS_PRIVKEY_IMPORT_AUTO .-
RELEASE. Note that the signing function is supposed to "raw" sign data, i.e., without
any hashing or preprocessing. In case of RSA the DigestInfo will be provided, and the
signing function is expected to do the PKCS #1 1.5 padding and the exponentiation. The
info_fn must provide information on the algorithms supported by this private key, and should
support the flags GNUTLS_PRIVKEY_INFO_PK_ALGO and GNUTLS_PRIVKEY _-
INFO_SIGN_ALGO. It must return -1 on unknown flags.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

4.1.3. Operations

The abstract key types can be used to access signing and signature verification operations with
the underlying keys.

int gnutls_pubkey_verify_data2 (gnutls_pubkey_t pubkey, gnutls_sign_algorithm_t
algo, unsigned int flags, const gnutls_datum_t * data, const gnutls_datum_t
signature)

*

Description: This function will verify the given signed data, using the parameters from

the certificate.

Returns: 1In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is
returned, and zero or positive code on success. For known to be insecure signatures this
function will return GNUTLS_E_INSUFFICIENT_SECURITY unless the flag GNUTLS. -
VERIFY_ALLOW_BROKEN is specified.

Signing existing structures, such as certificates, CRLs, or certificate requests, as well as asso-
ciating public keys with structures is also possible using the key abstractions.

100

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

int gnutls_pubkey_verify_hash2 (gnutls_pubkey_t key, gnutls_sign_algorithm_t
algo, unsigned int flags, const gnutls_datum_t * hash, const gnutls_datum_t
signature)

*

DeSCI‘iptiOIl: This function will verify the given signed digest, using the parameters
from the public key. Note that unlike gnutls_privkey_sign hash(), this function accepts a
signature algorithm instead of a digest algorithm. You can use gnutls_pk_to_sign() to get

the appropriate value.

Returns: 1In case of a verification failure GNUTLS_E_PK_SIG_VERIFY _FAILED is

returned, and zero or positive code on success.

int gnutls_pubkey_encrypt_data (gnutls_pubkey_t key, unsigned int flags, const
gnutls_datum_t * plaintext, gnutls_datum_t * ciphertext)

DeSCI’iptiOIl: This function will encrypt the given data, using the public key. On

success the ciphertext will be allocated using gnutlsmalloc().

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls_x509_crt_privkey_sign (gnutls_x509_crt_t crt, gnutls_x509_crt_t issuer,
gnutls_privkey_t issuer_key, gnutls_digest_algorithm_t dig, wunsigned int flags)

int gnutls_x509_crl_privkey_sign (gnutls_z509_crl_t crl, gnutls_x509_crt_t issuer,
gnutls_privkey_t issuer_key, gnutls_digest_algorithm_t dig, unsigned int flags)

int gnutls_x509_crq_privkey_sign (gnutls_x509_crq_t crq, gnutls_privkey_t key,
gnutls_digest_algorithm_t dig, wunsigned int flags)

int gnutls_privkey _sign_data (gnutls_privkey_t signer, gnutls_digest_algorithm._t
hash, unsigned int flags, const gnutls_datum_t * data, gnutls_datum_t * signature)

Description: This function will sign the given data using a signature algorithm
supported by the private key. Signature algorithms are always used together with a hash
functions. Different hash functions may be used for the RSA algorithm, but only the
SHA family for the DSA keys. You may use gnutls_pubkey_get_preferred hash_algorithm() to
determine the hash algorithm.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

101

4.1. ABSTRACT KEY TYPES

int gnutls_privkey_sign_hash (gnutls_privkey_t signer, gnutls_digest_algorithm_t
hash_algo, unsigned int flags, const gnutls_datum_t * hash_data, gnutls_datum_t *
signature)

Description: This function will sign the given hashed data using a signature algorithm
supported by the private key. Signature algorithms are always used together with a hash
functions. Different hash functions may be used for the RSA algorithm, but only SHA-XXX for
the DSA keys. You may use gnutls_pubkey get_preferred_hash algorithm() to determine the hash
algorithm. Note that if GNUTLS_PRIVKEY_SIGN_FLAG_TLS1RSA flag is specified

this function will ignore hash_algo and perform a raw PKCS1 signature.

Returns: on success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls_privkey_decrypt_data (gnutls_privkey_t key, unsigned int flags, const
gnutls_datum_t * ciphertext, gnutls_datum_t * plaintext)

DeSCI‘iptiOIl: This function will decrypt the given data using the algorithm supported by
the private key.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls_x509_crq_set_pubkey (gnutls_z509_crq_t crq, gnutls_pubkey_t key)

DeSCI'iptiOIl: This function will set the public parameters from the given public key to
the request. The key can be deallocated after that.

Returns: on success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls_x509_crt_set_pubkey (gnutls_z509_crt_t crt, gnutls_pubkey_t key)

Description: This function will set the public parameters from the given public key to
the certificate. The key can be deallocated after that.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

102

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

4.2. System and application-specific keys

4.2.1. System-specific keys

In several systems there are keystores which allow to read, store and use certificates and private
keys. For these systems GnuTLS provides the system-key API in gnutls/system-keys.h.
That API provides the ability to iterate through all stored keys, add and delete keys as well as
use these keys using a URL which starts with ”system:”. The format of the URLs is system-
specific.

int gnutls_system _key_iter_get_info (gnutls_system_key_iter_t * iter, unsigned

cert_type, char ** cert_url, char ** key_url, char ** label, gnutls_.datum_t *
der, unsigned int flags)

DeSCI‘iptiOH: This function will return on each call a certificate and key pair URLs, as
well as a label associated with them, and the DER-encoded certificate. When the iteration
is complete it will return GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE.
Typically cert_type should be GNUTLS_CRT_X509. All values set are allocated and

must be cleared using gnutls_free(),

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

void gnutls_system _key_iter_deinit (gnutls_system_key_iter_t iter)

int gnutls_system _key_add _x509 (gnutls_z509_crt_t crt, gnutls_x509_privkey_t
privkey, const char * label, char ** cert_url, char ** key_url)

*

it gnutls_system_key_delete (const char * cert_url, const char * key_url)

4.2.2. Application-specific keys

For systems where GnuTLS doesn’t provide a system specific store, it may often be desirable
to define a custom class of keys that are identified via URLs and available to GnuTLS calls
such as gnutls_certificate_set_x509 key_file2. Such keys can be registered using the API
in gnutls/urls.h. The function which registers such keys is gnutls_register_custom_url.

The input to this function are three callback functions as well as the prefix of the URL, (e.g.,
"mypkesll:”) and the length of the prefix. The types of the callbacks are shown below, and

103

4.2. SYSTEM AND APPLICATION-SPECIFIC KEYS

int gnutls_register_custom_url (const gnutls_custom_uri_st * st)

I)escriptioru Register a custom URL. This will affect the following functions: gnutls_-
url_is_supported(), gnutls_privkey_import_url(), gnutls_pubkey_import_url, gnutls_x509_crt_-
import_url() and all functions that depend on them, e.g., gnutls_certificate_set_x509_-
key_file2(). The provided structure and callback functions must be valid throughout

the lifetime of the process. The registration of an existing URL type will fail with
GNUTLS_E_INVALID_REQUEST. This function is not thread safe

Returns: returns zero if the given structure was imported or a negative value

otherwise.

are expected to use the exported gnutls functions to import the keys and certificates. E.g., a
typical import _key callback should use gnutls_privkey_import_ext3.

typedef int (*gnutls_privkey_import_url_func) (gnutls_privkey_t pkey,
const char *url,
unsigned flags);

typedef int (*gnutls_x509_crt_import_url_func) (gnutls_x509_crt_t pkey,
const char *url,
unsigned flags);

© 0w N O U A W N e

/* The following callbacks are optional */

=
= o

/* This is to enable gnutls_pubkey_import_url() */
typedef int (*gnutls_pubkey_import_url_func) (gnutls_pubkey_t pkey,
const char *url, unsigned flags);

=
AW N

[
o

/* This is to allow constructing a certificate chain. It will be provided
* the initial certificate URL and the certificate to find its issuer, and must
* return zero and the DER encoding of the issuer’s certificate. If not available,
* it should return GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE. */
typedef int (*gnutls_get_raw_issuer_func) (const char *url, gnutls_x509_crt_t crt,
gnutls_datum_t *issuer_der, unsigned flags);

R S
N = O © ® N o

typedef struct custom_url_st {
const char *name;
unsigned name_size;

[V
Bw

25 gnutls_privkey_import_url_func import_key;
26 gnutls_x509_crt_import_url_func import_crt;
27 gnutls_pubkey_import_url_func import_pubkey;
28 gnutls_get_raw_issuer_func get_issuer;

29 | } gnutls_custom_url_st;

104

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

4.3. Smart cards and HSMs

In this section we present the smart-card and hardware security module (HSM) support in
GnuTLS using PKCS #11 [2]. Hardware security modules and smart cards provide a way
to store private keys and perform operations on them without exposing them. This decouples
cryptographic keys from the applications that use them and provide an additional security layer
against cryptographic key extraction. Since this can also be achieved in software components
such as in Gnome keyring, we will use the term security module to describe any cryptographic
key separation subsystem.

PKCS #11 is plugin API allowing applications to access cryptographic operations on a security
module, as well as to objects residing on it. PKCS #11 modules exist for hardware tokens such
as smart cards', cryptographic tokens, as well as for software modules like Gnome Keyring. The
objects residing on a security module may be certificates, public keys, private keys or secret
keys. Of those certificates and public/private key pairs can be used with GnuTLS. PKCS
#11’s main advantage is that it allows operations on private key objects such as decryption
and signing without exposing the key. In GnuTLS the PKCS #11 functionality is available in
gnutls/pkcsil.h.

Moreover PKCS #11 can be (ab)used to allow all applications in the same operating system to
access shared cryptographic keys and certificates in a uniform way, as in Figure 4.1. That way
applications could load their trusted certificate list, as well as user certificates from a common
PKCS #11 module. Such a provider is the p11-kit trust storage module?.

Trusted Platform
Module
Gnome Keyring
Daemon

GnuTLS

X

User \
Application
Other crypto
package

Figure 4.1.: PKCS #11 module usage.

Provider

PKCS #11
Provider

4.3.1. Initialization

To allow all GnuTLS applications to transparently access smard cards and tokens, PKCS #11 is
automatically initialized during the first call of a PKCS #11 related function. The initialization

1For example, OpenSC-supported cards.
%http://pili-glue.freedesktop.org/trust-module.html

105

http://p11-glue.freedesktop.org/trust-module.html

-

4.3. SMART CARDS AND HSMS

process, based on pl1-kit configuration, loads any appropriate modules. The p11-kit configura-
tion files® are typically stored in /etc/pkcsi1/modules/. For example a file that will instruct
GnuTLS to load the OpenSC module, could be named /etc/pkcs11l/modules/opensc.module
and contain the following:

module: /usr/lib/opensc-pkcsll.so

If you use these configuration files, then there is no need for other initialization in GnuTLS,
except for the PIN and token callbacks (see next section). In several cases, however, it is
desirable to limit badly behaving modules (e.g., modules that add an unacceptable delay on
initialization) to single applications. That can be done using the “enable-in:” option followed
by the base name of applications that this module should be used.

It is also possible to manually initialize the PKCS #11 subsystem if the default settings are
not desirable. To completely disable PKCS #11 support you need to call gnutls _pkcsil_init
with the flag GNUTLS_PKCS11_FLAG_MANUAL prior to gnutls_global_init.

int gnutls_pkcsll_init (unsigned int flags, const char * deprecated_config_file)

Description: This function will initialize the PKCS 11 subsystem in gnutls. It

will read configuration files if GNUTLS_PKCS11 FLAG_AUTO is used or allow you to
independently load PKCS 11 modules using gnutls_pkcsil_add_provider() if GNUTLS_-
PKCS11 FLAG_MANUAL is specified. You don’t need to call this function since GnuTLS

3.3.0 because it is being called during the first request PKCS 11 operation. That call will
assume the GNUTLS_PKCS11 FLAG_AUTO flag. If another flags are required then it must
be called independently prior to any PKCS 11 operation.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

Note that, PKCS #11 modules behave in a peculiar way after a fork; they require a reinitial-
ization of all the used PKCS #11 resources. While GnuTLS automates that process, there are
corner cases where it is not possible to handle it correctly in an automated way®*. For that
reasons it is recommended not to mix fork() and PKCS #11 module usage. It is recommended
to initialize and use any PKCS #11 resources in a single process.

Older versions of GnuTLS required to call gnutls_pkcsll_reinit after a fork() call; since
3.3.0 this is no longer required.

3http://pli-glue.freedesktop.org/
4For example when an open session is to be reinitialized, but the PIN is not available to GnuTLS (e.g., it was
entered at a pinpad).

106

http://p11-glue.freedesktop.org/

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

4.3.2. Accessing objects that require a PIN

Objects stored in token such as a private keys are typically protected from access by a PIN
or password. This PIN may be required to either read the object (if allowed) or to perform
operations with it. To allow obtaining the PIN when accessing a protected object, as well as
probe the user to insert the token the following functions allow to set a callback.

void gnutls_pkecsll_set_token_function (gnutls_pkcsii_token_callback_t fn, wvoid
userdata)

void gnutls_pkcsll_set_pin_function (gnutls_pin_callback_t fn, wvoid * userdata)
int gnutls_pkcsl1_add_provider (const char * name, const char * params)

gnutls_pin_callback_t gnutls_pkes11_get_pin_function (void ** userdata)

The callback is of type gnutls_pin_callback_t and will have as input the provided userdata,
the PIN attempt number, a URL describing the token, a label describing the object and flags.
The PIN must be at most of pin_max size and must be copied to pin variable. The function
must return 0 on success or a negative error code otherwise.

typedef int (*gnutls_pin_callback_t) (void *userdata, int attempt,
const char *token_url,
const char *token_label,
unsigned int flags,
char #*pin, size_t pin_max);

The flags are of gnutls_pin_flag t type and are explained below.

enum gnutls_pin_flag t:
GNUTLS_PIN_USER The PIN for the user.
GNUTLS_PIN_SO The PIN for the security officer (admin).
GNUTLS_PIN_FINAL_TRY This is the final try before blocking.
GNUTLS_PIN_.COUNT_LOW Few tries remain before token blocks.
GNUTLS_PIN_.CONTEXT_SPECIFIC The PIN is for a specific action and key like signing.
GNUTLS_PIN_.WRONG Last given PIN was not correct.

Table 4.1.: The gnutls_pin_flag_t enumeration.

Note that due to limitations of PKCS #11 there are issues when multiple libraries are sharing
a module. To avoid this problem GnuTLS uses pl1-kit that provides a middleware to control

107

w N =

4.3. SMART CARDS AND HSMS

access to resources over the multiple users.

To avoid conflicts with multiple registered callbacks for PIN functions, gnutls_pkcsll_get_-
pin_function may be used to check for any previously set functions. In addition context
specific PIN functions are allowed, e.g., by using functions below.

void gnutls_certificate_set_pin_function (gnutls_certificate_credentials_t cred,
gnutls_pin_callback_t fn, void * userdata)

void gnutls_pubkey_set_pin_function (gnutls_pubkey_t key, gnutls_pin_callback_t
fn, wvoid * userdata)

void gnutls_privkey_set_pin_function (gnutls_privkey_t key, gnutls_pin_callback_t
fn, void * userdata)

void gnutls_pkcsll_obj_set_pin_function (gnutls_pkcsii_obj-t obj,
gnutls_pin_callback_t fn, void * userdata)

void gnutls_x509_crt_set_pin_function (gnutls_z509_crt_t crt, gnutls_pin_callback_t
fn, wvoid * userdata)

4.3.3. Reading objects

All PKCS #11 objects are referenced by GnuTLS functions by URLSs as described in [26]. This
allows for a consistent naming of objects across systems and applications in the same system.
For example a public key on a smart card may be referenced as:

pkcsll:token=Nikos;serial=307521161601031;model=PKCS%2315; \
manufacturer=EnterSafe;object=testl;type=public;\
1id=32£153f3e37990b08624141077cabdec2d15faed

while the smart card itself can be referenced as:

1| pkcs1l:token=Nikos;serial=307521161601031;model=PKCS%2315;manufacturer=EnterSafe

Objects stored in a PKCS #11 token can be extracted if they are not marked as sensitive.
Usually only private keys are marked as sensitive and cannot be extracted, while certificates
and other data can be retrieved. The functions that can be used to access objects are shown
below.

int gnutls_pkcsll_obj_import_url (gnutls_pkcsi1_obj_t obj, const char * url, un-
signed int flags)

int gnutls_pkcsll_obj_export_url (gnutls_pkcsii_objt obj, gnutls_pkcsl1_url_type_t
detailed, char ** url)

108

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

int gnutls_pkcsl1l_obj_get_info (gnutls_pkcsii_obj_t obj, gnutls_pkcsiI_obj_info_t
itype, wvoid * output, size_t * output_size)

DeSCI‘iptiOIl: This function will return information about the PKCS11 certificate such as
the label, id as well as token information where the key is stored. When output is text it
returns null terminated string although output_size contains the size of the actual data

only.

Returns: GNUTLS_E_SUCCESS (0) on success or a negative error code on error.

int gnutls_x509_crt_import_pkcsll (gnutls_z509_crt_t crt, gnutls_pkcsi1_obj_t
pkcsll_crt)

it gnutls_x509_crt_import_url (gnutls_z509_crt_t crt, const char *

int flags)

url, wunsigned

int gnutls_x509_crt_list_import_pkesl1l (gnutls_z509_crt_t * certs, unsigned int
cert_max, gnutls_pkcs11_obj_t * const objs, unsigned int flags)

Properties of the physical token can also be accessed and altered with GnuTLS. For example
data in a token can be erased (initialized), PIN can be altered, etc.

int gnutls_pkcsl1_token_init (const char * token_url, const char * so_pin, const
char * label)

int gnutls_pkcsll_token_get_url (unsigned int seq, gnutls_pkcsl1_url_type_t de-
tailed, char ** url)

int gnutls_pkesl1_token_get_info (const char * url, gnutls_pkcsii_token_info_t
ttype, void * output, size_t * output_size)

*

int gnutls_pkesl1_token_get_flags (const char * url, unsigned int * flags)

int gnutls_pkcsll_token_set_pin (const char * token_url, const char * oldpin,
const char * newpin, unsigned int flags)

The following examples demonstrate the usage of the API. The first example will list all
available PKCS #11 tokens in a system and the latter will list all certificates in a token that
have a corresponding private key.

1‘int i;

109

15

I = T I SR U

WoWw oW oW W W W W W W NNNNNNNNNR B R e e E R e e
© ® I A A ®WN R O O ® N OR®N RO O ® N A WN RO

4.3.

SMART CARDS AND HSMS

char* url;
gnutls_global_init();

for (i=0;;i++)

{
ret = gnutls_pkcsll_token_get_url(i, &url);
if (ret == GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE)
break;
if (ret < 0)
exit(1);
fprintf (stdout, "Token[%d]l: URL: %s\n", i, url);
gnutls_free(url);
}

gnutls_global_deinit();

/* This example code is placed in the public domain. */

#include
#include
#include
#include
#include

<config.h>
<gnutls/gnutls.h>
<gnutls/pkcsil.h>
<stdio.h>
<stdlib.h>

#define URL "pkcs11:URL"

int main(int argc, char **argv)

{
gnutls_pkcsll_obj_t *obj_list;
gnutls_x509_crt_t xcrt;
unsigned int obj_list_size = 0;
gnutls_datum_t cinfo;
int ret;
unsigned int ij;

ret = gnutls_pkcsll_obj_list_import_url4(&obj_list, &obj_list_size, URL,
GNUTLS_PKCS11_0BJ_FLAG_CRT|
GNUTLS_PKCS11_0BJ_FLAG_WITH_PRIVKEY) ;

if (ret < 0)
return -1;

/* now all certificates are in obj_list */
for (i = 0; i < obj_list_size; i++) {

gnutls_x509_crt_init(&xcrt);

gnutls_x509_crt_import_pkcsil(xcrt, obj_list[il);
gnutls_x509_crt_print(xcrt, GNUTLS_CRT_PRINT_FULL, &cinfo);

fprintf(stdout, "cert[/d]:\n %s\n\n", i, cinfo.data);

gnutls_free(cinfo.data);
gnutls_x509_crt_deinit (xcrt);

110

40
41
42
43
44
45
46

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

for (i = 0; i < obj_list_size; i++)
gnutls_pkcsll_obj_deinit(obj_list[il);
gnutls_free(obj_list);

return 0;

4.3.4. Writing objects

With GnuTLS you can copy existing private keys and certificates to a token. Note that
when copying private keys it is recommended to mark them as sensitive using the GNUTLS_-
PKCS11_0BJ_FLAG_MARK_SENSITIVE to prevent its extraction. An object can be marked as
private using the flag GNUTLS_PKCS11_0BJ_FLAG_MARK_PRIVATE, to require PIN to be entered

before accessing the object (for operations or otherwise).

int gnutls_pkcsll_copy_x509_privkey2 (const char * token_url,
gnutls_z509_privkey_t key, const char * label, const gnutls_datum_t * cid, unsigned
int key_usage, unsigned int flags)

Description: This function will copy a private key into a PKCS #11 token specified by a
URL. It is highly recommended flags to contain GINUTLS_PKCS11_0BJ_FLAG-MARK_SENSITIVE

unless there is a strong reason not to.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls_pkesl1_copy_x509_crt2 (const char * token_url, gnutls_z509_crt_t crt,
const char * label, const gnutls_datum_t * cid, wunsigned int flags)

DeSCI‘iptiOIl: This function will copy a certificate into a PKCS #11 token specified by
a URL. Valid flags to mark the certificate: GNUTLS_PKCS11_0BJ_FLAGMARK_TRUSTED,
GNUTLS_PKCS11_0BJ_FLAG_MARK_SENSITIVE, GNUTLS_PKCS11 _0BJ_FLAG_MARK_PRIVATE,
GNUTLS_PKCS11_0BJ_FLAG.MARK_CA, GNUTLS_PKCS11_0BJ_FLAG_MARK_ALWAYS_AUTH.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

111

4.3. SMART CARDS AND HSMS

*

int gnutls_pkcsll_delete_url (const char * object_url, unsigned int flags)

DeSCI'iptiOIl: This function will delete objects matching the given URL. Note that not all

tokens support the delete operation.

Returns: 0n success, the number of objects deleted is returned, otherwise a negative

error value.

4.3.5. Using a PKCS #11 token with TLS

It is possible to use a PKCS #11 token to a TLS session, as shown in subsection 6.1.8. In ad-
dition the following functions can be used to load PKCS #11 key and certificates by specifying
a PKCS #11 URL instead of a filename.

int gnutls_certificate_set_x509_trust_file (gnutls_certificate_credentials_t cred,
const char * cafile, gnutls_z509_crt_fmt_t type)

int gnutls_certificate_set_x509_key _file2 (gnutls_certificate_credentials_t res, const
char * certfile, const char * keyfile, gnutls_x509_crt_fmt_t type, const char * pass,
unsigned int flags)

int gnutls_certificate_set_x509_system _trust (gnutls_certificate_credentials_-t cred)

DeSCI’iptiOl’l: This function adds the system’s default trusted CAs in order to verify
client or server certificates. In the case the system is currently unsupported GNUTLS_-
E_UNIMPLEMENTED_FEATURE is returned.

Returns: the number of certificates processed or a negative error code on error.

4.3.6. Invoking plltool

Program that allows operations on PKCS #11 smart cards and security modules.

To use PKCS #11 tokens with GnuTLS the p11-kit configuration files need to be setup. That is
create a .module file in /etc/pkesll/modules with the contents 'module: /path/to/pkesll.so’.
Alternatively the configuration file /etc/gnutls/pkesll.conf has to exist and contain a number
of lines of the form ’load=/usr/lib/opensc-pkes11.so’.

You can provide the PIN to be used for the PKCS #11 operations with the environment
variables GNUTLS_PIN and GNUTLS_SO_PIN.

112

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the plitool program. This software is released under the GNU General
Public License, version 3 or later.

4.3.7. plltool help/usage (“--help”)

This is the automatically generated usage text for plltool.

The text printed is the same whether selected with the help option (“--help”) or the more-help

“

option (

--more-help”). more-help will print the usage text by passing it through a pager

program. more-help is disabled on platforms without a working fork(2) function. The PAGER
environment variable is used to select the program, defaulting to “more”. Both will exit with

a status code of 0.

plitool - GnuTLS PKCS #11 tool
plitool [-<flag> [<val>] |

Usage:

Tokens:

—-list-tokens
--list-token-urls
—-list-mechanisms
--initialize
--set-pin=str
--set-so-pin=str

Object listing:
--list-all

--list-all-certs
—-list-certs

--list-all-privkeys

--list-privkeys
--list-keys
--list-all-trusted
——export
--export-chain
--export-pubkey
--info

Key generation:
——generate-rsa
--generate-dsa
--generate-ecc
--bits=num
--curve=str
—-sec-param=str

Writing objects:

—--set-id=str

—-set-label=str

--<name> [{=| }<val>]]... [url]

List all available tokens

List the URLs available tokens

List all available mechanisms in a token

Initializes a PKCS #11 token

Specify the PIN to use on token initialization

Specify the Security Officer’s PIN to use on token initialization

List all available objects in a token

List all available certificates in a token

List all certificates that have an associated private key
List all available private keys in a token

an alias for the ’list-all-privkeys’ option

an alias for the ’list-all-privkeys’ option

List all available certificates marked as trusted

Export the object specified by the URL

Export the certificate specified by the URL and its chain of trust
Export the public key for a private key

List information on an available object in a token

Generate an RSA private-public key pair
Generate a DSA private-public key pair
Generate an ECDSA private-public key pair
Specify the number of bits for key generate
Specify the curve used for EC key generation
Specify the security level

Set the CKA_ID (in hex) for the specified by the URL object
- prohibits the option ’write’
Set the CKA_LABEL for the specified by the URL object

113

42
43
44
45

4.3. SMART CARDS AND HSMS

-1
L

—n
>

-#,

—--write
--delete
--label=str
—--id=str
--mark-wrap
--mark-trusted
--mark-decrypt
--mark-sign
—-mark-ca
--mark-private
-—trusted
--ca

--private

--secret-key=str
--load-privkey=file

--load-pubkey=file

- prohibits these options:

write

set-id
Writes the loaded objects to a PKCS #11 token
Deletes the objects matching the given PKCS #11 URL
Sets a label for the write operation
Sets an ID for the write operation
Marks the generated key to be a wrapping key

- disabled as ’--no-mark-wrap’

Marks the object to be written as trusted
- disabled as ’--no-mark-trusted’

Marks the object to be written for decryption
- disabled as ’--no-mark-decrypt’

Marks the object to be written for signature generation
- disabled as ’--no-mark-sign’

Marks the object to be written as a CA
- disabled as ’--no-mark-ca’

Marks the object to be written as private
- disabled as ’--no-mark-private’

- enabled by default
an alias for the ’mark-trusted’ option
an alias for the ’mark-ca’ option
an alias for the ’mark-private’ option
- enabled by default
Provide a hex encoded secret key
Private key file to use
- file must pre-exist
Public key file to use
- file must pre-exist

—-load-certificate=file Certificate file to use

Other options:

-d,

—--debug=num

--outfile=str
--login

--so-login

--admin-login
--test-sign
--generate-random=num
--pkcs8

--inder

—--inraw
—-outder

—--outraw
--provider=file

—-detailed-url

--only-urls
--batch

- file must pre-exist

Enable debugging
- it must be in the range:
0 to 9999
Output file
Force (user) login to token

- disabled as ’--no-login’
Force security officer login to token
- disabled as ’--no-so-login’

an alias for the ’so-login’ option
Tests the signature operation of the provided object
Generate random data
Use PKCS #8 format for private keys
Use DER/RAW format for input
- disabled as ’--no-inder’
an alias for the ’inder’ option
Use DER format for output certificates, private keys, and DH paran
- disabled as ’--no-outder’
an alias for the ’outder’ option
Specify the PKCS #11 provider library
- file must pre-exist
Print detailed URLs
- disabled as ’--no-detailed-url’
Print a compact listing using only the URLs
Disable all interaction with the tool

114

jeters

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

101 | Version, usage and configuration options:

103 -v, --version[=arg] output version information and exit
104 -h, --help display extended usage information and exit
105 -!, --more-help extended usage information passed thru pager

107 | Options are specified by doubled hyphens and their name or by a single
108 | hyphen and the flag character.

109 | Operands and options may be intermixed. They will be reordered.

110
111 | Program that allows operations on PKCS #11 smart cards and security
112 | modules.

113
114 | To use PKCS #11 tokens with GnuTLS the plil-kit configuration files need to
115 | be setup. That is create a .module file in /etc/pkcsil/modules with the
116 | contents ’module: /path/to/pkcsll.so’. Alternatively the configuration
117 | file /etc/gnutls/pkcslil.conf has to exist and contain a number of lines of
118 | the form ’load=/usr/lib/opensc-pkcsil.so’.

119
120 | You can provide the PIN to be used for the PKCS #11 operations with the
121 | environment variables GNUTLS_PIN and GNUTLS_SO_PIN.

122

4.3.8. token-related-options options

Tokens.

list-token-urls option.

This is the “list the urls available tokens” option. This is a more compact version of —list-tokens.

set-pin option.

This is the “specify the pin to use on token initialization” option. This option takes a string
argument. Alternatively the GNUTLS_PIN environment variable may be used.

set-so-pin option.
This is the “specify the security officer’s pin to use on token initialization” option. This option

takes a string argument. Alternatively the GNUTLS_SO_PIN environment variable may be
used.

4.3.9. object-list-related-options options

Object listing.

115

4.3. SMART CARDS AND HSMS

list-all-privkeys option.

This is the “list all available private keys in a token” option. Lists all the private keys in a
token that match the specified URL.

list-privkeys option.

This is an alias for the 1ist-all-privkeys option, section 4.3.9.

list-keys option.

This is an alias for the 1ist-all-privkeys option, section 4.3.9.

export-chain option.

This is the “export the certificate specified by the url and its chain of trust” option. Exports the
certificate specified by the URL and generates its chain of trust based on the stored certificates
in the module.

export-pubkey option.

This is the “export the public key for a private key” option. Exports the public key for the
specified private key

4.3.10. keygen-related-options options

Key generation.

generate-rsa option.

This is the “generate an rsa private-public key pair” option. Generates an RSA private-public
key pair on the specified token.

generate-dsa option.

This is the “generate a dsa private-public key pair” option. Generates a DSA private-public
key pair on the specified token.

116

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

generate-ecc option.

This is the “generate an ecdsa private-public key pair” option. Generates an ECDSA private-
public key pair on the specified token.

curve option.

This is the “specify the curve used for ec key generation” option. This option takes a string
argument. Supported values are secpl92rl, secp224rl, secp256rl, secp384rl and secp521rl.

sec-param option.

This is the “specify the security level” option. This option takes a string argument “Security
parameter”. This is alternative to the bits option. Available options are [low, legacy, medium,
high, ultra).

4.3.11. write-object-related-options options

Writing objects.

set-id option.
This is the “set the cka_id (in hex) for the specified by the url object” option. This option
takes a string argument.
This option has some usage constraints. It:
e must not appear in combination with any of the following options: write.

Modifies or sets the CKA_ID in the specified by the URL object. The ID should be specified
in hexadecimal format without a ’0x’ prefix.

set-label option.
This is the “set the cka_label for the specified by the url object” option. This option takes a
string argument.
This option has some usage constraints. It:
e must not appear in combination with any of the following options: write, set-id.

Modifies or sets the CKA_LABEL in the specified by the URL object

117

4.3. SMART CARDS AND HSMS

write option.

This is the “writes the loaded objects to a pkes #11 token” option. It can be used to write
private keys, certificates or secret keys to a token. Must be combined with a —load option.

id option.

This is the “sets an id for the write operation” option. This option takes a string argument.
Sets the CKA_ID to be set by the write operation. The ID should be specified in hexadecimal
format without a ’0x’ prefix.

mark-wrap option.

This is the “marks the generated key to be a wrapping key” option.
This option has some usage constraints. It:
e can be disabled with —no-mark-wrap.

Marks the generated key with the CKA_WRAP flag.

mark-trusted option.

This is the “marks the object to be written as trusted” option.
This option has some usage constraints. It:
e can be disabled with —no-mark-trusted.

Marks the object to be generated/written with the CKA_TRUST flag.

mark-decrypt option.

This is the “marks the object to be written for decryption” option.
This option has some usage constraints. It:
e can be disabled with —no-mark-decrypt.

Marks the object to be generated/written with the CKA_DECRYPT flag set to true.

mark-sign option.

This is the “marks the object to be written for signature generation” option.
This option has some usage constraints. It:

e can be disabled with —no-mark-sign.

118

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

Marks the object to be generated/written with the CKA_SIGN flag set to true.

mark-ca option.

This is the “marks the object to be written as a ca” option.
This option has some usage constraints. It:
e can be disabled with —no-mark-ca.
Marks the object to be generated /written with the CKA_CERTIFICATE_CATEGORY as CA.

mark-private option.

This is the “marks the object to be written as private” option.
This option has some usage constraints. It:

e can be disabled with —no-mark-private.

e It is enabled by default.

Marks the object to be generated/written with the CKA_PRIVATE flag. The written object
will require a PIN to be used.

trusted option.

This is an alias for the mark-trusted option, section 4.3.11.

ca option.

This is an alias for the mark-ca option, section 4.3.11.

private option.

This is an alias for the mark-private option, section 4.3.11.

secret-key option.

This is the “provide a hex encoded secret key” option. This option takes a string argument.
This secret key will be written to the module if —write is specified.

4.3.12. other-options options

Other options.

119

4.3. SMART CARDS AND HSMS

debug option (-d).

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

so-login option.

This is the “force security officer login to token” option.
This option has some usage constraints. It:
e can be disabled with —no-so-login.

Forces login to the token as security officer (admin).

admin-login option.

This is an alias for the so-login option, section 4.3.12.

test-sign option.

This is the “tests the signature operation of the provided object” option. It can be used to
test the correct operation of the signature operation. If both a private and a public key are
available this operation will sign and verify the signed data.

generate-random option.

This is the “generate random data” option. This option takes a number argument. Asks the
token to generate a number of bytes of random bytes.

inder option.

This is the “use der/raw format for input” option.
This option has some usage constraints. It:
e can be disabled with —no-inder.
Use DER/RAW format for input certificates and private keys.

inraw option.

This is an alias for the inder option, section 4.3.12.

120

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

outder option.

This is the “use der format for output certificates, private keys, and dh parameters” option.
This option has some usage constraints. It:
e can be disabled with —no-outder.

The output will be in DER or RAW format.

outraw option.

This is an alias for the outder option, section 4.3.12.

provider option.

This is the “specify the pkcs #11 provider library” option. This option takes a file argument.
This will override the default options in /etc/gnutls/pkesll.conf

batch option.

This is the “disable all interaction with the tool” option. In batch mode there will be no
prompts, all parameters need to be specified on command line.

4.3.13. plltool exit status

One of the following exit values will be returned:
e 0 (EXIT_SUCCESS) Successful program execution.
e 1 (EXIT_FAILURE) The operation failed or the command syntax was not valid.

4.3.14. plltool See Also

certtool (1)

4.3.15. plltool Examples

To view all tokens in your system use:

1|$ plitool --list-tokens

To view all objects in a token use:

121

4.4. TRUSTED PLATFORM MODULE (TPM)

1|$ plitool --login --list-all "pkcsi1l:TOKEN-URL" ‘

To store a private key and a certificate in a token run:

$ plitool --login --write "pkcs11:URL" --load-privkey key.pem \
--label "Mykey"

$ plltool --login --write "pkcs11l:URL" --load-certificate cert.pem \
--label "Mykey"

N

Note that some tokens require the same label to be used for the certificate and its corresponding
private key.

To generate an RSA private key inside the token use:

-

$ plitool --login --generate-rsa --bits 1024 --label "MyNewKey" \
2 --outfile MyNewKey.pub "pkcs1l:TOKEN-URL"

The bits parameter in the above example is explicitly set because some tokens only support
limited choices in the bit length. The output file is the corresponding public key. This key can
be used to general a certificate request with certtool.

[

certtool --generate-request --load-privkey "pkcs11:KEY-URL" \
--load-pubkey MyNewKey.pub --outfile request.pem

N

4.4. Trusted Platform Module (TPM)

In this section we present the Trusted Platform Module (TPM) support in GnuTLS.

There was a big hype when the TPM chip was introduced into computers. Briefly it is a co-
processor in your PC that allows it to perform calculations independently of the main processor.
This has good and bad side-effects. In this section we focus on the good ones; these are the
fact that you can use the TPM chip to perform cryptographic operations on keys stored in it,
without accessing them. That is very similar to the operation of a PKCS #11 smart card. The
chip allows for storage and usage of RSA keys, but has quite some operational differences from
PKCS #11 module, and thus require different handling. The basic TPM operations supported
and used by GnuTLS, are key generation and signing.

The next sections assume that the TPM chip in the system is already initialized and in a
operational state.

In GnuTLS the TPM functionality is available in gnutls/tpm.h.

4.4.1. Keys in TPM

The RSA keys in the TPM module may either be stored in a flash memory within TPM or
stored in a file in disk. In the former case the key can provide operations as with PKCS #11
and is identified by a URL. The URL is described in [19] and is of the following form.

122

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

tpmkey:uuid=42309d£f8-d101-11e1-a89a-97bb33c23adl;storage=user

It consists from a unique identifier of the key as well as the part of the flash memory the key
is stored at. The two options for the storage field are ‘user’ and ‘system’. The user keys are
typically only available to the generating user and the system keys to all users. The stored in
TPM keys are called registered keys.

The keys that are stored in the disk are exported from the TPM but in an encrypted form. To
access them two passwords are required. The first is the TPM Storage Root Key (SRK), and
the other is a key-specific password. Also those keys are identified by a URL of the form:

tpmkey:file=/path/to/file

When objects require a PIN to be accessed the same callbacks as with PKCS #11 objects are
expected (see subsection 4.3.2). Note that the PIN function may be called multiple times to
unlock the SRK and the specific key in use. The label in the key function will then be set to
‘SRK’ when unlocking the SRK key, or to ‘TPM’ when unlocking any other key.

4.4.2. Key generation

All keys used by the TPM must be generated by the TPM. This can be done using gnutls_-
tpm_privkey_generate.

int gnutls_tpm_privkey_generate (gnutls_pk_algorithm_t pk, unsigned int bits,
const char * srk_password, const char * key_password, gnutls_tpmkey_fmt_t for-
mat, gnutls_z509_crt_fmi_t pub_format, gnutls_datum_t * privkey, gnutls_datum_t *
pubkey, unsigned int flags)

Description: This function will generate a private key in the TPM chip. The private key
will be generated within the chip and will be exported in a wrapped with TPM’s master key
form. Furthermore the wrapped key can be protected with the provided password. Note that
bits in TPM is quantized value. If the input value is not one of the allowed values, then

it will be quantized to one of 512, 1024, 2048, 4096, 8192 and 16384. Allowed flags are:

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

123

4.4. TRUSTED PLATFORM MODULE (TPM)

int gnutls_tpm_get_registered (gnutls_tpm_key_list_t * list)

void gnutls_tpm _key list_deinit (gnutls_tpm_key_list_t list)

int gnutls_tpm_key _list_get_url (gnutls_tpm_key_list_t list, unsigned int idx, char
** url, wunsigned int flags)

int gnutls_tpm_privkey_delete (const char * url, const char * srk_password)
Description: This function will unregister the private key from the TPM chip.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

4.4.3. Using keys
Importing keys
The TPM keys can be used directly by the abstract key types and do not require any spe-

cial structures. Moreover functions like gnutls_certificate_set_x509 _key file2 can access
TPM URLs.

int gnutls_privkey_import_tpm_raw (gnutls_privkey_t pkey, const gnutls_datum_t
* fdata, gnutls_tpmkey_fmt_t format, const char * srk_password, const char *
key_password, unsigned int flags)

int gnutls_pubkey_import_tpm_raw (gnutls_pubkey_t pkey, const gnutls_datum_t *
fdata, gnutls_tpmkey_fmt_t format, const char * srk_password, unsigned int flags)

Listing and deleting keys

The registered keys (that are stored in the TPM) can be listed using one of the following
functions. Those keys are unfortunately only identified by their UUID and have no label or
other human friendly identifier. Keys can be deleted from permament storage using gnutls_-
tpm_privkey_delete.

124

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

*

int gnutls_privkey_import_tpm_url (gnutls_privkey_t pkey, const char url,

const char * srk_password, const char * key_password, unsigned int flags)

Description: This function will import the given private key to the abstract gnutls_-
privkey_t type. Note that unless GNUTLS_PRIVKEY DISABLE _CALLBACKS is
specified, if incorrect (or NULL) passwords are given the PKCS11 callback functions will be
used to obtain the correct passwords. Otherwise if the SRK password is wrong GNUTLS_-
E_-TPM_SRK_PASSWORD_ERROR is returned and if the key password is wrong or not
provided then GNUTLS_E_-TPM_KEY_PASSWORD_ERROR is returned.

Returns: on success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

*

int gnutls_pubkey_import_tpm_url (gnutls_pubkey_t pkey, const char * url, const

char * srk_password, unsigned int flags)

Description: This function will import the given private key to the abstract gnutls_-
privkey-t type. Note that unless GNUTLS_PUBKEY_DISABLE_CALLBACKS is
specified, if incorrect (or NULL) passwords are given the PKCS11 callback functions will be
used to obtain the correct passwords. Otherwise if the SRK password is wrong GNUTLS_E._-
TPM_SRK_PASSWORD_ERROR is returned.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

int gnutls_tpm_get_registered (gnutls_tpm_key_list_t * list)

void gnutls_tpm key _list_deinit (gnutls_tpm_key_list_t list)

int gnutls_tpm_key_list_get_url (gnutls_tpm_key_list_t list, unsigned int idx, char
** url, wunsigned int flags)

4.4.4. Invoking tpmtool

Program that allows handling cryptographic data from the TPM chip.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the tpmtool program. This software is released under the GNU General

125

© 0w N O U A W N e

4.4. TRUSTED PLATFORM MODULE (TPM)

* *

int gnutls_tpm_privkey_delete (const char * url, const char * srk_password)

Description:

This function will unregister the private key from the TPM chip.

Returns:

value.

On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

Public License, version 3 or later.

4.4.5. tpmtool help/usage (“--help”)

This is the automatically generated usage text for tpmtool.

The text printed is the same whether selected with the help option (“--help”) or the more-help
option (“--more-help”). more-help will print the usage text by passing it through a pager
program. more-help is disabled on platforms without a working fork(2) function. The PAGER
environment variable is used to select the program, defaulting to “more”. Both will exit with
a status code of 0.

tpmtool - GnuTLS TPM tool
Usage: tpmtool [-<flag> [<val>] | --<name>[{=| }<val>]]...

-d, --debug=num

--infile=file

--outfile=str
—--generate-rsa
--register

--signing

--legacy

—-user

—-system

--pubkey=str
--list
--delete=str
--test-sign=str
—-sec-param=str
--bits=num
--inder

Enable debugging
- it must be in the range:
0 to 9999
Input file
- file must pre-exist
Output file
Generate an RSA private-public key pair
Any generated key will be registered in the TPM
- requires the option ’generate-rsa’
Any generated key will be a signing key
- requires the option ’generate-rsa’
-- and prohibits the option ’legacy’
Any generated key will be a legacy key
- requires the option ’generate-rsa’
-- and prohibits the option ’signing’
Any registered key will be a user key
- requires the option ’register’
-- and prohibits the option ’system’
Any registred key will be a system key
- requires the option ’register’
-- and prohibits the option ’user’
Prints the public key of the provided key
Lists all stored keys in the TPM
Delete the key identified by the given URL (UUID).
Tests the signature operation of the provided object

Specify the security level [low, legacy, medium, high, ultra].

Specify the number of bits for key generate
Use the DER format for keys.

126

32
33
34
35
36
37
38
39
40
41
42
43

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

- disabled as ’--no-inder’
—--outder Use DER format for output keys
- disabled as ’--no-outder’
-v, --version[=arg] output version information and exit
-h, --help display extended usage information and exit
-!, --more-help extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single
hyphen and the flag character.

Program that allows handling cryptographic data from the TPM chip.

4.4.6. debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

4.4.7. generate-rsa option

This is the “generate an rsa private-public key pair” option. Generates an RSA private-public
key pair in the TPM chip. The key may be stored in filesystem and protected by a PIN, or
stored (registered) in the TPM chip flash.

4.4.8. user option

This is the “any registered key will be a user key” option.
This option has some usage constraints. It:
e must appear in combination with the following options: register.
e must not appear in combination with any of the following options: system.

The generated key will be stored in a user specific persistent storage.

4.4.9. system option

)

This is the “any registred key will be a system key” option.
This option has some usage constraints. It:
e must appear in combination with the following options: register.
e must not appear in combination with any of the following options: user.

The generated key will be stored in system persistent storage.

127

4.4. TRUSTED PLATFORM MODULE (TPM)

4.4.10. test-sign option

This is the “tests the signature operation of the provided object” option. This option takes a
string argument “url”. It can be used to test the correct operation of the signature operation.
This operation will sign and verify the signed data.

4.4.11. sec-param option

This is the “specify the security level [low, legacy, medium, high, ultra].” option. This option
takes a string argument “Security parameter”. This is alternative to the bits option. Note
however that the values allowed by the TPM chip are quantized and given values may be
rounded up.

4.4.12. inder option

This is the “use the der format for keys.” option.
This option has some usage constraints. It:
e can be disabled with —no-inder.

The input files will be assumed to be in the portable DER format of TPM. The default format
is a custom format used by various TPM tools

4.4.13. outder option

This is the “use der format for output keys” option.
This option has some usage constraints. It:
e can be disabled with —no-outder.

The output will be in the TPM portable DER format.

4.4.14. tpmtool exit status

One of the following exit values will be returned:
e 0 (EXIT_SUCCESS) Successful program execution.
e 1 (EXIT_FAILURE) The operation failed or the command syntax was not valid.

4.4.15. tpmtool See Also

plltool (1), certtool (1)

128

CHAPTER 4. ABSTRACT KEYS TYPES AND HARDWARE SECURITY MODULES

4.4.16. tpmtool Examples

To generate a key that is to be stored in filesystem use:

1

$ tpmtool --generate-rsa --bits 2048 --outfile tpmkey.pem

To generate a key that is to be stored in TPM’s flash use:

1

$ tpmtool --generate-rsa —-bits 2048 --register --user

To get the public key of a TPM key use:

$ tpmtool --pubkey tpmkey:uuid=58ad734b-bde6-45c7-89d8-756a55ad1891;storage=user \
2 --outfile pubkey.pem

o

or if the key is stored in the filesystem:

1|$ tpmtool --pubkey tpmkey:file=tmpkey.pem -—-outfile pubkey.pem

To list all keys stored in TPM use:

1|$ tpmtool --list

129

How to use GnuTLS in applications

5.1. Introduction

This chapter tries to explain the basic functionality of the current GnuTLS library. Note that
there may be additional functionality not discussed here but included in the library. Checking
the header files in “/usr/include/gnutls/” and the manpages is recommended.

5.1.1. General idea

A Dbrief description of how GnuTLS sessions operate is shown at Figure 5.1. This section
will become more clear when it is completely read. As shown in the figure, there is a read-
only global state that is initialized once by the global initialization function. This global
structure, among others, contains the memory allocation functions used, structures needed
for the ASN.1 parser and depending on the system’s CPU, pointers to hardware accelerated
encryption functions. This structure is never modified by any GnuTLS function, except for the
deinitialization function which frees all allocated memory and must be called after the program
has permanently finished using GnuTLS.

The credentials structures are used by the authentication methods, such as certificate authen-
tication. They store certificates, privates keys, and other information that is needed to prove
the identity to the peer, and/or verify the indentity of the peer. The information stored in the
credentials structures is initialized once and then can be shared by many TLS sessions.

A GnuTLS session contains all the required state and information to handle one secure connec-
tion. The session communicates with the peers using the provided functions of the transport
layer. Every session has a unique session ID shared with the peer.

Since TLS sessions can be resumed, servers need a database back-end to hold the session’s
parameters. Every GnuTLS session after a successful handshake calls the appropriate back-
end function (see subsection 2.5.4) to store the newly negotiated session. The session database
is examined by the server just after having received the client hello!, and if the session ID sent
by the client, matches a stored session, the stored session will be retrieved, and the new session
will be a resumed one, and will share the same session ID with the previous one.

IThe first message in a TLS handshake

131

5.1. INTRODUCTION

Global state Credentials

TLS Session TLS Session | 4

Session Database
Backend

Transport Layer

Figure 5.1.: High level design of GnuTLS.

5.1.2. Error handling

In GnuTLS most functions return an integer type as a result. In almost all cases a zero or a
positive number means success, and a negative number indicates failure, or a situation that
some action has to be taken. Thus negative error codes may be fatal or not.

Fatal errors terminate the connection immediately and further sends and receives will be dis-
allowed. Such an example is GNUTLS_E_DECRYPTION _FAILED. Non-fatal errors may warn about
something, i.e., a warning alert was received, or indicate the some action has to be taken.
This is the case with the error code GNUTLS_E_REHANDSHAKE returned by gnutls_record_recv.
This error code indicates that the server requests a re-handshake. The client may ignore this
request, or may reply with an alert. You can test if an error code is a fatal one by using the
gnutls_error_is_fatal. All errors can be converted to a descriptive string using gnutls_-
strerror.

If any non fatal errors, that require an action, are to be returned by a function, these error
codes will be documented in the function’s reference. For example the error codes GNUTLS_-
E_WARNING_ALERT RECEIVED and GNUTLS_E_FATAL_ALERT RECEIVED that may returned when
receiving data, should be handled by notifying the user of the alert (as explained in section 5.9).
See Appendix D, for a description of the available error codes.

132

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

5.1.3. Common types

All strings that are to provided as input to GnuTLS functions should be in UTF-8 unless
otherwise specified. Output strings are also in UTF-8 format unless otherwise specified.

When data of a fixed size are provided to GnuTLS functions then the helper structure gnutls_datum_t
is often used. Its definition is shown below.

typedef struct
{

unsigned char *data;
unsigned int size;
} gnutls_datum_t;

Other functions that require data for scattered read use a structure similar to struct iovec
typically used by readv. It is shown below.

typedef struct
{

void *iov_base; /* Starting address */
size_t iov_len; /* Number of bytes to transfer */
} giovec_t;

5.1.4. Debugging and auditing

In many cases things may not go as expected and further information, to assist debugging,
from GnuTLS is desired. Those are the cases where the gnutls_global_set_log_level and
gnutls_global_set_log function are to be used. Those will print verbose information on the
GnuTLS functions internal flow.

void gnutls_global set_log_level (int level)

void gnutls_global_set_log_function (gnutls_log_func log_func)

Alternatively the environment variable GNUTLS_DEBUG_LEVEL can be set to a logging level and
GnuTLS will output debugging output to standard error. Other available environment variables
are shown in Table 5.1.

When debugging is not required, important issues, such as detected attacks on the protocol
still need to be logged. This is provided by the logging function set by gnutls_global_set_-
audit_log_function. The provided function will receive an message and the corresponding
TLS session. The session information might be used to derive IP addresses or other information
about the peer involved.

133

5.1. INTRODUCTION

Variable

Purpose ‘

GNUTLS_DEBUG_LEVEL

When set to a numeric value, it sets the default debugging level
for GnuTLS applications.

GNUTLS_CPUID_OVERRIDE

That environment variable can be used to explicitly enable/disable
the use of certain CPU capabilities. Note that CPU detection
cannot be overriden, i.e., VIA options cannot be enabled on an
Intel CPU. The currently available options are: @itemize

0x1: Disable all run-time de-
tected optimizations

0x2: Enable AES-NI

0x4: Enable SSSE3

0x8: Enable PCLMUL

0x100000: Enable VIA pad-
lock

0x200000: Enable VIA PHE

0x400000: Enable VIA PHE
SHAS512 @end itemize

GNUTLS_FORCE_FIPS_MODE

In setups where GnuTLS is compiled with support for FIPS140-2
(see —enable-fips140-mode in configure), that option if set to one
enforces the FIPS140 mode.

Table 5.1.: Environment variables used by the library.

5.1.5. Thread safety

The GnuTLS library is thread safe by design, meaning that objects of the library such as TLS
sessions, can be safely divided across threads as long as a single thread accesses a single object.
This is sufficient to support a server which handles several sessions per thread. If, however,
an object needs to be shared across threads then access must be protected with a mutex.
Read-only access to objects, for example the credentials holding structures, is also thread-safe.

A gnutls_session_t object can be shared by two threads, one sending, the other receiving.
In that case rehandshakes, if required, must only be handled by a single thread being active.
The termination of a session should be handled, either by a single thread being active, or by

Description:

void gnutls_global_set_audit_log_function (gnutls_audit_log_func log_func)

This is the function to set the audit logging function.
to report important issues, such as possible attacks in the protocol.

from gnutls_global_set_log function() because it will report also session-specific events.
The session parameter will be null if there is no corresponding TLS session.

log_func is of the form, void (*gnutls_audit_log_func)(gnutls_session_t, const charx);

This is a function

This is different

gnutls_audit_-

134

N

© w N o «

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

the sender thread using gnutls_bye with GNUTLS_SHUT_WR and the receiving thread waiting for
a return value of zero.

The random generator of the cryptographic back-end, utilizes mutex locks (e.g., pthreads on
GNU/Linux and CriticalSection on Windows) which are setup by GnuTLS on library initializa-
tion. Prior to version 3.3.0 they were setup by calling gnutls_global_init. On special systems
you could manually specify the locking system using the function gnutls_global_set mutex
before calling any other GnuTLS function. Setting mutexes manually is not recommended. An
example of non-native thread usage is shown below.

#include <gnutls/gnutls.h>

int main()
{
/* When the system mutexes are not to be used
* gnutls_global_set_mutex() must be called explicitly
*/
gnutls_global_set_mutex (mutex_init, mutex_deinit,
mutex_lock, mutex_unlock);

void gnutls_global set_mutex (muter_init_func init, mutex_deinit_func deinit,
mutex_lock_func lock, mutex_unlock_func unlock)

I)escriptioru With this function you are allowed to override the default mutex locks
used in some parts of gnutls and dependent libraries. This function should be used if
you have complete control of your program and libraries. Do not call this function from a
library, or preferrably from any application unless really needed to. GnuTLS will use the
appropriate locks for the running system. This function must be called prior to any other

gnutls function.

5.1.6. Running in a sandbox

Given that TLS protocol handling as well as X.509 certificate parsing are complicated processes
involving several thousands lines of code, it is often desirable (and recommended) to run the
TLS session handling in a sandbox like seccomp. That has to be allowed by the overall software
design, but if available, it adds an additional layer of protection by preventing parsing errors
from becoming vessels for further security issues such as code execution.

GnuTLS requires the following system calls to be available for its proper operation.
e nanosleep

e time

gettimeofday

e clock_gettime

135

5.1. INTRODUCTION

e getrusage

e send

e recv

e writev

e read (to read from /dev/urandom)

e getrandom (this is Linux-kernel specific)
o select

As well as an calls needed for memory allocation to work. Note however, that GnuTLS depends
on libc for the system calls, and there is no guarrantee that libc will call the expected system
call. For that it is recommended to test your program in all the targetted platforms when
filters like seccomp are in place.

An example with a seccomp filter from GnuTLS’ test suite is at: http://gitlab.com/gnutls/
gnutls/blob/master/tests/seccomp.c.

5.1.7. Sessions and fork

A gnutls_session_t object can be shared by two processes after a fork, one sending, the other
receiving. In that case rehandshakes, cannot and must not be performed. As with threads,
the termination of a session should be handled by the sender process using gnutls_bye with
GNUTLS_SHUT_WR and the receiving process waiting for a return value of zero.

5.1.8. Callback functions
There are several cases where GnuTLS may need out of band input from your program. This
is now implemented using some callback functions, which your program is expected to register.

An example of this type of functions are the push and pull callbacks which are used to specify
the functions that will retrieve and send data to the transport layer.

void gnutls_transport_set_push_function (gnutis_session_t session,
gnutls_push_func push_func)

void gnutls_transport_set_pull_function (gnutls_session_t session, gnutls_pull_func
pull_func)

Other callback functions may require more complicated input and data to be allocated. Such
an example is gnutls_srp_set_server _credentials_function. All callbacks should allocate
and free memory using gnutls malloc and gnutls_free.

136

http://gitlab.com/gnutls/gnutls/blob/master/tests/seccomp.c
http://gitlab.com/gnutls/gnutls/blob/master/tests/seccomp.c

-

w

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

5.2. Preparation

To use GnuTLS, you have to perform some changes to your sources and your build system.
The necessary changes are explained in the following subsections.

5.2.1. Headers

All the data types and functions of the GnuTLS library are defined in the header file “gnutls/gnutls.h”.

This must be included in all programs that make use of the GnuTLS library.

5.2.2. Initialization

The GnuTLS library is initialized on load; prior to 3.3.0 was initialized by calling gnutls_-
global_init?. The initialization typically enables CPU-specific acceleration, performs any
required precalculations needed, opens any required system devices (e.g., /dev/urandom on
Linux) and initializes subsystems that could be used later.

The resources allocated by the initialization process will be released on library deinitialization,
or explictly by calling gnutls_global_deinit.

Note that during initialization file descriptors may be kept open by GnuTLS (e.g. /dev/uran-
dom) on library load. Applications closing all unknown file descriptors must immediately call
gnutls_global_init, after that, to ensure they don’t disrupt GnuTLS’ operation.

5.2.3. Version check

It is often desirable to check that the version of ‘gnutls’ used is indeed one which fits all
requirements. Even with binary compatibility new features may have been introduced but due
to problem with the dynamic linker an old version is actually used. So you may want to check
that the version is okay right after program start-up. See the function gnutls_check_version.

On the other hand, it is often desirable to support more than one versions of the library. In
that case you could utilize compile-time feature checks using the the GNUTLS_VERSION_NUMBER
macro. For example, to conditionally add code for GnuTLS 3.2.1 or later, you may use:

#if GNUTLS_VERSION_NUMBER >= 0x030201

#endif

2 The original behavior of requiring explicit initialization can obtained by setting the
GNUTLS_NO_EXPLICIT_INIT environment variable to 1, or by using the macro
GNUTLS_SKIP_GLOBAL_INIT in a global section of your program.

137

[

N N

5.3. SESSION INITIALIZATION

5.2.4. Building the source

If you want to compile a source file including the “gnutls/gnutls.h” header file, you must
make sure that the compiler can find it in the directory hierarchy. This is accomplished by
adding the path to the directory in which the header file is located to the compilers include
file search path (via the “~I” option).

However, the path to the include file is determined at the time the source is configured. To
solve this problem, the library uses the external package “pkg-config” that knows the path
to the include file and other configuration options. The options that need to be added to the
compiler invocation at compile time are output by the “--cflags” option to “pkg-config
gnutls”. The following example shows how it can be used at the command line:

gcc —c foo.c ‘pkg-config gnutls --cflags®

Adding the output of pkg-config gnutls —cflags to the compilers command line will ensure that
the compiler can find the “gnutls/gnutls.h” header file.

A similar problem occurs when linking the program with the library. Again, the compiler has
to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the “~L” option). For this, the option “--1ibs” to “pkg-config
gnutls” can be used. For convenience, this option also outputs all other options that are
required to link the program with the library (for instance, the -ltasnl option). The example
shows how to link “foo.o0” with the library to a program “foo”.

gcc -o foo foo.o ‘pkg-config gnutls --libs® ‘

Of course you can also combine both examples to a single command by specifying both options
to “pkg-config”:

gcc -o foo foo.c ‘pkg-config gnutls --cflags --libs® ‘

When a program uses the GNU autoconf system, then the following line or similar can be used
to detect the presence of GnuTLS.

PKG_CHECK_MODULES ([LIBGNUTLS], [gnutls >= 3.3.0])

AC_SUBST ([LIBGNUTLS_CFLAGS])
AC_SUBST ([LIBGNUTLS_LIBS])

5.3. Session initialization

In the previous sections we have discussed the global initialization required for GnuTLS as well
as the initialization required for each authentication method’s credentials (see subsection 2.5.2).
In this section we elaborate on the TLS or DTLS session initiation. Each session is initialized
using gnutls_init which among others is used to specify the type of the connection (server or
client), and the underlying protocol type, i.e., datagram (UDP) or reliable (TCP).

138

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

it gnutls_init (gnutls_session_t * session, unsigned int flags)

Description: This function initializes the current session to null. Every session must
be initialized before use, so internal structures can be allocated. This function allocates
structures which can only be free’d by calling gnutls_deinit(). Returns GNUTLS_E._-
SUCCESS (0) on success. flags can be one of GNUTLS_CLIENT, GNUTLS_SERVER,
GNUTLS_DATAGRAM, GNUTLS_NONBLOCK or GNUTLS_NOSIGNAL (since
3.4.2). The flag GNUTLS_NO_REPLAY_PROTECTION will disable any replay
protection in DTLS mode. That must only used when replay protection is achieved using
other means. Note that since version 3.1.2 this function enables some common TLS extensions
such as session tickets and OCSP certificate status request in client side by default. To
prevent that use the GNUTLS_NO_EXTENSIONS flag.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

After the session initialization details on the allowed ciphersuites and protocol versions should
be set using the priority functions such as gnutls_priority_set_direct. We elaborate on
them in section 5.10. The credentials used for the key exchange method, such as certificates
or usernames and passwords should also be associated with the session current session using
gnutls_credentials_set.

int gnutls_credentials_set (gnutls_session_t session, gnutls_credentials_type_t type,
void * cred)

Description: Sets the needed credentials for the specified type. Eg username, password
- or public and private keys etc. The cred parameter is a structure that depends on the
specified type and on the current session (client or server). In order to minimize memory
usage, and share credentials between several threads gnutls keeps a pointer to cred, and not
the whole cred structure. Thus you will have to keep the structure allocated until you call
gnutls_deinit(). For GNUTLS_CRD_ANON, cred should be gnutls_anon_client_credentials_t
in case of a client. In case of a server it should be gnutls_.anon_server_credentials_t. For
GNUTLS_CRD_SRP, cred should be gnutls_srp_client_credentials_-t in case of a client, and
gnutls_srp_server_credentials_t, in case of a server. For GNUTLS_CRD_CERTIFICATE,

cred should be gnutls_certificate_credentials_t.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

code is returned.

139

5.4. ASSOCIATING THE CREDENTIALS

5.4. Associating the credentials

Each authentication method is associated with a key exchange method, and a credentials type.
The contents of the credentials is method-dependent, e.g. certificates for certificate authenti-
cation and should be initialized and associated with a session (see gnutls_credentials_set).
A mapping of the key exchange methods with the credential types is shown in Table 5.2.

’ Authentication method \ Key exchange \ Client credentials \ Server credentials ‘
Certificate KX_RSA, KX_DHE_RSA, | CRD_CERTIFICATE CRD_CERTIFICATE
KX_DHE_DSS,

KX_ECDHE_RSA,
KX_ECDHE_ECDSA,

KX_RSA_EXPORT
Password and certifi- | KX_SRP_RSA, CRD_SRP CRD_CERTIFICATE,
cate KX_SRP_DSS CRD_SRP
Password KX_SRP CRD_SRP CRD_SRP
Anonymous KX_ANON_DH, CRD_ANON CRD_ANON
KX_ANON_ECDH
Pre-shared key KX_PSK, KX_DHE PSK, | CRD_PSK CRD_PSK

KX_ECDHE_PSK

Table 5.2.: Key exchange algorithms and the corresponding credential types.

5.4.1. Certificates
Server certificate authentication

When using certificates the server is required to have at least one certificate and private key
pair. Clients may not hold such a pair, but a server could require it. In this section we discuss
general issues applying to both client and server certificates. The next section will elaborate
on issues arising from client authentication only.

int gnutls_certificate_allocate_credentials (gnutls_certificate_credentials_t * res)

void gnutls_certificate_free_credentials (gnutls_certificate_credentials_t sc)

After the credentials structures are initialized, the certificate and key pair must be loaded. This
occurs before any TLS session is initialized, and the same structures are reused for multiple
sessions. Depending on the certificate type different loading functions are available, as shown
below. For X.509 certificates, the functions will accept and use a certificate chain that leads to

140

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

a trusted authority. The certificate chain must be ordered in such way that every certificate
certifies the one before it. The trusted authority’s certificate need not to be included since the
peer should possess it already.

int gnutls_certificate_set_x509_key _file2 (gnutls_certificate_credentials_t res, const
char * certfile, const char * keyfile, gnutls_x509_crt_fmt_t type, const char * pass,
unsigned int flags)

int gnutls_certificate_set_x509_key_mem?2 (gnutls_certificate_credentials_t res,
const gnutls_datum_t * cert, const gnutls_datum_t * key, gnutls_z509_crt_fmi_t type,
const char * pass, unsigned int flags)

int gnutls_certificate_set_x509_key (gnutls_certificate_credentials_t res,
gnutls_z509_crt_t * cert_list, int cert_list_size, gnutls_z509_privkey_t key)

int gnutls_certificate_set_openpgp_key _file (gnutls_certificate_credentials_t res,
const char * certfile, const char * keyfile, gnutls_openpgp_crt_fmt_t format)

int gnutls_certificate_set_openpgp_key mem (gnutls_certificate_credentials_.t res,
const gnutls_datum_t * cert, const gnutls_datum_t * key, gnutls_openpgp_crt_fmt_t
format)

int gnutls_certificate_set_openpgp_key (gnutls_certificate_credentials_t res,
gnutls_openpgp_crt_t crt, gnutls_openpgp_privkey-t pkey)

It is recommended to use the higher level functions such as gnutls_certificate_set_x509_-
key_file2 which accept not only file names but URLs that specify objects stored in token, or
system certificates and keys (see section 4.2). For these cases, another important function is
gnutls certificate_set_pin_function, that allows setting a callback function to retrieve a
PIN if the input keys are protected by PIN.

void gnutls_certificate_set_pin_function (gnutls_certificate_credentials_t cred,
gnutls_pin_callback_t fn, void * userdata)

I)escriptioru This function will set a callback function to be used when required to
access a protected object. This function overrides any other global PIN functions. Note

that this function must be called right after initialization to have effect.

If the imported keys and certificates need to be accessed before any TLS session is established,
it is convenient to use gnutls_certificate_set_key in combination with gnutls_pcert_-
import x509_raw and gnutls privkey_import_x509_raw.

141

5.4. ASSOCIATING THE CREDENTIALS

int gnutls_certificate_set_key (gnutls_certificate_credentials_t res, const char
** names, int names_size, gnutls_pcert_st * pcert_list, int pcert_list_size,
gnutls_privkey_t key)

DeSCI‘iptiOIl: This function sets a certificate/private key pair in the gnutls_-
certificate_credentials_t type. This function may be called more than once, in case
multiple keys/certificates exist for the server. For clients that wants to send more than
its own end entity certificate (e.g., also an intermediate CA cert) then put the certificate
chain in pcert_list. Note that the pcert_list and key will become part of the credentials
structure and must not be deallocated. They will be automatically deallocated when the res
type is deinitialized. If that function fails to load the res structure is at an undefined

state, it must not be reused to load other keys or certificates.

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.

If multiple certificates are used with the functions above each client’s request will be served
with the certificate that matches the requested name (see subsection 2.6.2).

As an alternative to loading from files or buffers, a callback may be used for the server or
the client to specify the certificate and the key at the handshake time. In that case a cer-
tificate should be selected according the peer’s signature algorithm preferences. To get those
preferences use gnutls_sign algorithm get_requested. Both functions are shown below.

void gnutls_certificate_set_retrieve_function (gnutls_certificate_credentials_t cred,
gnutls_certificate_retrieve_function * func)

void gnutls_certificate_set_retrieve_function2 (gnutls_certificate_credentials_t cred,
gnutls_certificate_retrieve_function2 * func)

int gnutls_sign_algorithm_get_requested (gnutls_session_t session, size_t indx,
gnutls_sign_algorithm_t * algo)

¢ The functions above do not handle the requested server name automatically. A server would
need to check the name requested by the client using gnutls_server_name_get, and serve
the appropriate certificate. Note that some of these functions require the gnutls_pcert_st
structure to be filled in. Helper functions to fill in the structure are listed below.

typedef struct gnutls_pcert_st

{
gnutls_pubkey_t pubkey;
gnutls_datum_t cert;
gnutls_certificate_type_t type;

} gnutls_pcert_st;

142

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

int gnutls_pcert_import_x509 (gnutls_pcert_st * pecert, gnutls_x509_crt_t crt,
unsigned int flags)

int gnutls_pcert_import_openpgp (gnutls_pcert_st * pcert, gnutls_openpgp_crt_t
crt, unsigned int flags)

int gnutls_pcert_import_x509_raw (gnutls_pcert_st * pcert, const gnutls_datum_t *
cert, gnutls_z509_crt_fmi_t format, unsigned int flags)

int gnutls_pcert_import_openpgp_raw (gnutls_pcert_st * pcert, const
gnutls_datum_t * cert, gnutls_openpgp_crt_fmi_t format, gnutls_openpgp_keyid_t
keyid, wunsigned int flags)

void gnutls_pcert_deinit (gnutls_pcert_st * pcert)

In a handshake, the negotiated cipher suite depends on the certificate’s parameters, so some key
exchange methods might not be available with all certificates. GnuTLS will disable ciphersuites
that are not compatible with the key, or the enabled authentication methods. For example
keys marked as sign-only, will not be able to access the plain RSA ciphersuites, that require
decryption. It is not recommended to use RSA keys for both signing and encryption. If possible
use a different key for the DHE-RSA which uses signing and RSA that requires decryption. All
the key exchange methods shown in Table 3.1 are available in certificate authentication.

Client certificate authentication

If a certificate is to be requested from the client during the handshake, the server will send
a certificate request message. This behavior is controlled gnutls_certificate_server_set_-
request. The request contains a list of the acceptable by the server certificate signers. This list
is constructed using the trusted certificate authorities of the server. In cases where the server
supports a large number of certificate authorities it makes sense not to advertise all of the
names to save bandwidth. That can be controlled using the function gnutls_certificate_-
send _x509_rdn_sequence. This however will have the side-effect of not restricting the client
to certificates signed by server’s acceptable signers.

void gnutls_certificate_server_set_request (gnutls_session_t session,
gnutls_certificate_request_t req)

I)escriptiorn This function specifies if we (in case of a server) are going to send a
certificate request message to the client. If req is GNUTLS_CERT_REQUIRE then the server
will return an error if the peer does not provide a certificate. If you do not call this

function then the client will not be asked to send a certificate.

143

5.4. ASSOCIATING THE CREDENTIALS

void gnutls_certificate_send x509_rdn_sequence (gnutls_session_t session, int
status)

I)escriptiorn If status is non zero, this function will order gnutls not to send the
rdnSequence in the certificate request message. That is the server will not advertise its
trusted CAs to the peer. If status is zero then the default behaviour will take effect,
which is to advertise the server’s trusted CAs. This function has no effect in clients, and

in authentication methods other than certificate with X.509 certificates.

Client or server certificate verification

Certificate verification is possible by loading the trusted authorities into the credentials struc-
ture by using the following functions, applicable to X.509 and OpenPGP certificates.

int gnutls_certificate_set_x509_system_trust (gnutls_certificate_credentials_t cred)
int gnutls_certificate_set_x509_trust_file (gnutls_certificate_credentials_t cred,
const char * cafile, gnutls_z509_crt_fmt_t type)

int gnutls_certificate_set_openpgp_keyring_file (gnutls_certificate_credentials_t c,
const char * file, gnutls_openpgp_crt_fmt_t format)

The peer’s certificate will be automatically verified if gnutls_session_set_verify_cert is
called prior to handshake.

Alternatively, one must set a callback function during the handshake using gnutls_certificate_-
set_verify function, which will verify the peer’s certificate once received. The verification
should happen using gnutls_certificate_verify_peers3 within the callback. It will verify
the certificate’s signature and the owner of the certificate. That will provide a brief verification
output. If a detailed output is required one should call gnutls_certificate_get_peers to
obtain the raw certificate of the peer and verify it using the functions discussed in subsec-
tion 3.1.1.

In both the automatic and the manual cases, the verification status returned can be printed
using gnutls_certificate_verification_status_print.

int gnutls_certificate_verify_peers3 (gnutls_session_t session, const char * host-
name, unsigned int * status)

void gnutls_certificate_set_verify_function (gnutls_certificate_credentials_t cred,
gnutls_certificate_verify_function * func)

144

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

void gnutls_session_set_verify_cert (gnutls_session_t session, const char * host-
name, unsigned flags)

I)escriptiotu This function instructs GnuTLS to verify the peer’s certificate using the
provided hostname. If the verification fails the handshake will also fail with GINUTLS_-
E_CERTIFICATE_VERIFICATION_ERROR. In that case the verification result can

be obtained using gnutls_session_get_verify cert_status(). The hostname pointer provided
must remain valid for the lifetime of the session. More precisely it should be available
during any subsequent handshakes. If no hostname is provided, no hostname verification will
be performed. For a more advanced verification function check gnutls_session_set_verify_ -
cert2(). The gnutls_session_set_verify cert() function is intended to be used by TLS clients

to verify the server’s certificate.

5.4.2. SRP

The initialization functions in SRP credentials differ between client and server. Clients support-
ing SRP should set the username and password prior to connection, to the credentials structure.
Alternatively gnutls_srp_set_client_credentials_function may be used instead, to specify
a callback function that should return the SRP username and password. The callback is called
once during the TLS handshake.

int gnutls_srp_allocate_server_credentials (gnutls_srp_server_credentials_t * sc)

int gnutls_srp_allocate_client_credentials (gnutls_srp_client_credentials_t * sc)

void gnutls_srp_free_server_credentials (gnutls_srp_server_credentials_t sc)

void gnutls_srp_free_client_credentials (gnutls_srp_client_credentials_t sc)

int gnutls_srp_set_client_credentials (gnutls_srp_client_credentials_t res, const char
* username, const char * password)

In server side the default behavior of GnuTLS is to read the usernames and SRP verifiers
from password files. These password file format is compatible the with the Stanford srp
libraries format. If a different password file format is to be used, then gnutls_srp_set_-
server_credentials_function should be called, to set an appropriate callback.

145

5.4. ASSOCIATING THE CREDENTIALS

void gnutls_srp_set_client_credentials_function (gnutls_srp_client_credentials_t
cred, gnutls_srp_client_credentials_function * func)

Description: This function can be used to set a callback to retrieve the username

and password for client SRP authentication. The callback’s function form is: int
(*callback) (gnutls_session_t, char** username, char**password); The username and password
must be allocated using gnutls_malloc(). username and password should be ASCII strings
or UTF-8 strings prepared using the "SASLprep" profile of "stringprep". The callback
function will be called once per handshake before the initial hello message is sent. The
callback should not return a negative error code the second time called, since the handshake
procedure will be aborted. The callback function should return O on success. -1 indicates

an error.

int gnutls_srp_set_server_credentials_file (gnutls_srp_server_credentials_t res, const
char * password_file, const char * password_conf_file)

Description: This function sets the password files, in a gnutls_srp_server_credentials_-
t type. Those password files hold usernames and verifiers and will be used for SRP

authentication.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

void gnutls_srp_set_server_credentials_function (gnutls_srp_server_credentials_t
cred, gnutls_srp_server_credentials_function * func)

Description: This function can be used to set a callback to retrieve the user’s SRP
credentials. The callback’s function form is: int (*callback) (gnutls_session_t, const
char* username, gnutls_datum_t *salt, gnutls_datum_t *verifier, gnutls_datum_t *generator,
gnutls_datum_t *prime); username contains the actual username. The salt, verifier, gen-
erator and prime must be filled in using the gnutls.malloc(). For convenience prime and
generator may also be one of the static parameters defined in gnutls.h. Initially, the
data field is NULL in every gnutls_.datum_t structure that the callback has to fill in. When
the callback is done GnuTLS deallocates all of those buffers which are non-NULL, regardless
of the return value. In order to prevent attackers from guessing valid usernames, if a
user does not exist, g and n values should be filled in using a random user’s parameters.
In that case the callback must return the special value (1). See gnutls_srp_set_server_fake_-
salt_seed too. If this is not required for your application, return a negative number from
the callback to abort the handshake. The callback function will only be called once per

handshake. The callback function should return O on success, while -1 indicates an error.

146

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

5.4.3. PSK

The initialization functions in PSK credentials differ between client and server.

int gnutls_psk_allocate_server_credentials (gnutls_psk_server_credentials_t * sc)
int gnutls_psk_allocate_client_credentials (gnutls_psk_client_credentials_t * sc)
void gnutls_psk_free_server_credentials (gnutls_psk_server_credentials_t sc)

void gnutls_psk_free_client_credentials (gnutls_psk_client_credentials_t sc)

Clients supporting PSK should supply the username and key before a TLS session is estab-
lished. Alternatively gnutls_psk_set_client_credentials_function can be used to specify
a callback function. This has the advantage that the callback will be called only if PSK has
been negotiated.

int gnutls_psk_set_client_credentials (gnutls_psk_client_credentials_t res, const char
* username, const gnutls_datum_t * key, gnutls_psk_key_flags flags)

void gnutls_psk_set_client_credentials_function (gnutls_psk_client_credentials_t
cred, gnutls_psk_client_credentials_function * func)

Description: This function can be used to set a callback to retrieve the username

and password for client PSK authentication. The callback’s function form is: int
(*callback) (gnutls_session_t, char** username, gnutls_datum_t* key); The username and
key—data must be allocated using gnutlsmalloc(). username should be ASCII strings or
UTF-8 strings prepared using the "SASLprep" profile of "stringprep". The callback function
will be called once per handshake. The callback function should return O on success. -1

indicates an error.

In server side the default behavior of GnuTLS is to read the usernames and PSK keys from
a password file. The password file should contain usernames and keys in hexadecimal format.
The name of the password file can be stored to the credentials structure by calling gnutls_-
psk_set_server_credentials_file. If a different password file format is to be used, then a
callback should be set instead by gnutls _psk_set_server_credentials_function.

147

5.4. ASSOCIATING THE CREDENTIALS

The server can help the client chose a suitable username and password, by sending a hint. Note
that there is no common profile for the PSK hint and applications are discouraged to use it. A
server, may specify the hint by calling gnutls_psk_set_server_credentials_hint. The client
can retrieve the hint, for example in the callback function, using gnutls_psk_client_get_hint.

int gnutls_psk_set_server_credentials_file (gnutls_psk_server_credentials_t res,
const char * password_file)

DeSCI‘iptiOIl: This function sets the password file, in a gnutls_psk_server_credentials_t type.

This password file holds usernames and keys and will be used for PSK authentication.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is

returned.

void gnutls_psk_set_server_credentials_function (gnutls_psk_server_credentials_t
cred, gnutls_psk_server_credentials_function * func)

int gnutls_psk_set_server_credentials_hint (gnutls_psk_server_credentials_t res,
const char * hint)

*

const char * gnutls_psk_client_get_hint (gnutls_session_t session)

5.4.4. Anonymous

The key exchange methods for anonymous authentication might require Diffie-Hellman param-
eters to be generated by the server and associated with an anonymous credentials structure.
Check subsection 5.12.4 for more information. The initialization functions for the credentials
are shown below.

int gnutls_anon_allocate_server_credentials (gnutls_.anon_server_credentials_t * sc)
int gnutls_anon_allocate_client_credentials (gnutls_anon_client_credentials_t * sc)
void gnutls_anon_free_server_credentials (gnutls_anon_server_credentials_t sc)

void gnutls_anon_free_client_credentials (gnutls_anon_client_credentials_t sc)

148

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

5.5. Setting up the transport layer

The next step is to setup the underlying transport layer details. The Berkeley sockets are
implicitly used by GnuTLS, thus a call to gnutls_transport_set_int would be sufficient to
specify the socket descriptor.

void gnutls_transport_set_int (gnutls_session_t session, int i)

void gnutls_transport_set_int2 (gnutls_session_t session, int recv_int, int
send_int)

If however another transport layer than TCP is selected, then a pointer should be used instead
to express the parameter to be passed to custom functions. In that case the following functions
should be used instead.

void gnutls_transport_set_ptr (gnutls_session_t session, gnutls_transport_ptr_t ptr)

void gnutls_transport_set_ptr2 (gnutls_session_t session, gnutls_transport_ptr_t
recv_ptr, gnutls_transport_ptr_t send_ptr)

Moreover all of the following push and pull callbacks should be set.

void gnutls_transport_set_push_function (gnutis_session_t session,
gnutls_push_func push_func)

DeSCI‘iptiOIl: This is the function where you set a push function for gnutls to use in
order to send data. If you are going to use berkeley style sockets, you do not need to use
this function since the default send(2) will probably be ok. Otherwise you should specify
this function for gnutls to be able to send data. The callback should return a positive
number indicating the bytes sent, and -1 on error. push_func is of the form, ssize_t

(kgnutls_push_func) (gnutls_transport_ptr_t, const void*, size_t);

The functions above accept a callback function which should return the number of bytes written,
or -1 on error and should set errno appropriately. In some environments, setting errno is
unreliable. For example Windows have several errno variables in different CRT's, or in other
systems it may be a non thread-local variable. If this is a concern to you, call gnutls_-
transport_set_errno with the intended errno value instead of setting errno directly.

GnuTLS currently only interprets the EINTR, EAGAIN and EMSGSIZE errno values and
returns the corresponding GnuTLS error codes:

149

5.5. SETTING UP THE TRANSPORT LAYER

void gnutls_transport_set_vec_push_function (gnutls_session_t session,
gnutls_vec_push_func vec_func)

I)escriptioru Using this function you can override the default writev(2) function for
gnutls to send data. Setting this callback instead of gnutls_transport_set_push_function()
is recommended since it introduces less overhead in the TLS handshake process. vec_func is
of the form, ssize_t (*gnutls_vec_push_func) (gnutls_transport_ptr_t, const giovec_t * iov,

int iovcnt);

void gnutls_transport_set_pull_function (gnutls_session_t session, gnutls_pull_func
pull_func)

I)escriptioru This is the function where you set a function for gnutls to receive data.
Normally, if you use berkeley style sockets, do not need to use this function since

the default recv(2) will probably be ok. The callback should return O on connection
termination, a positive number indicating the number of bytes received, and -1 on error.
gnutls_pull_func is of the form, ssize_t (*gnutls_pull_func) (gnutls_transport_ptr_t, voidx,

size_t);

void gnutls_transport_set_pull_timeout_function (gnutis_session_t session,
gnutls_pull_timeout_func func)

I)escriptioru This is the function where you set a function for gnutls to know whether
data are ready to be received. It should wait for data a given time frame in milliseconds.
The callback should return O on timeout, a positive number if data can be received, and

-1 on error. You’ll need to override this function if select() is not suitable for the
provided transport calls. As with select(), if the timeout value is zero the callback
should return zero if no data are immediately available. gnutls_pull_timeout_func is of
the form, int (*gnutls_pull_timeout_func) (gnutls_transport_ptr_t, unsigned int ms); This
callback is necessary when gnutls_handshake_set_timeout() or gnutls_record_set_timeout() are
set. It will not be used when non-blocking sockets are in use. That is, this function
will not operate when GNUTLS_NONBLOCK is specified in gnutls_init(), or a custom
pull function is registered without updating the pull timeout function. The helper function

gnutls_system recv_timeout() is provided to simplify writing callbacks.

150

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

void gnutls_transport_set_errno (gnutls_session_t session, int err)

Description: Store err in the session-specific errno variable. Useful values for err
are EINTR, EAGAIN and EMSGSIZE, other values are treated will be treated as real errors
in the push/pull function. This function is useful in replacement push and pull functions
set by gnutls_transport_set_push function() and gnutls_transport_set_pull_function() under
Windows, where the replacements may not have access to the same errno variable that is
used by GnuTLS (e.g., the application is linked to msvcr71.dll and gnutls is linked to
msvert.dll).

e GNUTLS_E_INTERRUPTED
e GNUTLS_E_AGAIN
e GNUTLS_E_LARGE_PACKET

The EINTR and EAGAIN values are returned by interrupted system calls, or when non block-
ing 10 is used. All GnuTLS functions can be resumed (called again), if any of the above
error codes is returned. The EMSGSIZE value is returned when attempting to send a large
datagram.

In the case of DTLS it is also desirable to override the generic transport functions with functions
that emulate the operation of recvfrom and sendto. In addition DTLS requires timers during
the receive of a handshake message, set using the gnutls_transport_set_pull_timeout_-
function function. To check the retransmission timers the function gnutls_dtls_get_timeout
is provided, which returns the time remaining until the next retransmission, or better the time
until gnutls_handshake should be called again.

void gnutls_transport_set_pull_timeout_function (gnutls_session_t session,
gnutls_pull_timeout_func func)

DeSCI‘iptiOH: This is the function where you set a function for gnutls to know whether
data are ready to be received. It should wait for data a given time frame in milliseconds.
The callback should return O on timeout, a positive number if data can be received, and

-1 on error. You’ll need to override this function if select() is not suitable for the
provided transport calls. As with select(), if the timeout value is zero the callback
should return zero if no data are immediately available. gnutls_pull_timeout_func is of
the form, int (*gnutls_pull_timeout_func)(gnutls_transport_ptr_t, unsigned int ms); This
callback is necessary when gnutls_handshake_set_timeout() or gnutls_record_set_timeout() are
set. It will not be used when non-blocking sockets are in use. That is, this function
will not operate when GINUTLS_NONBLOCK is specified in gnutls_init(), or a custom
pull function is registered without updating the pull timeout function. The helper function

gnutls_system_recv_timeout() is provided to simplify writing callbacks.

151

5.5. SETTING UP THE TRANSPORT LAYER

unsigned int gnutls_dtls_get_timeout (gnutls_session_t session)

DeSCI‘iptiOI‘l: This function will return the milliseconds remaining for a retransmission
of the previously sent handshake message. This function is useful when DTLS is used in
non-blocking mode, to estimate when to call gnutls_handshake() if no packets have been

received.

Returns: the remaining time in milliseconds.

5.5.1. Asynchronous operation

GnuTLS can be used with asynchronous socket or event-driven programming. The approach
is similar to using Berkeley sockets under such an environment. The blocking, due to network
interaction, calls such as gnutls_handshake, gnutls_record_recv, can be set to non-blocking
by setting the underlying sockets to non-blocking. If other push and pull functions are setup,
then they should behave the same way as recv and send when used in a non-blocking way, i.e.,
set errno to EAGAIN. Since, during a TLS protocol session GnuTLS does not block except for
network interaction, the non blocking EAGAIN errno will be propagated and GnuTLS functions
will return the GNUTLS_E_AGAIN error code. Such calls can be resumed the same way as a system
call would. The only exception is gnutls_record_send, which if interrupted subsequent calls
need not to include the data to be sent (can be called with NULL argument).

When using the select system call though, one should remember that it is only applica-
ble to the kernel sockets API. To check for any available buffers in a GnuTLS session, uti-
lize gnutls_record_check pending, either before the select system call, or after a call to
gnutls_record recv. GnuTLS does not keep a write buffer, thus when writing no additional
actions are required.

The following paragraphs describe the detailed requirements for non-blocking operation when
using the TLS or DTLS protocols.

TLS protocol

There are no special requirements for the TLS protocol operation in non-blocking mode if a
non-blocking socket is used.

It is recommended, however, for future compatibility, when in non-blocking mode, to call the
gnutls_init function with the GNUTLS_NONBLOCK flag set (see section 5.3).

Datagram TLS protocol

When in non-blocking mode the function, the gnutls_init function must be called with the
GNUTLS_NONBLOCK flag set (see section 5.3).

152

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

In constrast with the TLS protocol, the pull timeout function is required, but will only be called
with a timeout of zero. In that case it should indicate whether there are data to be received or
not. When not using the default pull function, then gnutls_transport_set_pull_timeout_-
function should be called.

Although in the TLS protocol implementation each call to receive or send function implies to
restoring the same function that was interrupted, in the DTLS protocol this requirement isn’t
true. There are cases where a retransmission is required, which are indicated by a received
message and thus gnutls record _get_direction must be called to decide which direction to
check prior to restoring a function call.

int gnutls_record_get_direction (gnutls_session_t session)

Description: This function provides information about the internals of the record
protocol and is only useful if a prior gnutls function call (e.g. gnutls_handshake()) was
interrupted for some reason, that is, if a function returned GNUTLS_E_INTERRUPTED
or GNUTLS_E_AGAIN. In such a case, you might want to call select() or poll() before
calling the interrupted gnutls function again. To tell you whether a file descriptor should
be selected for either reading or writing, gnutls_record get_direction() returns O if the
interrupted function was trying to read data, and 1 if it was trying to write data. This
function’s output is unreliable if you are using the session in different threads, for

sending and receiving.

Returns: o if trying to read data, 1 if trying to write data.

When calling gnutls handshake through a multi-plexer, to be able to handle properly the
DTLS handshake retransmission timers, the function gnutls_dtls_get_timeout should be
used to estimate when to call gnutls_handshake if no data have been received.

5.5.2. DTLS sessions

Because datagram TLS can operate over connections where the client cannot be reliably ver-
ified, functionality in the form of cookies, is available to prevent denial of service attacks to
servers. GnuTLS requires a server to generate a secret key that is used to sign a cookie®.
That cookie is sent to the client using gnutls_dtls_cookie_send, and the client must reply
using the correct cookie. The server side should verify the initial message sent by client using
gnutls_dtls_cookie_verify. If successful the session should be initialized and associated with
the cookie using gnutls_dtls_prestate_set, before proceeding to the handshake.

3A key of 128 bits or 16 bytes should be sufficient for this purpose.

153

5.6. TLS HANDSHAKE

int gnutls_key_generate (gnutls_datum_t * key, unsigned int key_size)

int gnutls_dtls_cookie_send (gnutls_datum_t * key, wvoid * client_data, size_t
client_data_size, gnutls_dtls_prestate_st * prestate, gnutls_transport_ptr_t ptr,
gnutls_push_func push_func)

it gnutls_dtls_cookie_verify (gnutls_datum_t * key, wvoid * client_data, size_t

client_data_size, void * _msg, size_.t msg_size, gnutls_dtls_prestate_st * prestate)

void gnutls_dtls_prestate_set (gnutls_session_t session, gnutls_dtls_prestate_st *

prestate)

Note that the above apply to server side only and they are not mandatory to be used. Not
using them, however, allows denial of service attacks. The client side cookie handling is part
of gnutls_handshake.

Datagrams are typically restricted by a maximum transfer unit (MTU). For that both client and
server side should set the correct maximum transfer unit for the layer underneath GnuTLS.
This will allow proper fragmentation of DTLS messages and prevent messages from being
silently discarded by the transport layer. The “correct” maximum transfer unit can be obtained
through a path MTU discovery mechanism [21].

void gnutls_dtls_set_mtu (gnutls_session_t session, unsigned int mtu)

unsigned int gnutls_dtls_get_mtu (gnutls_session_t session)

unsigned int gnutls_dtls_get_data_mtu (gnutls_session_t session)

5.6. TLS handshake

Once a session has been initialized and a network connection has been set up, TLS and DTLS
protocols perform a handshake. The handshake is the actual key exchange.

In GnuTLS 3.5.0 and later it is recommended to use gnutls_session_set_verify_cert for the
handshake process to ensure the verification of the peer’s identity.

In older GnuTLS versions it is required to manually verify the peer’s certificate during the
handshake by using gnutls_certificate_set_verify function, and gnutls_certificate_-
verify peers2. See section 3.1 for more information.

154

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

int gnutls_handshake (gnutls_session_t session)

Description: This function does the handshake of the TLS/SSL protocol, and initializes
the TLS connection. This function will fail if any problem is encountered, and will return
a negative error code. In case of a client, if the client has asked to resume a session,
but the server couldn’t, then a full handshake will be performed. The non-fatal errors
expected by this function are: GNUTLS_E_INTERRUPTED, GNUTLS_E_AGAIN,
GNUTLS_E_WARNING_ALERT _RECEIVED, and GNUTLS_E_GOT_APPLICATION .-
DATA, the latter only in a case of rehandshake. The former two interrupt the handshake
procedure due to the lower layer being interrupted, and the latter because of an alert

that may be sent by a server (it is always a good idea to check any received alerts).

On these errors call this function again, until it returns O; cf. gnutls record get -
direction() and gnutls_error_is_fatal(). In DTLS sessions the non-fatal error GNUTLS_-
E_LARGE_PACKET is also possible, and indicates that the MTU should be adjusted. If
this function is called by a server after a rehandshake request then GNUTLS_E_GOT_-
APPLICATION_DATA or GNUTLS_E.WARNING_ALERT_RECEIVED may be returned.
Note that these are non fatal errors, only in the specific case of a rehandshake. Their
meaning is that the client rejected the rehandshake request or in the case of GNUTLS_E._-
GOT_APPLICATION_DATA it could also mean that some data were pending. A client may

receive that error code if it initiates the handshake and the server doesn’t agreed.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

void gnutls_session_set_verify_cert (gnutls_session_t session, const char * host-
name, unsigned flags)

it gnutls_certificate_verify _peers2 (gnutls_session_t session, unsigned int * sta-
tus)

void gnutls_handshake_set_timeout (gnutls_session_t session, unsigned int ms)

Description: This function sets the timeout for the TLS handshake process to the
provided value. Use an ms value of zero to disable timeout, or GNUTLS_DEFAULT -
HANDSHAKE_TIMEOUT for a reasonable default value. For the DTLS protocol, the
more detailed gnutls_dtls_set_timeouts() is provided. This function requires to set a pull

timeout callback. See gnutls_transport_set_pull_timeout_function().

155

5.7. DATA TRANSFER AND TERMINATION

5.7. Data transfer and termination

Once the handshake is complete and peer’s identity has been verified data can be exchanged.
The available functions resemble the POSIX recv and send functions. It is suggested to use
gnutls_error_is_fatal to check whether the error codes returned by these functions are fatal
for the protocol or can be ignored.

ssize_t gnutls_record_send (gnutls_session_t session, const wvoid * data, size_t
data_size)

Description: This function has the similar semantics with send(). The only difference
is that it accepts a GnuTLS session, and uses different error codes. Note that if the send
buffer is full, send() will block this function. See the send() documentation for more
information. You can replace the default push function which is send(), by using gnutls_-
transport_set_push_function(). If the EINTR is returned by the internal push function then
GNUTLS_E_INTERRUPTED will be returned. If GNUTLS_E_INTERRUPTED or
GNUTLS_E_AGAIN is returned, you must call this function again, with the exact same
parameters; alternatively you could provide a NULL pointer for data, and O for size. cf.
gnutls_record_get_direction(). Note that in DTLS this function will return the GNUTLS_-
E_LARGE_PACKET error code if the send data exceed the data MTU value - as returned
by gnutls_dtls_get_datamtu(). The errno value EMSGSIZE also maps to GNUTLS_E_LARGE._-
PACKET. Note that since 3.2.13 this function can be called under cork in DTLS mode, and
will refuse to send data over the MTU size by returning GNUTLS_E_LARGE_PACKET.

Returns: The number of bytes sent, or a negative error code. The number of bytes sent
might be less than data_size. The maximum number of bytes this function can send in a

single call depends on the negotiated maximum record size.

Although, in the TLS protocol the receive function can be called at any time, when DTLS is
used the GnuTLS receive functions must be called once a message is available for reading, even
if no data are expected. This is because in DTLS various (internal) actions may be required
due to retransmission timers. Moreover, an extended receive function is shown below, which
allows the extraction of the message’s sequence number. Due to the unreliable nature of the
protocol, this field allows distinguishing out-of-order messages.

The gnutls_record_check_pending helper function is available to allow checking whether data
are available to be read in a GnuTLS session buffers. Note that this function complements
but does not replace select, i.e., gnutls_record_check_pending reports no data to be read,
select should be called to check for data in the network buffers.

int gnutls_record_get_direction (gnutls_session_t session)

156

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

ssize_t gnutls_record_recv (gnutls_session_t session, void * data, size_t
data_size)

I)escriptiotu This function has the similar semantics with recv(). The only difference
is that it accepts a GnuTLS session, and uses different error codes. In the special

case that the peer requests a renegotiation, the caller will receive an error code of
GNUTLS_E_REHANDSHAKE. In case of a client, this message may be simply ignored,
replied with an alert GNUTLS_A_NO_RENEGOTIATION, or replied with a new
handshake, depending on the client’s will. A server receiving this error code can only
initiate a new handshake or terminate the session. If EINTR is returned by the internal
push function (the default is recv()) then GNUTLS_E_INTERRUPTED will be returned.
If GNUTLS_E_.INTERRUPTED or GNUTLS_E_AGAIN is returned, you must call this

function again to get the data. See also gnutls_record_get_direction().

Returns: The number of bytes received and zero on EOF (for stream connections). A
negative error code is returned in case of an error. The number of bytes received might be

less than the requested data_size.

int gnutls_error_is_fatal (int error)

Description: If a GnuTLS function returns a negative error code you may feed that value
to this function to see if the error condition is fatal to a TLS session (i.e., must be
terminated). Note that you may also want to check the error code manually, since some
non-fatal errors to the protocol (such as a warning alert or a rehandshake request) may
be fatal for your program. This function is only useful if you are dealing with errors
from functions that relate to a TLS session (e.g., record layer or handshake layer handling

functions) .

Returns: Non-zero value on fatal errors or zero on non-fatal.

ssize_t gnutls_record_recv_seq (gnutls_session_t session, void * data, size_t
data_size, unsigned char * seq)

Description: This function is the same as gnutls_record._recv(), except that it returns
in addition to data, the sequence number of the data. This is useful in DTLS where record
packets might be received out-of-order. The returned 8-byte sequence number is an integer

in big-endian format and should be treated as a unique message identification.

Returns: The number of bytes received and zero on EOF. A negative error code is returned

in case of an error. The number of bytes received might be less than data_size.

157

5.7. DATA TRANSFER AND TERMINATION

size_t gnutls_record_check_pending (gnutls_session_t session)

DeSCI‘iptiOI‘l: This function checks if there are unread data in the gnutls buffers. If
the return value is non-zero the next call to gnutls_record.recv() is guaranteed not to
block.

Returns: Returns the size of the data or zero.

Once a TLS or DTLS session is no longer needed, it is recommended to use gnutls_bye to
terminate the session. That way the peer is notified securely about the intention of termination,
which allows distinguishing it from a malicious connection termination. A session can be
deinitialized with the gnutls_deinit function.

int gnutls_bye (gnutls_session_t session, gnutls_close_request_t how)

DeSCI‘iptiOIl: Terminates the current TLS/SSL connection. The connection should have
been initiated using gnutls_handshake(). how should be one of GNUTLS_SHUT -
RDWR, GNUTLS_SHUT_WR.. In case of GNUTLS_SHUT_RDWR the TLS session
gets terminated and further receives and sends will be disallowed. If the return value
is zero you may continue using the underlying transport layer. GNUTLS_SHUT_RDWR
sends an alert containing a close request and waits for the peer to reply with the same
message. In case of GINUTLS_SHUT_WR the TLS session gets terminated and further
sends will be disallowed. In order to reuse the connection you should wait for an EOF from
the peer. GNUTLS_SHUT_WR sends an alert containing a close request. Note that
not all implementations will properly terminate a TLS connection. Some of them, usually
for performance reasons, will terminate only the underlying transport layer, and thus

not distinguishing between a malicious party prematurely terminating the connection and
normal termination. This function may also return GNUTLS_E_AGAIN or GNUTLS_E _-
INTERRUPTED; cf. gnutls_record get_direction().

Returns: GNUTLS_E_SUCCESS on success, or an error code, see function

documentation for entire semantics.

void gnutls_deinit (gnutls_session_t session)

Description: This function clears all buffers associated with the session. This
function will also remove session data from the session database if the session was

terminated abnormally.

158

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

5.8. Buffered data transfer

Although gnutls_record_send is sufficient to transmit data to the peer, when many small
chunks of data are to be transmitted it is inefficient and wastes bandwidth due to the TLS
record overhead. In that case it is preferrable to combine the small chunks before transmission.
The following functions provide that functionality.

void gnutls_record_cork (gnutls_session_t session)

Description: If called, gnutls_record_send() will no longer send any records. Any sent
records will be cached until gnutls_record_uncork() is called. This function is safe to use
with DTLS after GnuTLS 3.3.0.

int gnutls_record_uncork (gnutls_session_t session, unsigned int flags)

Description: This resets the effect of gnutls_record_cork(), and flushes any pending
data. If the GNUTLS_RECORD_WAIT flag is specified then this function will
block until the data is sent or a fatal error occurs (i.e., the function will retry

on GNUTLS_E_AGAIN and GNUTLS_E_INTERRUPTED). If the flag GNUTLS._-
RECORD_WAIT is not specified and the function is interrupted then the GINUTLS_-
E_AGAIN or GNUTLS_E_INTERRUPTED errors will be returned. To obtain the data

left in the corked buffer use gnutls_record_check_corked().

Returns: 0n success the number of transmitted data is returned, or otherwise a negative

error code.

5.9. Handling alerts

During a TLS connection alert messages may be exchanged by the two peers. Those mes-
sages may be fatal, meaning the connection must be terminated afterwards, or warning when
something needs to be reported to the peer, but without interrupting the session. The er-
ror codes GNUTLS_E_WARNING_ALERT RECEIVED or GNUTLS_E_FATAL_ALERT RECEIVED signal those
alerts when received, and may be returned by all GnuTLS functions that receive data from the
peer, being gnutls_handshake and gnutls_record recv.

If those error codes are received the alert and its level should be logged or reported to the peer
using the functions below.

The peer may also be warned or notified of a fatal issue by using one of the functions below.
All the available alerts are listed in section 2.4.

159

5.9. HANDLING ALERTS

gnutls_alert_description_t gnutls_alert_get (gnutls_session_t session)

Description: This function will return the last alert number received. This function
should be called when GNUTLS_E_WARNING_ALERT RECEIVED or GNUTLS_E._-
FATAL_ALERT_RECEIVED errors are returned by a gnutls function. The peer may send
alerts if he encounters an error. If no alert has been received the returned value is

undefined.

Returns: the last alert received, a gnutls_alert_description_t value.

*

const char * gnutls_alert_get_name (gnutls_alert_description_t alert)

DeSCI‘iptiOIl: This function will return a string that describes the given alert number,
or NULL. See gnutls_alert_get().

Returns: string corresponding to gnutls_alert_description_t value.

int gnutls_alert_send (gnutls_session_t session, gnutls_alert_level_t level,
gnutls_alert_description_t desc)

DESCI'iptiOIl: This function will send an alert to the peer in order to inform him of
something important (eg. his Certificate could not be verified). If the alert level is
Fatal then the peer is expected to close the connection, otherwise he may ignore the alert
and continue. The error code of the underlying record send function will be returned, so
you may also receive GNUTLS_E_ INTERRUPTED or GNUTLS_E_AGAIN as well.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is

returned.

int gnutls_error_to_alert (int err, int * level)

Description: Get an alert depending on the error code returned by a gnutls function.
A1l alerts sent by this function should be considered fatal. The only exception is when
err is GNUTLS_E_ REHANDSHAKE, where a warning alert should be sent to the peer
indicating that no renegotiation will be performed. If there is no mapping to a valid alert

the alert to indicate internal error is returned.

Returns: the alert code to use for a particular error code.

160

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

5.10. Priority strings

The GnuTLS priority strings specify the TLS session’s handshake algorithms and options in
a compact, easy-to-use format. That string may contain a single initial keyword such as in
Table 5.3 and may be followed by additional algorithm or special keywords. Note that their
description is intentionally avoiding specific algorithm details, as the priority strings are not
constant between gnutls versions (they are periodically updated to account for cryptographic
advances while providing compatibility with old clients and servers).

int gnutls_priority_set_direct (gnutls_session_t session, const char * priorities,
const char ** err_pos)

int gnutls_priority_set (gnutls_session_t session, gnutls_priority_t priority)

Unless the initial keyword is ”NONE” the defaults (in preference order) are for TLS protocols
TLS 1.2, TLS1.1, TLS1.0; for compression NULL; for certificate types X.509. In key exchange
algorithms when in NORMAL or SECURE levels the perfect forward secrecy algorithms take
precedence of the other protocols. In all cases all the supported key exchange algorithms are
enabled.

Note that the SECURE levels distinguish between overall security level and message authentic-
ity security level. That is because the message authenticity security level requires the adversary
to break the algorithms at real-time during the protocol run, whilst the overall security level
refers to off-line adversaries (e.g. adversaries breaking the ciphertext years after it was cap-
tured).

The NONE keyword, if used, must followed by keywords specifying the algorithms and protocols
to be enabled. The other initial keywords do not require, but may be followed by such keywords.
All level keywords can be combined, and for example a level of ”SECURE256:+SECURE128”
is allowed.

The order with which every algorithm or protocol is specified is significant. Algorithms specified
before others will take precedence. The supported algorithms and protocols are shown in
Table 5.4. To avoid collisions in order to specify a compression algorithm in the priority string
you have to prefix it with ”COMP-", protocol versions with ”VERS-", signature algorithms
with ”SIGN-" and certificate types with ”CTYPE-". All other algorithms don’t need a prefix.
Each specified keyword can be prefixed with any of the following characters.

7'7

e ’!" or -’ appended with an algorithm will remove this algorithm.

e 7+7 appended with an algorithm will add this algorithm.

Note that the DHE key exchange methods are generally slower® than their elliptic curves

5It depends on the group used. Primes with lesser bits are always faster, but also easier to break. See
section 5.11 for the acceptable security levels.

161

5.10. PRIORITY STRINGS

Keyword

Description ‘

QKEYWORD

Means that a compile-time specified system configuration file? will
be used to expand the provided keyword. That is used to im-
pose system-specific policies. It may be followed by additional
options that will be appended to the system string (e.g., "@SYS-
TEM:+SRP”). The system file should have the format 'KEY-
WORD=VALUE’, e.g., 'SYSTEM=NORMAL:+ARCFOUR-128".

PERFORMANCE

All the known to be secure ciphersuites are enabled, limited to
128 bit ciphers and sorted by terms of speed performance. The
message authenticity security level is of 64 bits or more, and the
certificate verification profile is set to GNUTLS_PROFILE_LOW
(80-bits).

NORMAL

Means all the known to be secure ciphersuites. The ciphers are
sorted by security margin, although the 256-bit ciphers are in-
cluded as a fallback only. The message authenticity security level
is of 64 bits or more, and the certificate verification profile is set
to GNUTLS_PROFILE_LOW (80-bits). This priority string im-
plicitly enables ECDHE and DHE. The ECDHE ciphersuites are
placed first in the priority order, but due to compatibility issues
with the DHE ciphersuites they are placed last in the priority or-
der, after the plain RSA ciphersuites.

LEGACY

This sets the NORMAL settings that were used for GnuTLS 3.2.x
or earlier. There is no verification profile set, and the allowed DH
primes are considered weak today (but are often used by miscon-
figured servers).

PFS

Means all the known to be secure ciphersuites that support per-
fect forward secrecy (ECDHE and DHE). The ciphers are sorted
by security margin, although the 256-bit ciphers are included as
a fallback only. The message authenticity security level is of
80 bits or more, and the certificate verification profile is set to
GNUTLS_PROFILE_LOW (80-bits). This option is available since
3.2.4 or later.

SECURE128

Means all known to be secure ciphersuites that offer a security
level 128-bit or more. The message authenticity security level is
of 80 bits or more, and the certificate verification profile is set to
GNUTLS_PROFILE_LOW (80-bits).

SECURE192

Means all the known to be secure ciphersuites that offer a security
level 192-bit or more. The message authenticity security level is
of 128 bits or more, and the certificate verification profile is set to
GNUTLS_PROFILE_HIGH (128-bits).

SECURE256

Currently alias for SECURE192. This option, will enable ciphers
which use a 256-bit key but, due to limitations of the TLS protocol,
the overall security level will be 192-bits (the security level depends
on more factors than cipher key size).

SUITEB128

Means all the NSA Suite B cryptography (RFC5430) ciphersuites
with an 128 bit security level, as well as the enabling of the corre-
sponding verification profile.

SUITEB192

Means all the NSA Suite B cryptography (RFC5430) ciphersuites
with an 192 bit securi‘%}é level, as well as the enabling of the corre-
sponding verification profile.

NONE

Means nothing is enabled. This disables even protocols and com-
Arocainn moathade T+ chn1ild he fAallaved by +he alonarithine +4 e

© 0 N e U A W N e

=]

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

’ Type \ Keywords ‘
Ciphers AES-128-CBC, AES-256-CBC, AES-128-GCM, CAMELLIA-128-
CBC, CAMELLIA-256-CBC, ARCFOUR-128, 3DES-CBC. Catch
all name is CIPHER-ALL which will add all the algorithms from
NORMAL priority.

Key exchange RSA, DHE-RSA, DHE-DSS, SRP, SRP-RSA, SRP-DSS, PSK,
DHE-PSK, ECDHE-RSA, ANON-ECDH, ANON-DH. The Catch
all name is KX-ALL which will add all the algorithms from NOR-
MAL priority. Add !DHE-RSA: !DHE-DSS to the priority string to
disable DHE.

MAC MD5, SHA1, SHA256, SHA384, AEAD (used with GCM ciphers
only). All algorithms from NORMAL priority can be accessed
with MAC-ALL.

Compression algo- | COMP-NULL, COMP-DEFLATE. Catch all is COMP-ALL.
rithms
TLS versions VERS-TLS1.0, VERS-TLS1.1, VERS-TLS1.2, VERS-DTLS1.0,
VERS-DTLS1.2. Catch all are VERS-ALL, VERS-TLS-ALL and
VERS-DTLS-ALL.

Signature algo- | SIGN-RSA-SHA1, SIGN-RSA-SHA224, SIGN-RSA-SHA256,
rithms SIGN-RSA-SHA384, SIGN-RSA-SHA512, SIGN-DSA-SHAI,
SIGN-DSA-SHA224, SIGN-DSA-SHA256, SIGN-RSA-MDS5.
Catch all is SIGN-ALL. This is only valid for TLS 1.2 and later.
Elliptic curves CURVE-SECP192R1, CURVE-SECP224R1, CURVE-
SECP256R1, CURVE-SECP384R1, CURVE-SECP521R1. Catch
all is CURVE-ALL.

Certificate type CTYPE-OPENPGP, CTYPE-X509. Catch all is CTYPE-ALL.

Table 5.4.: The supported algorithm keywords in priority strings.

counterpart (ECDHE). Moreover the plain Diffie-Hellman key exchange requires parameters
to be generated and associated with a credentials structure by the server (see subsection 5.12.4).

The available special keywords are shown in Table 5.5 and Table 5.6.

Finally the ciphersuites enabled by any priority string can be listed using the gnutls-cli
application (see section 7.1), or by using the priority functions as in subsection 6.4.3.

Example priority strings are:

The system imposed security level:
"SYSTEM"

The default priority without the HMAC-MD5:
"NORMAL:-MD5"

Specifying RSA with AES-128-CBC:
"NONE:+VERS-TLS-ALL:+MAC-ALL:+RSA:+AES-128-CBC:+SIGN-ALL:+COMP-NULL"

Specifying the defaults plus ARCFOUR-128:

163

5.10. PRIORITY STRINGS

’ Keyword Description

%COMPAT will enable compatibility mode. It might
mean that violations of the protocols are
allowed as long as maximum compatibil-
ity with problematic clients and servers
is achieved. More specifically this string
would disable TLS record random padding,
tolerate packets over the maximum allowed
TLS record, and add a padding to TLS
Client Hello packet to prevent it being in
the 256-512 range which is known to be
causing issues with a commonly used fire-
wall.

%DUMBFW will add a private extension with bogus
data that make the client hello exceed 512
bytes. This avoids a black hole behavior
in some firewalls. This is a non-standard
TLS extension, use with care.
%NO_EXTENSIONS will prevent the sending of any TLS ex-
tensions in client side. Note that TLS 1.2
requires extensions to be used, as well as
safe renegotiation thus this option must be
used with care.

%NO_TICKETS will prevent the advertizing of the TLS ses-
sion ticket extension. This is implied by
the PFS keyword.

%NO_SESSION_HASH will prevent the advertizing the TLS ex-
tended master secret (session hash) exten-
sion.

%SERVER_PRECEDENCE The ciphersuite will be selected according
to server priorities and not the client’s.

%SSL3_RECORD_VERSION will use SSL3.0 record version in client
hello. This is the default.

%LATEST_RECORD_VERSION will use the latest TLS version record ver-

sion in client hello.

Table 5.5.: Special priority string keywords.

164

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

’ Keyword

Description

%STATELESS_COMPRESSION

will disable keeping state across records
when compressing. This may help to miti-
gate attacks when compression is used but
an attacker is in control of input data. This
has to be used only when the data that
are possibly controlled by an attacker are
placed in separate records.

%DISABLE_WILDCARDS

will disable matching wildcards when com-
paring hostnames in certificates.

%NO_ETM

will disable the encrypt-then-mac TLS ex-
tension (RFC7366). This is implied by the
%COMPAT keyword.

%DISABLE_SAFE_RENEGOTIATION

will completely disable safe renegotiation
completely. Do not use unless you know
what you are doing.

%UNSAFE_RENEGOTIATION

will allow handshakes and re-handshakes
without the safe renegotiation extension.
Note that for clients this mode is insecure
(you may be under attack), and for servers
it will allow insecure clients to connect
(which could be fooled by an attacker). Do
not use unless you know what you are do-
ing and want maximum compatibility.

%PARTIAL_RENEGOTIATION

will allow initial handshakes to proceed,
but not re-handshakes. This leaves the
client vulnerable to attack, and servers will
be compatible with non-upgraded clients
for initial handshakes. This is currently
the default for clients and servers, for com-
patibility reasons.

%SAFE_RENEGOTIATION

will enforce safe renegotiation. Clients and
servers will refuse to talk to an insecure
peer. Currently this causes interoperabil-
ity problems, but is required for full pro-
tection.

%FALLBACK_SCSV

will enable the use of the fallback signaling
cipher suite value in the client hello. Note
that this should be set only by applications
that try to reconnect with a downgraded
protocol version. See RFC7507 for details.

%VERIFY_ALLOW_SIGN_RSA_MD5

will allow RSA-MD5 signatures in certifi-
cate chains.

%VERIFY _DISABLE_CRL_CHECKS

will disable CRL or OCSP checks in the
verification of the certificate chain.

%VERIFY_ALLOW_X509_V1_CA_CRT

will allow V1 CAs in chains.

%PROFILE_(LOW—LEGACY-—MEDIUM

1

—rddiGild - UEAIRAYe verification profile the
corresponds to the specified security level,
see Table 5.7 for the mappings to values.

%PROFILE_(SUITEB128—SUITEB192)

require a certificate verification profile the

corresponds to SUITEB. Note that an ini-
434l Lacrarrrd +hat Aarnvahlae QTTITTER at114 4

12

14
15
16
17

5.11. SELECTING CRYPTOGRAPHIC KEY SIZES

"NORMAL : +ARCFOUR-128"

Enabling the 128-bit secure ciphers, while disabling TLS 1.0 and enabling compression:
"SECURE128:-VERS-TLS1.0:+COMP-DEFLATE"

Enabling the 128-bit and 192-bit secure ciphers, while disabling all TLS versions
except TLS 1.2:
"SECURE128:+SECURE192:-VERS-TLS-ALL:+VERS-TLS1.2"

5.11. Selecting cryptographic key sizes

Because many algorithms are involved in TLS, it is not easy to set a consistent security level.
For this reason in Table 5.7 we present some correspondence between key sizes of symmetric
algorithms and public key algorithms based on [3]. Those can be used to generate certificates
with appropriate key sizes as well as select parameters for Diffie-Hellman and SRP authenti-
cation.

Security | RSA, DH | ECC key | Security parame- | Description
bits and SRP | size ter (profile)
parameter
size
<64 <768 <128 INSECURE Considered to be insecure
64 768 128 VERY WEAK Short term protection against
individuals
72 1008 160 WEAK Short term protection against
small organizations
80 1024 160 Low Very short term protection
against agencies (corresponds
to ENISA legacy level)
96 1776 192 LEGACY Legacy standard level
112 2048 224 MEDIUM Medium-term protection
128 3072 256 HIGH Long term protection (corre-
sponds to ENISA future level)
192 8192 384 ULTRA Even longer term protection
256 15424 512 FUTURE Foreseeable future

Table 5.7.: Key sizes and security parameters.

The first column provides a security parameter in a number of bits. This gives an indication
of the number of combinations to be tried by an adversary to brute force a key. For example
to test all possible keys in a 112 bit security parameter 2

textasciicircuml112 combinations have to be tried. For today’s technology this is infeasible.
The next two columns correlate the security parameter with actual bit sizes of parameters for
DH, RSA, SRP and ECC algorithms. A mapping to gnutls_sec_param_ t value is given for
each security parameter, on the next column, and finally a brief description of the level.

166

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

Note, however, that the values suggested here are nothing more than an educated guess that is
valid today. There are no guarantees that an algorithm will remain unbreakable or that these
values will remain constant in time. There could be scientific breakthroughs that cannot be
predicted or total failure of the current public key systems by quantum computers. On the
other hand though the cryptosystems used in TLS are selected in a conservative way and such
catastrophic breakthroughs or failures are believed to be unlikely. The NIST publication SP
800-57 [1] contains a similar table.

When using GnuTLS and a decision on bit sizes for a public key algorithm is required, use of
the following functions is recommended:

unsigned int gnutls_sec_param_to_pk_bits (gnutls_pk_algorithm_t algo,
gnutls_sec_param_t param)

Description: When generating private and public key pairs a difficult question is which
size of "bits" the modulus will be in RSA and the group size in DSA. The easy answer is
1024, which is also wrong. This function will convert a human understandable security

parameter to an appropriate size for the specific algorithm.

Returns: The number of bits, or (0).

gnutls_sec_param_t gnutls_pk_bits_to_sec_param (gnutls_pk_algorithm_t algo, un-
signed int bits)

Description: This is the inverse of gnutls_sec_param to_pk bits(). Given an algorithm and

the number of bits, it will return the security parameter. This is a rough indication.

Returns: The security parameter.

Those functions will convert a human understandable security parameter of gnutls_sec_param_t
type, to a number of bits suitable for a public key algorithm.

*

const char * gnutls_sec_param_get_name (gnutls_sec_param_t param)

The following functions will set the minimum acceptable group size for Diffie-Hellman and SRP
authentication.

167

5.12. ADVANCED TOPICS

void gnutls_dh_set_prime_bits (gnutls_session_t session, unsigned int bits)

void gnutls_srp_set_prime_bits (gnutls_session_t session, unsigned int bits)

5.12. Advanced topics

5.12.1. Session resumption
Client side

To reduce time and roundtrips spent in a handshake the client can request session resumption
from a server that previously shared a session with the client. For that the client has to retrieve
and store the session parameters. Before establishing a new session to the same server the
parameters must be re-associated with the GnuTLS session using gnutls_session_set_data.

int gnutls_session_get_data2 (gnutls_session_t session, gnutls_datum_t * data)

int gnutls_session_get_id2 (gnutls_session_t session, gnutls_datum_t * session_id)

int gnutls_session_set_data (gnutls_session_t session, const void * session_data,
size_t session_data_size)

Keep in mind that sessions will be expired after some time, depending on the server, and
a server may choose not to resume a session even when requested to. The expiration is to
prevent temporal session keys from becoming long-term keys. Also note that as a client you
must enable, using the priority functions, at least the algorithms used in the last session.

int gnutls_session_is_resumed (gnutls_session_t session)
Description: Check whether session is resumed or not.

Returns: non zero if this session is resumed, or a zero if this is a new session.

168

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

Server side

In order to support resumption a server can store the session security parameters in a local
database or by using session tickets (see subsection 2.6.3) to delegate storage to the client.
Because session tickets might not be supported by all clients, servers could combine the two
methods.

A storing server needs to specify callback functions to store, retrieve and delete session data.
These can be registered with the functions below. The stored sessions in the database can be
checked using gnutls_db_check_entry for expiration.

void gnutls_db_set_retrieve_function (gnutls_session_t session, gnutls_db_retr_func
retr_func)

void gnutls_db_set_store_function (gnutls_session_t session, gnutls_db_store_func
store_func)

void gnutls_db_set_ptr (gnutls_session_t session, wvoid * ptr)

void gnutls_db_set_remove_function (gnutls_session_t session,
gnutls_db_remove_func rem_func)

int gnutls_db_check_entry (gnutls_session_t session, gnutls_datum_t ses-
sion_entry)

A server utilizing tickets should generate ticket encryption and authentication keys using
gnutls_session_ticket_key_generate. Those keys should be associated with the GnuTLS
session using gnutls_session_ticket_enable server, and should be rotated regularly (e.g.,
every few hours), to prevent them from becoming long-term keys which if revealed could be
used to decrypt all previous sessions.

int gnutls_session_ticket_enable_server (gnutls_session_t session, const
gnutls_datum_t * key)

Description: Request that the server should attempt session resumption using
SessionTicket. key must be initialized with gnutls_session_ticket_key_generate(), and

should be overwritten using gnutls memset() before being released.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

169

5.12. ADVANCED TOPICS

int gnutls_session_ticket_key_generate (gnutls_datum_t * key)

DeSCI'iptiOIl: Generate a random key to encrypt security parameters within

SessionTicket.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

int gnutls_session_resumption_requested (gnutls_session_t session)

Description: Check whether the client has asked for session resumption. This function

is valid only on server side.

Returns: non zero if session resumption was asked, or a zero if not.

A server enabling both session tickets and a storage for session data would use session tickets
when clients support it and the storage otherwise.

5.12.2. Certificate verification

In this section the functionality for additional certificate verification methods is listed. These
methods are intended to be used in addition to normal PKI verification, in order to reduce the
risk of a compromised CA being undetected.

Trust on first use

The GnuTLS library includes functionlity to use an SSH-like trust on first use authentication.
The available functions to store and verify public keys are listed below.

In addition to the above the gnutls_store_commitment can be used to implement a key-pinning
architecture as in [12]. This provides a way for web server to commit on a public key that is
not yet active.

The storage and verification functions may be used with the default text file based back-end,

or another back-end may be specified. That should contain storage and retrieval functions and
specified as below.

170

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

int gnutls_verify_stored_pubkey (const char * db_name, gnutls_tdb_t tdb,
const char * host, const char * service, gnutls_certificate_type_t cert_type, const
gnutls_datum_t * cert, unsigned int flags)

Description: This function will try to verify the provided (raw or DER-encoded)
certificate using a list of stored public keys. The service field if non-NULL should

be a port number. The retrieve variable if non-null specifies a custom backend for the
retrieval of entries. If it is NULL then the default file backend will be used. In
POSIX-like systems the file backend uses the $HOME/.gnutls/known hosts file. Note that

if the custom storage backend is provided the retrieval function should return GNUTLS_-
E_CERTIFICATE_KEY _MISMATCH if the host/service pair is found but key doesn’t
match, GNUTLS_E_NO_CERTIFICATE_FOUND if no such host/service with the given

key is found, and O if it was found. The storage function should return O on success.

Returns: 1If no associated public key is found then GNUTLS_E_NO_CERTIFICATE -
FOUND will be returned. If a key is found but does not match GNUTLS_E_-
CERTIFICATE_KEY_MISMATCH is returned. On success, GNUTLS_E_SUCCESS

(0) is returned, or a negative error value on other errors.

int gnutls_tdb_init (gnutls_tdb_t * tdb)

void gnutls_tdb_deinit (gnutls_tdb_t tdb)

void gnutls_tdb_set_verify func (gnutls_tdb_t tdb, gnutls_tdb_verify_func verify)

void gnutls_tdb_set_store_func (gnutls_tdb_t tdb, gnutls_tdb_store_func store)

void gnutls_tdb_set_store_commitment_func (gnutls_tdb_t tdb,
gnutls_tdb_store_commitment_func cstore)

int gnutls_store_pubkey (const char * db_name, gnutls_tdb_t tdb, const char *

host, const char * service, gnutls_certificate_type_t cert_type, const gnutls_datum_t *
cert, time_t expiration, unsigned int flags)

DeSCI‘iptiOIl: This function will store the provided (raw or DER-encoded) certificate
to the list of stored public keys. The key will be considered valid until the provided
expiration time. The store variable if non-null specifies a custom backend for the storage

of entries. If it is NULL then the default file backend will be used.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

171

5.12. ADVANCED TOPICS

int gnutls_store_commitment (const char * db_name, gnutls_tdb_t tdb, const
char * host, const char * service, gnutls_digest_algorithm_t hash_algo, const
gnutls_datum_t * hash, time_t expiration, unsigned int flags)

Description: This function will store the provided hash commitment to the list of stored
public keys. The key with the given hash will be considered valid until the provided
expiration time. The store variable if non-null specifies a custom backend for the storage
of entries. If it is NULL then the default file backend will be used. Note that this

function is not thread safe with the default backend.

Returns: 0n success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

DANE verification

Since the DANE library is not included in GnuTLS it requires programs to be linked against
it. This can be achieved with the following commands.

1| gcc -o foo foo.c ‘pkg-config gnutls-dane --cflags --libs‘¢

N I N

When a program uses the GNU autoconf system, then the following line or similar can be used
to detect the presence of the library.

PKG_CHECK_MODULES ([LIBDANE], [gnutls-dane >= 3.0.0])

AC_SUBST ([LIBDANE_CFLAGS])
AC_SUBST([LIBDANE_LIBS])

The high level functionality provided by the DANE library is shown below.

int dane_verify _session_crt (dane_state_t s, gnutls_session_t session, const char *

hostname, const char * proto, unsigned int port, unsigned int sflags, unsigned int
vilags, unsigned int * verify)

const char * dane_strerror (int error)

Note that the dane_state_t structure that is accepted by both verification functions is optional.
It is required when many queries are performed to facilitate caching. The following flags are
returned by the verify functions to indicate the status of the verification.

In order to generate a DANE TLSA entry to use in a DNS server you may use danetool (see
subsection 3.2.7).

172

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

int dane_verify_crt (dane_state_t s, const gnutls_datum_t * chain, wunsigned

chain _size, gnutls_certificate_type_t chain_type, const char * hostname, const
char * proto, unsigned int port, unsigned int sflags, unsigned int vflags, unsigned
int * verify)

Description: This function will verify the given certificate chain against the CA
constrains and/or the certificate available via DANE. If no information via DANE can be
obtained the flag DANE_VERIFY_NO_DANE_INFO is set. If a DNSSEC signature is
not available for the DANE record then the verify flag DANE_VERIFY_NO_DNSSEC._-
DATA is set. Due to the many possible options of DANE, there is no single threat model
countered. When notifying the user about DANE verification results it may be better to
mention: DANE verification did not reject the certificate, rather than mentioning a
successful DANE verication. Note that this function is designed to be run in addition

to PKIX - certificate chain - verification. To be run independently the DANE_VFLAG -
ONLY_CHECK_EE_USAGE flag should be specified; then the function will check whether
the key of the peer matches the key advertized in the DANE entry. If the q parameter is

provided it will be used for caching entries.

Returns: 0n success, DANE_E_SUCCESS (0) is returned, otherwise a negative error

value.

5.12.3. Re-authentication

In TLS there is no distinction between rekey, re-authentication, and re-negotiation. All of
these use cases are handled by the TLS’ rehandshake process. For that reason in GnuTLS
rehandshake is not transparent to the application, and the application must take control of
that process. The following paragraphs explain how to safely use the rehandshake process.

Client side

According to the TLS specification a client may initiate a rehandshake at any time. That can
be achieved by calling gnutls_handshake and rely on its return value for the outcome of the
handshake (the server may deny a rehandshake). If a server requests a re-handshake, then a call
to gnutls_record_recv will return GNUTLS_E_REHANDSHAKE in the client, instructing it
to call gnutls_handshake. To deny a rehandshake request by the server it is recommended to
send a warning alert of type GNUTLS_A_NO_RENEGOTIATION.

Due to limitations of early protocol versions, it is required to check whether safe renegotiation
is in place, i.e., using gnutls_safe renegotiation_status, which ensures that the server
remains the same as the initial. For older servers, which do not support renegotiation, it is
required on the second handshake to verify that their certificate/credentials remained the same
as in the initial session.

173

5.12. ADVANCED TOPICS

enum dane_verify_status_t:

DANE_VERIFY_CA_CONSTRAINTS - The CA constraints were violated.

VIOLATED

DANE_VERIFY_CERT_DIFFERS The certificate obtained via DNS differs.
DANE_VERIFY_UNKNOWN_DANE _- No known DANE data was found in the DNS record.
INFO

Table 5.8.: The DANE verification status flags.

int gnutls_safe_renegotiation_status (gnutls_session_t session)

Description: Can be used to check whether safe renegotiation is being used in the

current session.

Returns: 0 when safe renegotiation is not used and non (0) when safe renegotiation is

used.

Server side

A server which wants to instruct the client to re-authenticate, should call gnutls_rehandshake
and wait for the client to re-authenticate. It is recommended to only request re-handshake when
safe renegotiation is enabled for that session (see gnutls_safe renegotiation _status and the
discussion in subsection 2.6.5).

int gnutls_rehandshake (gnutls_session_t session)

DeSCI‘iptiOIl: This function will renegotiate security parameters with the client. This
should only be called in case of a server. This message informs the peer that we want to
renegotiate parameters (perform a handshake). If this function succeeds (returns 0), you
must call the gnutls_handshake() function in order to negotiate the new parameters. Since
TLS is full duplex some application data might have been sent during peer’s processing of
this message. In that case one should call gnutls_record.recv() until GNUTLS_E_REHANDSHAKE
is returned to clear any pending data. Care must be taken, if rehandshake is mandatory,
to terminate if it does not start after some threshold. If the client does not wish to
renegotiate parameters he should reply with an alert message, thus the return code will be
GNUTLS_E_WARNING_ALERT_RECEIVED and the alert will be GNUTLS_A_NO_-
RENEGOTIATION. A client may also choose to ignore this message.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

174

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

5.12.4. Parameter generation

Several TLS ciphersuites require additional parameters that need to be generated or provided
by the application. The Diffie-Hellman based ciphersuites (ANON-DH or DHE), require the
group parameters to be provided. Those can either be be generated on the fly using gnutls_-
dh_params_generate2 or imported from pregenerated data using gnutls_dh params_import_-
pkcs3. The parameters can be used in a TLS session by calling gnutls_certificate_set_-
dh_params or gnutls_anon_set_server_dh_params for anonymous sessions.

int gnutls_dh_params_generate2 (gnutls_dh_params_t dparams, unsigned int bits)
int gnutls_dh_params_import_pkcs3 (gnutls_dh_params_t params, const
gnutls_datum_t * pkcs3_params, gnutls_z509_crt_fmt_t format)

void gnutls_certificate_set_dh_params (gnutis_certificate_credentials_t res,
gnutls_dh_params_t dh_params)

void gnutls_anon_set_server_dh_params (gnutls_anon_server_credentials_t res,
gnutls_dh_params_t dh_params)

Due to the time-consuming calculations required for the generation of Diffie-Hellman param-
eters we suggest against performing generation of them within an application. The certtool
tool can be used to generate or export known safe values that can be stored in code or in a
configuration file to provide the ability to replace. We also recommend the usage of gnutls_-
sec_param_to_pk_bits (see section 5.11) to determine the bit size of the generated parameters.

Note that the information stored in the generated PKCS #3 structure changed with GnuTLS
3.0.9. Since that version the privateValueLength member of the structure is set, allowing the
server utilizing the parameters to use keys of the size of the security parameter. This provides
better performance in key exchange.

To allow renewal of the parameters within an application without accessing the credentials,
which are a shared structure, an alternative interface is available using a callback function.

void gnutls_certificate_set_params_function (gnutls_certificate_credentials_t res,
gnutls_params_function * func)

DeSCI‘iptiOIl: This function will set a callback in order for the server to get the
Diffie-Hellman or RSA parameters for certificate authentication. The callback should

return GNUTLS_E_SUCCESS (0) on success.

175

N N

o o

5.12. ADVANCED TOPICS

5.12.5. Deriving keys for other applications/protocols

In several cases, after a TLS connection is established, it is desirable to derive keys to be used
in another application or protocol (e.g., in an other TLS session using pre-shared keys). The
following describe GnuTLS’ implementation of RFC5705 to extract keys based on a session’s
master secret.

The API to use is gnutls_prf. The function needs to be provided with a label, and additional
context data to mix in the extra parameter. Moreover, the API allows to switch the mix of
the client and server random nonces, using the server _random first parameter. In typical
uses you don’t need it, so a zero value should be provided in server_random first.

For example, after establishing a TLS session using gnutls_handshake, you can obtain 32-bytes
to be used as key, using this call:

#define MYLABEL "EXPORTER-My-protocol-name"
#define MYCONTEXT "my-protocol’s-1st-session"

char out[32];
rc = gnutls_prf (session, sizeof (MYLABEL)-1, MYLABEL, O,
sizeof (MYCONTEXT)-1, MYCONTEXT, 32, out);

The output key depends on TLS’ master secret, and is the same on both client and server.

If you don’t want to use the RFC5705 interface and not mix in the client and server random
nonces, there is a low-level TLS PRF interface called gnutls_prf_raw.

5.12.6. Channel bindings

In user authentication protocols (e.g., EAP or SASL mechanisms) it is useful to have a unique
string that identifies the secure channel that is used, to bind together the user authentication
with the secure channel. This can protect against man-in-the-middle attacks in some situations.
That unique string is called a “channel binding”. For background and discussion see [38].

In GnuTLS you can extract a channel binding using the gnutls_session_channel_binding
function. Currently only the type GNUTLS_CB_TLS_UNIQUE is supported, which corresponds to
the tls-unique channel binding for TLS defined in [4].

The following example describes how to print the channel binding data. Note that it must be
run after a successful TLS handshake.

{
gnutls_datum_t cb;
int rc;

rc = gnutls_session_channel_binding (session,
GNUTLS_CB_TLS_UNIQUE,
&cb) ;
if (rc)
fprintf (stderr, "Channel binding error: %s\n",
gnutls_strerror (rc));
else

176

CHAPTER 5. HOW TO USE GNUTLS IN APPLICATIONS

size_t i;
printf ("- Channel binding ’tls-unique’: ");
for (i = 0; i < cb.size; i++)
printf ("%02x", cb.datalil);
printf ("\n");

5.12.7. Interoperability

The TLS protocols support many ciphersuites, extensions and version numbers. As a result,
few implementations are not able to properly interoperate once faced with extensions or version
protocols they do not support and understand. The TLS protocol allows for a graceful down-
grade to the commonly supported options, but practice shows it is not always implemented
correctly.

Because there is no way to achieve maximum interoperability with broken peers without sac-
rificing security, GnuTLS ignores such peers by default. This might not be acceptable in cases
where maximum compatibility is required. Thus we allow enabling compatibility with broken
peers using priority strings (see section 5.10). A conservative priority string that would disable
certain TLS protocol options that are known to cause compatibility problems, is shown below.

NORMAL : %COMPAT

For very old broken peers that do not tolerate TLS version numbers over TLS 1.0 another
priority string is:

NORMAL:-VERS-TLS-ALL:+VERS-TLS1.0:+VERS-SSL3.0: %COMPAT

This priority string will in addition to above, only enable SSL 3.0 and TLS 1.0 as protocols.

5.12.8. Compatibility with the OpenSSL library

To ease GnuTLS’ integration with existing applications, a compatibility layer with the OpenSSL
library is included in the gnutls-openssl library. This compatibility layer is not complete
and it is not intended to completely re-implement the OpenSSL API with GnuTLS. It only
provides limited source-level compatibility.

The prototypes for the compatibility functions are in the “gnutls/openssl.h” header file.
The limitations imposed by the compatibility layer include:

e Error handling is not thread safe.

177

© 0w N U A W N e

GnuTLS application examples

In this chapter several examples of real-world use cases are listed. The examples are simplified
to promote readability and contain little or no error checking.

6.1. Client examples

This section contains examples of TLS and SSL clients, using GnuTLS. Note that some of the
examples require functions implemented by another example.

6.1.1. Simple client example with X.509 certificate support

Let’s assume now that we want to create a TCP client which communicates with servers that
use X.509 or OpenPGP certificate authentication. The following client is a very simple TLS
client, which uses the high level verification functions for certificates, but does not support
session resumption.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>
#include "examples.h"

/* A very basic TLS client, with X.509 authentication and server certificate
* verification. Note that error checking for missing files etc. is omitted
* for simplicity.

*/

#define MAX_BUF 1024
#define CAFILE "/etc/ssl/certs/ca-certificates.crt"
#define MSG "GET / HTTP/1.0\r\n\r\n"

179

6.1. CLIENT EXAMPLES

23 | extern int tcp_connect(void);

24 | extern void tcp_close(int sd);

25

26 | int main(void)

27 | {

28 int ret, sd, ii;

29 gnutls_session_t session;

30 char buffer [MAX_BUF + 1];

31 gnutls_datum_t out;

32 int type;

33 unsigned status;

34 [#if O

35 const char *err;

36 | #endif

37 gnutls_certificate_credentials_t xcred;

38

39 if (gnutls_check_version("3.4.6") == NULL) {

40 fprintf(stderr, "GnuTLS 3.4.6 or later is required for this example\n");
41 exit(1);

42 }

43

44 /* for backwards compatibility with gnutls < 3.3.0 */

45 gnutls_global_init();

46

a7 /* X509 stuff */

48 gnutls_certificate_allocate_credentials(&xcred) ;

49

50 /* sets the trusted cas file

51 */

52 gnutls_certificate_set_x509_trust_file(xcred, CAFILE,

53 GNUTLS_X509_FMT_PEM) ;
54

55 /* If client holds a certificate it can be set using the following:
56 *

57 gnutls_certificate_set_x509_key_file (xcred,

58 "cert.pem", "key.pem",

59 GNUTLS_X509_FMT_PEM) ;

60 */

61

62 /* Initialize TLS session

63 */

64 gnutls_init(&session, GNUTLS_CLIENT);

65

66 gnutls_session_set_ptr(session, (void *) "my_host_name");
67

68 gnutls_server_name_set(session, GNUTLS_NAME_DNS, "my_host_name",
69 strlen("my_host_name"));

70

71 /* It is recommended to use the default priorities */

72 gnutls_set_default_priority(session);

73 | #if O

74 /* if more fine-graned control is required */

75 ret = gnutls_priority_set_direct(session,

76 "NORMAL", &err);

77 if (ret < 0) {

78 if (ret == GNUTLS_E_INVALID_REQUEST) {

79 fprintf(stderr, "Syntax error at: %s\n", err);
80 }

180

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

81 exit(1);

82 }

83 | #endif

84

85 /* put the x509 credentials to the current session

86 */

87 gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred);
88 gnutls_session_set_verify_cert(session, "my_host_name", 0);
89

90 /* connect to the peer

91 */

92 sd = tcp_connect();

93

94 gnutls_transport_set_int(session, sd);

95 gnutls_handshake_set_timeout(session,

96 GNUTLS_DEFAULT_HANDSHAKE_TIMEQOUT) ;
97

98 /* Perform the TLS handshake

99 */

100 do {

101 ret = gnutls_handshake(session);

102 }

103 while (ret < O && gnutls_error_is_fatal(ret) == 0);

104 if (ret < 0) {

105 fprintf (stderr, "x** Handshake failed\n");

106 gnutls_perror(ret) ;

107 goto end;

108 } else {

109 char *desc;

110

111 desc = gnutls_session_get_desc(session);

112 printf("- Session info: %s\n", desc);

113 gnutls_free(desc);

114 }

115

116 /* check certificate verification status */

117 type = gnutls_certificate_type_get(session);

118 status = gnutls_session_get_verify_cert_status(session);
119 ret =

120 gnutls_certificate_verification_status_print(status, type,
121 &out, 0);
122 if (ret < 0) {

123 printf ("Error\n");

124 return GNUTLS_E_CERTIFICATE_ERROR;

125 }

126

127 printf("%s", out.data);

128 gnutls_free(out.data);

129

130 /* send data */

131 gnutls_record_send(session, MSG, strlen(MSG));

132

133 ret = gnutls_record_recv(session, buffer, MAX_BUF);

134 if (ret == 0) {

135 printf("- Peer has closed the TLS connection\n");
136 goto end;

137 } else if (ret < O && gnutls_error_is_fatal(ret) == 0) {
138 fprintf (stderr, "*** Warning: %s\n", gnutls_strerror(ret));

181

164
165

6.1. CLIENT EXAMPLES

} else if (ret < 0) {
fprintf(stderr, "*x* Error: %s\n", gnutls_strerror(ret));
goto end;

}
if (ret > 0) {
printf("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++) {
fputc(buffer[ii], stdout);
}
fputs("\n", stdout);
}
gnutls_bye(session, GNUTLS_SHUT_RDWR);
end:
tcp_close(sd);
gnutls_deinit(session);
gnutls_certificate_free_credentials(xcred);

gnutls_global_deinit();

return O;

6.1.2. Simple client example with SSH-style certificate verification

This is an alternative verification function that will use the X.509 certificate authorities for
verification, but also assume an trust on first use (SSH-like) authentication system. That is
the user is prompted on unknown public keys and known public keys are considered trusted.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>
#include "examples.h"

/* This function will verify the peer’s certificate, check

* if the hostname matches. In addition it will perform an

* SSH-style authentication, where ultimately trusted keys

* are only the keys that have been seen before.

*/

int _ssh_verify_certificate_callback(gnutls_session_t session)
{

unsigned int status;

182

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

22 const gnutls_datum_t *cert_list;

23 unsigned int cert_list_size;

24 int ret, type;

25 gnutls_datum_t out;

26 const char *hostname;

27

28 /* read hostname */

29 hostname = gnutls_session_get_ptr(session);

30

31 /* This verification function uses the trusted CAs in the credentials
32 * structure. So you must have installed one or more CA certificates.
33 */

34 ret = gnutls_certificate_verify_peers3(session, hostname, &status);
35 if (ret < 0) {

36 printf ("Error\n");

37 return GNUTLS_E_CERTIFICATE_ERROR;

38 }

39

40 type = gnutls_certificate_type_get(session);

41

42 ret =

43 gnutls_certificate_verification_status_print(status, type,

14 &out, 0);

45 if (ret < 0) {

46 printf ("Error\n");

47 return GNUTLS_E_CERTIFICATE_ERROR;

48 }

49

50 printf("%s", out.data);

51

52 gnutls_free(out.data);

53

54 if (status != 0) /* Certificate is not trusted */

55 return GNUTLS_E_CERTIFICATE_ERROR;

56

57 /* Do SSH verification */

58 cert_list = gnutls_certificate_get_peers(session, &cert_list_size);
59 if (cert_list == NULL) {

60 printf("No certificate was found!\n");

61 return GNUTLS_E_CERTIFICATE_ERROR;

62 }

63

64 /* service may be obtained alternatively using getservbyport() */
65 ret = gnutls_verify_stored_pubkey(NULL, NULL, hostname, "https",

66 type, &cert_list[0], 0);

67 if (ret == GNUTLS_E_NO_CERTIFICATE_FOUND) {

68 printf("Host %s is not known.", hostname);

69 if (status == 0)

70 printf ("Its certificate is valid for %s.\n",

71 hostname) ;

72

73 /* the certificate must be printed and user must be asked on
74 * whether it is trustworthy. --see gnutls_x509_crt_print() */
75

76 /* if not trusted */

77 return GNUTLS_E_CERTIFICATE_ERROR;

78 } else if (ret == GNUTLS_E_CERTIFICATE_KEY_MISMATCH) {

79 printf

183

80
81
82
83
84
85
86
87
88
89
90

92
93
94
95
96
97
98
99
100
101
102

104
105
106
107
108
109
110

© W N U A W N e

R S =
w N = O

6.1. CLIENT EXAMPLES

("Warning: host %s is known but has another key associated.",
hostname) ;
printf
("It might be that the server has multiple keys, or you are under attack\n"
if (status == 0)
printf ("Its certificate is valid for %s.\n",
hostname) ;

/* the certificate must be printed and user must be asked on
* whether it is trustworthy. --see gnutls_x509_crt_print() */

/* if not trusted */
return GNUTLS_E_CERTIFICATE_ERROR;
} else if (ret < 0) {
printf ("gnutls_verify_stored_pubkey: %s\n",
gnutls_strerror(ret));
return ret;

}

/* user trusts the key -> store it */
if (ret !'=0) {
ret = gnutls_store_pubkey(NULL, NULL, hostname, "https",
type, &cert_list[0], 0, 0);
if (ret < 0)
printf ("gnutls_store_pubkey: %s\n",
gnutls_strerror(ret));

}

/* notify gnutls to continue handshake normally */
return 0;

6.1.3. Simple client example with anonymous authentication

The simplest client using TLS is the one that doesn’t do any authentication. This means no
external certificates or passwords are needed to set up the connection. As could be expected,
the connection is vulnerable to man-in-the-middle (active or redirection) attacks. However,
the data are integrity protected and encrypted from passive eavesdroppers.

Note that due to the vulnerable nature of this method very few public servers support it.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>

184

45

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

#include <gnutls/gnutls.h>

/* A very basic TLS client, with anonymous authentication.

*/

#define MAX_BUF 1024
#define MSG "GET / HTTP/1.0\r\n\r\n"

extern int tcp_connect(void);
extern void tcp_close(int sd);

int main(void)
{
int ret, sd, ii;
gnutls_session_t session;
char buffer[MAX_BUF + 1];
gnutls_anon_client_credentials_t anoncred;
/* Need to enable anonymous KX specifically. */

gnutls_global_init();
gnutls_anon_allocate_client_credentials(&anoncred) ;

/* Initialize TLS session
*/
gnutls_init(&session, GNUTLS_CLIENT);

/* Use default priorities */

gnutls_priority_set_direct(session,
"PERFORMANCE : +ANON-ECDH : +ANON-DH" ,
NULL) ;

/* put the anonymous credentials to the current session
*/
gnutls_credentials_set(session, GNUTLS_CRD_ANON, anoncred);

/* connect to the peer
*/

sd = tcp_connect();
gnutls_transport_set_int(session, sd);
gnutls_handshake_set_timeout(session,

GNUTLS_DEFAULT_HANDSHAKE_TIMEOQUT) ;

/* Perform the TLS handshake

*/
do {
ret = gnutls_handshake(session);
}
while (ret < O && gnutls_error_is_fatal(ret) == 0);

if (ret < 0) {
fprintf (stderr, "*x* Handshake failed\n");
gnutls_perror(ret) ;
goto end;
} else {
char *desc;

185

72
73
74
75
76
77
78
79
80
81
82
83
84
85

105

© 0 N O U oA W N

6.1. CLIENT EXAMPLES

desc = gnutls_session_get_desc(session);
printf("- Session info: %s\n", desc);
gnutls_free(desc);

}
gnutls_record_send(session, MSG, strlen(MSG));

ret = gnutls_record_recv(session, buffer, MAX_BUF);
if (ret == 0) {
printf ("- Peer has closed the TLS connection\n");
goto end;
} else if (ret < O && gnutls_error_is_fatal(ret) == 0) {
fprintf(stderr, "x** Warning: %s\n", gnutls_strerror(ret));
} else if (ret < 0) {
fprintf(stderr, "*** Error: %s\n", gnutls_strerror(ret));
goto end;
}

if (ret > 0) {
printf ("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++) {
fputc(buffer[ii], stdout);
}
fputs("\n", stdout);
}
gnutls_bye(session, GNUTLS_SHUT_RDWR);
end:
tcp_close(sd);
gnutls_deinit(session);
gnutls_anon_free_client_credentials(anoncred) ;

gnutls_global_deinit();

return O;

6.1.4. Simple datagram TLS client example

This is a client that uses UDP to connect to a server. This is the DTLS equivalent to the TLS
example with X.509 certificates.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

186

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <gnutls/gnutls.h>
#include <gnutls/dtls.h>

/* A very basic Datagram TLS client, over UDP with X.509 authentication.
*/

#define MAX_BUF 1024
#define CAFILE "/etc/ssl/certs/ca-certificates.crt"
#define MSG "GET / HTTP/1.0\r\n\r\n"

extern int udp_connect(void);
extern void udp_close(int sd);
extern int verify_certificate_callback(gnutls_session_t session);

int main(void)
{
int ret, sd, ii;
gnutls_session_t session;
char buffer[MAX_BUF + 1];
const char *err;
gnutls_certificate_credentials_t xcred;

if (gnutls_check_version("3.1.4") == NULL) {
fprintf (stderr, "GnuTLS 3.1.4 or later is required for this example\n");
exit(1);

}

/* for backwards compatibility with gnutls < 3.3.0 */
gnutls_global_init();

/* X509 stuff */
gnutls_certificate_allocate_credentials(&xcred);

/* sets the trusted cas file */

gnutls_certificate_set_xb509_trust_file(xcred, CAFILE,
GNUTLS_X509_FMT_PEM) ;

gnutls_certificate_set_verify_function(xcred,
verify_certificate_callback);

/* Initialize TLS session */
gnutls_init(&session, GNUTLS_CLIENT | GNUTLS_DATAGRAM);

/* Use default priorities */
ret = gnutls_priority_set_direct(session,
"NORMAL", &err);

if (ret < 0) {

if (ret == GNUTLS_E_INVALID_REQUEST) {

fprintf(stderr, "Syntax error at: %s\n", err);

}

exit(1);
}

/* put the x509 credentials to the current session */
gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred);

187

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

111
112
113
114
115
116
117
118
119

121
122
123
124

125

6.1.

CLIENT EXAMPLES

gnutls_server_name_set(session, GNUTLS_NAME_DNS, "my_host_name",
strlen("my_host_name"));

/* connect to the peer */
sd = udp_connect();

gnutls_transport_set_int(session, sd);

/* set the connection MTU */
gnutls_dtls_set_mtu(session, 1000);
/* gnutls_dtls_set_timeouts(session, 1000, 60000); */

/* Perform the TLS handshake */
do {
ret = gnutls_handshake(session);
}
while (ret == GNUTLS_E_INTERRUPTED || ret == GNUTLS_E_AGAIN);
/* Note that DTLS may also receive GNUTLS_E_LARGE_PACKET */

if (ret < 0) {
fprintf (stderr, "*x* Handshake failed\n");
gnutls_perror(ret) ;
goto end;
} else {
char *desc;

desc = gnutls_session_get_desc(session);
printf ("- Session info: ¥%s\n", desc);
gnutls_free(desc);

}
gnutls_record_send(session, MSG, strlen(MSG));

ret = gnutls_record_recv(session, buffer, MAX_BUF);
if (ret == 0) {
printf ("- Peer has closed the TLS connection\n");
goto end;
} else if (ret < O && gnutls_error_is_fatal(ret) == 0) {
fprintf(stderr, "*x* Warning: %s\n", gnutls_strerror(ret)
} else if (ret < 0) {
fprintf(stderr, "*x* Error: %s\n", gnutls_strerror(ret));
goto end;
}

if (ret > 0) {
printf ("- Received ’d bytes: ", ret);
for (ii = 0; ii < ret; ii++) {
fputc(buffer[ii], stdout);
}
fputs("\n", stdout);
}

/* It is suggested not to use GNUTLS_SHUT_RDWR in DTLS
* connections because the peer’s closure message might
* be lost */

gnutls_bye(session, GNUTLS_SHUT_WR);

end:

188

)

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

udp_close(sd);

gnutls_deinit (session);
gnutls_certificate_free_credentials(xcred);
gnutls_global_deinit();

return O;

6.1.5. Obtaining session information

Most of the times it is desirable to know the security properties of the current established
session. This includes the underlying ciphers and the protocols involved. That is the purpose
of the following function. Note that this function will print meaningful values only if called

© 0 N o U A W N e

after a successful gnutls_handshake.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>

#include "examples.h"

/* This function will print some details of the
* given session.
*/
int print_info(gnutls_session_t session)
{
const char *tmp;
gnutls_credentials_type_t cred;
gnutls_kx_algorithm_t kx;
int dhe, ecdh;

dhe = ecdh = 0;

/* print the key exchange’s algorithm name
*/

kx = gnutls_kx_get(session);

tmp = gnutls_kx_get_name (kx) ;

printf("- Key Exchange: %s\n", tmp);

/* Check the authentication type used and switch
* to the appropriate.
*/

cred = gnutls_auth_get_type(session);

189

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

6.1.

CLIENT EXAMPLES

switch (cred) {

case GNUTLS_CRD_IA:
printf("- TLS/IA session\n");
break;

#ifdef ENABLE_SRP
case GNUTLS_CRD_SRP:
printf("- SRP session with username ¥%s\n",
gnutls_srp_server_get_username(session));
break;
#endif

case GNUTLS_CRD_PSK:

/* This returns NULL in server side.

*/

if (gnutls_psk_client_get_hint(session) != NULL)

printf ("- PSK authentication. PSK hint ’%s’\n",
gnutls_psk_client_get_hint(session));
/* This returns NULL in client side.
*/

if (gnutls_psk_server_get_username(session) != NULL)

printf("- PSK authentication. Connected as ’%s’\n",

gnutls_psk_server_get_username(session));

if (kx == GNUTLS_KX_ECDHE_PSK)

ecdh = 1;
else if (kx == GNUTLS_KX_DHE_PSK)
dhe = 1;

break;
case GNUTLS_CRD_ANON: /* anonymous authentication */

printf ("- Anonymous authentication.\n");
if (kx == GNUTLS_KX_ANON_ECDH)

ecdh = 1;
else if (kx == GNUTLS_KX_ANON_DH)
dhe = 1;

break;
case GNUTLS_CRD_CERTIFICATE: /* certificate authentication */

/* Check if we have been using ephemeral Diffie-Hellman.
*/
if (kx == GNUTLS_KX_DHE_RSA || kx == GNUTLS_KX_DHE_DSS)
dhe = 1;
else if (kx == GNUTLS_KX_ECDHE_RSA
Il kx == GNUTLS_KX_ECDHE_ECDSA)
ecdh = 1;

/* if the certificate list is available, then
* print some information about it.

*/

print_x509_certificate_info(session);

} /* switch */

if (ecdh != 0)

190

95

110
111
112
113
114
115
116
117
118
119
120
121
122
123

125
126
127
128
129
130

132
133
134

NI VN

N o o

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

printf ("- Ephemeral ECDH using curve %s\n",
gnutls_ecc_curve_get_name(gnutls_ecc_curve_get
(session)));
else if (dhe != 0)
printf ("- Ephemeral DH using prime of J%d bits\n",
gnutls_dh_get_prime_bits(session));

/* print the protocol’s name (ie TLS 1.0)
*/
tmp =
gnutls_protocol_get_name(gnutls_protocol_get_version(session));
printf ("~ Protocol: %s\n", tmp);

/* print the certificate type of the peer.
* ie X.509
*/
tmp =
gnutls_certificate_type_get_name(gnutls_certificate_type_get
(session));

printf("- Certificate Type: %s\n", tmp);

/* print the compression algorithm (if any)

*/
tmp = gnutls_compression_get_name(gnutls_compression_get(session));
printf ("- Compression: %s\n", tmp);

/* print the name of the cipher used.

* ie 3DES.

*/
tmp = gnutls_cipher_get_name(gnutls_cipher_get(session));
printf("- Cipher: %s\n", tmp);

/* Print the MAC algorithms name.

* ie SHA1

*/
tmp = gnutls_mac_get_name(gnutls_mac_get(session));
printf("- MAC: %s\n", tmp);

return 0O;

6.1.6. Using a callback to select the certificate to use

There are cases where a client holds several certificate and key pairs, and may not want to
load all of them in the credentials structure. The following example demonstrates the use of
the certificate selection callback.

/* This example code is placed in the public domain. */
#ifdef HAVE_CONFIG_H
#include <config.h>

#endif

#include <stdio.h>

191

© ®

6.1. CLIENT EXAMPLES

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

/* A TLS
*/

#define
#define

#define
#define
#define

extern i

<stdlib.h>
<string.h>
<sys/types.h>
<sys/socket.h>
<arpa/inet.h>
<unistd.h>
<gnutls/gnutls.h>
<gnutls/x509.h>
<gnutls/abstract.h>
<sys/types.h>
<sys/stat.h>
<fcntl.h>

client that loads the certificate and key.
MAX_BUF 1024
MSG "GET / HTTP/1.0\r\n\r\n"
CERT_FILE "cert.pem"
KEY_FILE "key.pem"

CAFILE "/etc/ssl/certs/ca-certificates.crt"

nt tcp_connect(void) ;

extern void tcp_close(int sd);

static i
cert_cal

nt
lback(gnutls_session_t session,
const gnutls_datum_t * req_ca_rdn, int nregs,
const gnutls_pk_algorithm_t * sign_algos,
int sign_algos_length, gnutls_pcert_st ** pcert,
unsigned int *pcert_length, gnutls_privkey_t * pkey);

gnutls_pcert_st pcrt;
gnutls_privkey_t key;

/* Load
*/

the certificate and the private key.

static void load_keys(void)

{

int ret;
gnutls_datum_t data;

ret = gnutls_load_file(CERT_FILE, &data);

if (ret < 0) {
fprintf(stderr, "*x* Error loading certificate file.\n");
exit(1);

ret =
gnutls_pcert_import_x509_raw(&pcrt, &data, GNUTLS_X509_FMT_PEM,
0);
if (ret < 0) {
fprintf (stderr, "#** Error loading certificate file: J%s\n",
gnutls_strerror(ret));
exit(1);

192

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

92
93
94
95
96
97
98
99
100
101
102

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

gnutls_free(data.data);

ret = gnutls_load_file(KEY_FILE, &data);

if (ret < 0) {
fprintf (stderr, "**x Error loading key file.\n");
exit(1);

}

gnutls_privkey_init (&key);

ret =
gnutls_privkey_import_x509_raw(key, &data, GNUTLS_X509_FMT_PEM,
NULL, 0);

if (ret < 0) {

fprintf (stderr, "x** Error loading key file: %s\n",
gnutls_strerror(ret));

exit(1);

}

gnutls_free(data.data);

int main(void)

{
int ret, sd, ii;
gnutls_session_t session;
gnutls_priority_t priorities_cache;
char buffer[MAX_BUF + 1];
gnutls_certificate_credentials_t xcred;

if (gnutls_check_version("3.1.4") == NULL) {
fprintf (stderr, "GnuTLS 3.1.4 or later is required for this example\n");
exit(1);

}

/* for backwards compatibility with gnutls < 3.3.0 */
gnutls_global_init();

load_keys();

/* X509 stuff =*/
gnutls_certificate_allocate_credentials(&xcred);

/* priorities */
gnutls_priority_init(&priorities_cache,
"NORMAL", NULL);

/* sets the trusted cas file
*/
gnutls_certificate_set_x509_trust_file(xcred, CAFILE,
GNUTLS_X509_FMT_PEM) ;

gnutls_certificate_set_retrieve_function2(xcred, cert_callback);
/* Initialize TLS session

*/
gnutls_init(&session, GNUTLS_CLIENT);

193

151

153

155
156
157
158

6.1.

CLIENT EXAMPLES

/* Use default priorities */
gnutls_priority_set(session, priorities_cache);

/* put the x509 credentials to the current session
*/
gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred);

/* connect to the peer
*/

sd = tcp_connect();
gnutls_transport_set_int(session, sd);

/* Perform the TLS handshake
*/

ret = gnutls_handshake(session);

if (ret < 0) {
fprintf (stderr, "*x* Handshake failed\n");
gnutls_perror(ret);
goto end;
} else {
char *desc;

desc = gnutls_session_get_desc(session);
printf("- Session info: %s\n", desc);
gnutls_free(desc);

}
gnutls_record_send(session, MSG, strlen(MSG));

ret = gnutls_record_recv(session, buffer, MAX_BUF);
if (ret == 0) {
printf ("- Peer has closed the TLS connection\n");
goto end;
} else if (ret < 0) {
fprintf (stderr, "*x* Error: %s\n", gnutls_strerror(ret));
goto end;
}

printf("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++) {
fputc(buffer[ii], stdout);

}

fputs("\n", stdout);

gnutls_bye(session, GNUTLS_SHUT_RDWR) ;
end:

tcp_close(sd);

gnutls_deinit(session);

gnutls_certificate_free_credentials(xcred);
gnutls_priority_deinit(priorities_cache);

gnutls_global_deinit();

194

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

183 return 0;

188 | /* This callback should be associated with a session by calling

189 | * gnutls_certificate_client_set_retrieve_function(session, cert_callback),
190 | * before a handshake.

191 */

193 | static int
194 | cert_callback(gnutls_session_t session,

195 const gnutls_datum_t * req_ca_rdn, int nregs,
196 const gnutls_pk_algorithm_t * sign_algos,

197 int sign_algos_length, gnutls_pcert_st ** pcert,
198 unsigned int *pcert_length, gnutls_privkey_t * pkey)
199 | {

200 char issuer_dn[256];

201 int i, ret;

202 size_t len;

203 gnutls_certificate_type_t type;

204

205 /* Print the server’s trusted CAs

206 */

207 if (nreqs > 0)

208 printf("- Server’s trusted authorities:\n");
209 else

210 printf

211 ("- Server did not send us any trusted authorities names.\n");
212

213 /* print the names (if any) */

214 for (i = 0; i < nregs; i++) {

215 len = sizeof(issuer_dn);

216 ret = gnutls_x509_rdn_get(&req_ca_rdn[i], issuer_dn, &len);
217 if (ret >= 0) {

218 printf (" [%hdl: ™, i);

219 printf ("%s\n", issuer_dn);

220 }

221 }

222

223 /* Select a certificate and return it.

224 * The certificate must be of any of the "sign algorithms"
225 * supported by the server.

226 */

227 type = gnutls_certificate_type_get(session);

228 if (type == GNUTLS_CRT_X509) {

229 *pcert_length = 1;

230 *pcert = &pcrt;

231 *pkey = key;

232 } else {

233 return -1;

234 }

235

236 return O;

237

238 | }

195

© 0w N U A W N e

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

6.1.

CLIENT EXAMPLES

6.1.7. Verifying a certificate

An example is listed below which uses the high level verification functions to verify a given

certificate list.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>

#include "examples.h"

/* All the available CRLs
*/

gnutls_x509_crl_t *crl_list;
int crl_list_size;

/* All the available trusted CAs
*/

gnutls_xb509_crt_t *ca_list;

int ca_list_size;

static int print_details_func(gnutls_x509_crt_t cert,
gnutls_x509_crt_t issuer,
gnutls_x509_crl_t crl,
unsigned int verification_output);

/* This function will try to verify the peer’s certificate chain, and
* also check if the hostname matches.
*/
void
verify_certificate_chain(const char *hostname,
const gnutls_datum_t * cert_chain,
int cert_chain_length)

int i;
gnutls_x509_trust_list_t tlist;
gnutls_x509_crt_t *cert;

unsigned int output;

/* Initialize the trusted certificate list. This should be done
* once on initialization. gnutls_x509_crt_list_import2() and

* gnutls_x509_crl_list_import2() can be used to load them.

*/

gnutls_x509_trust_list_init(&tlist, 0);

gnutls_x509_trust_list_add_cas(tlist, ca_list, ca_list_size, 0);
gnutls_x509_trust_list_add_crls(tlist, crl_list, crl_list_size,
GNUTLS_TL_VERIFY_CRL, 0);

196

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

53
54 cert = malloc(sizeof (*cert) * cert_chain_length);

55

56 /* Import all the certificates in the chain to

57 * native certificate format.

58 */

59 for (i = 0; i < cert_chain_length; i++) {

60 gnutls_x509_crt_init (&cert[i]);

61 gnutls_x509_crt_import(cert[i], &cert_chain[i],

62 GNUTLS_X509_FMT_DER) ;

63 }

64

65 gnutls_x509_trust_list_verify_named_crt(tlist, cert[0], hostname,
66 strlen(hostname),

67 GNUTLS_VERIFY_DISABLE_CRL_CHECKS,
68 &output,

69 print_details_func);

70

71 /* if this certificate is not explicitly trusted verify against CAs
72 */

73 if (output '= 0) {

74 gnutls_x509_trust_list_verify_crt(tlist, cert,

75 cert_chain_length, O,
76 &output,

77 print_details_func);

78 }

79

80 if (output & GNUTLS_CERT_INVALID) {

81 fprintf (stderr, "Not trusted");

82

83 if (output & GNUTLS_CERT_SIGNER_NOT_FOUND)

84 fprintf(stderr, ": no issuer was found");

85 if (output & GNUTLS_CERT_SIGNER_NOT_CA)

86 fprintf(stderr, ": issuer is not a CA");

87 if (output & GNUTLS_CERT_NOT_ACTIVATED)

88 fprintf(stderr, ": not yet activated\n");

89 if (Output & GNUTLS_CERT_EXPIRED)

90 fprintf(stderr, ": expired\n");

91

92 fprintf (stderr, "\n");

93 } else

94 fprintf (stderr, "Trusted\n");

95

96 /* Check if the name in the first certificate matches our destination!
97 */

98 if (!'gnutls_x509_crt_check_hostname(cert[0], hostname)) {

99 printf

100 ("The certificate’s owner does not match hostname ’%s’\n",
101 hostname) ;

102 }

103

104 gnutls_x509_trust_list_deinit(tlist, 1);

105

106 return;

107 | }

108

109 | static int

110 | print_details_func(gnutls_x509_crt_t cert,

197

136

-

Bow N

© o N o w

6.1.

CLIENT EXAMPLES

gnutls_x509_crt_t issuer, gnutls_x509_crl_t crl,
unsigned int verification_output)

char name[512];

char issuer_name[512];
size_t name_size;

size_t issuer_name_size;

issuer_name_size = sizeof (issuer_name);
gnutls_x509_crt_get_issuer_dn(cert, issuer_name,
&issuer_name_size);

name_size = sizeof (name);
gnutls_x509_crt_get_dn(cert, name, &name_size);

fprintf (stdout, "\tSubject: %s\n", name);
fprintf (stdout, "\tIssuer: %s\n", issuer_name);

if (issuer !'= NULL) {
issuer_name_size = sizeof (issuer_name);
gnutls_x509_crt_get_dn(issuer, issuer_name,
&issuer_name_size);

fprintf (stdout, "\tVerified against: %s\n", issuer_name);

}

if (crl != NULL) {
issuer_name_size = sizeof (issuer_name);
gnutls_x509_crl_get_issuer_dn(crl, issuer_name,
&issuer_name_size);

fprintf(stdout, "\tVerified against CRL of: ¥%s\n",
issuer_name) ;

}

fprintf(stdout, "\tVerification output: %x\n\n",
verification_output);

return O;

6.1.8. Using a smart card with TLS

This example will demonstrate how to load keys and certificates from a smart-card or any

other PKCS #11 token, and use it in a TLS connection.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

198

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

10 | #include <sys/types.h>

11 | #include <sys/socket.h>

12 | #include <arpa/inet.h>

13 | #include <unistd.h>

14 | #include <gnutls/gnutls.h>
15 | #include <gnutls/x509.h>
16 | #include <gnutls/pkcsil.h>
17 | #include <sys/types.h>

18 | #include <sys/stat.h>

19 | #include <fcntl.h>

20 | #include <getpass.h> /* for getpass() */

22 | /* A TLS client that loads the certificate and key.
23| */

25 | #define MAX_BUF 1024
26 | #define MSG "GET / HTTP/1.0\r\n\r\n"
27 | #define MIN(x,y) (((x)<(y))?7(x):(y))

29 | #define CAFILE "/etc/ssl/certs/ca-certificates.crt"

31 | /* The URLs of the objects can be obtained
32| * using pllitool --list-all --login

33| */
34 | #define KEY_URL "pkcsll:manufacturer=SomeManufacturer;object=Private’20Key" \
35 ";objecttype=private;id=/db%5b%3e/b5/72%33"

36 | #define CERT_URL "pkcsll:manufacturer=SomeManufacturer;object=Certificate;" \
37 "objecttype=cert;id=db},5b%3eb5%72%33"

39 | extern int tcp_connect(void);
40 | extern void tcp_close(int sd);

42 | static int
43 | pin_callback(void *user, int attempt, const char *token_url,

44 const char *token_label, unsigned int flags, char *pin,
45 size_t pin_max)

a6 | {

47 const char *password;

48 int len;

49

50 printf ("PIN required for token ’%s’ with URL ’%s’\n", token_label,
51 token_url);

52 if (flags & GNUTLS_PIN_FINAL_TRY)

53 printf ("*** This is the final try before locking!\n");
54 if (flags & GNUTLS_PIN_COUNT_LOW)

55 printf ("*** Only few tries left before locking!\n");
56 if (flags & GNUTLS_PIN_WRONG)

57 printf ("*** Wrong PIN\n");

58

59 password = getpass("Enter pin: ");

60 if (password == NULL || password[0] == 0) {

61 fprintf (stderr, "No password given\n");

62 exit(1);

63 }

64

65 len = MIN(pin_max - 1, strlen(password));

66 memcpy (pin, password, len);

67 pin[len] = 0;

199

6.1. CLIENT EXAMPLES

68
69 return O;

70|}

71

72 | int main(void)

73| {

74 int ret, sd, ii;

75 gnutls_session_t session;

76 gnutls_priority_t priorities_cache;

77 char buffer [MAX_BUF + 1];

78 gnutls_certificate_credentials_t xcred;

79 /* Allow connections to servers that have OpenPGP keys as well.
80 */

81

82 if (gnutls_check_version("3.1.4") == NULL) {

83 fprintf (stderr, "GnuTLS 3.1.4 or later is required for this example\n");
84 exit(1);

85 }

86

87 /* for backwards compatibility with gnutls < 3.3.0 */

88 gnutls_global_init();

89

90 /* The PKCS11 private key operations may require PIN.

91 * Register a callback. */

92 gnutls_pkcsll_set_pin_function(pin_callback, NULL);

93

94 /* X509 stuff */

95 gnutls_certificate_allocate_credentials(&xcred);

926

97 /* priorities */

98 gnutls_priority_init(&priorities_cache,

99 "NORMAL", NULL);

100

101 /* sets the trusted cas file

102 */

103 gnutls_certificate_set_x509_trust_file(xcred, CAFILE,

104 GNUTLS_X509_FMT_PEM) ;
105

106 gnutls_certificate_set_x509_key_file(xcred, CERT_URL, KEY_URL,
107 GNUTLS_X509_FMT_DER) ;
108

109 /* Initialize TLS session

110 */

111 gnutls_init(&session, GNUTLS_CLIENT);

112

113 /* Use default priorities */

114 gnutls_priority_set(session, priorities_cache);

115

116 /* put the x509 credentials to the current session

117 */

118 gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred);
119

120 /* connect to the peer

121 */

122 sd = tcp_connect();

123

124 gnutls_transport_set_int(session, sd);

125

200

150

153
154
155

157
158
159
160
161
162

164
165
166
167
168
169

171
172
173

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

/* Perform the TLS handshake
*/

ret = gnutls_handshake(session);

if (ret < 0) {
fprintf (stderr, "#x* Handshake failed\n");
gnutls_perror(ret);
goto end;
} else {
char *desc;

desc = gnutls_session_get_desc(session);
printf("- Session info: %s\n", desc);
gnutls_free(desc);

}
gnutls_record_send(session, MSG, strlen(MSG));

ret = gnutls_record_recv(session, buffer, MAX_BUF);
if (ret == 0) {
printf("- Peer has closed the TLS connection\n");
goto end;
} else if (ret < 0) {
fprintf (stderr, "#x* Error: %s\n", gnutls_strerror(ret));
goto end;
}

printf("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++) {
fputc(buffer[ii], stdout);

}

fputs("\n", stdout);

gnutls_bye(session, GNUTLS_SHUT_RDWR);
end:

tcp_close(sd);

gnutls_deinit(session);

gnutls_certificate_free_credentials(xcred) ;
gnutls_priority_deinit(priorities_cache);

gnutls_global_deinit();

return 0O;

6.1.9. Client with resume capability example

This is a modification of the simple client example. Here we demonstrate the use of session
resumption. The client tries to connect once using TLS, close the connection and then try to
establish a new connection using the previously negotiated data.

201

6.1. CLIENT EXAMPLES

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <gnutls/gnutls.h>

/* Those functions are defined in other examples.

*/

extern void check_alert(gnutls_session_t session, int ret);
extern int tcp_connect(void);

extern void tcp_close(int sd);

#define MAX_BUF 1024
#define CAFILE "/etc/ssl/certs/ca-certificates.crt"
#define MSG "GET / HTTP/1.0\r\n\r\n"

int main(void)
{
int ret;
int sd, ii;
gnutls_session_t session;
char buffer [MAX_BUF + 1];
gnutls_certificate_credentials_t xcred;

/* variables used in session resuming
*/

int t;

char *session_data = NULL;

size_t session_data_size = 0;

gnutls_global_init();

/* X509 stuff */
gnutls_certificate_allocate_credentials(&xcred);

gnutls_certificate_set_x509_trust_file(xcred, CAFILE,
GNUTLS_X509_FMT_PEM) ;

for (t = 0; t < 2; t++) { /* connect 2 times to the server */
sd = tcp_connect();
gnutls_init(&session, GNUTLS_CLIENT);
gnutls_priority_set_direct(session,
"PERFORMANCE: ! ARCFOUR-128",

NULL) ;

gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE,
xcred) ;

if (£ > 0) {

202

58

59

105

CHAPTER 6.

GNUTLS APPLICATION EXAMPLES

/* if this is not the first time we connect */
gnutls_session_set_data(session, session_data,

session_data_size);
free(session_data);

}
gnutls_transport_set_int(session, sd);
gnutls_handshake_set_timeout(session,

GNUTLS_DEFAULT_HANDSHAKE_TIMEOQUT) ;

/* Perform the TLS handshake

*/
do {
ret = gnutls_handshake(session);
}
while (ret < O &% gnutls_error_is_fatal(ret) == 0);

if (ret < 0) {
fprintf (stderr, "*x* Handshake failed\n");
gnutls_perror(ret);
goto end;
} else {
printf ("- Handshake was completed\n");
}

if (t == 0) { /* the first time we connect */
/* get the session data size */
gnutls_session_get_data(session, NULL,
&session_data_size);
session_data = malloc(session_data_size);

/* put session data to the session variable */
gnutls_session_get_data(session, session_data,
&session_data_size);

} else { /* the second time we connect */

/* check if we actually resumed the previous session */

if (gnutls_session_is_resumed(session) != 0) {
printf ("- Previous session was resumed\n");
} else {
fprintf (stderr,

"xx*x Previous session was NOT resumed\n");

}

/* This function was defined in a previous example
*/

/* print_info(session); */
gnutls_record_send(session, MSG, strlen(MSG));

ret = gnutls_record_recv(session, buffer, MAX_BUF);

if (ret == 0) {
printf ("- Peer has closed the TLS connection\n");
goto end;

} else if (ret < O && gnutls_error_is_fatal(ret) == 0) {
fprintf (stderr, "*x* Warning: %s\n",

203

145

© 0w N o U A W N e

[T S~ S S S
N o U A W N O

6.1. CLIENT EXAMPLES

gnutls_strerror(ret));
} else if (ret < 0) {
fprintf (stderr, "*** Error: %s\n",
gnutls_strerror(ret));
goto end;
}

if (ret > 0) {
printf ("- Received ’%d bytes: ", ret);
for (ii = 0; ii < ret; ii++) {
fputc(buffer[ii], stdout);
}
fputs("\n", stdout);
}
gnutls_bye(session, GNUTLS_SHUT_RDWR);
end:
tcp_close(sd);
gnutls_deinit(session);
} /* for() =*/
gnutls_certificate_free_credentials(xcred) ;

gnutls_global_deinit();

return O;

6.1.10. Simple client example with SRP authentication

The following client is a very simple SRP TLS client which connects to a server and authenti-
cates using a username and a password. The server may authenticate itself using a certificate,
and in that case it has to be verified.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gnutls/gnutls.h>

/* Those functions are defined in other examples.

*/

extern void check_alert(gnutls_session_t session, int ret);
extern int tcp_connect(void);

extern void tcp_close(int sd);

204

35
36
37
38
39
40
41
42
43
44
45

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

#define MAX_BUF 1024

#define USERNAME "user"

#define PASSWORD "pass"

#define CAFILE "/etc/ssl/certs/ca-certificates.crt"
#define MSG "GET / HTTP/1.0\r\n\r\n"

int main(void)

{
int ret;
int sd, ii;
gnutls_session_t session;
char buffer[MAX_BUF + 1];
gnutls_srp_client_credentials_t srp_cred;
gnutls_certificate_credentials_t cert_cred;

if (gnutls_check_version("3.1.4") == NULL) {
fprintf (stderr, "GnuTLS 3.1.4 or later is required for this example\n");
exit(1);

}

/* for backwards compatibility with gnutls < 3.3.0 */
gnutls_global_init();

gnutls_srp_allocate_client_credentials(&srp_cred);
gnutls_certificate_allocate_credentials(&cert_cred);

gnutls_certificate_set_x509_trust_file(cert_cred, CAFILE,
GNUTLS_X509_FMT_PEM) ;
gnutls_srp_set_client_credentials(srp_cred, USERNAME, PASSWORD);

/* connects to server
*/

sd = tcp_connect();

/* Initialize TLS session
*/
gnutls_init(&session, GNUTLS_CLIENT);

/* Set the priorities.
*/
gnutls_priority_set_direct(session,
"NORMAL: +SRP:+SRP-RSA:+SRP-DSS",
NULL) ;

/* put the SRP credentials to the current session

*/
gnutls_credentials_set(session, GNUTLS_CRD_SRP, srp_cred);
gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, cert_cred);

gnutls_transport_set_int(session, sd);
gnutls_handshake_set_timeout(session,
GNUTLS_DEFAULT_HANDSHAKE_TIMEQOUT) ;

/* Perform the TLS handshake
*/
do {
ret = gnutls_handshake(session);

205

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

107
108
109
110
111

113
114
115

6.1. CLIENT EXAMPLES

}
while (ret < O &% gnutls_error_is_fatal(ret) == 0);

if (ret < 0) {
fprintf (stderr, "*x* Handshake failed\n");
gnutls_perror(ret) ;
goto end;
} else {
char *desc;

desc = gnutls_session_get_desc(session);
printf ("- Session info: ¥%s\n", desc);
gnutls_free(desc);

}

gnutls_record_send(session, MSG, strlen(MSG));

ret = gnutls_record_recv(session, buffer, MAX_BUF);

if (gnutls_error_is_fatal(ret) != 0 || ret == 0) {
if (ret == 0) {
printf
("- Peer has closed the GnuTLS connection\n");
goto end;
} else {

fprintf (stderr, "x** Error: %s\n",
gnutls_strerror(ret));
goto end;

}
} else
check_alert(session, ret);

if (ret > 0) {
printf ("- Received J%d bytes: ", ret);
for (ii = 0; ii < ret; ii++) {
fputc(buffer[ii], stdout);
}
fputs("\n", stdout);
}
gnutls_bye(session, GNUTLS_SHUT_RDWR);

end:
tcp_close(sd);
gnutls_deinit(session);

gnutls_srp_free_client_credentials(srp_cred);
gnutls_certificate_free_credentials(cert_cred);

gnutls_global_deinit();

return 0;

206

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

6.1.11. Simple client example using the C++ API

The following client is a simple example of a client client utilizing the GnuTLS C++ APL

1 | #include <config.h>
2 | #include <iostream>

3 | #include <stdexcept>

4 | #include <gnutls/gnutls.h>

#include <gnutls/gnutlsxx.h>
#include <cstring> /* for strlen */

/* A very basic TLS client, with anonymous authentication.
* written by Eduardo Villanueva Che.
]| */

12 | #define MAX_BUF 1024
13 | #define SA struct sockaddr

15 | #define CAFILE "ca.pem"
16 | #define MSG "GET / HTTP/1.0\r\n\r\n"

17
18 | extern "C"

19| {

20 int tcp_connect(void) ;
21 void tcp_close(int sd);
22 [}

25 | int main(void)

26 | {

27 int sd = -1;

28 gnutls_global_init();

29

30 try

31 {

32

33 /* Allow connections to servers that have OpenPGP keys as well.
34 */

35 gnutls::client_session session;

36

37 /* X509 stuff */

38 gnutls::certificate_credentials credentials;

39

40

41 /* sets the trusted cas file

42 */

43 credentials.set_x509_trust_file(CAFILE, GNUTLS_X509_FMT_PEM);
44 /* put the x509 credentials to the current session
45 */

46 session.set_credentials(credentials);

a7

48 /* Use default priorities */

49 session.set_priority ("NORMAL", NULL);

50

51 /* connect to the peer

52 */

53 sd = tcp_connect();

207

6.1. CLIENT EXAMPLES

54 session.set_transport_ptr((gnutls_transport_ptr_t) (ptrdiff_t)sd);
55

56 /* Perform the TLS handshake

57 */

58 int ret = session.handshake();

59 if (ret < 0)

60 {

61 throw std::runtime_error ("Handshake failed");

62 }

63 else

64 {

65 std::cout << "- Handshake was completed" << std::endl;
66 }

67

68 session.send (MSG, strlen(MSG));

69 char buffer [MAX_BUF + 1];

70 ret = session.recv(buffer, MAX_BUF);

71 if (ret == 0)

72 {

73 throw std::runtime_error("Peer has closed the TLS connection");
74 }

75 else if (ret < 0)

76 {

77 throw std::runtime_error(gnutls_strerror(ret));

78 }

79

80 std::cout << "- Received " << ret << " bytes:" << std::endl;
81 std::cout.write(buffer, ret);

82 std::cout << std::endl;

83

84 session.bye (GNUTLS_SHUT_RDWR) ;

85 }

86 catch (std::exception &ex)

87 {

88 std::cerr << "Exception caught: " << ex.what() << std::endl;
89 }

90

91 if (sd != -1)

92 tcp_close(sd);

93

94 gnutls_global_deinit();

95

96 return O;

o7 | }

6.1.12. Helper functions for TCP connections

Those helper function abstract away TCP connection handling from the other examples. It is
required to build some examples.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

IR SR

o

208

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

6
7 | #include <stdio.h>

8 | #include <stdlib.h>

9 | #include <string.h>

10 | #include <sys/types.h>

11 | #include <sys/socket.h>

12 | #include <arpa/inet.h>

13 | #include <netinet/in.h>

14 | #include <unistd.h>

15

16 | /* tcp.c */

17 | int tcp_connect(void) ;

18 | void tcp_close(int sd);

19

20 | /* Connects to the peer and returns a socket

21 | * descriptor.

22| */

23 | extern int tcp_connect(void)

24 | {

25 const char *PORT = "5556";

26 const char *SERVER = "127.0.0.1";

27 int err, sd;

28 struct sockaddr_in sa;

29

30 /* connects to server

31 */

32 sd = socket (AF_INET, SOCK_STREAM, 0);

33

34 memset (&sa, ’\0’, sizeof(sa));

35 sa.sin_family = AF_INET;

36 sa.sin_port = htons(atoi(PORT));

37 inet_pton(AF_INET, SERVER, &sa.sin_addr);
38

39 err = connect(sd, (struct sockaddr *) &sa, sizeof(sa));
40 if (err < 0) {

41 fprintf (stderr, "Connect error\n");
42 exit(1);

43 }

14

45 return sd;

46 | }

a7

48 | /* closes the given socket descriptor.

49| */

50 | extern void tcp_close(int sd)

51 | {

52 shutdown(sd, SHUT_RDWR); /* no more receptions */
53 close(sd);

54|}

6.1.13. Helper functions for UDP connections

The UDP helper functions abstract away UDP connection handling from the other examples.
It is required to build the examples using UDP.

209

55

6.1.

CLIENT EXAMPLES

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <unistd.h>

/* udp.c */
int udp_connect(void);
void udp_close(int sd);

/* Connects to the peer and returns a socket
* descriptor.
*/
extern int udp_connect(void)
{
const char *PORT = "5557";
const char *SERVER = "127.0.0.1";
int err, sd, optval;
struct sockaddr_in sa;

/* connects to server
*/
sd = socket(AF_INET, SOCK_DGRAM, 0);

memset (&sa, ’\0’, sizeof(sa));
sa.sin_family = AF_INET;

sa.sin_port = htons(atoi(PORT));
inet_pton(AF_INET, SERVER, &sa.sin_addr);

#if defined (IP_DONTFRAG)
optval = 1;
setsockopt (sd, IPPROTO_IP, IP_DONTFRAG,

(const void *) &optval, sizeof (optval));

#elif defined (IP_MTU_DISCOVER)
optval = IP_PMTUDISC_DO;
setsockopt (sd, IPPROTO_IP, IP_MTU_DISCOVER,

(const void *) &optval, sizeof (optval));

#endif
err = connect(sd, (struct sockaddr *) &sa, sizeof(sa));
if (err < 0) {
fprintf (stderr, "Connect error\n");
exit(1);
}
return sd;
}

210

© 0 N O ;oA W N e

35
36
37

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

/* close
*/
extern v

{

s the given socket descriptor.
oid udp_close(int sd)

close(sd);

6.2. Server examples

This section contains examples of TLS and SSL servers, using GnuTLS.

6.2.1.

Echo server with X.509 authentication

This example is a very simple echo server which supports X.509 authentication.

/* This

#ifdef H
#include
#endif

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#define
#define
#define
#define

/* The O
* of th
* using
* $ ocs

*/
#define

/* This
* 0CSP
*/

#define
#define

example code is placed in the public domain. */

AVE_CONFIG_H
<config.h>

<stdio.h>
<stdlib.h>
<errno.h>
<sys/types.h>
<sys/socket.h>
<arpa/inet.h>
<netinet/in.h>
<string.h>
<unistd.h>
<gnutls/gnutls.h>

KEYFILE "key.pem"

CERTFILE "cert.pem"

CAFILE "/etc/ssl/certs/ca-certificates.crt"
CRLFILE "crl.pem"

CSP status file contains up to date information about revocation

e server’s certificate. That can be periodically be updated

ptool --ask --load-cert your_cert.pem --load-issuer your_issuer.pem
--load-signer your_issuer.pem --outfile ocsp-status.der

OCSP_STATUS_FILE "ocsp-status.der"
is a sample TLS 1.0 echo server, using X.509 authentication and

stapling support.

MAX_BUF 1024
PORT 5556 /* listen to 5556 port */

211

38
39
40
4

ju

42
43
44
45
46
47
48
49
50

51

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

82
83
84
85
86
87
88
89
90
91
92
93
94

6.2. SERVER EXAMPLES

/* These are global */
static gnutls_dh_params_t dh_params;

static int generate_dh_params(void)

{

}

int main(void)

{

unsigned int bits = gnutls_sec_param_to_pk_bits(GNUTLS_PK_DH,
GNUTLS_SEC_PARAM_LEGACY) ;

/* Generate Diffie-Hellman parameters - for use with DHE
* kx algorithms. When short bit length is used, it might
* be wise to regenerate parameters often.

*/

gnutls_dh_params_init (&dh_params) ;

gnutls_dh_params_generate2(dh_params, bits);

return O;

int listen_sd;

int sd, ret;
gnutls_certificate_credentials_t x509_cred;
gnutls_priority_t priority_cache;
struct sockaddr_in sa_serv;
struct sockaddr_in sa_cli;
socklen_t client_len;

char topbuf [612];
gnutls_session_t session;

char buffer [MAX_BUF + 1];

int optval = 1;

/* for backwards compatibility with gnutls < 3.3.0 */
gnutls_global_init();

gnutls_certificate_allocate_credentials(&x509_cred) ;

/* gnutls_certificate_set_x509_system_trust(xcred); */

gnutls_certificate_set_x509_trust_file(x509_cred, CAFILE,
GNUTLS_X509_FMT_PEM) ;

gnutls_certificate_set_x509_crl_file(x509_cred, CRLFILE,
GNUTLS_X509_FMT_PEM) ;

ret =
gnutls_certificate_set_x509_key_file(x509_cred, CERTFILE,
KEYFILE,
GNUTLS_X509_FMT_PEM) ;
if (ret < 0) {
printf("No certificate or key were found\n");
exit(1);
}

/* loads an OCSP status request if available */

gnutls_certificate_set_ocsp_status_request_file(x509_cred,
OCSP_STATUS_FILE,
0);

generate_dh_params() ;

212

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

96
97 gnutls_priority_init(&priority_cache,

98 "PERFORMANCE: ,SERVER_PRECEDENCE", NULL);
99

100

101 gnutls_certificate_set_dh_params(x509_cred, dh_params);

102

103 /* Socket operations

104 */

105 listen_sd = socket(AF_INET, SOCK_STREAM, 0);

106

107 memset (&sa_serv, ’\0’, sizeof(sa_serv));

108 sa_serv.sin_family = AF_INET;

109 sa_serv.sin_addr.s_addr = INADDR_ANY;

110 sa_serv.sin_port = htons(PORT); /* Server Port number */

111

112 setsockopt(listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,
113 sizeof (int));

114

115 bind(listen_sd, (struct sockaddr *) &sa_serv, sizeof(sa_serv));
116

117 listen(listen_sd, 1024);

118

119 printf ("Server ready. Listening to port ’%d’.\n\n", PORT);

120

121 client_len = sizeof(sa_cli);

122 for (5;) {

123 gnutls_init(&session, GNUTLS_SERVER);

124 gnutls_priority_set(session, priority_cache);

125 gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE,
126 x509_cred) ;

127

128 /* We don’t request any certificate from the client.
129 * If we did we would need to verify it. One way of

130 * doing that is shown in the "Verifying a certificate"
131 * example.

132 */

133 gnutls_certificate_server_set_request(session,

134 GNUTLS_CERT_IGNORE) ;
135

136 sd = accept(listen_sd, (struct sockaddr *) &sa_cli,

137 &client_len);

138

139 printf("- connection from %s, port %d\n",

140 inet_ntop(AF_INET, &sa_cli.sin_addr, topbuf,

141 sizeof (topbuf)), ntohs(sa_cli.sin_port));
142

143 gnutls_transport_set_int(session, sd);

144

145 do {

146 ret = gnutls_handshake(session);

147 }

148 while (ret < O &% gnutls_error_is_fatal(ret) == 0);

149

150 if (ret < 0) {

151 close(sd);

152 gnutls_deinit(session);

153 fprintf (stderr,

213

6.2. SERVER EXAMPLES

"sx% Handshake has failed (%s)\n\n",
gnutls_strerror(ret));
continue;
}
printf ("- Handshake was completed\n");

/* see the Getting peer’s information example */
/* print_info(session); */

for (;;) {
ret = gnutls_record_recv(session, buffer, MAX_BUF);

if (ret == 0) {
printf
("\n- Peer has closed the GnuTLS connection\n");
break;
} else if (ret < O
&& gnutls_error_is_fatal(ret) == 0) {
fprintf (stderr, "*** Warning: %s\n",
gnutls_strerror(ret));
} else if (ret < 0) {
fprintf (stderr, "\n*** Received corrupted "
"data(%d). Closing the connection.\n\n",
ret);
break;
} else if (ret > 0) {
/* echo data back to the client
*/
gnutls_record_send(session, buffer, ret);
}
}
printf ("\n");
/* do not wait for the peer to close the connection.
*/
gnutls_bye(session, GNUTLS_SHUT_WR);

close(sd);
gnutls_deinit(session);

}

close(listen_sd);

gnutls_certificate_free_credentials(x509_cred) ;
gnutls_priority_deinit(priority_cache);

gnutls_global_deinit();

return O;

6.2.2. Echo server with OpenPGP authentication

The following example is an echo server which supports OpenPGP key authentication. You
can easily combine this functionality —that is have a server that supports both X.509 and

214

© 0 N e U A W N e

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

OpenPGP certificates— but we separated them to keep these examples as simple as possible.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <string.h>
#include <unistd.h>
#include <gnutls/gnutls.h>
#include <gnutls/openpgp.h>

#define KEYFILE "secret.asc"
#define CERTFILE "public.asc"
#define RINGFILE "ring.gpg"

/* This is a sample TLS 1.0-OpenPGP echo server.
*/

#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(l);}
#define MAX_BUF 1024
#define PORT 5556 /* listen to 5556 port */

/* These are global */
gnutls_dh_params_t dh_params;

static int generate_dh_params(void)

{
unsigned int bits = gnutls_sec_param_to_pk_bits(GNUTLS_PK_DH,
GNUTLS_SEC_PARAM_LEGACY) ;
/* Generate Diffie-Hellman parameters - for use with DHE
* kx algorithms. These should be discarded and regenerated
* once a day, once a week or once a month. Depending on the
* security requirements.
*/
gnutls_dh_params_init(&dh_params) ;
gnutls_dh_params_generate2(dh_params, bits);
return O;
}

int main(void)

{
int err, listen_sd;
int sd, ret;
struct sockaddr_in sa_serv;
struct sockaddr_in sa_cli;
socklen_t client_len;

215

57
58

110
111
112
113
114

6.2. SERVER EXAMPLES

char topbuf [512];

gnutls_session_t session;
gnutls_certificate_credentials_t cred;
char buffer [MAX_BUF + 1];

int optval = 1;

char name[256] ;

strcpy(name, "Echo Server");

if (gnutls_check_version("3.1.4") == NULL) {
fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n");
exit(1);

}

/* for backwards compatibility with gnutls < 3.3.0 */
gnutls_global_init();

gnutls_certificate_allocate_credentials(&cred);
gnutls_certificate_set_openpgp_keyring_file(cred, RINGFILE,
GNUTLS_OPENPGP_FMT_BASE64) ;

gnutls_certificate_set_openpgp_key_file(cred, CERTFILE, KEYFILE,
GNUTLS_OPENPGP_FMT_BASE64) ;

generate_dh_params() ;
gnutls_certificate_set_dh_params(cred, dh_params);

/* Socket operations

*/

listen_sd = socket(AF_INET, SOCK_STREAM, 0);
SOCKET_ERR(listen_sd, "socket");

memset (&sa_serv, ’\0’, sizeof(sa_serv));
sa_serv.sin_family = AF_INET;

sa_serv.sin_addr.s_addr = INADDR_ANY;

sa_serv.sin_port = htons(PORT); /* Server Port number */

setsockopt(listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,
sizeof (int));

err =
bind(listen_sd, (struct sockaddr *) &sa_serv, sizeof(sa_serv));

SOCKET_ERR(err, "bind");

err = listen(listen_sd, 1024);

SOCKET_ERR(err, "listen");

printf("%s ready. Listening to port ’%d’.\n\n", name, PORT);

client_len = sizeof(sa_cli);
for (5;) {
gnutls_init(&session, GNUTLS_SERVER);
gnutls_priority_set_direct(session,
"NORMAL : +CTYPE-OPENPGP", NULL);

/* request client certificate if any.
*/

gnutls_certificate_server_set_request(session,

216

115
116
117
118
119

135

158

165

CHAPTER 6.

GNUTLS APPLICATION EXAMPLES

}

GNUTLS_CERT_REQUEST) ;

sd = accept(listen_sd, (struct sockaddr *) &sa_cli,
&client_len);

printf("- connection from %s, port %d\n",
inet_ntop(AF_INET, &sa_cli.sin_addr, topbuf,
sizeof (topbuf)), ntohs(sa_cli.sin_port));

gnutls_transport_set_int(session, sd);
ret = gnutls_handshake(session);
if (ret < 0) {
close(sd);
gnutls_deinit(session);
fprintf (stderr,
"s*x* Handshake has failed (%s)\n\n",
gnutls_strerror(ret));
continue;
}
printf ("- Handshake was completed\n");

/* see the Getting peer’s information example */
/* print_info(session); */

for (G5) {
ret = gnutls_record_recv(session, buffer, MAX_BUF);

if (ret == 0) {
printf
("\n- Peer has closed the GnuTLS connection\n");
break;
} else if (ret < O
&& gnutls_error_is_fatal(ret) == 0) {
fprintf(stderr, "*x* Warning: %s\n",
gnutls_strerror(ret));
} else if (ret < 0) {
fprintf (stderr, "\n*** Received corrupted "
"data(%d). Closing the connection.\n\n",
ret);
break;
} else if (ret > 0) {
/* echo data back to the client
*/
gnutls_record_send(session, buffer, ret);
}
}
printf("\n");
/* do not wait for the peer to close the connection.
*/
gnutls_bye(session, GNUTLS_SHUT_WR);

close(sd);
gnutls_deinit(session);

close(listen_sd);

gnutls_certificate_free_credentials(cred);

217

6.2. SERVER EXAMPLES

gnutls_global_deinit();

return O;

6.2.3. Echo server with SRP authentication

This is a server which supports SRP authentication. It is also possible to combine this func-

tionality with a certificate server. Here it is separate for simplicity.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <string.h>
#include <unistd.h>
#include <gnutls/gnutls.h>

#define SRP_PASSWD "tpasswd"
#define SRP_PASSWD_CONF "tpasswd.conf"

#define KEYFILE "key.pem"
#define CERTFILE "cert.pem"
#define CAFILE "/etc/ssl/certs/ca-certificates.crt"

/* This is a sample TLS-SRP echo server.

*/

#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}
#define MAX_BUF 1024
#define PORT 5556 /* listen to 5556 port */

int main(void)
{
int err, listen_sd;
int sd, ret;
struct sockaddr_in sa_serv;
struct sockaddr_in sa_cli;
socklen_t client_len;
char topbuf[512];
gnutls_session_t session;
gnutls_srp_server_credentials_t srp_cred;
gnutls_certificate_credentials_t cert_cred;
char buffer [MAX_BUF + 1];

218

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

44 int optval = 1;

45 char name[256];

46

47 strcpy(name, "Echo Server");

48

49 if (gnutls_check_version("3.1.4") == NULL) {

50 fprintf (stderr, "GnuTLS 3.1.4 or later is required for this example\n");
51 exit(1);

52 }

53

54 /* for backwards compatibility with gnutls < 3.3.0 */

55 gnutls_global_init();

56

57 /* SRP_PASSWD a password file (created with the included srptool utility)
58 */

59 gnutls_srp_allocate_server_credentials(&srp_cred);

60 gnutls_srp_set_server_credentials_file(srp_cred, SRP_PASSWD,

61 SRP_PASSWD_CONF) ;

62

63 gnutls_certificate_allocate_credentials(&cert_cred);

64 gnutls_certificate_set_x509_trust_file(cert_cred, CAFILE,

65 GNUTLS_X509_FMT_PEM) ;

66 gnutls_certificate_set_x509_key_file(cert_cred, CERTFILE, KEYFILE,
67 GNUTLS_X509_FMT_PEM) ;

68

69 /* TCP socket operations

70 */

71 listen_sd = socket (AF_INET, SOCK_STREAM, 0);

72 SOCKET_ERR(listen_sd, "socket");

73

74 memset (&sa_serv, ’\0’, sizeof(sa_serv));

75 sa_serv.sin_family = AF_INET;

76 sa_serv.sin_addr.s_addr = INADDR_ANY;

77 sa_serv.sin_port = htons(PORT); /* Server Port number */

78

79 setsockopt(listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,
80 sizeof (int));

81

82 err =

83 bind(listen_sd, (struct sockaddr *) &sa_serv, sizeof(sa_serv));
84 SOCKET_ERR(err, "bind");

85 err = listen(listen_sd, 1024);

86 SOCKET_ERR(err, "listen");

87

88 printf("%s ready. Listening to port ’%d’.\n\n", name, PORT);

89

90 client_len = sizeof(sa_cli);

91 for (;) {

92 gnutls_init(&session, GNUTLS_SERVER);

93 gnutls_priority_set_direct(session,

94 "NORMAL"

95 ":-KX-ALL:+SRP:+SRP-DSS:+SRP-RSA",
96 NULL) ;

97 gnutls_credentials_set(session, GNUTLS_CRD_SRP, srp_cred);
98 /* for the certificate authenticated ciphersuites.

99 */

100 gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE,
101 cert_cred);

219

6.2. SERVER EXAMPLES

102
103 /* We don’t request any certificate from the client.

104 * If we did we would need to verify it. One way of

105 * doing that is shown in the "Verifying a certificate"
106 * example.

107 */

108 gnutls_certificate_server_set_request(session,

109 GNUTLS_CERT_IGNORE) ;
110

111 sd = accept(listen_sd, (struct sockaddr *) &sa_cli,

112 &client_len);

113

114 printf ("- connection from %s, port %d\n",

115 inet_ntop(AF_INET, &sa_cli.sin_addr, topbuf,

116 sizeof (topbuf)), ntohs(sa_cli.sin_port));
117

118 gnutls_transport_set_int(session, sd);

119

120 do {

121 ret = gnutls_handshake(session);

122 }

123 while (ret < O &% gnutls_error_is_fatal(ret) == 0);

124

125 if (ret < 0) {

126 close(sd);

127 gnutls_deinit(session);

128 fprintf (stderr,

129 "s** Handshake has failed (%s)\n\n",

130 gnutls_strerror(ret));

131 continue;

132 }

133 printf ("- Handshake was completed\n");

134 printf ("- User %s was connected\n",

135 gnutls_srp_server_get_username(session));

136

137 /* print_info(session); */

138

139 for (;;) {

140 ret = gnutls_record_recv(session, buffer, MAX_BUF);
141

142 if (ret == 0) {

143 printf

144 ("\n- Peer has closed the GnuTLS connection\n");
145 break;

146 } else if (ret < O

147 && gnutls_error_is_fatal(ret) == 0) {
148 fprintf (stderr, "#** Warning: %s\n",

149 gnutls_strerror(ret));

150 } else if (ret < 0) {

151 fprintf(stderr, "\n*** Received corrupted "
152 "data(%d). Closing the connection.\n\n",
153 ret);

154 break;

155 } else if (ret > 0) {

156 /* echo data back to the client

157 */

158 gnutls_record_send(session, buffer, ret);
159 }

220

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

}

printf ("\n");

/* do not wait for the peer to close the connection. */
gnutls_bye(session, GNUTLS_SHUT_WR);

close(sd);
gnutls_deinit(session);

}

close(listen_sd);

gnutls_srp_free_server_credentials(srp_cred);
gnutls_certificate_free_credentials(cert_cred);

gnutls_global_deinit();

return O;

6.2.4. Echo server with anonymous authentication

This example server supports anonymous authentication, and could be used to serve the ex-

ample client for anonymous authentication.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <string.h>
#include <unistd.h>
#include <gnutls/gnutls.h>

/* This is a sample TLS 1.0 echo server, for anonymous authentication only.

*/

#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(l);}
#define MAX_BUF 1024
#define PORT 5556 /* listen to 5556 port */

/* These are global */
static gnutls_dh_params_t dh_params;

static int generate_dh_params(void)

{

221

6.2. SERVER EXAMPLES

31 unsigned int bits = gnutls_sec_param_to_pk_bits(GNUTLS_PK_DH,
32 GNUTLS_SEC_PARAM_LEGACY) ;
33 /* Generate Diffie-Hellman parameters - for use with DHE

34 * kx algorithms. These should be discarded and regenerated
35 * once a day, once a week or once a month. Depending on the
36 * security requirements.

37 */

38 gnutls_dh_params_init(&dh_params) ;

39 gnutls_dh_params_generate2(dh_params, bits);

40

41 return O;

a2 | }

43

44 | int main(void)

a5 [{

46 int err, listen_sd;

47 int sd, ret;

48 struct sockaddr_in sa_serv;

49 struct sockaddr_in sa_cli;

50 socklen_t client_len;

51 char topbuf[512];

52 gnutls_session_t session;

53 gnutls_anon_server_credentials_t anoncred;

54 char buffer [MAX_BUF + 1];

55 int optval = 1;

56

57 if (gnutls_check_version("3.1.4") == NULL) {

58 fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n");
59 exit(1);

60 }

61

62 /* for backwards compatibility with gnutls < 3.3.0 */

63 gnutls_global_init();

64

65 gnutls_anon_allocate_server_credentials(&anoncred) ;

66

67 generate_dh_params() ;

68

69 gnutls_anon_set_server_dh_params(anoncred, dh_params);

70

71 /* Socket operations

72 */

73 listen_sd = socket(AF_INET, SOCK_STREAM, 0);

74 SOCKET_ERR(listen_sd, "socket");

75

76 memset (&sa_serv, ’\0’, sizeof(sa_serv));

7 sa_serv.sin_family = AF_INET;

78 sa_serv.sin_addr.s_addr = INADDR_ANY;

79 sa_serv.sin_port = htons(PORT); /* Server Port number */

80

81 setsockopt (listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,
82 sizeof (int));

83

84 err =

85 bind(listen_sd, (struct sockaddr *) &sa_serv, sizeof(sa_serv));
86 SOCKET_ERR(err, "bind");

87 err = listen(listen_sd, 1024);

88 SOCKET_ERR(err, "listen");

222

110
111
112
113
114
115
116
117
118
119

145

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

printf("Server ready. Listening to port ’%d’.\n\n", PORT);

client_len = sizeof(sa_cli);
for (5;) {
gnutls_init(&session, GNUTLS_SERVER);
gnutls_priority_set_direct(session,
"NORMAL : +ANON-ECDH: +ANON-DH" ,
NULL) ;
gnutls_credentials_set(session, GNUTLS_CRD_ANON, anoncred);

sd = accept(listen_sd, (struct sockaddr *) &sa_cli,
&client_len);

printf("- connection from %s, port %d\n",
inet_ntop(AF_INET, &sa_cli.sin_addr, topbuf,
sizeof (topbuf)), ntohs(sa_cli.sin_port));

gnutls_transport_set_int(session, sd);

do {
ret = gnutls_handshake(session);
}
while (ret < O &% gnutls_error_is_fatal(ret) == 0);

if (ret < 0) {
close(sd);
gnutls_deinit(session);
fprintf (stderr,
"x*x* Handshake has failed (%s)\n\n",
gnutls_strerror(ret));
continue;
}
printf ("- Handshake was completed\n");

/* see the Getting peer’s information example */
/* print_info(session); */

for (;) {

ret = gnutls_record_recv(session, buffer, MAX_BUF);

if (ret == 0) {
printf
("\n- Peer has closed the GnuTLS connection\n");
break;
} else if (ret < O
&& gnutls_error_is_fatal(ret) == 0) {
fprintf(stderr, "*x* Warning: %s\n",
gnutls_strerror(ret));
} else if (ret < 0) {
fprintf (stderr, "\n*** Received corrupted "
"data(%d). Closing the connection.\n\n",
ret);
break;
} else if (ret > 0) {
/* echo data back to the client
*/

gnutls_record_send(session, buffer, ret);

223

© 0 N e G A W N e

[
I U

15

16

18
19
20
21
22
23
24
25
26
27
28
29
30

6.2.

SERVER EXAMPLES

}

printf ("\n");

/* do not wait for the peer to close the connection.

*/

gnutls_bye(session, GNUTLS_SHUT_WR);

close(sd);
gnutls_deinit(session);

}

close(listen_sd);
gnutls_anon_free_server_credentials(anoncred);

gnutls_global_deinit();

return O;

6.2.5. DTLS echo server with X.509 authentication

This example is a very simple echo server using Datagram TLS and X.509 authentication.

/* This example code is placed in the public domain. */

#ifdef H
#include
#endif

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#define
#define
#define
#define

/* This
* Note
*/

#define

AVE_CONFIG_H
<config.h>

<stdio.h>
<stdlib.h>
<errno.h>
<sys/types.h>
<sys/socket.h>
<arpa/inet.h>
<netinet/in.h>
<sys/select.h>
<netdb.h>
<string.h>
<unistd.h>

<gnutls/gnutls.h>

<gnutls/dtls.h>

KEYFILE "key.pem"
CERTFILE "cert.pem"

CAFILE "/etc/ssl/certs/ca-certificates.crt"

CRLFILE "crl.pem"

is a sample DTLS echo server, using X.509 authentication.
that error checking is minimal to simplify the example.

MAX_BUFFER 1024

85
86
87
88

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

#define PORT 5557

typedef struct {
gnutls_session_t session;
int fd;
struct sockaddr *cli_addr;
socklen_t cli_addr_size;

} priv_data_st;

static int pull_timeout_func(gnutls_transport_ptr_t ptr, unsigned int ms);

static ssize_t push_func(gnutls_transport_ptr_t p, const void *data,
size_t size);

static ssize_t pull_func(gnutls_transport_ptr_t p, void *data,
size_t size);

static const char *human_addr(const struct sockaddr *sa, socklen_t salen,

char *buf, size_t buflen);
static int wait_for_connection(int fd);
static int generate_dh_params(void);

/* Use global credentials and parameters to simplify
* the example. */

static gnutls_certificate_credentials_t x509_cred;
static gnutls_priority_t priority_cache;

static gnutls_dh_params_t dh_params;

int main(void)

{
int listen_sd;
int sock, ret;
struct sockaddr_in sa_serv;
struct sockaddr_in cli_addr;
socklen_t cli_addr_size;
gnutls_session_t session;
char buffer [MAX_BUFFER];
priv_data_st priv;
gnutls_datum_t cookie_key;
gnutls_dtls_prestate_st prestate;
int mtu = 1400;
unsigned char sequence[8];

/* this must be called once in the program
*/
gnutls_global_init();

gnutls_certificate_allocate_credentials(&x509_cred);
gnutls_certificate_set_x509_trust_file(x509_cred, CAFILE,
GNUTLS_X509_FMT_PEM) ;

gnutls_certificate_set_x509_crl_file(x509_cred, CRLFILE,
GNUTLS_X509_FMT_PEM) ;

ret =
gnutls_certificate_set_x509_key_file(x509_cred, CERTFILE,
KEYFILE,
GNUTLS_X509_FMT_PEM) ;
if (ret < 0) {
printf("No certificate or key were found\n");
exit(1);

225

110
111
112

114
115
116
117
118
119

145

6.2. SERVER EXAMPLES

}
generate_dh_params() ;
gnutls_certificate_set_dh_params(x509_cred, dh_params);

gnutls_priority_init(&priority_cache,
"PERFORMANCE: -VERS-TLS-ALL: +VERS-DTLS1.0: %SERVER_PRECEDENCE",
NULL) ;

gnutls_key_generate(&cookie_key, GNUTLS_COOKIE_KEY_SIZE);

/* Socket operations
*/
listen_sd = socket(AF_INET, SOCK_DGRAM, 0);

memset (&sa_serv, ’\0’, sizeof (sa_serv));
sa_serv.sin_family = AF_INET;
sa_serv.sin_addr.s_addr = INADDR_ANY;
sa_serv.sin_port = htons(PORT);

{ /* DTLS requires the IP don’t fragment (DF) bit to be set */
#if defined (IP_DONTFRAG)
int optval = 1;
setsockopt(listen_sd, IPPROTO_IP, IP_DONTFRAG,
(const void *) &optval, sizeof (optval));
#elif defined(IP_MTU_DISCOVER)
int optval = IP_PMTUDISC_DO;
setsockopt(listen_sd, IPPROTO_IP, IP_MTU_DISCOVER,
(const void *) &optval, sizeof (optval));
#endif
}

bind(listen_sd, (struct sockaddr *) &sa_serv, sizeof(sa_serv));
printf ("UDP server ready. Listening to port ’%d’.\n\n", PORT);

for (;;) {
printf ("Waiting for connection...\n");
sock = wait_for_connection(listen_sd);
if (sock < 0)
continue;

cli_addr_size = sizeof(cli_addr);
ret = recvfrom(sock, buffer, sizeof(buffer), MSG_PEEK,
(struct sockaddr *) &cli_addr,
&cli_addr_size);
if (ret > 0) {
memset (&prestate, 0, sizeof (prestate));
ret =
gnutls_dtls_cookie_verify(&cookie_key,
&cli_addr,
sizeof (cli_addr),
buffer, ret,
&prestate) ;
if (ret < 0) { /* cookie not valid */
priv_data_st s;

226

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

memset (&s, 0, sizeof(s));

s.fd = sock;

s.cli_addr = (void *) &cli_addr;
s.cli_addr_size = sizeof(cli_addr);

printf
("Sending hello verify request to %s\n",
human_addr ((struct sockaddr *)
&cli_addr,
sizeof (cli_addr), buffer,
sizeof (buffer)));

gnutls_dtls_cookie_send(&cookie_key,
&cli_addr,
sizeof (cli_addr),
&prestate,
(gnutls_transport_ptr_t)
& s, push_func);

/* discard peeked data */
recvfrom(sock, buffer, sizeof (buffer), O,
(struct sockaddr *) &cli_addr,
&cli_addr_size);
usleep(100);
continue;
}
printf ("Accepted connection from %s\n",
human_addr ((struct sockaddr *)
&cli_addr, sizeof(cli_addr),
buffer, sizeof (buffer)));
} else
continue;

gnutls_init(&session, GNUTLS_SERVER | GNUTLS_DATAGRAM);

gnutls_priority_set(session, priority_cache);

gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE,
x509_cred) ;

gnutls_dtls_prestate_set(session, &prestate);
gnutls_dtls_set_mtu(session, mtu);

priv.session = session;

priv.fd = sock;

priv.cli_addr = (struct sockaddr *) &cli_addr;
priv.cli_addr_size = sizeof(cli_addr);

gnutls_transport_set_ptr(session, &priv);
gnutls_transport_set_push_function(session, push_func);
gnutls_transport_set_pull_function(session, pull_func);
gnutls_transport_set_pull_timeout_function(session,
pull_timeout_func);

do {
ret = gnutls_handshake(session);
}
while (ret == GNUTLS_E_INTERRUPTED
|| ret == GNUTLS_E_AGAIN);
/* Note that DTLS may also receive GNUTLS_E_LARGE_PACKET.

227

6.2. SERVER EXAMPLES

205 * In that case the MTU should be adjusted.

206 */

207

208 if (ret < 0) {

209 fprintf(stderr, "Error in handshake(): %s\n",
210 gnutls_strerror(ret));

211 gnutls_deinit(session);

212 continue;

213 }

214

215 printf ("- Handshake was completed\n");

216

217 for (5;) {

218 do {

219 ret =

220 gnutls_record_recv_seq(session, buffer,
221 MAX_BUFFER,
222 sequence) ;
223 }

224 while (ret == GNUTLS_E_AGAIN

225 || ret == GNUTLS_E_INTERRUPTED);

226

227 if (ret < 0 &% gnutls_error_is_fatal(ret) == 0) {
228 fprintf (stderr, "#** Warning: %s\n",
229 gnutls_strerror(ret));

230 continue;

231 } else if (ret < 0) {

232 fprintf(stderr, "Error in recv(): %s\n",
233 gnutls_strerror(ret));

234 break;

235 }

236

237 if (ret == 0) {

238 printf ("EOF\n\n");

239 break;

240 }

241

242 buffer[ret] = 0;

243 printf

244 ("received[%.2x%.2x%.2x%. 2x% . 2x% . 2x%.2x%.2x] : %s\n",
245 sequence[0], sequence[1], sequence[2],

246 sequence[3], sequence[4], sequence[5],

247 sequence[6], sequence[7], buffer);

248

249 /* reply back */

250 ret = gnutls_record_send(session, buffer, ret);
251 if (ret < 0) {

252 fprintf (stderr, "Error in send(): %s\n",
253 gnutls_strerror(ret));

254 break;

255 }

256 }

257

258 gnutls_bye(session, GNUTLS_SHUT_WR) ;

259 gnutls_deinit(session);

260

261 }

262 close(listen_sd);

228

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

263
264 gnutls_certificate_free_credentials(x509_cred);
265 gnutls_priority_deinit(priority_cache);
266

267 gnutls_global_deinit();

268

269 return O;

270

271 | }

272

273 | static int wait_for_connection(int fd)

274 | {

275 fd_set rd, wr;

276 int n;

277

278 FD_ZERO(&rd) ;

279 FD_ZERO (&wr) ;

280

281 FD_SET(fd, &rd);

282

283 /* waiting part */

284 n = select(fd + 1, &rd, &wr, NULL, NULL);
285 if (n == -1 && errno == EINTR)

286 return -1;

287 if (n < 0) {

288 perror("select()");

289 exit(1);

290 }

291

292 return fd;

203 | }

294

205 | /* Wait for data to be received within a timeout period in milliseconds
206 | */

297 | static int pull_timeout_func(gnutls_transport_ptr_t ptr, unsigned int ms)
208 | {

299 fd_set rfds;

300 struct timeval tv;

301 priv_data_st *priv = ptr;

302 struct sockaddr_in cli_addr;
303 socklen_t cli_addr_size;

304 int ret;

305 char c;

306

307 FD_ZERO(&rfds) ;

308 FD_SET(priv->fd, &rfds);

309

310 tv.tv_sec = 0;

311 tv.tv_usec = ms *x 1000;

312

313 while (tv.tv_usec >= 1000000) {
314 tv.tv_usec -= 1000000;
315 tv.tv_sec++;

316 }

317

318 ret = select(priv->fd + 1, &rfds, NULL, NULL, &tv);
319

320 if (ret <= 0)

229

350

6.2. SERVER EXAMPLES

return ret;

/* only report ok if the next message is from the peer we expect
* from
*/
cli_addr_size = sizeof(cli_addr);
ret =
recvfrom(priv->fd, &c, 1, MSG_PEEK,
(struct sockaddr *) &cli_addr, &cli_addr_size);
if (ret > 0) {
if (cli_addr_size == priv->cli_addr_size
&& memcmp(&cli_addr, priv->cli_addr,
sizeof (cli_addr)) == 0)
return 1;

}

return 0;

}

static ssize_t
push_func(gnutls_transport_ptr_t p, const void *data, size_t size)

{
priv_data_st *priv = p;
return sendto(priv->fd, data, size, 0, priv->cli_addr,
priv->cli_addr_size);
}

static ssize_t pull_func(gnutls_transport_ptr_t p, void *data, size_t size)
{

priv_data_st *priv = p;

struct sockaddr_in cli_addr;

socklen_t cli_addr_size;

char buffer[64];

int ret;

cli_addr_size = sizeof(cli_addr);
ret =
recvfrom(priv->fd, data, size, O,
(struct sockaddr *) &cli_addr, &cli_addr_size);
if (ret == -1)
return ret;

if (cli_addr_size == priv->cli_addr_size
&& memcmp(&cli_addr, priv->cli_addr, sizeof(cli_addr)) == 0)
return ret;

printf("Denied connection from %s\n",
human_addr ((struct sockaddr *)
&cli_addr, sizeof(cli_addr), buffer,
sizeof (buffer)));

gnutls_transport_set_errno(priv—>session, EAGAIN);
return -1;

}

static const char *human_addr(const struct sockaddr *sa, socklen_t salen,
char *buf, size_t buflen)

230

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

380 const char *save_buf = buf;
381 size_t 1;

383 if ('buf || 'buflen)
384 return NULL;

386 *buf = °\0’;

388 switch (sa->sa_family) {

389 | #if HAVE_IPV6

390 case AF_INET6:

391 snprintf (buf, buflen, "IPv6 ");
392 break;

393 | #endif

395 case AF_INET:

396 snprintf (buf, buflen, "IPv4 ");
397 break;

398 }

400 1 = strlen(buf);
401 buf += 1;
402 buflen -= 1;

404 if (getnameinfo(sa, salen, buf, buflen, NULL, O, NI_NUMERICHOST) !=
405 0)
406 return NULL;

408 1 = strlen(buf);
409 buf += 1;
410 buflen -= 1;

112 strncat(buf, " port ", buflen);

414 1 = strlen(buf);
415 buf += 1;
416 buflen -= 1;

418 if (getnameinfo(sa, salen, NULL, O, buf, buflen, NI_NUMERICSERV) !=
419 0)
420 return NULL;

422 return save_buf;
423 | }

425 | static int generate_dh_params(void)

a26 | {

427 int bits = gnutls_sec_param_to_pk_bits(GNUTLS_PK_DH,

428 GNUTLS_SEC_PARAM_LEGACY) ;

430 /* Generate Diffie-Hellman parameters - for use with DHE
431 * kx algorithms. When short bit length is used, it might
432 * be wise to regenerate parameters often.

433 */

434 gnutls_dh_params_init (&dh_params) ;

435 gnutls_dh_params_generate2(dh_params, bits);

231

437
438

15
16
17

19
20
21
22
23
24
25
26
27
28
29
30

32
33
34
35
36
37
38
39
40
41
42
4

w

44

6.3.

OCSP EXAMPLE

return 0O;

}

6.3. OCSP example

Generate OCSP request

A small tool to generate OCSP requests.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gnutls/gnutls.h>
#include <gnutls/crypto.h>
#include <gnutls/ocsp.h>
#ifndef NO_LIBCURL
#include <curl/curl.h>
#endif

#include "read-file.h"

size_t get_data(void *buffer, size_t size, size_t nmemb, void *userp);

static gnutls_x509_crt_t load_cert(const char *cert_file);

static void _response_info(const gnutls_datum_t * data);

static void

_generate_request (gnutls_datum_t * rdata, gnutls_x509_crt_t cert,
gnutls_x509_crt_t issuer, gnutls_datum_t *nonce);

static int

_verify_response(gnutls_datum_t * data, gnutls_x509_crt_t cert,
gnutls_x509_crt_t signer, gnutls_datum_t *nonce);

/* This program queries an OCSP server.
It expects three files. argv[1] containing the certificate to
be checked, argv[2] holding the issuer for this certificate,
and argv[3] holding a trusted certificate to verify OCSP’s response.
argv[4] is optional and should hold the server host name.

For simplicity the libcurl library is used.

*/

int main(int argc, char *argv([])
{

gnutls_datum_t ud, tmp;

int ret;

gnutls_datum_t req;

gnutls_x509_crt_t cert, issuer, signer;
#ifndef NO_LIBCURL

CURL *handle;

232

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

struct curl_slist *headers = NULL;
#endif
int v, seq;
const char *cert_file = argv[1];
const char *issuer_file = argv[2];
const char *signer_file = argv[3];
char *hostname = NULL;
unsigned char noncebuf [23];
gnutls_datum_t nonce = { noncebuf, sizeof (noncebuf) };

gnutls_global_init();

if (argc > 4)
hostname = argv([4];

ret = gnutls_rnd(GNUTLS_RND_NONCE, nonce.data, nonce.size);
if (ret < 0)
exit(1);

cert = load_cert(cert_file);
issuer = load_cert(issuer_file);
signer = load_cert(signer_file);

if (hostname == NULL) {

for (seq = 0;; seq++) {
ret =
gnutls_x509_crt_get_authority_info_access(cert,
seq,
GNUTLS_IA_OCSP_URI,
&tmp,
NULL) ;
if (ret == GNUTLS_E_UNKNOWN_ALGORITHM)
continue;
if (ret == GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE) {
fprintf (stderr,
"No URI was found in the certificate.\n");
exit(1);
}
if (ret < 0) {
fprintf(stderr, "error: ¥%s\n",
gnutls_strerror(ret));
exit(1);
}

printf ("CA issuers URI: %.*s\n", tmp.size,
tmp.data);

hostname = malloc(tmp.size + 1);
memcpy (hostname, tmp.data, tmp.size);

hostname [tmp.size] = 0;

gnutls_free(tmp.data);
break;

233

6.3. OCSP EXAMPLE

103 /* Note that the OCSP servers hostname might be available
104 * using gnutls_x509_crt_get_authority_info_access() in the issuer’s
105 * certificate */

106

107 memset (&ud, 0, sizeof(ud));

108 fprintf (stderr, "Connecting to %s\n", hostname);

109

110 _generate_request (&req, cert, issuer, &nonce);

111

112 | #ifndef NO_LIBCURL

113 curl_global_init (CURL_GLOBAL_ALL);

114

115 handle = curl_easy_init();

116 if (handle == NULL)

117 exit(1);

118

119 headers =

120 curl_slist_append(headers,

121 "Content-Type: application/ocsp-request");
122

123 curl_easy_setopt(handle, CURLOPT_HTTPHEADER, headers);

124 curl_easy_setopt (handle, CURLOPT_POSTFIELDS, (void *) req.data);
125 curl_easy_setopt (handle, CURLOPT_POSTFIELDSIZE, req.size);
126 curl_easy_setopt (handle, CURLOPT_URL, hostname);

127 curl_easy_setopt (handle, CURLOPT_WRITEFUNCTION, get_data);
128 curl_easy_setopt (handle, CURLOPT_WRITEDATA, &ud);

129

130 ret = curl_easy_perform(handle);

131 if (ret !'= 0) {

132 fprintf(stderr, "curl[)d] error %d\n", __LINE__, ret);
133 exit(1);

134 }

135

136 curl_easy_cleanup(handle) ;

137 | #endif

138

139 _response_info(&ud) ;

140

141 v = _verify_response(&ud, cert, signer, &nonce);

142

143 gnutls_x509_crt_deinit(cert);

144 gnutls_x509_crt_deinit(issuer);

145 gnutls_x509_crt_deinit(signer);

146 gnutls_global_deinit();

147

148 return v;

149 | }

151 | static void _response_info(const gnutls_datum_t * data)

152 | {

153 gnutls_ocsp_resp_t resp;

154 int ret;

155 gnutls_datum buf;

156

157 ret = gnutls_ocsp_resp_init(&resp);
158 if (ret < 0)

159 exit(1);

160

234

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

161 ret = gnutls_ocsp_resp_import(resp, data);
162 if (ret < 0)

163 exit(1);

164

165 ret = gnutls_ocsp_resp_print(resp, GNUTLS_OCSP_PRINT_FULL, &buf);
166 if (ret !=0)

167 exit(1);

168

169 printf("%.*s", buf.size, buf.data);

170 gnutls_free(buf.data);

171

172 gnutls_ocsp_resp_deinit(resp) ;

173 |

174

175 | static gnutls_x509_crt_t load_cert(const char *cert_file)
176 | {

177 gnutls_x509_crt_t crt;

178 int ret;

179 gnutls_datum_t data;

180 size_t size;

181

182 ret = gnutls_x509_crt_init(&crt);

183 if (ret < 0)

184 exit(1);

185

186 data.data = (void *) read_binary_file(cert_file, &size);

187 data.size = size;

188

189 if (!data.data) {

190 fprintf(stderr, "Cannot open file: %s\n", cert_file);
191 exit(1);

192 }

193

194 ret = gnutls_x509_crt_import(crt, &data, GNUTLS_X509_FMT_PEM);
195 free(data.data);

196 if (ret < 0) {

197 fprintf (stderr, "Cannot import certificate in %s: %s\n",
198 cert_file, gnutls_strerror(ret));

199 exit(1);

200 }

201

202 return crt;

203 | }

204

205 | static void
206 _generate_request(gnutls_datum_t * rdata, gnutls_x509_crt_t cert,

207 gnutls_x509_crt_t issuer, gnutls_datum_t *nonce)
208 | {

209 gnutls_ocsp_req_t req;

210 int ret;

211

212 ret = gnutls_ocsp_req_init(&req);

213 if (ret < 0)

214 exit(1);

215

216 ret = gnutls_ocsp_req_add_cert(req, GNUTLS_DIG_SHA1l, issuer, cert);
217 if (ret < 0)

218 exit(1);

235

245

259

275

6.3. OCSP EXAMPLE

ret = gnutls_ocsp_req_set_nonce(req, 0, nonce);
if (ret < 0)
exit(1);

ret = gnutls_ocsp_req_export(req, rdata);
if (ret != 0)
exit(1);

gnutls_ocsp_req_deinit(req);

return;

}

static int
_verify_response(gnutls_datum_t * data, gnutls_x509_crt_t cert,
gnutls_x509_crt_t signer, gnutls_datum_t *nonce)

{

gnutls_ocsp_resp_t resp;

int ret;

unsigned verify;

gnutls_datum_t rnonce;

ret = gnutls_ocsp_resp_init(&resp);
if (ret < 0)
exit(1);

ret = gnutls_ocsp_resp_import(resp, data);
if (ret < 0)
exit(1);

ret = gnutls_ocsp_resp_check_crt(resp, 0, cert);
if (ret < 0)
exit(1);

ret = gnutls_ocsp_resp_get_nonce(resp, NULL, &rnonce);
if (ret < 0)

exit(1);

if (rnonce.size != nonce->size || memcmp(nonce->data, rnonce.data,
nonce->size) != 0) {
exit(1);

}

ret = gnutls_ocsp_resp_verify_direct(resp, signer, &verify, 0);
if (ret < 0)
exit(1);

printf("Verifying OCSP Response: ");
if (verify == 0)

printf ("Verification success!\n");
else

printf ("Verification error!\n");

if (verify & GNUTLS_OCSP_VERIFY_SIGNER_NOT_FOUND)
printf ("Signer cert not found\n");

236

311

315

o g A W N e

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

if (verify & GNUTLS_OCSP_VERIFY_SIGNER_KEYUSAGE_ERROR)
printf("Signer cert keyusage error\n");

if (verify & GNUTLS_OCSP_VERIFY_UNTRUSTED_SIGNER)
printf("Signer cert is not trusted\n");

if (verify & GNUTLS_OCSP_VERIFY_INSECURE_ALGORITHM)
printf ("Insecure algorithm\n");

if (verify & GNUTLS_OCSP_VERIFY_SIGNATURE_FAILURE)
printf("Signature failure\n");

if (verify & GNUTLS_OCSP_VERIFY_CERT_NOT_ACTIVATED)
printf("Signer cert not yet activated\n");

if (verify & GNUTLS_OCSP_VERIFY_CERT_EXPIRED)
printf ("Signer cert expired\n");

gnutls_free(rnonce.data);
gnutls_ocsp_resp_deinit(resp);

return verify;

size_t get_data(void *buffer, size_t size, size_t nmemb, void *userp)
{

gnutls_datum_t *ud = userp;
size *= nmemb;

ud->data = realloc(ud->data, size + ud->size);

if (ud->data == NULL) {
fprintf (stderr, "Not enough memory for the request\n");
exit(1);

}

memcpy (¢ud->data[ud->size], buffer, size);
ud->size += size;

return size;

6.4. Miscellaneous examples

6.4.1. Checking for an alert

This is a function that checks if an alert has been received in the current session.

/* This example code is placed in the public domain. */
#ifdef HAVE_CONFIG_H

#include <config.h>
#endif

237

6.4. MISCELLANEOUS EXAMPLES

7 | #include <stdio.h>

8 | #include <stdlib.h>

o | #include <gnutls/gnutls.h>

10

11 | #include "examples.h"

12

13| /* This function will check whether the given return code from

14| * a gnutls function (recv/send), is an alert, and will print

15| * that alert.

16| */

17 | void check_alert(gnutls_session_t session, int ret)

18| {

19 int last_alert;

20

21 if (ret == GNUTLS_E_WARNING_ALERT_RECEIVED

22 || ret == GNUTLS_E_FATAL_ALERT_RECEIVED) {

23 last_alert = gnutls_alert_get(session);

24

25 /* The check for renegotiation is only useful if we are
26 * a server, and we had requested a rehandshake.

27 */

28 if (last_alert == GNUTLS_A_NO_RENEGOTIATION &&

29 ret == GNUTLS_E_WARNING_ALERT_RECEIVED)

30 printf ("* Received NO_RENEGOTIATION alert. "

31 "Client Does not support renegotiation.\n");
32 else

33 printf ("* Received alert ’%d’: %s.\n", last_alert,
34 gnutls_alert_get_name(last_alert));

35 }

36 | }

6.4.2. X.509 certificate parsing example

To demonstrate the X.509 parsing capabilities an example program is listed below. That
program reads the peer’s certificate, and prints information about it.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>

© 0 N o U A W N e

o e
(S

#include "examples.h"

-
w

static const char *bin2hex(const void *bin, size_t bin_size)

{

=R e
SRS

static char printable[110];
const unsigned char *_bin = bin;
char *print;

size_t 1i;

[S
© o =

238

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

20
21 if (bin_size > 50)

22 bin_size = 50;

23

24 print = printable;

25 for (i = 0; i < bin_size; i++) {

26 sprintf (print, "%.2x ", _bin[il]);

27 print += 2;

28 }

29

30 return printable;

31|}

32

33 | /* This function will print information about this session’s peer

34| * certificate.

35| */

36 | void print_x509_certificate_info(gnutls_session_t session)

37 | {

38 char seriall[40];

39 char dn[256];

40 size_t size;

41 unsigned int algo, bits;

42 time_t expiration_time, activation_time;

43 const gnutls_datum_t *cert_list;

44 unsigned int cert_list_size = 0;

45 gnutls_x509_crt_t cert;

46 gnutls_datum_t cinfo;

47

48 /* This function only works for X.509 certificates.

49 */

50 if (gnutls_certificate_type_get(session) != GNUTLS_CRT_X509)
51 return;

52

53 cert_list = gnutls_certificate_get_peers(session, &cert_list_size);
54

55 printf ("Peer provided %d certificates.\n", cert_list_size);
56

57 if (cert_list_size > 0) {

58 int ret;

59

60 /* we only print information about the first certificate.
61 */

62 gnutls_x509_crt_init (&cert);

63

64 gnutls_x509_crt_import(cert, &cert_list[0],

65 GNUTLS_X509_FMT_DER) ;

66

67 printf("Certificate info:\n");

68

69 /* This is the preferred way of printing short information about
70 a certificate. */

71

72 ret =

73 gnutls_x509_crt_print(cert, GNUTLS_CRT_PRINT_ONELINE,
74 &cinfo) ;

75 if (ret == 0) {

76 printf ("\t%s\n", cinfo.data);

77 gnutls_free(cinfo.data);

239

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

102
103
104
105
106
107

109
110
111
112
113
114
115
116
117

6.4. MISCELLANEOUS EXAMPLES

}

/* If you want to extract fields manually for some other reason,

below are popular example calls. */

expiration_time =
gnutls_xb509_crt_get_expiration_time(cert);

activation_time =
gnutls_xb509_crt_get_activation_time(cert);

printf ("\tCertificate is valid since: %s",
ctime(&activation_time));

printf ("\tCertificate expires: %s",
ctime (&expiration_time));

/* Print the serial number of the certificate.
*/

size = sizeof(serial);

gnutls_x509_crt_get_serial(cert, serial, &size);

printf ("\tCertificate serial number: %s\n",
bin2hex(serial, size));

/* Extract some of the public key algorithm’s parameters
*/
algo = gnutls_x509_crt_get_pk_algorithm(cert, &bits);

printf ("Certificate public key: %s",
gnutls_pk_algorithm_get_name(algo));

/* Print the version of the X.509
* certificate.
*/
printf ("\tCertificate version: #)d\n",
gnutls_x509_crt_get_version(cert));

size = sizeof(dn);
gnutls_x509_crt_get_dn(cert, dn, &size);
printf ("\tDN: %s\n", dn);

size = sizeof(dn);
gnutls_x509_crt_get_issuer_dn(cert, dn, &size);

printf ("\tIssuer’s DN: %s\n", dn);

gnutls_x509_crt_deinit(cert);

6.4.3. Listing the ciphersuites in a priority string

This is a small program to list the enabled ciphersuites by a priority string.

1| /* This example code is placed in the public domain. */
2

240

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

50

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gnutls/gnutls.h>

static void print_cipher_suite_list(const char *priorities)
{

size_t i;

int ret;

unsigned int idx;

const char *name;

const char *err;

unsigned char id[2];

gnutls_protocol_t version;

gnutls_priority_t pcache;

if (priorities != NULL) {
printf ("Cipher suites for %s\n", priorities);

ret = gnutls_priority_init(&pcache, priorities, &err);
if (ret < 0) {
fprintf(stderr, "Syntax error at: %s\n", err);

exit(1);
}
for (i = 0;; i++) {
ret =
gnutls_priority_get_cipher_suite_index(pcache,
i,
&idx) ;
if (ret == GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE)
break;
if (ret == GNUTLS_E_UNKNOWN_CIPHER_SUITE)
continue;
name =

gnutls_cipher_suite_info(idx, id, NULL, NULL,
NULL, &version);

if (name != NULL)
printf ("%-50s\t0x%02x, 0x%02x\t%s\n",
name, (unsigned char) id[0],
(unsigned char) id[1],
gnutls_protocol_get_name(version));

}
return;
}
}
int main(int argc, char **argv)
{
if (argec > 1)
print_cipher_suite_list(argv[1]);
return O;
}

241

6.4. MISCELLANEOUS EXAMPLES

6.4.4. PKCS #12 structure generation example

This small program demonstrates the usage of the PKCS #12 API, by generating such a
structure.

1| /* This example code is placed in the public domain. */

2

3 | #ifdef HAVE_CONFIG_H

4| #include <config.h>

5 | #endif

6

7 | #include <stdio.h>

8 | #include <stdlib.h>

o | #include <gnutls/gnutls.h>

10 | #include <gnutls/pkcs12.h>

11

12 | #include "examples.h"

13

14 | #define OUTFILE "out.pl2"

15

16 | /* This function will write a pkcsl2 structure into a file.

17| * cert: is a DER encoded certificate

18| * pkcs8_key: is a PKCS #8 encrypted key (note that this must be

19| * encrypted using a PKCS #12 cipher, or some browsers will crash)
20| * password: is the password used to encrypt the PKCS #12 packet.
21| */

22 | int

23 | write_pkcsi2(const gnutls_datum_t * cert,

24 const gnutls_datum_t * pkcs8_key, const char *password)
25 | {

26 gnutls_pkcs12_t pkcsl2;

27 int ret, bag_index;

28 gnutls_pkcs12_bag_t bag, key_bag;

29 char pkcs12_struct[10 * 1024];

30 size_t pkcsl2_struct_size;

31 FILE *fd;

32

33 /* A good idea might be to use gnutls_x509_privkey_get_key_id()
34 * to obtain a unique ID.

35 */

36 gnutls_datum_t key_id = { (void #*) "\x00\x00\x07", 3 };

37

38 gnutls_global_init();

39

40 /* Firstly we create two helper bags, which hold the certificate,
41 * and the (encrypted) key.

42 */

43

44 gnutls_pkcs12_bag_init (&bag) ;

45 gnutls_pkcs12_bag_init (&key_bag) ;

46

47 ret =

48 gnutls_pkcs12_bag_set_data(bag, GNUTLS_BAG_CERTIFICATE, cert);
49 if (ret < 0) {

50 fprintf(stderr, "ret: %s\n", gnutls_strerror(ret));
51 return 1;

52 }

242

CHAPTER 6. GNUTLS APPLICATION EXAMPLES

54 /* ret now holds the bag’s index.

55 */

56 bag_index = ret;

57

58 /* Associate a friendly name with the given certificate. Used
59 * by browsers.

60 */

61 gnutls_pkcs12_bag_set_friendly_name(bag, bag_index, "My name");
62

63 /* Associate the certificate with the key using a unique key
64 * ID.

65 */

66 gnutls_pkcs12_bag_set_key_id(bag, bag_index, &key_id);

67

68 /* use weak encryption for the certificate.

69 */

70 gnutls_pkcs12_bag_encrypt(bag, password,

71 GNUTLS_PKCS_USE_PKCS12_RC2_40) ;

72

73 /* Now the key.

74 */

75

76 ret = gnutls_pkcs12_bag_set_data(key_bag,

77 GNUTLS_BAG_PKCS8_ENCRYPTED_KEY,
78 pkcs8_key);

79 if (ret < 0) {

80 fprintf (stderr, "ret: %s\n", gnutls_strerror(ret));
81 return 1;

82 }

83

84 /* Note that since the PKCS #8 key is already encrypted we don’t
85 * bother encrypting that bag.

86 */

87 bag_index = ret;

88

89 gnutls_pkcs12_bag_set_friendly_name(key_bag, bag_index, "My name");
20

91 gnutls_pkcs12_bag_set_key_id(key_bag, bag_index, &key_id);
92

93

94 /* The bags were filled. Now create the PKCS #12 structure.
95 */

96 gnutls_pkcs12_init (&pkcsi2);

97

98 /* Insert the two bags in the PKCS #12 structure.

99 */

100

101 gnutls_pkcs12_set_bag(pkcsi12, bag);

102 gnutls_pkcs12_set_bag(pkcsl2, key_bag);

103

104

105 /* Generate a message authentication code for the PKCS #12
106 * structure.

107 */

108 gnutls_pkcsl2_generate_mac(pkcsl12, password);

109

110 pkcs12_struct_size = sizeof (pkcsl2_struct);

243

6.4. MISCELLANEOUS EXAMPLES

ret =
gnutls_pkcs12_export (pkcs12, GNUTLS_X509_FMT_DER,
pkcs12_struct, &pkcsl2_struct_size);
if (ret < 0) {
fprintf(stderr, "ret: %s\n", gnutls_strerror(ret));
return 1;

}

fd = fopen(OUTFILE, "w");
if (fd == NULL) {
fprintf(stderr, "cannot open file\n");
return 1;
}
fwrite(pkcs12_struct, 1, pkcsl2_struct_size, fd);
fclose(£fd);

gnutls_pkcs12_bag_deinit(bag) ;
gnutls_pkcs12_bag_deinit (key_bag) ;
gnutls_pkcs12_deinit(pkecsi2) ;

return O;

244

©® N o A W N

©

Other included programs

Included with GnuTLS are also a few command line tools that let you use the library for
common tasks without writing an application. The applications are discussed in this chapter.

7.1. Invoking gnutls-cli

Simple client program to set up a TLS connection to some other computer. It sets up a TLS
connection and forwards data from the standard input to the secured socket and vice versa.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the gnutls-cli program. This software is released under the GNU General
Public License, version 3 or later.

gnutls-cli help/usage (“--help”)

This is the automatically generated usage text for gnutls-cli.

The text printed is the same whether selected with the help option (“--help”) or the more-help
option (“--more-help”). more-help will print the usage text by passing it through a pager
program. more-help is disabled on platforms without a working fork(2) function. The PAGER
environment variable is used to select the program, defaulting to “more”. Both will exit with
a status code of 0.

gnutls-cli - GnuTLS client
Usage: gnutls-cli [-<flag> [<val>] | --<name>[{=| }<val>]]... [hostname]
-d, --debug=num Enable debugging
- it must be in the range:
0 to 9999
-V, --verbose More verbose output
- may appear multiple times
--tofu Enable trust on first use authentication
- disabled as ’--no-tofu’
--strict-tofu Fail to connect if a known certificate has changed
- disabled as ’--no-strict-tofu’
--dane Enable DANE certificate verification (DNSSEC)
- disabled as ’--no-dane’
--local-dns Use the local DNS server for DNSSEC resolving

245

7.1. INVOKING GNUTLS-CLI
- disabled as ’--no-local-dns’
--ca-verification Enable CA certificate verification
- disabled as ’--no-ca-verification’

--ocsp
-r, —--resume

-e, —--rehandshake
-s, —--starttls

——app-proto=str
--starttls-proto=str
(https, ftp, smtp, imap)

-u, --udp
—--mtu=num
—-—crlf
--x509fmtder

-f, --fingerprint

--print-cert
—--save-cert=str
——save-ocsp=str
--dh-bits=num
--priority=str
--x509cafile=str
--x509crlfile=file

--pgpkeyfile=file
--pgpkeyring=file
--pgpcertfile=file
--x509keyfile=str
--x509certfile=str
--pgpsubkey=str

--srpusername=str
—--srppasswd=str

--pskusername=str
--pskkey=str

-p, ——port=str
--insecure
--ranges
--benchmark-ciphers
--benchmark-tls-kx

-!, --benchmark-tls-ciphers

-1, --list

-", —-priority-list

-#, —-noticket

-$, —-srtp-profiles=str

-%, -—alpn=str

-b, --heartbeat

-&, —--recordsize=num

- enabled by default
Enable OCSP certificate verification
- disabled as ’--no-ocsp’
Establish a session and resume
Establish a session and rehandshake
Connect, establish a plain session and start TLS
an alias for the ’starttls-proto’ option
The application protocol to be used to obtain the server’s certifi

- prohibits the option ’starttls’
Use DTLS (datagram TLS) over UDP
Set MTU for datagram TLS
- it must be in the range:
0 to 17000
Send CR LF instead of LF
Use DER format for certificates to read from
Send the openpgp fingerprint, instead of the key
Print peer’s certificate in PEM format
Save the peer’s certificate chain in the specified file in PEM fox
Save the peer’s OCSP status response in the provided file
The minimum number of bits allowed for DH
Priorities string
Certificate file or PKCS #11 URL to use
CRL file to use
- file must pre-exist
PGP Key file to use
- file must pre-exist
PGP Key ring file to use
- file must pre-exist
PGP Public Key (certificate) file to use
- requires the option ’pgpkeyfile’
- file must pre-exist
X.509 key file or PKCS #11 URL to use
X.509 Certificate file or PKCS #11 URL to use
- requires the option ’x509keyfile’
PGP subkey to use (hex or auto)
SRP username to use
SRP password to use
PSK username to use
PSK key (in hex) to use
The port or service to connect to
Don’t abort program if server certificate can’t be validated
Use length-hiding padding to prevent traffic analysis
Benchmark individual ciphers
Benchmark TLS key exchange methods
Benchmark TLS ciphers
Print a list of the supported algorithms and modes
- prohibits the option ’port’
Print a list of the supported priority strings
Don’t allow session tickets
Offer SRTP profiles
Application layer protocol
- may appear multiple times
Activate heartbeat support
The maximum record size to advertize

246

cate

mat

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

CHAPTER 7. OTHER INCLUDED PROGRAMS

- it must be in the range:

0 to 4096

-?, --disable-sni Do not send a Server Name Indication (SNI)
-(, --disable-extensions Disable all the TLS extensions
-), —--inline-commands Inline commands of the form ~“<cmd>~
—-%, —--inline-commands-prefix=str Change the default delimiter for inline commands.
-+, —-provider=file Specify the PKCS #11 provider library

- file must pre-exist
-,, ——fips140-mode Reports the status of the FIPS140-2 mode in gnutls library
-v, --version[=arg] output version information and exit
-h, --help display extended usage information and exit
-!, --more-help extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single
hyphen and the flag character.
Operands and options may be intermixed. They will be reordered.

Simple client program to set up a TLS connection to some other computer. It
sets up a TLS connection and forwards data from the standard input to the
secured socket and vice versa.

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

tofu option

This is the “enable trust on first use authentication” option.
This option has some usage constraints. It:
e can be disabled with —no-tofu.

This option will, in addition to certificate authentication, perform authentication based on
previously seen public keys, a model similar to SSH authentication. Note that when tofu
is specified (PKI) and DANE authentication will become advisory to assist the public key
acceptance process.

strict-tofu option

This is the “fail to connect if a known certificate has changed” option.
This option has some usage constraints. It:
e can be disabled with —no-strict-tofu.

This option will perform authentication as with option —tofu; however, while —tofu asks whether
to trust a changed public key, this option will fail in case of public key changes.

247

7.1. INVOKING GNUTLS-CLI

dane option

)

This is the “enable dane certificate verification (dnssec)” option.
This option has some usage constraints. It:
e can be disabled with —no-dane.

This option will, in addition to certificate authentication using the trusted CAs, verify the
server certificates using on the DANE information available via DNSSEC.

local-dns option

This is the “use the local dns server for dnssec resolving” option.
This option has some usage constraints. It:
e can be disabled with —no-local-dns.

This option will use the local DNS server for DNSSEC. This is disabled by default due to many
servers not allowing DNSSEC.

ca-verification option

This is the “enable ca certificate verification” option.
This option has some usage constraints. It:

e can be disabled with —no-ca-verification.

e It is enabled by default.

This option can be used to enable or disable CA certificate verification. It is to be used with
the —dane or —tofu options.

ocsp option

This is the “enable ocsp certificate verification” option.
This option has some usage constraints. It:
e can be disabled with —no-ocsp.

This option will enable verification of the peer’s certificate using ocsp

resume option (-r)

This is the “establish a session and resume” option. Connect, establish a session, reconnect
and resume.

248

CHAPTER 7. OTHER INCLUDED PROGRAMS

rehandshake option (-e)

This is the “establish a session and rehandshake” option. Connect, establish a session and
rehandshake immediately.

starttls option (-s)

This is the “connect, establish a plain session and start tls” option. The TLS session will be
initiated when EOF or a SIGALRM is received.

app-proto option

This is an alias for the starttls-proto option, section 7.1.

starttls-proto option
This is the “the application protocol to be used to obtain the server’s certificate (https, ftp,
smtp, imap, ldap, xmpp)” option. This option takes a string argument.
This option has some usage constraints. It:
e must not appear in combination with any of the following options: starttls.

Specify the application layer protocol for STARTTLS. If the protocol is supported, gnutls-cli
will proceed to the TLS negotiation.

dh-bits option

This is the “the minimum number of bits allowed for dh” option. This option takes a number
argument. This option sets the minimum number of bits allowed for a Diffie-Hellman key
exchange. You may want to lower the default value if the peer sends a weak prime and you
get an connection error with unacceptable prime.

priority option

This is the “priorities string” option. This option takes a string argument. TLS algorithms
and protocols to enable. You can use predefined sets of ciphersuites such as PERFORMANCE,
NORMAL, PFS, SECURE128, SECURE256. The default is NORMAL.

Check the GnuTLS manual on section “Priority strings” for more information on the allowed
keywords

249

7.1. INVOKING GNUTLS-CLI

ranges option

This is the “use length-hiding padding to prevent traffic analysis” option. When possible (e.g.,
when using CBC ciphersuites), use length-hiding padding to prevent traffic analysis.

benchmark-ciphers option

This is the “benchmark individual ciphers” option. By default the benchmarked ciphers will
utilize any capabilities of the local CPU to improve performance. To test against the raw
software implementation set the environment variable GNUTLS_CPUID _OVERRIDE to 0x1.

benchmark-tls-ciphers option

This is the “benchmark tls ciphers” option. By default the benchmarked ciphers will utilize
any capabilities of the local CPU to improve performance. To test against the raw software
implementation set the environment variable GNUTLS_CPUID_OVERRIDE to 0x1.

list option (-1)

This is the “print a list of the supported algorithms and modes” option.
This option has some usage constraints. It:
e must not appear in combination with any of the following options: port.

Print a list of the supported algorithms and modes. If a priority string is given then only the
enabled ciphersuites are shown.

priority-list option

This is the “print a list of the supported priority strings” option. Print a list of the supported
priority strings. The ciphersuites corresponding to each priority string can be examined using

-1 -p.

alpn option

This is the “application layer protocol” option. This option takes a string argument.
This option has some usage constraints. It:
e may appear an unlimited number of times.

This option will set and enable the Application Layer Protocol Negotiation (ALPN) in the
TLS protocol.

250

CHAPTER 7. OTHER INCLUDED PROGRAMS

disable-extensions option

This is the “disable all the tls extensions” option. This option disables all TLS extensions.
Deprecated option. Use the priority string.

inline-commands option

This is the “inline commands of the form

textasciicircum<cmd>

textasciicircum” option. Enable inline commands of the form

textasciicircum<cmd>

textasciicircum. The inline commands are expected to be in a line by themselves. The available
commands are: resume and renegotiate.

inline-commands-prefix option

This is the “change the default delimiter for inline commands.” option. This option takes a
string argument. Change the default delimiter (

textasciicircum) used for inline commands. The delimiter is expected to be a single US-ASCII
character (octets 0 - 127). This option is only relevant if inline commands are enabled via the
inline-commands option

provider option

This is the “specify the pkcs #11 provider library” option. This option takes a file argument.
This will override the default options in /etc/gnutls/pkesll.conf

gnutls-cli exit status

One of the following exit values will be returned:
e 0 (EXIT_SUCCESS) Successful program execution.

e 1 (EXIT_FAILURE) The operation failed or the command syntax was not valid.

gnutls-cli See Also

gnutls-cli-debug(1), gnutls-serv(1)

251

© 0 N O U os W N

[S = S
I U

7.1. INVOKING GNUTLS-CLI

gnutls-cli Examples

Connecting using PSK authentication

To connect to a server using PSK authentication, you need to enable the choice of PSK by
using a cipher priority parameter such as in the example below.

$./gnutls-cli -p 5556 localhost --pskusername psk_identity \
—--pskkey 88£3824b3e5659f52d00e959bacab954b6540344 \
—-priority NORMAL:-KX-ALL:+ECDHE-PSK:+DHE-PSK:+PSK

Resolving ’localhost’...

Connecting to ’127.0.0.1:5556°...

- PSK authentication.

- Version: TLS1.1

- Key Exchange: PSK

- Cipher: AES-128-CBC

- MAC: SHA1

- Compression: NULL

- Handshake was completed

- Simple Client Mode:

By keeping the —pskusername parameter and removing the —pskkey parameter, it will query
only for the password during the handshake.

Listing ciphersuites in a priority string

To list the ciphersuites in a priority string:

$./gnutls-cli --priority SECURE192 -1

Cipher suites for SECURE192

TLS_ECDHE_ECDSA_AES_256_CBC_SHA384 0xcO, 0x24 TLS1.2
TLS_ECDHE_ECDSA_AES_256_GCM_SHA384 0xc0, Ox2e TLS1.2
TLS_ECDHE_RSA_AES_256_GCM_SHA384 0xcO, 0x30 TLS1.2
TLS_DHE_RSA_AES_256_CBC_SHA256 0x00, Ox6b TLS1.2
TLS_DHE_DSS_AES_256_CBC_SHA256 0x00, Ox6a TLS1.2
TLS_RSA_AES_256_CBC_SHA256 0x00, 0x3d TLS1.2

Certificate types: CTYPE-X.509

Protocols: VERS-TLS1.2, VERS-TLS1.1, VERS-TLS1.0, VERS-SSL3.0, VERS-DTLS1.0
Compression: COMP-NULL

Elliptic curves: CURVE-SECP384R1, CURVE-SECP521R1

PK-signatures: SIGN-RSA-SHA384, SIGN-ECDSA-SHA384, SIGN-RSA-SHA512, SIGN-ECDSA-SHA512

Connecting using a PKCS #11 token

To connect to a server using a certificate and a private key present in a PKCS #11 token you
need to substitute the PKCS 11 URLs in the x509certfile and x509keyfile parameters.

252

© 0 N e U A W N e

[SA VR R

CHAPTER 7. OTHER INCLUDED PROGRAMS

Those can be found using "pl1tool —list-tokens” and then listing all the objects in the needed
token, and using the appropriate.

$ plitool --list-tokens

Token O:

URL: pkcsll:model=PKCS15;manufacturer=MyMan;serial=1234;token=Test
Label: Test

Manufacturer: EnterSafe

Model: PKCS15

Serial: 1234

$ plitool --login --list-certs "pkcsll:model=PKCS15;manufacturer=MyMan;serial=1234;token=Test"

Object O:

URL: pkcsll:model=PKCS15;manufacturer=MyMan;serial=1234;token=Test;object=client;type=cert
Type: X.509 Certificate

Label: client

ID: 2a:97:0d:58:d1:51:3c:23:07:ae:4e:0d4:72:26:03:7d:99:06:02:6a

$ MYCERT="pkcs11:model=PKCS15;manufacturer=MyMan;serial=1234;token=Test;object=client;type=cert’
$ MYKEY="pkcs11:model=PKCS15;manufacturer=MyMan;serial=1234;token=Test;object=client;type=private"
$ export MYCERT MYKEY

$ gnutls-cli www.example.com --x509keyfile $MYKEY --x509certfile $MYCERT

Notice that the private key only differs from the certificate in the type.

7.2. Invoking gnutls-serv

Server program that listens to incoming TLS connections.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the gnutls-serv program. This software is released under the GNU General
Public License, version 3 or later.

gnutls-serv help/usage (“--help”)

This is the automatically generated usage text for gnutls-serv.

The text printed is the same whether selected with the help option (“--help”) or the more-help
option (“--more-help”). more-help will print the usage text by passing it through a pager
program. more-help is disabled on platforms without a working fork(2) function. The PAGER
environment variable is used to select the program, defaulting to “more”. Both will exit with
a status code of 0.

gnutls-serv - GnuILS server
Usage: gnutls-serv [-<flag> [<val>] | --<name>[{=] }<val>]]...

-d, --debug=num Enable debugging
- it must be in the range:

253

© o N o

7.2. INVOKING GNUTLS-SERV

-g,
_q)

-u,

-a,
-r,

-b,

-p,
-1,

-v,
_h,

-1
L

Options are specified by doubled hyphens and their name or by a single
hyphen and the flag character.

Server program that listens to incoming TLS connections.

—-noticket
—-generate
--quiet
--nodb
--http
—-echo
--udp
—-mtu=num

--srtp-profiles=str
--disable-client-cert
--require-client-cert
--verify-client-cert
--heartbeat
--x509fmtder
--priority=str
--dhparams=file

—-x509cafile=str
--x509crlfile=file

--pgpkeyfile=file
--pgpkeyring=file
--pgpcertfile=file

--x509keyfile=str
--x509certfile=str
--x509dsakeyfile=str
--x509dsacertfile=str
--x509ecckeyfile=str
--xb509ecccertfile=str
--pgpsubkey=str
--srppasswd=file

--srppasswdconf=file
--pskpasswd=file

—--pskhint=str
--ocsp-response=file

——port=num
--list
—--provider=file

--version[=arg]
--help
--more-help

0 to 9999

Don’t accept session tickets
Generate Diffie-Hellman and RSA-export parameters
Suppress some messages
Do not use a resumption database
Act as an HTTP server
Act as an Echo server
Use DTLS (datagram TLS) over UDP
Set MTU for datagram TLS

- it must be in the range:

0 to 17000

Offer SRTP profiles
Do not request a client certificate
Require a client certificate
If a client certificate is sent then verify it.
Activate heartbeat support
Use DER format for certificates to read from
Priorities string
DH params file to use

- file must pre-exist
Certificate file or PKCS #11 URL to use
CRL file to use

- file must pre-exist
PGP Key file to use

- file must pre-exist
PGP Key ring file to use

- file must pre-exist
PGP Public Key (certificate) file to use

- file must pre-exist
X.509 key file or PKCS #11 URL to use
X.509 Certificate file or PKCS #11 URL to use
Alternative X.509 key file or PKCS #11 URL to use
Alternative X.509 Certificate file or PKCS #11 URL to use
Alternative X.509 key file or PKCS #11 URL to use
Alternative X.509 Certificate file or PKCS #11 URL to use
PGP subkey to use (hex or auto)
SRP password file to use

- file must pre-exist
SRP password configuration file to use

- file must pre-exist
PSK password file to use

- file must pre-exist
PSK identity hint to use
The OCSP response to send to client

- file must pre-exist
The port to connect to
Print a list of the supported algorithms and modes
Specify the PKCS #11 provider library

- file must pre-exist
output version information and exit
display extended usage information and exit
extended usage information passed thru pager

254

CHAPTER 7. OTHER INCLUDED PROGRAMS

o

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

verify-client-cert option

This is the “if a client certificate is sent then verify it.” option. Do not require, but if a client
certificate is sent then verify it and close the connection if invalid.

heartbeat option (-b)

This is the “activate heartbeat support” option. Regularly ping client via heartbeat extension
messages

priority option

This is the “priorities string” option. This option takes a string argument. TLS algorithms
and protocols to enable. You can use predefined sets of ciphersuites such as PERFORMANCE;,
NORMAL, SECURE128, SECURE256. The default is NORMAL.

Check the GnuTLS manual on section “Priority strings” for more information on allowed
keywords

ocsp-response option

This is the “the ocsp response to send to client” option. This option takes a file argument. If
the client requested an OCSP response, return data from this file to the client.

list option (-1)

This is the “print a list of the supported algorithms and modes” option. Print a list of the
supported algorithms and modes. If a priority string is given then only the enabled ciphersuites
are shown.

255

7.2. INVOKING GNUTLS-SERV

provider option

This is the “specify the pkes #11 provider library” option. This option takes a file argument.
This will override the default options in /etc/gnutls/pkesll.conf

gnutls-serv exit status

One of the following exit values will be returned:
e 0 (EXIT_SUCCESS) Successful program execution.
e 1 (EXIT_FAILURE) The operation failed or the command syntax was not valid.

gnutls-serv See Also

gnutls-cli-debug(1), gnutls-cli(1)

gnutls-serv Examples

Running your own TLS server based on GnuTLS can be useful when debugging clients and/or
GnuTLS itself. This section describes how to use gnutls-serv as a simple HT'TPS server.

The most basic server can be started as:

1| gnutls-serv --http --priority "NORMAL:+ANON-ECDH:+ANON-DH" ‘

It will only support anonymous ciphersuites, which many TLS clients refuse to use.

The next step is to add support for X.509. First we generate a CA:

1|$ certtool --generate-privkey > x509-ca-key.pem

2|$ echo ’cn = GnuTLS test CA’ > ca.tmpl

3|$ echo ’ca’ >> ca.tmpl

4|$ echo ’cert_signing key’ >> ca.tmpl

5|$ certtool --generate-self-signed --load-privkey x509-ca-key.pem \
6 --template ca.tmpl --outfile x509-ca.pem

7

Then generate a server certificate. Remember to change the dns_name value to the name of
your server host, or skip that command to avoid the field.

certtool --generate-privkey > x509-server-key.pem

echo ’organization = GnuTLS test server’ > server.tmpl

echo ’cn = test.gnutls.org’ >> server.tmpl

echo ’tls_www_server’ >> server.tmpl

echo ’encryption_key’ >> server.tmpl

echo ’signing_key’ >> server.tmpl

echo ’dns_name = test.gnutls.org’ >> server.tmpl

certtool --generate-certificate --load-privkey x509-server-key.pem \
--load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \

P BH B B PP PP

© 0 N O U oA W N

256

CHAPTER 7. OTHER INCLUDED PROGRAMS

10 --template server.tmpl --outfile x509-server.pem
11

For use in the client, you may want to generate a client certificate as well.

certtool --generate-privkey > x509-client-key.pem

echo ’cn = GnuTLS test client’ > client.tmpl

echo ’tls_www_client’ >> client.tmpl

echo ’encryption_key’ >> client.tmpl

echo ’signing_key’ >> client.tmpl

certtool --generate-certificate --load-privkey x509-client-key.pem \
--load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \
--template client.tmpl --outfile x509-client.pem

@B hH P P P B

© 0 N e U A W N e

To be able to import the client key/certificate into some applications, you will need to convert
them into a PKCS#12 structure. This also encrypts the security sensitive key with a password.

-

$ certtool --to-pl2 --load-ca-certificate x509-ca.pem \
2 --load-privkey x509-client-key.pem --load-certificate x509-client.pem \
--outder --outfile x509-client.pl2

w

For icing, we’ll create a proxy certificate for the client too.

$ certtool --generate-privkey > x509-proxy-key.pem

$ echo ’cn = GnuTLS test client proxy’ > proxy.tmpl

$ certtool --generate-proxy --load-privkey x509-proxy-key.pem \
--load-ca-certificate x509-client.pem --load-ca-privkey x509-client-key.pem \
--load-certificate x509-client.pem --template proxy.tmpl \
--outfile x509-proxy.pem

N o A W N e

Then start the server again:

$ gnutls-serv --http \
--x509cafile x509-ca.pem \
--x509keyfile x509-server-key.pem \
--x509certfile x509-server.pem

N N

Try connecting to the server using your web browser. Note that the server listens to port 5556
by default.

While you are at it, to allow connections using DSA, you can also create a DSA key and
certificate for the server. These credentials will be used in the final example below.

$ certtool --generate-privkey --dsa > x509-server-key-dsa.pem

$ certtool --generate-certificate --load-privkey x509-server-key-dsa.pem \
—--load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \
--template server.tmpl --outfile x509-server-dsa.pem

[SR VR R

The next step is to create OpenPGP credentials for the server.

257

(S

N

= -

-

© 0w N O U A W N e

==
= o

7.3. INVOKING GNUTLS-CLI-DEBUG

gpg ~—gen-key
...enter whatever details you want, use ’test.gnutls.org’ as name...

Make a note of the OpenPGP key identifier of the newly generated key, here it was 5D1D14D8.
You will need to export the key for GnuTLS to be able to use it.

gpg —a ——export 5D1D14D8 > openpgp-server.txt

gpg ——export 5D1D14D8 > openpgp-server.bin

gpg ——export-secret-keys 5D1D14D8 > openpgp-server-key.bin
gpg -a --export-secret-keys 5D1D14D8 > openpgp-server-key.txt

Let’s start the server with support for OpenPGP credentials:

gnutls-serv --http --priority NORMAL:+CTYPE-OPENPGP \
--pgpkeyfile openpgp-server-key.txt \
--pgpcertfile openpgp-server.txt

The next step is to add support for SRP authentication. This requires an SRP password file
created with srptool. To start the server with SRP support:

gnutls-serv --http --priority NORMAL:+SRP-RSA:+SRP \
--srppasswdconf srp-tpasswd.conf \
--srppasswd srp-passwd.txt

Let’s also start a server with support for PSK. This would require a password file created with
psktool.

gnutls-serv —--http --priority NORMAL:+ECDHE-PSK:+PSK \
--pskpasswd psk-passwd.txt

Finally, we start the server with all the earlier parameters and you get this command:

gnutls-serv —--http --priority NORMAL:+PSK:+SRP:+CTYPE-OPENPGP \
--x509cafile x509-ca.pem \
--x509keyfile x509-server-key.pem \
--x509certfile x509-server.pem \
--x509dsakeyfile x509-server-key-dsa.pem \
--xb09dsacertfile x509-server-dsa.pem \
--pgpkeyfile openpgp-server-key.txt \
—--pgpcertfile openpgp-server.txt \
--srppasswdconf srp-tpasswd.conf \
--srppasswd srp-passwd.txt \
--pskpasswd psk-passwd.txt

7.3. Invoking gnutls-cli-debug

TLS debug client. It sets up multiple TLS connections to a server and queries its capabilities.
It was created to assist in debugging GnuTLS, but it might be useful to extract a TLS server’s
capabilities. It connects to a TLS server, performs tests and print the server’s capabilities. If

258

25
26
27
28
29

CHAPTER 7. OTHER INCLUDED PROGRAMS

called with the ‘-v’ parameter more checks will be performed. Can be used to check for servers
with special needs or bugs.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the gnutls-cli-debug program. This software is released under the GNU
General Public License, version 3 or later.

gnutls-cli-debug help/usage (“--help”)

This is the automatically generated usage text for gnutls-cli-debug.

The text printed is the same whether selected with the help option (“--help”) or the more-help
option (“--more-help”). more-help will print the usage text by passing it through a pager
program. more-help is disabled on platforms without a working fork(2) function. The PAGER
environment variable is used to select the program, defaulting to “more”. Both will exit with
a status code of 0.

gnutls-cli-debug - GnuTLS debug client

Usage: gnutls-cli-debug [-<flag> [<val>] | --<name>[{=| }<val>]]...
-d, --debug=num Enable debugging
- it must be in the range:
0 to 9999
-V, --verbose More verbose output
- may appear multiple times
-p, ——port=num The port to connect to
- it must be in the range:
0 to 65536
--app-proto=str an alias for the ’starttls-proto’ option

--starttls-proto=str The application protocol to be used to obtain the server’s certifi
(https, ftp, smtp, imap, ldap, xmpp)

-v, --version[=arg] output version information and exit
-h, --help display extended usage information and exit
-!, --more-help extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single
hyphen and the flag character.
Operands and options may be intermixed. They will be reordered.

TLS debug client. It sets up multiple TLS connections to a server and
queries its capabilities. It was created to assist in debugging GnuTLS,
but it might be useful to extract a TLS server’s capabilities. It connects
to a TLS server, performs tests and print the server’s capabilities. If
called with the ‘-v’ parameter more checks will be performed. Can be used
to check for servers with special needs or bugs.

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

259

cate

© 0 N U A W N e

[T N N e S R
@ N Rk O ©® BN G AW N RO

7.3. INVOKING GNUTLS-CLI-DEBUG

app-proto option

This is an alias for the starttls-proto option, section 7.3.

starttls-proto option
This is the “the application protocol to be used to obtain the server’s certificate (https, ftp,
smtp, imap, ldap, xmpp)” option. This option takes a string argument. Specify the application

layer protocol for STARTTLS. If the protocol is supported, gnutls-cli will proceed to the TLS
negotiation.

gnutls-cli-debug exit status

One of the following exit values will be returned:
e 0 (EXIT_SUCCESS) Successful program execution.
e 1 (EXIT_FAILURE) The operation failed or the command syntax was not valid.

gnutls-cli-debug See Also

gnutls-cli(1), gnutls-serv(1)

gnutls-cli-debug Examples

$../src/gnutls-cli-debug localhost
GnuTLS debug client 3.5.0
Checking localhost:443
for SSL 3.0 (RFC6101) support... yes
whether we need to disable TLS 1.2... no
whether we need to disable TLS 1.1... no
whether we need to disable TLS 1.0... no
whether /NO_EXTENSIONS is required... no
whether %COMPAT is required... no
for TLS 1.0 (RFC2246) support... yes
for TLS 1.1 (RFC4346) support... yes
for TLS 1.2 (RFC5246) support... yes
fallback from TLS 1.6 to... TLS1.2
for RFC7507 inappropriate fallback... yes

for HTTPS server name... Local
for certificate chain order... sorted
for safe renegotiation (RFC5746) support... yes
for Safe renegotiation support (SCSV)... no

for encrypt-then-MAC (RFC7366) support... no
for ext master secret (RFC7627) support... no
for heartbeat (RFC6520) support... no

for version rollback bug in RSA PMS... dunno
for version rollback bug in Client Hello... no

260

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

CHAPTER 7. OTHER INCLUDED PROGRAMS

whether the server ignores the RSA PMS version... yes
whether small records (512 bytes) are tolerated on handshake... yes
whether cipher suites not in SSL 3.0 spec are accepted... yes
whether a bogus TLS record version in the client hello is accepted... yes
whether the server understands TLS closure alerts... partially
whether the server supports session resumption... yes
for anonymous authentication support... no
for ephemeral Diffie-Hellman support... no
for ephemeral EC Diffie-Hellman support... yes
ephemeral EC Diffie-Hellman group info... SECP256R1
for AES-128-GCM cipher (RFC5288) support... yes
for AES-128-CCM cipher (RFC6655) support... no
for AES-128-CCM-8 cipher (RFC6655) support... no
for AES-128-CBC cipher (RFC3268) support... yes
for CAMELLIA-128-GCM cipher (RFC6367) support... no
for CAMELLIA-128-CBC cipher (RFC5932) support... no
for 3DES-CBC cipher (RFC2246) support... yes
for ARCFOUR 128 cipher (RFC2246) support... yes
for MD5 MAC support... yes
for SHA1 MAC support... yes
for SHA256 MAC support... yes
for ZLIB compression support... no
for max record size (RFC6066) support... no
for OCSP status response (RFC6066) support... no
for OpenPGP authentication (RFC6091) support... no

261

Internal Architecture of GnuTLS

This chapter is to give a brief description of the way GnuTLS works. The focus is to give an
idea to potential developers and those who want to know what happens inside the black box.

8.1. The TLS Protocol

The main use case for the TLS protocol is shown in Figure 8.1. A user of a library implementing
the protocol expects no less than this functionality, i.e., to be able to set parameters such as
the accepted security level, perform a negotiation with the peer and be able to exchange data.

set session
parameters

Handshake
“

Figure 8.1.: TLS protocol use case.

. Server
Client

263

8.2. TLS HANDSHAKE PROTOCOL

8.2. TLS Handshake Protocol

The GnuTLS handshake protocol is implemented as a state machine that waits for input or
returns immediately when the non-blocking transport layer functions are used. The main idea
is shown in Figure 8.2.

gnutlsihandshakel

Awaiting handshake Processing handshake
message message

Figure 8.2.: GnuTLS handshake state machine.

Also the way the input is processed varies per ciphersuite. Several implementations of the
internal handlers are available and gnutls_handshake only multiplexes the input to the ap-
propriate handler. For example a PSK ciphersuite has a different implementation of the
process_client_key_exchange than a certificate ciphersuite. We illustrate the idea in Fig-
ure 8.3.

transport

)
®
°

handshake authentication method

I
N I
|

eer
P —>

!

!

T !
! !

! !

I |

Figure 8.3.: GnuTLS handshake process sequence.

264

CHAPTER 8. INTERNAL ARCHITECTURE OF GNUTLS

8.3. TLS Authentication Methods

In GnuTLS authentication methods can be implemented quite easily. Since the required
changes to add a new authentication method affect only the handshake protocol, a simple
interface is used. An authentication method needs to implement the functions shown below.

typedef struct

{
const char *name;
int (*gnutls_generate_server_certificate) (gnutls_session_t, gnutls_buffer_st*);
int (*gnutls_generate_client_certificate) (gnutls_session_t, gnutls_buffer_stx*);
int (*gnutls_generate_server_kx) (gnutls_session_t, gnutls_buffer_stx*);
int (*gnutls_generate_client_kx) (gnutls_session_t, gnutls_buffer_stx*);
int (*gnutls_generate_client_cert_vrfy) (gnutls_session_t, gnutls_buffer_st *);
int (*gnutls_generate_server_certificate_request) (gnutls_session_t,

gnutls_buffer_st *);

int (*gnutls_process_server_certificate) (gnutls_session_t, opaque *,
size_t);

int (*gnutls_process_client_certificate) (gnutls_session_t, opaque *,
size_t);

int (*gnutls_process_server_kx) (gnutls_session_t, opaque *, size_t);

int (*gnutls_process_client_kx) (gnutls_session_t, opaque *, size_t);

int (*gnutls_process_client_cert_vrfy) (gnutls_session_t, opaque *, size_t);

int (*gnutls_process_server_certificate_request) (gnutls_session_t,

opaque *, size_t);
} mod_auth_st;

Those functions are responsible for the interpretation of the handshake protocol messages. It
is common for such functions to read data from one or more credentials_t structures' and
write data, such as certificates, usernames etc. to auth_info_t structures.

Simple examples of existing authentication methods can be seen in auth/psk.c for PSK ci-
phersuites and auth/srp.c for SRP ciphersuites. After implementing these functions the
structure holding its pointers has to be registered in gnutls_algorithms.c in the _gnutls_-
kx_algorithms structure.

8.4. TLS Extension Handling

As with authentication methods, the TLS extensions handlers can be implemented using the
interface shown below.

typedef int (*gnutls_ext_recv_func) (gnutls_session_t session,
const unsigned char *data, size_t len);
typedef int (*gnutls_ext_send_func) (gnutls_session_t session,

Isuch as the gnutls_certificate_credentials_t structures

265

8.4. TLS EXTENSION HANDLING

gnutls_buffer_st *extdata);

Here there are two functions, one for receiving the extension data and one for sending. These
functions have to check internally whether they operate in client or server side.

A simple example of an extension handler can be seen in ext/srp.c in GnuTLS’ source code.
After implementing these functions, together with the extension number they handle, they
have to be registered using _gnutls_ext_register in gnutls_extensions.c typically within
_gnutls_ext_init.

Adding a new TLS extension

Adding support for a new TLS extension is done from time to time, and the process to do so
is not difficult. Here are the steps you need to follow if you wish to do this yourself. For sake
of discussion, let’s consider adding support for the hypothetical TLS extension foobar. The
following section is about adding an extension to GnuTLS, for custom application extensions
you should check the exported function gnutls_ext_register.

Add configure option like -—enable-foobar or —-disable-foobar.

This step is useful when the extension code is large and it might be desirable to disable the
extension under some circumstances. Otherwise it can be safely skipped.

Whether to chose enable or disable depends on whether you intend to make the extension be
enabled by default. Look at existing checks (i.e., SRP, authz) for how to model the code. For
example:

AC_MSG_CHECKING([whether to disable foobar supportl)
AC_ARG_ENABLE (foobar,
AS_HELP_STRING([--disable-foobar],
[disable foobar support]),
ac_enable_foobar=no)
if test x$ac_enable_foobar != xno; then
AC_MSG_RESULT (no)
AC_DEFINE(ENABLE_FOOBAR, 1, [enable foobar])
else
ac_full=0
AC_MSG_RESULT (yes)
fi
AM_CONDITIONAL (ENABLE_FOOBAR, test "$ac_enable_foobar" != "no")

These lines should go in m4/hooks .m4.

Add IANA extension value to extensions_t in gnutls_int.h.
A good name for the value would be GNUTLS_EXTENSION_FOOBAR. Check with http:

//www.iana.org/assignments/tls-extensiontype-values for allocated values. For exper-
iments, you could pick a number but remember that some consider it a bad idea to deploy

266

http://www.iana.org/assignments/tls-extensiontype-values
http://www.iana.org/assignments/tls-extensiontype-values

CHAPTER 8. INTERNAL ARCHITECTURE OF GNUTLS

such modified version since it will lead to interoperability problems in the future when the
TANA allocates that number to someone else, or when the foobar protocol is allocated another
number.

Add an entry to _gnutls_extensions in gnutls_extensions.c.

A typical entry would be:

int ret;

#if ENABLE_FOOBAR
ret = _gnutls_ext_register (&foobar_ext);
if (ret != GNUTLS_E_SUCCESS)
return ret;
#endif

N o oA W N R

Most likely you’ll need to add an #include "ext/foobar.h", that will contain something like
like:

extension_entry_st foobar_ext = {
.name = "FOOBAR",
.type = GNUTLS_EXTENSION_FOOBAR,
.parse_type = GNUTLS_EXT_TLS,
.recv_func = _foobar_recv_params,
.send_func = _foobar_send_params,
.pack_func = _foobar_pack,
.unpack_func _foobar_unpack,
.deinit_func = NULL

N

© 0 N o «

The GNUTLS_EXTENSION_FOOBAR is the integer value you added to gnutls_int.h earlier.
In this structure you specify the functions to read the extension from the hello message, the
function to send the reply to, and two more functions to pack and unpack from stored session
data (e.g. when resumming a session). The deinit function will be called to deinitialize the
extension’s private parameters, if any.

Note that the conditional ENABLE_FOOBAR definition should only be used if step 1 with the
configure options has taken place.

Add new files that implement the extension.

The functions you are responsible to add are those mentioned in the previous step. They should
be added in a file such as ext/foobar.c and headers should be placed in ext/foobar.h. As
a starter, you could add this:

1| int

2 | _foobar_recv_params (gnutls_session_t session, const opaque * data,
3 size_t data_size)

4| {

5 return O;

6|}

267

©

B N R

8.4. TLS EXTENSION HANDLING

int
_foobar_send_params (gnutls_session_t session, gnutls_buffer_st* data)
{

return O;

}

int
_foobar_pack (extension_priv_data_t epriv, gnutls_buffer_st * ps)

/* Append the extension’s internal state to buffer */
return O;

}

int

_foobar_unpack (gnutls_buffer_st * ps, extension_priv_data_t * epriv)
/* Read the internal state from buffer */

return 0O;

}

The _foobar_recv_params function is responsible for parsing incoming extension data (both
in the client and server).

The _foobar_send_params function is responsible for sending extension data (both in the client
and server).

If you receive length fields that don’t match, return GNUTLS_E_UNEXPECTED_PACKET_LENGTH. If
you receive invalid data, return GNUTLS_E_RECEIVED_ILLEGAL PARAMETER. You can use other
error codes from the list in Appendix D. Return 0 on success.

An extension typically stores private information in the session data for later usage. That can
be done using the functions _gnutls_ext_set_session_data and _gnutls_ext_get_session -
data. You can check simple examples at ext/max_record.c and ext/server name.c exten-
sions. That private information can be saved and restored across session resumption if the
following functions are set:

The _foobar_pack function is responsible for packing internal extension data to save them in
the session resumption storage.

The _foobar_unpack function is responsible for restoring session data from the session resump-
tion storage.

Recall that both the client and server, send and receive parameters, and your code most likely
will need to do different things depending on which mode it is in. It may be useful to make
this distinction explicit in the code. Thus, for example, a better template than above would
be:

int
_gnutls_foobar_recv_params (gnutls_session_t session,
const opaque * data,
size_t data_size)
{
if (session->security_parameters.entity == GNUTLS_CLIENT)
return foobar_recv_client (session, data, data_size);

268

CHAPTER 8. INTERNAL ARCHITECTURE OF GNUTLS

8 else

9 return foobar_recv_server (session, data, data_size);
10|}

12 | int

13 | _gnutls_foobar_send_params (gnutls_session_t session,

14 gnutls_buffer_st * data)

15 | {

16 if (session->security_parameters.entity == GNUTLS_CLIENT)
17 return foobar_send_client (session, data);

18 else

19 return foobar_send_server (session, data);

20 | }

The functions used would be declared as static functions, of the appropriate prototype, in
the same file. When adding the files, you’ll need to add them to ext/Makefile.am as well, for
example:

if ENABLE_FOOBAR
libgnutls_ext_la_SOURCES += ext/foobar.c ext/foobar.h
endif

[

w

Add API functions to enable/disable the extension.

It might be desirable to allow users of the extension to request use of the extension, or set
extension specific data. This can be implemented by adding extension specific function calls
that can be added to includes/gnutls/gnutls.h, as long as the LGPLv2.1+ applies. The
implementation of the function should lie in the ext/foobar.c file.

To make the API available in the shared library you need to add the symbol in 1ib/-
libgnutls.map, so that the symbol is exported properly.

When writing GTK-DOC style documentation for your new APIs, don’t forget to add Since:
tags to indicate the GnuTLS version the API was introduced in.

Heartbeat extension.

One such extension is HeartBeat protocol (RFC6520: https://tools.ietf.org/html/rfc6520)
implementation. To enable it use option —heartbeat with example client and server supplied
with gnutls:

./doc/credentials/gnutls-http-serv --priority "NORMAL:-CIPHER-ALL:+NULL" -d 100 \
--heartbeat --echo

./src/gnutls-cli --priority "NORMAL:-CIPHER-ALL:+NULL" -d 100 localhost -p 5556 \
--insecure --heartbeat

N

After that pasting

1 | *xHEARTBEAT**

269

https://tools.ietf.org/html/rfc6520

8.4. TLS EXTENSION HANDLING

command into gnutls-cli will trigger corresponding command on the server and it will send
HeartBeat Request with random length to client.

Another way is to run capabilities check with:

-

./doc/credentials/gnutls-http-serv -d 100 --heartbeat
./src/gnutls-cli-debug localhost -p 5556

M)

Adding a new Supplemental Data Handshake Message

TLS handshake extensions allow to send so called supplemental data handshake messages [34].
This short section explains how to implement a supplemental data handshake message for a
given TLS extension.

First of all, modify your extension foobar in the way, to instruct the handshake process to
send and receive supplemental data, as shown below.

1| int

2 | _gnutls_foobar_recv_params (gnutls_session_t session, const opaque * data,
3 size_t _data_size)

4| {

5 e

6 gnutls_supplemental_recv(session, 1);

7

8|}

9

10 | int

11 | _gnutls_foobar_send_params (gnutls_session_t session, gnutls_buffer_st *extdata)

12 | {

14 gnutls_supplemental_send(session, 1);

Furthermore you’ll need two new functions _foobar_supp_-recv_params and _foobar_supp_-
send_params, which must conform to the following prototypes.

typedef int (*gnutls_supp_recv_func) (gnutls_session_t session,
const unsigned char *data,
size_t data_size);

typedef int (*gnutls_supp_send_func) (gnutls_session_t session,
gnutls_buffer_t buf);

[T VR VR

The following example code shows how to send a “Hello World” string in the supplemental
data handshake message.

int
_foobar_supp_recv_params(gnutls_session_t session, const opaque *data, size_t _data_size)

uint8_t len = _data_size;
unsigned char *msg;

B N R

msg = gnutls_malloc(len);

270

25

CHAPTER 8. INTERNAL ARCHITECTURE OF GNUTLS

if (msg == NULL) return GNUTLS_E_MEMORY_ERROR;

memcpy (msg, data, len);
msgllen]="\0";

/* do something with msg */
gnutls_free(msg);

return len;

}

int
_foobar_supp_send_params (gnutls_session_t session, gnutls_buffer_t buf)

unsigned char *msg = "hello world";
int len = strlen(msg);

if (gnutls_buffer_append_data(buf, msg, len) < 0)
abort();

return len;

Afterwards, register the new supplemental data using gnutls_supplemental register, at
some point in your program.

8.5. Cryptographic Backend

Today most new processors, either for embedded or desktop systems include either instructions
intended to speed up cryptographic operations, or a co-processor with cryptographic capabil-
ities. Taking advantage of those is a challenging task for every cryptographic application or
library. GnuTLS handles the cryptographic provider in a modular way, following a layered
approach to access cryptographic operations as in Figure 8.4.

The TLS layer uses a cryptographic provider layer, that will in turn either use the default
crypto provider — a software crypto library, or use an external crypto provider, if available in
the local system. The reason of handling the external cryptographic provider in GnuTLS and
not delegating it to the cryptographic libraries, is that none of the supported cryptographic
libraries support /dev/crypto or CPU-optimized cryptography in an efficient way.

Cryptographic library layer

The Cryptographic library layer, currently supports only libnettle. Older versions of GnuTLS
used to support libgerypt, but it was switched with nettle mainly for performance reasons?
and secondary because it is a simpler library to use. In the future other cryptographic libraries
might be supported as well.

2See http://lists.gnu.org/archive/html/gnutls-devel/2011-02/msg00079.html.

271

http://lists.gnu.org/archive/html/gnutls-devel/2011-02/msg00079.html

8.5. CRYPTOGRAPHIC BACKEND

TLS layer

Cryptography

Provider Layer

— —
Cryptographic External cryptographic
Library provider
)

libgcrypt nettle /dev/crypto CPU-optimized
Kernel optimized cryptography
cryptography

Figure 8.4.: GnuTLS cryptographic back-end design.

External cryptography provider

Systems that include a cryptographic co-processor, typically come with kernel drivers to utilize
the operations from software. For this reason GnuTLS provides a layer where each individual
algorithm used can be replaced by another implementation, i.e., the one provided by the driver.
The FreeBSD, OpenBSD and Linux kernels® include already a number of hardware assisted
implementations, and also provide an interface to access them, called /dev/crypto. GnuTLS
will take advantage of this interface if compiled with special options. That is because in
most systems where hardware-assisted cryptographic operations are not available, using this
interface might actually harm performance.

In systems that include cryptographic instructions with the CPU’s instructions set, using the
kernel interface will introduce an unneeded layer. For this reason GnuTLS includes such opti-
mizations found in popular processors such as the AES-NI or VIA PADLOCK instruction sets.
This is achieved using a mechanism that detects CPU capabilities and overrides parts of crypto
back-end at runtime. The next section discusses the registration of a detected algorithm opti-
mization. For more information please consult the GnuTLS source code in 1ib/accelerated/.

3Check http://home.gna.org/cryptodev-1inux/ for the Linux kernel implementation of /dev/crypto.

272

http://home.gna.org/cryptodev-linux/

CHAPTER 8. INTERNAL ARCHITECTURE OF GNUTLS

Overriding specific algorithms

When an optimized implementation of a single algorithm is available, say a hardware assisted
version of AES-CBC then the following functions, from crypto.h, can be used to register those
algorithms.

e gnutls_crypto_register_cipher: To register a cipher algorithm.

e gnutls crypto_register_aead cipher: To register an AEAD cipher algorithm.
e gnutls crypto_register mac: To register a MAC algorithm.

e gnutls_crypto_register_digest: To register a hash algorithm.

Those registration functions will only replace the specified algorithm and leave the rest of
subsystem intact.

273

Upgrading from previous versions

The GnuTLS library typically maintains binary and source code compatibility across versions.
The releases that have the major version increased break binary compatibility but source
compatibility is provided. This section lists exceptional cases where changes to existing code
are required due to library changes.

Upgrading to 2.12.x from previous versions

GnuTLS 2.12.x is binary compatible with previous versions but changes the semantics of
gnutls_transport_set_lowat, which might cause breakage in applications that relied on its
default value be 1. Two fixes are proposed:

e Quick fix. Explicitly call gnutls_transport_set_lowat (session, 1); after gnutls_-
init.

e Long term fix. Because later versions of gnutls abolish the functionality of using the
system call select to check for gnutls pending data, the function gnutls_record_check -
pending has to be used to achieve the same functionality as described in subsection 5.5.1.

Upgrading to 3.0.x from 2.12.x

GnuTLS 3.0.x is source compatible with previous versions except for the functions listed below.

275

Old function

Replacement

|

gnutls_transport_set_-
lowat

To replace its functionality the function gnutls_-
record_check_pending has to be used, as described in
subsection 5.5.1

gnutls_session_get_-—
server_random, gnutls_-—
session_get_client_-
random

They are replaced by the safer function gnutls_-
session_get_random

gnutls_session_get_-—
master_secret

Replaced by the keying material exporters discussed in
subsection 5.12.5

gnutls_transport_set_-
global_errno

Replaced by using the system’s errno facility or gnutls_-
transport_set_errno.

gnutls_x509_privkey_-
verify_data

Replaced by gnutls_pubkey_verify_data2.

gnutls_certificate_-
verify_peers

Replaced by gnutls_certificate_verify_peers2.

gnutls_psk netconf_-
derive key

Removed. The key derivation function was never stan-
dardized.

gnutls_session_set_-
finished function

Removed.

gnutls_ext_register

Removed. Extension registration API is now internal to
allow easier changes in the API.

gnutls_certificate_-
get x509_crls, gnutls_-
certificate_get x509_cas

Removed to allow updating the internal structures. Re-
placed by gnutls_certificate_get_issuer.

gnutls_certificate_get_-
openpgp-keyring

Removed.

gnutls_ia_

Removed. The inner application extensions were com-
pletely removed (they failed to be standardized).

Upgrading to 3.1.x from 3.0.x

GnuTLS 3.1.x is source and binary compatible with GnuTLS 3.0.x releases. Few functions

have been deprecated and are listed below.

’ Old function

\ Replacement

|

gnutls_pubkey_verify_ -
hash

The function gnutls_pubkey verify hash2 is provided
and is functionally equivalent and safer to use.

gnutls_pubkey verify -
data

The function gnutls_pubkey_verify data2 is provided
and is functionally equivalent and safer to use.

276

APPENDIX A. UPGRADING FROM PREVIOUS VERSIONS

Upgrading to 3.2.x from 3.1.x

GnuTLS 3.2.x is source and binary compatible with GnuTLS 3.1.x releases. Few functions
have been deprecated and are listed below.

’ Old function Replacement
gnutls_privkey_sign_- The function gnutls_privkey_sign hash is equivalent
raw_data when the flag GNUTLS_PRIVKEY SIGN FLAG_TLS1 RSA is
specified.

Upgrading to 3.3.x from 3.2.x

GnuTLS 3.3.x is source and binary compatible with GnuTLS 3.2.x releases; however there few
changes in semantics which are listed below.

’ Old function Replacement
gnutls_global_init No longer required. The library is initialized using a
constructor.
gnutls_global_deinit No longer required. The library is deinitialized using a
destructor.

Upgrading to 3.4.x from 3.3.x

GnuTLS 3.4.x is source compatible with GnuTLS 3.3.x releases; however, several deprecated
functions were removed, and are listed below.

277

’ Old function \ Replacement
Priority string ”"NORMAL” | The following string emulates the 3.3.x behav-
has been modified ior "NORMAL:+VERS-SSL3.0:+ARCFOUR-

128:+DHE-DSS:+SIGN-DSA-SHA512:4+SIGN-DSA-
SHA256:+SIGN-DSA-SHA1”

gnutls_certificate_-
client_set_retrieve_-
function, gnutls_-—
certificate_server_-
set_retrieve_function

gnutls_certificate_set_retrieve_function

gnutls_certificate_-
set_rsa_export_params,
gnutls_rsa_export_get_-—
modulus_bits, gnutls_-
rsa_export_get_pubkey,
gnutls_rsa_params_cpy,
gnutls_rsa_params._-
deinit, gnutls_rsa_-
params_export_pkcsl,
gnutls_rsa_params_-—
export_raw, gnutls_-—
rsa_params_generate2,
gnutls_rsa_params_-
import_pkcsl, gnutls_-
rsa_params_import_raw,
gnutls_rsa_params_init

No replacement; the library does not support the RSA-
EXPORT ciphersuites.

gnutls_pubkey_verify_-
hash,

gnutls_pubkey_verify_hash2.

gnutls_pubkey_verify_-
data,

gnutls_pubkey_verify_data2.

gnutls_x509_crt_get_-
verify_algorithm,

No replacement; a similar function is gnutls_x509_crt_-
get_signature_algorithm.

gnutls_pubkey_get_-
verify_algorithm,

No replacement; a similar function is gnutls_pubkey_-
get_preferred_hash_algorithm.

gnutls_certificate_-
type_set_priority,
gnutls_cipher_set_-
priority, gnutls_-
compression_set_-—
priority, gnutls kx_set_-—
priority, gnutls_ mac_-
set_priority, gnutls_-
protocol_set_priority

gnutls_priority_set_direct.

gnutls_sign callback_-
get, gnutls_sign -
callback_set

gnutls_privkey_import_ext3

gnutls _x509_crt_verify -
hash

gnutls_pubkey_verify_hash2

gnutls_x509_crt_verify -
data

gnutls,pubkgigfsverif y-data2

gnutls_privkey_sign -

amarr Aad o

gnutls_privkey_sign_hash with the flag

(NTTTTC PRIVKEV QICON ETAC TTC1T RQA

Support

B.1. Getting Help

A mailing list where users may help each other exists, and you can reach it by sending e-
mail to gnutls-help@gnutls.org. Archives of the mailing list discussions, and an interface to
manage subscriptions, is available through the World Wide Web at http://lists.gnutls.
org/pipermail/gnutls-help/.

A mailing list for developers are also available, see http://www.gnutls.org/lists.html. Bug
reports should be sent to bugs@gnutls.org, see section B.3.

B.2. Commercial Support

Commercial support is available for users of GnuTLS. The kind of support that can be pur-
chased may include:

e Implement new features. Such as a new TLS extension.

e Port GnuTLS to new platforms. This could include porting to an embedded platforms
that may need memory or size optimization.

e Integrating TLS as a security environment in your existing project.
e System design of components related to TLS.
If you are interested, please write to:

Simon Josefsson Datakonsult
Hagagatan 24

113 47 Stockholm

Sweden

E-mail: simon@josefsson.org

If your company provides support related to GnuTLS and would like to be mentioned here,
contact the authors.

279

http://lists.gnutls.org/pipermail/gnutls-help/
http://lists.gnutls.org/pipermail/gnutls-help/
http://www.gnutls.org/lists.html

B.3. BUG REPORTS

B.3. Bug Reports

If you think you have found a bug in GnuTLS, please investigate it and report it.

e Please make sure that the bug is really in GnuTLS, and preferably also check that it
hasn’t already been fixed in the latest version.

e You have to send us a test case that makes it possible for us to reproduce the bug.

e You also have to explain what is wrong; if you get a crash, or if the results printed are
not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that can be
tested or debugged. Vague queries or piecemeal messages are difficult to act on and don’t help
the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of the
software; if the bug report is poor, we won’t do anything about it (apart from asking you to
send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:

bugs@gnutls.org

B.4. Contributing

If you want to submit a patch for inclusion — from solving a typo you discovered, up to
adding support for a new feature — you should submit it as a bug report, using the process in
section B.3. There are some things that you can do to increase the chances for it to be included
in the official package.

Unless your patch is very small (say, under 10 lines) we require that you assign the copyright
of your work to the Free Software Foundation. This is to protect the freedom of the project.
If you have not already signed papers, we will send you the necessary information when you
submit your contribution.

For contributions that doesn’t consist of actual programming code, the only guidelines are
common sense. For code contributions, a number of style guides will help you:

e Coding Style. Follow the GNU Standards document.

If you normally code using another coding standard, there is no problem, but you should
use indent to reformat the code before submitting your work.

o Use the unified diff format diff -u.

280

APPENDIX B. SUPPORT

e Return errors. No reason whatsoever should abort the execution of the library. Even
memory allocation errors, e.g. when malloc return NULL, should work although result
in an error code.

e Design with thread safety in mind. Don’t use global variables. Don’t even write to per-
handle global variables unless the documented behaviour of the function you write is to
write to the per-handle global variable.

e Avoid using the C math library. It causes problems for embedded implementations, and
in most situations it is very easy to avoid using it.

e Document your functions. Use comments before each function headers, that, if properly
formatted, are extracted into Texinfo manuals and GTK-DOC web pages.

e Supply a ChangeLog and NEWS entries, where appropriate.

B.5. Certification

Many cryptographic libraries claim certifications from national or international bodies. These
certifications are tied on a specific (and often restricted) version of the library or a specific
product using the library, and typically in the case of software they assure that the algorithms
implemented are correct. The major certifications known are:

e USA’s FIPS 140-2 at Level 1 which certifies that approved algorithms are used (see
http://en.wikipedia.org/wiki/FIPS_140-2);

e Common Criteria for Information Technology Security Evaluation (CC), an international
standard for verification of elaborate security claims (see http://en.wikipedia.org/
wiki/Common_Criteria).

Obtaining such a certification is an expensive and elaborate job that has no immediate value
for a continuously developed free software library (as the certification is tied to the particular
version tested). While, as a free software project, we are not actively pursuing this kind of
certification, GnuTLS has been FIPS-140-2 certified in several systems by third parties. If you
are, interested, see section B.2.

281

http://en.wikipedia.org/wiki/FIPS_140-2
http://en.wikipedia.org/wiki/Common_Criteria
http://en.wikipedia.org/wiki/Common_Criteria

Supported Ciphersuites

Ciphersuite name TLS ID Since

TLS_RSA_NULL_MD5 0x00 0x01 | SSL3.0
TLS_RSA_NULL_SHA1 0x00 0x02 | SSL3.0
TLS_.RSA_NULL_SHA256 0x00 0x3B | TLS1.2
TLS_RSA_ARCFOUR_128_SHA1 0x00 0x05 | SSL3.0
TLS_RSA_ARCFOUR_128_ MD5 0x00 0x04 | SSL3.0
TLS_RSA_3DES_EDE_CBC_SHA1 0x00 0xO0A | SSL3.0
TLS_RSA_AES_128_.CBC_SHA1 0x00 0x2F | SSL3.0
TLS_.RSA_AES_256_CBC_SHA1 0x00 0x35 | SSL3.0
TLS_RSA_CAMELLIA_128 CBC_SHA256 0x00 0xBA | TLS1.2
TLS_RSA_CAMELLIA _256_CBC_SHA256 0x00 0xCO | TLS1.2
TLS_RSA_CAMELLIA_128 CBC_SHA1 0x00 0x41 | SSL3.0
TLS_RSA_CAMELLIA_256_CBC_SHA1 0x00 0x84 | SSL3.0
TLS_RSA_AES_128_CBC_SHA256 0x00 0x3C | TLS1.2
TLS_RSA_AES_256_CBC_SHA256 0x00 0x3D | TLS1.2
TLS_RSA_AES_128_ GCM_SHA256 0x00 0x9C | TLS1.2
TLS_RSA_AES_256_GCM_SHA384 0x00 0x9D | TLS1.2
TLS_RSA_CAMELLIA_128_.GCM_SHA256 0xCO 0x7A | TLS1.2
TLS_RSA_CAMELLIA_256_GCM_SHA384 0xCO 0x7B | TLS1.2
TLS_.RSA_.CHACHA20_POLY1305 0xCC 0xAO | TLS1.2
TLS_RSA_AES_128_.CCM 0xCO 0x9C | TLS1.2
TLS_RSA_AES_256_CCM 0xCO 0x9D | TLS1.2
TLS_RSA_AES_128_.CCM_8 0xCO 0xAO | TLS1.2
TLS_RSA_AES_256_CCM_8 0xCO 0xA1 | TLS1.2
TLS_.DHE_DSS_ARCFOUR_128_SHA1 0x00 0x66 | SSL3.0
TLS_DHE_DSS_3DES_EDE_CBC_SHA1 0x00 0x13 | SSL3.0
TLS_DHE_DSS_AES_128 CBC_SHA1 0x00 0x32 | SSL3.0
TLS_DHE_DSS_AES_256_CBC_SHA1 0x00 0x38 | SSL3.0
TLS_DHE_DSS_CAMELLIA _128_.CBC_SHA256 0x00 0xBD | TLS1.2
TLS_DHE_DSS_CAMELLIA 256_CBC_SHA256 0x00 0xC3 | TLS1.2
TLS_.DHE_DSS_CAMELLIA 128 CBC_SHA1 0x00 0x44 | SSL3.0

283

TLS_-DHE_DSS_CAMELLIA 256_CBC_SHA1
TLS_-DHE_DSS_AES_128_CBC_SHA256
TLS_DHE_DSS_AES_256_CBC_SHA256
TLS_-DHE_DSS_AES_128_GCM_SHA256
TLS_-DHE_DSS_AES_256_GCM_SHA384
TLS_-DHE_DSS_CAMELLIA 128 GCM_SHA256
TLS_-DHE_DSS_CAMELLIA _256_GCM_SHA384
TLS_-DHE_RSA_3DES_EDE_CBC_SHA1
TLS_.DHE_RSA_AES_128_ CBC_SHA1
TLS_.DHE_RSA_AES_256_CBC_SHA1
TLS_-DHE_RSA_CAMELLIA 128 _CBC_SHA256
TLS_-DHE_RSA_CAMELLIA _256_CBC_SHA256
TLS_-DHE_RSA_CAMELLIA_128_ CBC_SHA1
TLS_.DHE_RSA_CAMELLIA _256_CBC_SHA1
TLS_.DHE_RSA_AES_128 CBC_SHA256
TLS_-DHE_RSA_AES_256_CBC_SHA256
TLS_-DHE_RSA_AES_128_ GCM_SHA256
TLS_-DHE_RSA_AES_256_GCM_SHA384
TLS_.DHE_RSA_CAMELLIA_128_ GCM_SHA256
TLS_.DHE_RSA_CAMELLIA _256_GCM_SHA384
TLS_-DHE_RSA_CHACHA20_POLY1305
TLS_-DHE_RSA_AES_128_.CCM
TLS_-DHE_RSA_AES_256_CCM
TLS_-DHE_RSA_AES_128_.CCM_8
TLS_.DHE_RSA_AES_256_CCM_8
TLS_ECDHE_RSA_NULL_SHA1
TLS_ECDHE_RSA_3DES_EDE_CBC_SHA1
TLS_ECDHE_RSA_AES_128_ CBC_SHA1
TLS_.ECDHE_RSA_AES_256_CBC_SHA1
TLS_ECDHE_RSA_AES_256_CBC_SHA384
TLS_ECDHE_RSA_ARCFOUR_128_SHA1
TLS_ECDHE_RSA_CAMELLIA_128_ CBC_SHA256
TLS_ECDHE_RSA_CAMELLIA 256_CBC_SHA384
TLS_.ECDHE_ECDSA_NULL_SHA1
TLS_ECDHE_ECDSA_3DES_EDE_CBC_SHA1
TLS_ECDHE_ECDSA_AES_128_.CBC_SHA1
TLS_ECDHE_ECDSA_AES_256_CBC_SHA1
TLS_ECDHE_ECDSA_ARCFOUR_128_SHA1
TLS_ECDHE_ECDSA_CAMELLIA 128 CBC_SHA256
TLS_.ECDHE_ECDSA_CAMELLIA _256_CBC_SHA384
TLS_ECDHE_ECDSA_AES_128_.CBC_SHA256

284

0x00
0x00
0x00
0x00
0x00
0xCO
0xCO
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0xCO
0xCO
0xCC
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO

0x87
0x40
0x6A
0xA2
0xA3
0x80
0x81
0x16
0x33
0x39
OxBE
0xC4
0x45
0x88
0x67
0x6B
0x9E
0x9F
0x7C
0x7D
0xA3
0x9E
0x9F
0xA2
0xA3
0x10
0x12
0x13
0x14
0x28
0x11
0x76
0x77
0x06
0x08
0x09
0x0A
0x07
0x72
0x73
0x23

SSL3.0
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
SSL3.0
SSL3.0
SSL3.0
TLS1.2
TLS1.2
SSL3.0
SSL3.0
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
SSL3.0
SSL3.0
SSL3.0
SSL3.0
TLS1.2
SSL3.0
TLS1.2
TLS1.2
SSL3.0
SSL3.0
SSL3.0
SSL3.0
SSL3.0
TLS1.2
TLS1.2
TLS1.2

APPENDIX C. SUPPORTED CIPHERSUITES

TLS_ECDHE_RSA_AES_128 CBC_SHA256
TLS_ECDHE_ECDSA_CAMELLIA_128_.GCM_SHA256
TLS_ECDHE_ECDSA_CAMELLIA _256_GCM_SHA384
TLS_ECDHE_ECDSA_AES_128_.GCM_SHA256
TLS_ECDHE_ECDSA_AES_256_GCM_SHA384
TLS_ECDHE_RSA_AES_128 GCM_SHA256
TLS_ECDHE_RSA_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_AES_256_CBC_SHA384
TLS_ECDHE_RSA_CAMELLIA_128_.GCM_SHA256
TLS_ECDHE_RSA_CAMELLIA_256_GCM_SHA384
TLS_ECDHE_RSA_CHACHA20_POLY1305
TLS_ECDHE_ECDSA_CHACHA20_POLY1305
TLS_ECDHE_ECDSA_AES_128_.CCM
TLS_ECDHE_ECDSA_AES_256_CCM
TLS_ECDHE_ECDSA_AES_128_CCM_8
TLS_ECDHE_ECDSA_AES_256_CCM._8
TLS_ECDHE_PSK_3DES_EDE_CBC_SHA1
TLS_ECDHE_PSK_AES_128_CBC_SHA1
TLS_ECDHE_PSK_AES_256_CBC_SHA1
TLS_ECDHE_PSK_AES_128_CBC_SHA256
TLS_ECDHE_PSK_AES_256_CBC_SHA384
TLS_ECDHE_PSK_ARCFOUR_128_SHA1
TLS_ECDHE_PSK_NULL_SHA1
TLS_ECDHE_PSK_NULL_SHA256
TLS_ECDHE_PSK_NULL_SHA384
TLS_ECDHE_PSK_CAMELLIA_128_CBC_SHA256
TLS_ECDHE_PSK_CAMELLIA 256_CBC_SHA384
TLS_PSK_ARCFOUR_128_SHA1
TLS_PSK_3DES_EDE_CBC_SHA1
TLS_PSK_AES_128_.CBC_SHA1
TLS_PSK_AES_256_CBC_SHA1
TLS_PSK_AES_128 CBC_SHA256
TLS_PSK_AES_256_GCM_SHA384
TLS_PSK_-CAMELLIA_128_ GCM_SHA256
TLS_PSK_CAMELLIA _256_GCM_SHA384
TLS_PSK_AES_128 GCM_SHA256
TLS_PSK_NULL_SHA1

TLS_PSK_NULL_SHA256
TLS_PSK_CAMELLIA 128 CBC_SHA256
TLS_PSK_-CAMELLIA 256_CBC_SHA384
TLS_PSK_AES_256_CBC_SHA384

285

0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCC
0xCC
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0x00
0x00
0x00
0x00
0x00
0x00
0xCO
0xCO
0x00
0x00
0x00
0xCO
0xCO
0x00

0x27
0x86
0x87
0x2B
0x2C
0x2F
0x30
0x24
0x8A
0x8B
OxA1
0xA2
0xAC
0xAD
OxAE
OxAF
0x34
0x35
0x36
0x37
0x38
0x33
0x39
0x3A
0x3B
0x9A
0x9B
0x8A
0x8B
0x8C
0x8D
OxAE
0xA9
0x8E
0x8F
0xA8
0x2C
0xBO
0x94
0x95
OxAF

TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
SSL3.0
SSL3.0
SSL3.0
TLS1.2
TLS1.2
SSL3.0
SSL3.0
TLS1.2
TLS1.0
TLS1.2
TLS1.2
SSL3.0
SSL3.0
SSL3.0
SSL3.0
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
SSL3.0
TLS1.2
TLS1.2
TLS1.2
TLS1.2

TLS_PSK_NULL_SHA384
TLS-RSA_PSK_ARCFOUR_128_SHA1
TLS_RSA_PSK_3DES_EDE_CBC_SHA1
TLS_RSA_PSK_AES_128 CBC_SHA1
TLS_-RSA_PSK_AES_256_CBC_SHA1
TLS_-RSA_PSK_CAMELLIA_128 GCM_SHA256
TLS_RSA_PSK_CAMELLIA _256_.GCM_SHA384
TLS_-RSA_PSK_AES_128_.GCM_SHA256
TLS_RSA_PSK_AES_128_ CBC_SHA256
TLS_RSA_PSK_NULL_SHA1
TLS_-RSA_PSK_NULL_SHA256
TLS_-RSA_PSK_AES_256_GCM_SHA384
TLS_-RSA_PSK_AES_256_CBC_SHA384
TLS_RSA_PSK_NULL_SHA384
TLS_RSA_PSK_CAMELLIA_128_CBC_SHA256
TLS_RSA_PSK_CAMELLIA 256_CBC_SHA384
TLS_-DHE_PSK_ARCFOUR_128_SHA1
TLS_-DHE_PSK_3DES_EDE_CBC_SHA1
TLS_.DHE_PSK_AES_128_.CBC_SHA1
TLS_.DHE_PSK_AES_256_CBC_SHA1
TLS_-DHE_PSK_AES_128_ CBC_SHA256
TLS_-DHE_PSK_AES_128_ GCM_SHA256
TLS_-DHE_PSK_NULL_SHA1
TLS_-DHE_PSK_NULL_SHA256
TLS_.DHE_PSK_NULL_SHA384
TLS_.DHE_PSK_AES_256_CBC_SHA384
TLS_-DHE_PSK_AES_256_GCM_SHA384
TLS_-DHE_PSK_CAMELLIA_128_CBC_SHA256
TLS_-DHE_PSK_CAMELLIA_256_CBC_SHA384
TLS_-DHE_PSK_CAMELLIA_128_.GCM_SHA256
TLS_.DHE_PSK_CAMELLIA_256_GCM_SHA384
TLS_PSK_AES_128 CCM
TLS_PSK_AES_256_CCM
TLS_-DHE_PSK_AES_128.CCM
TLS_-DHE_PSK_AES_256_CCM
TLS_PSK_AES_128 CCM_8
TLS_PSK_AES_256_CCM_8
TLS_-DHE_PSK_AES_128_.CCM_8
TLS_-DHE_PSK_AES_256_CCM_8
TLS_-DHE_PSK_CHACHA20_POLY1305
TLS_ECDHE_PSK_CHACHA20_POLY 1305

286

0x00
0x00
0x00
0x00
0x00
0xCO
0xCO
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0xCO
0xCO
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCO
0xCC
0xCC

0xB1
0x92
0x93
0x94
0x95
0x92
0x93
0xAC
0xB6
0x2E
0xB8
0xAD
0xB7
0xB9
0x98
0x99
0x8E
0x8F
0x90
0x91
0xB2
OxAA
0x2D
0xB4
0xB5
0xB3
OxAB
0x96
0x97
0x90
0x91
OxA4
0xA5
0xA6
0xA7
0xA8
0xA9
OxAA
0xAB
0xA4
0xA6

TLS1.2
TLS1.0
TLS1.0
TLS1.0
TLS1.0
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.0
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
SSL3.0
SSL3.0
SSL3.0
SSL3.0
TLS1.2
TLS1.2
SSL3.0
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2
TLS1.2

APPENDIX C. SUPPORTED CIPHERSUITES

TLS_RSA_PSK_CHACHA20_POLY1305 0xCC 0xA7 | TLS1.2
TLS_PSK_-CHACHA20_-POLY1305 0xCC 0xA5 | TLS1.2
TLS_.DH_ANON_ARCFOUR_128_MD5 0x00 0x18 | SSL3.0
TLS_.DH_ANON_3DES_EDE_CBC_SHA1 0x00 0x1B | SSL3.0
TLS_.DH_ANON_AES_128_CBC_SHA1 0x00 0x34 | SSL3.0
TLS_DH_ANON_AES_256_CBC_SHA1 0x00 0x3A | SSL3.0
TLS_DH_ANON_CAMELLIA_128_ CBC_SHA256 0x00 O0xBF | TLS1.2
TLS_-DH_ANON_CAMELLIA _256_CBC_SHA256 0x00 0xC5 | TLS1.2
TLS_.DH_ANON_CAMELLIA_128_CBC_SHA1 0x00 0x46 | SSL3.0
TLS_DH_ANON_CAMELLIA 256_CBC_SHA1 0x00 0x89 | SSL3.0
TLS_DH_ANON_AES_128_CBC_SHA256 0x00 0x6C | TLS1.2
TLS_DH_ANON_AES_256_CBC_SHA256 0x00 0x6D | TLS1.2
TLS_DH_ANON_AES_128_GCM_SHA256 0x00 0xA6 | TLS1.2
TLS_.DH_ANON_AES_256_GCM_SHA384 0x00 0xA7 | TLS1.2
TLS_.DH_ANON_CAMELLIA_128_.GCM_SHA256 0xCO 0x84 | TLS1.2
TLS_DH_ANON_CAMELLIA 256_GCM_SHA384 0xCO 0x85 | TLS1.2
TLS_ECDH_ANON_NULL_SHA1 0xCO 0x15 | SSL3.0
TLS_ECDH_ANON_3DES_EDE_CBC_SHA1 0xCO 0x17 | SSL3.0
TLS_ECDH_ANON_AES_128_.CBC_SHA1 0xCO 0x18 | SSL3.0
TLS_ECDH_ANON_AES_256_CBC_SHA1 0xCO 0x19 | SSL3.0
TLS_ECDH_ANON_ARCFOUR_128_SHA1 0xCO 0x16 | SSL3.0
TLS_SRP_SHA 3DES_EDE_CBC_SHA1 0xCO 0x1A | SSL3.0
TLS_SRP_SHA_AES_128_ CBC_SHA1 0xCO 0x1D | SSL3.0
TLS_SRP_SHA_AES_256_CBC_SHA1 0xCO 0x20 | SSL3.0
TLS_SRP_SHA_DSS_3DES_EDE_CBC_SHA1 0xCO 0x1C | SSL3.0
TLS_SRP_SHA_RSA_3DES_EDE_CBC_SHA1 0xCO 0x1B | SSL3.0
TLS_SRP_SHA _DSS_AES_128 CBC_SHA1 0xCO O0x1F | SSL3.0
TLS_SRP_SHA _RSA_AES_128 CBC_SHA1 0xCO O0x1E | SSL3.0
TLS_SRP_SHA_DSS_AES_256_CBC_SHA1 0xCO 0x22 | SSL3.0
TLS_SRP_SHA_RSA_AES_256_CBC_SHA1 0xCO 0x21 | SSL3.0

Table C.1.: The ciphersuites table

287

Error Codes and Descriptions

The error codes used throughout the library are described below. The return code GNUTLS_E_SUCCESS
indicates a successful operation, and is guaranteed to have the value 0, so you can use it in
logical expressions.

Code Name Description
0 GNUTLS_E_SUCCESS Success.
-3 GNUTLS_E_UNKNOWN_COMPRESSION _- Could not negotiate a supported compres-
ALGORITHM sion method.
-6 GNUTLS_E_UNKNOWN_CIPHER_TYPE The cipher type is unsupported.
-7 GNUTLS_E_.LARGE_PACKET The transmitted packet is too large (EMS-
GSIZE).
-8 GNUTLS_E_UNSUPPORTED_VERSION - A packet with illegal or unsupported ver-
PACKET sion was received.
-9 GNUTLS_E_UNEXPECTED_PACKET - A TLS packet with unexpected length was
LENGTH received.
-10 GNUTLS_E_INVALID_SESSION The specified session has been invalidated
for some reason.
-12 GNUTLS_E_FATAL_ALERT_RECEIVED A TLS fatal alert has been received.
-15 GNUTLS_E_UNEXPECTED_PACKET An unexpected TLS packet was received.
-16 GNUTLS.E_ZWARNING_ALERT_RECEIVED | A TLS warning alert has been received.
-18 GNUTLS_E_.ERROR-IN_FINISHED_PACKET | An error was encountered at the TLS Fin-
ished packet calculation.
-19 GNUTLS_E_UNEXPECTED_HANDSHAKE- | An unexpected TLS handshake packet was
PACKET received.
-21 GNUTLS_E_UNKNOWN_CIPHER_SUITE Could not negotiate a supported cipher
suite.
-22 GNUTLS_E_UNWANTED_ALGORITHM An algorithm that is not enabled was ne-
gotiated.
-23 GNUTLS_E_MPI_SCAN_FAILED The scanning of a large integer has failed.
-24 GNUTLS_E_DECRYPTION _FAILED Decryption has failed.
-25 GNUTLS_E_.MEMORY_ERROR Internal error in memory allocation.
-26 GNUTLS-E_.DECOMPRESSION_FAILED Decompression of the TLS record packet
has failed.

289

-27

-28

-29
-30
-31
-32
-33
-34
-35
-37
-38

-39

-40
-43
-44
-45
-46
-47

-48

-49
-50
-o1

-52
-53
-54
-55

-56

-57
-58

-99
-60

GNUTLS_E_.COMPRESSION_FAILED

GNUTLS_E_AGAIN

GNUTLS_E_EXPIRED

GNUTLS_E_DB_ERROR
GNUTLS_E_SRP_.PWD_ERROR

GNUTLS_E_INSUFFICIENT_CREDENTIALS

GNUTLS_E_HASH_FAILED
GNUTLS_E_BASE64_DECODING_ERROR
GNUTLS_E_MPI_PRINT_FAILED
GNUTLS_LE_REHANDSHAKE
GNUTLS_E_.GOT_APPLICATION_DATA

GNUTLS_E_RECORD_LIMIT_REACHED

GNUTLS_E_ENCRYPTION_FAILED
GNUTLS_E_CERTIFICATE_ERROR
GNUTLS_E_PK_ENCRYPTION_FAILED
GNUTLS_E_PK_DECRYPTION_FAILED
GNUTLS_E_PK_SIGN_FAILED
GNUTLS_E_X509_UNSUPPORTED_-
CRITICAL_EXTENSION
GNUTLS_E_KEY_USAGE_VIOLATION

GNUTLS_E_NO_CERTIFICATE_FOUND
GNUTLS_E_INVALID _REQUEST
GNUTLS_E_SHORT_MEMORY_BUFFER

GNUTLS_E_INTERRUPTED
GNUTLS_E_PUSH_ERROR
GNUTLS_E_PULL_ERROR
GNUTLS_E_RECEIVED_ILLEGAL._-
PARAMETER
GNUTLS_E_REQUESTED_DATA_NOT _-
AVAILABLE
GNUTLS_E_PKCS1_.WRONG_PAD
GNUTLS_E_RECEIVED_ILLEGAL_-
EXTENSION
GNUTLS_E_INTERNAL_ERROR
GNUTLS_E_CERTIFICATE_KEY _-
MISMATCH

290

Compression of the TLS record packet has
failed.

Resource temporarily unavailable,
again.

The requested session has expired.
Error in Database backend.

Error in password file.

Insufficient credentials for that request.
Hashing has failed.

Base64 decoding error.

Could not export a large integer.
Rehandshake was requested by the peer.
TLS Application data were received, while
expecting handshake data.

The upper limit of record packet sequence
numbers has been reached. Wow!
Encryption has failed.

Error in the certificate.

Public key encryption has failed.

Public key decryption has failed.

Public key signing has failed.
Unsupported critical extension in X.509
certificate.

Key usage violation in certificate has been
detected.

No certificate was found.

The request is invalid.

The given memory buffer is too short to
hold parameters.

Function was interrupted.

Error in the push function.

Error in the pull function.

An illegal parameter has been received.

try

The requested data were not available.

Wrong padding in PKCS1 packet.
An illegal TLS extension was received.

GnuTLS internal error.
The certificate and the given key do not
match.

APPENDIX D. ERROR CODES AND DESCRIPTIONS

-61

-62

-63

-64
-67
-68

-69
-70
-71
=72
-73
-74
=75
-76
=77
-78

-79
-80

-81
-84
-86
-87
-88
-89
-90
-91
-93
-94

-95

GNUTLS_E_UNSUPPORTED -
CERTIFICATE_TYPE
GNUTLS_E_X509_-UNKNOWN_SAN

GNUTLS_E_.DH_PRIME_.UNACCEPTABLE

GNUTLS_E_FILE_ERROR
GNUTLS_E_ASN1_ELEMENT_NOT_FOUND
GNUTLS_E_ASN1_IDENTIFIER_.NOT_-
FOUND

GNUTLS_E_ASN1_DER_ERROR
GNUTLS_E_ASN1_VALUE_NOT_FOUND
GNUTLS_E_ASN1_GENERIC_ERROR
GNUTLS_E_ASN1_VALUE_NOT_VALID
GNUTLS_E_ASN1_TAG_ERROR
GNUTLS_E_ASN1_TAG_IMPLICIT
GNUTLS_E_ASN1_TYPE_ANY_ERROR
GNUTLS_E_ASN1_SYNTAX_ERROR
GNUTLS_E_ASN1_DER_OVERFLOW
GNUTLS_E_.TOO_-MANY_EMPTY_PACKETS

GNUTLS_E_OPENPGP_UID_REVOKED
GNUTLS_E_.UNKNOWN_PK_ALGORITHM

GNUTLS_E_.TOO_-MANY_HANDSHAKE _-
PACKETS
GNUTLS_E_.NO_.TEMPORARY_RSA _-
PARAMS
GNUTLS_E_ZNO_.COMPRESSION _-
ALGORITHMS
GNUTLS_E_NO_CIPHER_SUITES

GNUTLS_E_OPENPGP_GETKEY_FAILED
GNUTLS_E_PK_SIG_VERIFY_FAILED
GNUTLS_E_.ILLEGAL_SRP_.USERNAME
GNUTLS_E_SRP_PWD_PARSING_ERROR
GNUTLS_E_ZNO_.TEMPORARY_DH_PARAMS
GNUTLS_E_.OPENPGP_FINGERPRINT _-
UNSUPPORTED
GNUTLS_E_X509_-UNSUPPORTED _—-
ATTRIBUTE

291

The certificate type is not supported.

Unknown Subject Alternative name in
X.509 certificate.

The Diffie-Hellman prime sent by the
server is not acceptable (not long enough).
Error while reading file.

ASNT1 parser: Element was not found.
ASN1 parser: Identifier was not found

ASNT1 parser: Error in DER parsing.
ASNT1 parser: Value was not found.

ASNT1 parser: Generic parsing error.
ASN1 parser: Value is not valid.

ASNI1 parser: Error in TAG.

ASNT1 parser: error in implicit tag

ASNT1 parser: Error in type "ANY".

ASNT1 parser: Syntax error.

ASNT1 parser: Overflow in DER parsing.
Too many empty record packets have been
received.

The OpenPGP User ID is revoked.

An unknown public key algorithm was en-
countered.

Too many handshake packets have been re-
ceived.

No temporary
found.

No supported compression algorithms have
been found.

No supported cipher suites have been
found.

Could not get OpenPGP key.

Public key signature verification has failed.
The SRP username supplied is illegal.
Parsing error in password file.

No temporary DH parameters were found.
The OpenPGP fingerprint is not sup-
ported.

The certificate has unsupported attributes.

RSA parameters were

-96
-97
-98
-99
-100
-101
-104
-105
-106
-107

-108

-109
-110

-201
-202

-203

-204
-205
-206
-207

-208
-209

-210
-211
-212
-213

-214
-215

GNUTLS_LE_UNKNOWN_HASH -
ALGORITHM
GNUTLS_E_.UNKNOWN_PKCS_CONTENT _-
TYPE
GNUTLS_E_UNKNOWN_PKCS_BAG_TYPE

GNUTLS_E_INVALID_PASSWORD

GNUTLS_E_MAC_VERIFY_FAILED

GNUTLS_E_.CONSTRAINT_ERROR
GNUTLS_E_IA_VERIFY_FAILED
GNUTLS_E_.UNKNOWN_ALGORITHM

GNUTLS_E_.UNSUPPORTED_SIGNATURE _-
ALGORITHM
GNUTLS_E_SAFE_RENEGOTIATION -
FAILED
GNUTLS_E_.UNSAFE_RENEGOTIATION _-
DENIED
GNUTLS_E_.UNKNOWN_SRP_USERNAME
GNUTLS_E_.PREMATURE_TERMINATION

GNUTLS_E_BASE64_ENCODING_ERROR
GNUTLS_E_INCOMPATIBLE_GCRYPT_-
LIBRARY
GNUTLS_E_INCOMPATIBLE_LIBTASN1 -
LIBRARY
GNUTLS_E_.OPENPGP_KEYRING_ERROR
GNUTLS_E_X509_.UNSUPPORTED_OID
GNUTLS_E_RANDOM_FAILED
GNUTLS_E_BASE64_UNEXPECTED_-
HEADER_ERROR
GNUTLS_E_OPENPGP_SUBKEY_ERROR
GNUTLS_E_.CRYPTO_ALREADY _-
REGISTERED
GNUTLS_E_.HANDSHAKE_TOO_LARGE
GNUTLS_E_CRYPTODEV_IOCTL_ERROR
GNUTLS_E_CRYPTODEV_DEVICE_ERROR
GNUTLS_E_.CHANNEL_BINDING_NOT_-
AVAILABLE

GNUTLS_E_BAD_COOKIE
GNUTLS_E_.OPENPGP_PREFERRED_KEY _-
ERROR

292

The hash algorithm is unknown.

The PKCS structure’s content type is un-
known.

The PKCS structure’s bag type is un-
known.

The given password contains invalid char-
acters.

The Message Authentication Code verifi-
cation failed.

Some constraint limits were reached.
Verifying TLS/IA phase checksum failed
The specified algorithm or protocol is un-
known.

The signature algorithm is not supported.

Safe renegotiation failed.
Unsafe renegotiation denied.

The SRP username supplied is unknown.
The TLS connection was non-properly ter-
minated.

Base64 encoding error.

The crypto library version is too old.

The tasnl library version is too old.

Error loading the keyring.

The OID is not supported.
Failed to acquire random data.
Base64 unexpected header error.

Could not find OpenPGP subkey.

There is already a crypto algorithm with
lower priority.

The handshake data size is too large.
Error interfacing with /dev/crypto

Error opening /dev/crypto

Channel binding data not available

The cookie was bad.
The OpenPGP key has not a preferred key
set.

APPENDIX D. ERROR CODES AND DESCRIPTIONS

-216

-217

-292

-293
-300
-301
-302
-303
-305
-306
-307
-308
-309
-310

-311
-312
-313
-314
-315
-316
-317
-318

-319
-320

-321
-322
-323

-324
-325

-326
-327

-328

GNUTLS_E_.INCOMPAT_DSA_KEY_WITH_-
TLS_.PROTOCOL
GNUTLS_E_INSUFFICIENT_SECURITY

GNUTLS_E_HEARTBEAT_PONG _-
RECEIVED
GNUTLS_E_HEARTBEAT_PING_RECEIVED
GNUTLS_E_PKCS11_ERROR
GNUTLS_E_PKCS11_.LOAD_ERROR
GNUTLS_E_PARSING_ERROR
GNUTLS_E_PKCS11_PIN_.ERROR
GNUTLS_E_PKCS11_SLOT_ERROR
GNUTLS_E_LOCKING_ERROR
GNUTLS_E_PKCS11_ATTRIBUTE_ERROR
GNUTLS_E_PKCS11_DEVICE_ERROR
GNUTLS_E_PKCS11_DATA_ERROR
GNUTLS_E_PKCS11_UNSUPPORTED _-
FEATURE_ERROR
GNUTLS_E_PKCS11_KEY_ERROR
GNUTLS_E_PKCS11_PIN_EXPIRED
GNUTLS_E_PKCS11_PIN_LOCKED
GNUTLS_E_PKCS11_SESSION_ERROR
GNUTLS_E_PKCS11_SIGNATURE_ERROR
GNUTLS_E_PKCS11_TOKEN_ERROR
GNUTLS_E_PKCS11_USER_ERROR
GNUTLS_E_.CRYPTO_INIT_FAILED

GNUTLS_E_.TIMEDOUT
GNUTLS_E_USER_-ERROR

GNUTLS_E_ECC_NO_SUPPORTED_CURVES
GNUTLS_E_LECC_.UNSUPPORTED_CURVE
GNUTLS_E_PKCS11_REQUESTED_-
OBJECT_NOT_AVAILBLE
GNUTLS_E_CERTIFICATE_LIST -
UNSORTED
GNUTLS_E_.ILLEGAL_PARAMETER
GNUTLS_E_NO_PRIORITIES_-WERE_SET
GNUTLS_E_X509_.UNSUPPORTED _-
EXTENSION

GNUTLS_E_SESSION_EOF

293

The given DSA key is incompatible with
the selected TLS protocol.

One of the involved algorithms has insuffi-
cient security level.

A heartbeat pong message was received.

A heartbeat ping message was received.
PKCS #11 error.

PKCS #11 initialization error.
Error in parsing.

Error in provided PIN.

PKCS #11 error in slot

Thread locking error

PKCS #11 error in attribute
PKCS #11 error in device
PKCS #11 error in data

PKCS #11 unsupported feature

PKCS #11 error in key

PKCS #11 PIN expired

PKCS #11 PIN locked

PKCS #11 error in session

PKCS #11 error in signature

PKCS #11 error in token

PKCS #11 user error

The initialization of crypto backend has
failed.

The operation timed out

The operation was cancelled due to user
error

No supported ECC curves were found
The curve is unsupported

The requested PKCS #11 object is not
available

The provided X.509 certificate list is not
sorted (in subject to issuer order)

An illegal parameter was found.

No or insufficient priorities were set.
Unsupported extension in X.509 certifi-
cate.

Peer has terminated the connection

-329
-330

-331
-332
-333

-334
-335

-340
-341
-342
-343
-344

-345
-346
-347
-348
-400
-401
-402

-403

GNUTLS_E_.TPM_ERROR
GNUTLS_E_TPM_KEY_PASSWORD_ERROR

GNUTLS_E_-TPM_SRK_PASSWORD_ERROR
GNUTLS_E_TPM_SESSION_ERROR
GNUTLS_E_TPM_KEY_NOT_FOUND

GNUTLS_E_TPM_UNINITIALIZED
GNUTLS_E_.TPM_NO_LIB

GNUTLS_E_NO_CERTIFICATE_STATUS
GNUTLS_E_.OCSP_RESPONSE_ERROR
GNUTLS_E_.RANDOM_DEVICE_ERROR
GNUTLS_E_AUTH_ERROR
GNUTLS_E_NO_APPLICATION_PROTOCOL

GNUTLS_E_SOCKETS_INIT_ERROR
GNUTLS_E_KEY_IMPORT_FAILED
GNUTLS_E.INAPPROPRIATE_FALLBACK

GNUTLS_E_CERTIFICATE -
VERIFICATION_ERROR
GNUTLS_E_SELF_TEST_ERROR
GNUTLS_E_NO_SELF_TEST
GNUTLS_E_LIB_IN_.ERROR_STATE

GNUTLS_E_.PK_GENERATION_ERROR

TPM error.

Error in provided password for key to be
loaded in TPM.

Error in provided SRK password for TPM.
Cannot initialize a session with the TPM.
TPM key was not found in persistent stor-
age.

TPM is not initialized.

The TPM library (trousers) cannot be
found.

There is no certificate status (OCSP).
The OCSP response is invalid

Error in the system’s randomness device.
Could not authenticate peer.

No common application protocol could be
negotiated.

Error in sockets initialization.

Failed to import the key into store.

A connection with inappropriate fallback
was attempted.

Error in the certificate verification.

Error while performing self checks.

There is no self test for this algorithm.
An error has been detected in the library
and cannot continue operations.

Error in public key generation.

Table D.1.: The error codes table

294

GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright (© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But
this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the conditions stated herein. The “Document”, below, refers
to any such manual or work. Any member of the public is a licensee, and is addressed as “you”. You accept the
license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with
the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in
the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words,
and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification
is available to the general public, that is suitable for revising the document straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

295

http://fsf.org/

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX
input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or
PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML
for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any
title page as such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains
XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section
name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To
“Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled
XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on

the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that
this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering
more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as
fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

296

APPENDIX D. ERROR CODES AND DESCRIPTIONS

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may
use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the publisher.
Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

28 U Q

Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Docu-
ment’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year,
new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve
in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant
Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain
no material copied from the Document, you may at your option designate some or all of these sections as invariant.
To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must
be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Ver-
sion by various parties—for example, statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you
are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity

for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4
above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice,
and that you preserve all their Warranty Disclaimers.

297

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list
of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one
section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled

“Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace
the individual copies of this License in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding

verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on
a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation
is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less
than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must

appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms
of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4)

to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your
rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently,
if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you
of the violation by some reasonable means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or
rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a

copy of some or all of the same material does not give you any rights to use it.

298

APPENDIX D. ERROR CODES AND DESCRIPTIONS

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License “or any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide
which future versions of this License can be used, that proxy’s public statement of acceptance of a version permanently

authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that publishes copy-
rightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody
can edit is an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site
means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Cor-
poration, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future
copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first published under
this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1)
had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any
time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this docu-
ment under the terms of the GNU Free Documentation License, Version 1.3 or any later version published
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with ... Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and
with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alterna-
tives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

299

[1]

2]
3]
(4]

[5]

[15]

[16]

Bibliography

NIST Special Publication 800-57, Recommendation for Key Management - Part 1: General
(Revised), March 2007.

PKCS #11 Base Functionality v2.30: Cryptoki Draft 4, July 2009.
ECRYPT II Yearly Report on Algorithms and Keysizes (2009-2010), 2010.

J. Altman, N. Williams, and L. Zhu. Channel bindings for TLS, July 2010. Available
from http://www.ietf.org/rfc/rfc5929.

R. J. Anderson. Security Engineering: A Guide to Building Dependable Distributed Sys-
tems. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 2001.

S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, and T. Wright. Transport
layer security (TLS) extensions, June 2003. Available from http://www.ietf.org/rfc/
rfc3546.

J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. OpenPGP message format,
November 2007. Available from http://www.ietf.org/rfc/rfc4880.

D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
RFC 5280 (Proposed Standard), May 2008. Available from http://www.ietf.org/rfc/
rfc5280.

T. Dierks and E. Rescorla. The TLS protocol version 1.1, April 2006. Available from
http://www.ietf.org/rfc/rfc4346.

T. Dierks and E. Rescorla. The TLS Protocol Version 1.2, August 2008. Available from
http://www.ietf.org/rfc/rfcb5246.

P. Eronen and H. Tschofenig. Pre-shared key ciphersuites for TLS, December 2005. Avail-
able from http://www.ietf.org/rfc/rfc4279.

C. Evans and C. Palmer. Public Key Pinning Extension for HTTP, December 2011.
Available from http://tools.ietf.org/html/draft-ietf-websec-key-pinning-01.

A. Freier, P. Karlton, and P. Kocher. The secure sockets layer (ssl) protocol version 3.0,
August 2011. Available from http://wuw.ietf.org/rfc/rfc6101.

P. Gutmann. Everything you never wanted to know about PKI but were forced to find out,
2002. Available from http://www.cs.auckland.ac.nz/~pgut001/pubs/pkitutorial.
pdf.

S. Hollenbeck. Transport layer security protocol compression methods, May 2004. Avail-
able from http://www.ietf.org/rfc/rfc3749.

R. Housley, T. Polk, W. Ford, and D. Solo. Internet X.509 public key infrastructure

301

http://www.ietf.org/rfc/rfc5929
http://www.ietf.org/rfc/rfc3546
http://www.ietf.org/rfc/rfc3546
http://www.ietf.org/rfc/rfc4880
http://www.ietf.org/rfc/rfc5280
http://www.ietf.org/rfc/rfc5280
http://www.ietf.org/rfc/rfc4346
http://www.ietf.org/rfc/rfc5246
http://tools.ietf.org/html/draft-ietf-websec-key-pinning-01
http://www.ietf.org/rfc/rfc6101
http://www.cs.auckland.ac.nz/~pgut001/pubs/pkitutorial.pdf
http://www.cs.auckland.ac.nz/~pgut001/pubs/pkitutorial.pdf
http://www.ietf.org/rfc/rfc3749

Bibliography

certificate and certificate revocation list (CRL) profile, April 2002. Available from http:
//www.ietf.org/rfc/rfc3280.

R. Khare and S. Lawrence. Upgrading to TLS within HTTP/1.1, May 2000. Available
from http://wuw.ietf.org/rfc/rfc2817.

R. Laboratories. PKCS 12 v1.0: Personal information exchange syntax, June 1999.

C. Latze and N. Mavrogiannopoulos. The TPMKEY URI Scheme, Jan-
uary 2013. Work in progress, available from http://tools.ietf.org/html/
draft-mavrogiannopoulos-tpmuri-01.

A. Lenstra, X. Wang, and B. de Weger. Colliding X.509 Certificates, 2005. Available from
http://eprint.iacr.org/2005/067.

M. Mathis and J. Heffner. Packetization Layer Path MTU Discovery, March 2007. Avail-
able from http://www.ietf.org/rfc/rfc4821.

D. McGrew and E. Rescorla. Datagram Transport Layer Security (DTLS) Extension to
Establish Keys for the Secure Real-time Transport Protocol (SRTP), May 2010. Available
from http://www.ietf.org/rfc/rfcb764.

B. Moeller. Security of CBC ciphersuites in SSL/TLS: Problems and countermeasures,
2002. Available from http://www.openssl.org/~bodo/tls-cbc.txt.

M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509 Internet Public
Key Infrastructure Online Certificate Status Protocol - OCSP, June 1999. Available from
http://www.ietf.org/rfc/rfc2560.

M. Nystrom and B. Kaliski. PKCS 10 v1.7: certification request syntax specification,
November 2000. Available from http://www.ietf.org/rfc/rfc2986.

J. Pechanec and D. J. Moffat. The PKCS 11 URI Scheme. RFC 7512 (Standards Track),
Apr. 2015.

M. T. R. Seggelmann and M. Williams. Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS) Heartbeat Extension, February 2012. Available from
http://www.ietf.org/rfc/rfc6520.

E. Rescola. HTTP over TLS, May 2000. Available from http://www.ietf.org/rfc/
rfc2818.

E. Rescorla and N. Modadugu. Datagram transport layer security, April 2006. Available
from http://www.ietf.org/rfc/rfcd347.

E. Rescorla, M. Ray, S. Dispensa, and N. Oskov. Transport layer security (TLS) renego-
tiation indication extension, February 2010. Available from http://www.ietf.org/rfc/
rfcb746.

R. L. Rivest. Can We Eliminate Certificate Revocation Lists?, Febru-
ary 1998. Available from http://people.csail.mit.edu/rivest/
Rivest-CanWeEliminateCertificateRevocationLists.pdf.

302

http://www.ietf.org/rfc/rfc3280
http://www.ietf.org/rfc/rfc3280
http://www.ietf.org/rfc/rfc2817
http://tools.ietf.org/html/draft-mavrogiannopoulos-tpmuri-01
http://tools.ietf.org/html/draft-mavrogiannopoulos-tpmuri-01
http://eprint.iacr.org/2005/067
http://www.ietf.org/rfc/rfc4821
http://www.ietf.org/rfc/rfc5764
http://www.openssl.org/~bodo/tls-cbc.txt
http://www.ietf.org/rfc/rfc2560
http://www.ietf.org/rfc/rfc2986
http://www.ietf.org/rfc/rfc6520
http://www.ietf.org/rfc/rfc2818
http://www.ietf.org/rfc/rfc2818
http://www.ietf.org/rfc/rfc4347
http://www.ietf.org/rfc/rfc5746
http://www.ietf.org/rfc/rfc5746
http://people.csail.mit.edu/rivest/Rivest-CanWeEliminateCertificateRevocationLists.pdf
http://people.csail.mit.edu/rivest/Rivest-CanWeEliminateCertificateRevocationLists.pdf

Bibliography

[32]

P. Saint-Andre and J. Hodges. Representation and Verification of Domain-Based Appli-
cation Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX)
Certificates in the Context of Transport Layer Security (TLS), March 2011. Available
from http://www.ietf.org/rfc/rfc6125.

J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig. Transport layer security (TLS) session
resumption without server-side state, January 2008. Available from http://www.ietf.
org/rfc/rfcb5077.

S. Santesson. TLS Handshake Message for Supplemental Data, September 2006. Available
from http://www.ietf.org/rfc/rfc4680.

W. R. Stevens. UNIX Network Programming, Volume 1. Prentice Hall, 1998.

D. Taylor, T. Perrin, T. Wu, and N. Mavrogiannopoulos. Using SRP for TLS authentica-
tion, November 2007. Available from http://www.ietf.org/rfc/rfc5054.

S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson. Internet X.509 public
key infrastructure (PKI) proxy certificate profile, June 2004. Available from http://wuw.
ietf.org/rfc/rfc3820.

N. Williams. On the use of channel bindings to secure channels, November 2007. Available
from http://www.ietf.org/rfc/rfc5056.

T. Wu. The stanford SRP authentication project. Available from http://srp.stanford.
edu/.

T. Wu. The SRP authentication and key exchange system, September 2000. Available
from http://www.ietf.org/rfc/rfc2945.

K. D. Zeilenga. Lightweight Directory Access Protocol (LDAP): String Representation of
Distinguished Names, June 2006. Available from http://www.ietf.org/rfc/rfc4514.

303

http://www.ietf.org/rfc/rfc6125
http://www.ietf.org/rfc/rfc5077
http://www.ietf.org/rfc/rfc5077
http://www.ietf.org/rfc/rfc4680
http://www.ietf.org/rfc/rfc5054
http://www.ietf.org/rfc/rfc3820
http://www.ietf.org/rfc/rfc3820
http://www.ietf.org/rfc/rfc5056
http://srp.stanford.edu/
http://srp.stanford.edu/
http://www.ietf.org/rfc/rfc2945
http://www.ietf.org/rfc/rfc4514

abstract types, 95

alert protocol, 9

ALPN, 17

anonymous authentication, 88

Application Layer Protocol Negotiation, 17
Application-specific keys, 103
authentication methods, 21

bad_record _mac, 9

callback functions, 136
certificate authentication, 21, 41
certificate requests, 41
certificate revocation lists, 44
certificate status, 47

Certificate status request, 15
Certificate verification, 38
certification, 281

certtool, 55

certtool help, 56

channel bindings, 176
ciphersuites, 283

client certificate authentication, 11
compression algorithms, 8
contributing, 280

CRL, 44

DANE, 39, 170
dane_strerror, 172
dane_verify crt, 173
dane_verify session_crt, 172
dane_verify status_t, 174
danetool, 76

danetool help, 76
deriving keys, 176
digital signatures, 39
DNSSEC, 39, 170
download, 1

Encrypted keys, 51
error codes, 289

Index

example programs, 179
examples, 179
exporting keying material, 176

fork, 136

generating parameters, 175

gnutls-cli, 245

gnutls-cli help, 245

gnutls-cli-debug, 258

gnutls-cli-debug help, 259

gnutls-serv, 253

gnutls-serv help, 253

gnutls_alert_get, 160

gnutls_alert_get_name, 160

gnutls_alert_send, 160

gnutls_alpn_get_selected_protocol, 17

gnutls_alpn_set_protocols, 17

gnutls_anon_allocate_client_credentials, 148

gnutls_anon_-allocate_server_credentials, 148

gnutls_anon_free_client_credentials, 148

gnutls_anon_free_server_credentials, 148

gnutls_anon_set_server_dh_params, 175

gnutls_bye, 158

gnutls_certificate_allocate_credentials, 140

gnutls_certificate_free_credentials, 140

gnutls_certificate_send _x509_rdn_sequence, 144

gnutls_certificate_server_set_request, 143

gnutls_certificate_set_dh_params, 175

gnutls_certificate_set_key, 142

gnutls_certificate_set_ocsp_status_request_file,
15

gnutls_certificate_set_ocsp_status_request_function,

15
gnutls_certificate_set_openpgp_key, 141
gnutls_certificate_set_openpgp_key file, 141
gnutls_certificate_set_openpgp_key_mem, 141
gnutls_certificate_set_openpgp_keyring_file, 38,

144
gnutls_certificate_set_params_function, 175

305

Index

gnutls_certificate_set_pin_function, 108, 141
gnutls_certificate_set_retrieve_function, 142
gnutls_certificate_set_retrieve_function2, 142
gnutls_certificate_set_verify _function, 144
gnutls_certificate_set_x509_crl file, 35
gnutls_certificate_set_x509 _key, 141
gnutls_certificate_set_x509 key file2, 112, 141
gnutls_certificate_set_x509_key_mem?2, 141
gnutls_certificate_set_x509_system_trust, 35,
112, 144
gnutls_certificate_set_x509_trust_dir, 35
gnutls_certificate_set_x509_trust_file, 35, 112,
144
gnutls_certificate_status_t, 90
gnutls_certificate_verify_flags, 34, 91, 170
gnutls_certificate_verify_peers2, 155
gnutls_certificate_verify_peers3, 144
gnutls_compression_method_t, 8
gnutls_credentials_set, 139
gnutls_db_check_entry, 169
gnutls_db_set_ptr, 169
gnutls_db_set_remove_function, 169
gnutls_db_set_retrieve_function, 169
gnutls_db_set_store_function, 169
gnutls_deinit, 158
gnutls_dh_params_generate2, 175
gnutls_dh_params_import_pkecs3, 175
gnutls_dh_set_prime_bits, 168
gnutls_dtls_cookie_send, 154
gnutls_dtls_cookie_verify, 154
gnutls_dtls_get_data_mtu, 154
gnutls_dtls_get_mtu, 154
gnutls_dtls_get_timeout, 152
gnutls_dtls_prestate_set, 154
gnutls_dtls_set_mtu, 154
gnutls_error_is_fatal, 157
gnutls_error_to_alert, 160
gnutls_global_set_audit_log_function, 134
gnutls_global_set_log_function, 133
gnutls_global set_log_level, 133
gnutls_global_set_mutex, 135
gnutls_handshake, 155
gnutls_handshake_set_timeout, 155
gnutls_heartbeat_allowed, 13
gnutls_heartbeat_enable, 13
gnutls_heartbeat_get_timeout, 13

306

gnutls_heartbeat_ping, 13
gnutls_heartbeat_pong, 13
gnutls_heartbeat_set_timeouts, 13
gnutls_hex_decode, 86
gnutls_hex_encode, 86

gnutls_init, 139

gnutls_key_generate, 86, 154
gnutls_ocsp_req_add_cert, 49
gnutls_ocsp_req_add_cert_id, 49
gnutls_ocsp_req_deinit, 49
gnutls_ocsp_req_export, 49
gnutls_ocsp_req_get_cert_id, 49
gnutls_ocsp_req_get_extension, 49
gnutls_ocsp_req_get_nonce, 50
gnutls_ocsp_req-import, 49
gnutls_ocsp_req_init, 49
gnutls_ocsp_req_print, 49
gnutls_ocsp_req_randomize_nonce, 50
gnutls_ocsp_req_set_extension, 49
gnutls_ocsp_req_set_nonce, 50
gnutls_ocsp_resp_check_crt, 51
gnutls_ocsp_resp_deinit, 50
gnutls_ocsp_resp_export, 50
gnutls_ocsp_resp_get_single, 51
gnutls_ocsp_resp_import, 50
gnutls_ocsp_resp_init, 50
gnutls_ocsp_resp_print, 50
gnutls_ocsp_resp_verify, 51
gnutls_ocsp_resp_verify_direct, 51
gnutls_ocsp_status_request_enable_client, 15
gnutls_ocsp_status_request_is_checked, 15
gnutls_openpgp_crt_verify_ring, 38
gnutls_openpgp_crt_verify _self, 38
gnutls_pcert_deinit, 143
gnutls_pcert_import_openpgp, 143
gnutls_pcert_import_openpgp_raw, 143
gnutls_pcert_import_x509, 143
gnutls_pcert_import_x509_raw, 143
gnutls_pin_flag_t, 107
gnutls_pk_bits_to_sec_param, 167
gnutls_pkesll_add_provider, 107
gnutls_pkesl1_copy_x509_crt2, 111
gnutls_pkesl1_copy_x509_privkey2, 111
gnutls_pkes11_delete_url, 112
gnutls_pkesl1_get_pin_function, 107
gnutls_pkesl1_init, 106

Index

gnutls_pkesll_obj_export_url, 108
gnutls_pkesll_obj_get_info, 109
gnutls_pkcsll_obj_import_url, 108
gnutls_pkesll_obj_set_pin_function, 108
gnutls_pkesl1_set_pin_function, 107
gnutls_pkes11_set_token_function, 107
gnutls_pkcsl1_token_get_flags, 109
gnutls_pkes11_token_get_info, 109
gnutls_pkesl1_token_get_url, 109
gnutls_pkesl1_token_init, 109
gnutls_pkesl1_token_set_pin, 109
gnutls_pkes12_bag_decrypt, 53
gnutls_pkes12_bag_encrypt, 55
gnutls_pkesl2_bag_get_count, 53
gnutls_pkes12_bag_get_data, 54
gnutls_pkcs12_bag_get_friendly_name, 54
gnutls_pkcs12_bag_get_key_id, 54
gnutls_pkecs12_bag_set_crl, 55
gnutls_pkcsl2_bag_set_crt, 55
gnutls_pkcs12_bag_set_data, 55
gnutls_pkcs12_bag_set_friendly_name, 55
gnutls_pkesl2_bag_set_key_id, 55
gnutls_pkcs12_generate_mac, 55
gnutls_pkes12_get_bag, 53
gnutls_pkes12_set_bag, 55
gnutls_pkecs12_simple_parse, 54
gnutls_pkes12_verify_mac, 53
gnutls_pkes_encrypt_flags_t, 94
gnutls_priority set, 161

gnutls_priority set_direct, 161
gnutls_privkey_decrypt_data, 102
gnutls_privkey_get_pk_algorithm, 99
gnutls_privkey_get_type, 99
gnutls_privkey_import_ext3, 100
gnutls_privkey_import_openpgp, 99
gnutls_privkey_import_openpgp_raw, 99
gnutls_privkey_import_pkesl1, 99
gnutls_privkey_import_tpm_raw, 124
gnutls_privkey_import_tpm_url, 125
gnutls_privkey_import_url, 99
gnutls_privkey_import_x509, 99
gnutls_privkey_import_x509_raw, 52, 99
gnutls_privkey_set_pin_function, 108
gnutls_privkey_sign_data, 101
gnutls_privkey_sign_hash, 102
gnutls_privkey_status, 99

307

gnutls_psk_allocate_client_credentials, 147
gnutls_psk_allocate_server_credentials, 147
gnutls_psk_client_get_hint, 148
gnutls_psk_free_client_credentials, 147
gnutls_psk_free_server_credentials, 147
gnutls_psk_set_client_credentials, 147
gnutls_psk_set_client_credentials_function, 147
gnutls_psk_set_server_credentials_file, 148
gnutls_psk_set_server_credentials_function, 148
gnutls_psk_set_server_credentials_hint, 148
gnutls_pubkey_encrypt_data, 101
gnutls_pubkey_export, 97
gnutls_pubkey_export2, 97
gnutls_pubkey_export_dsa_raw, 98
gnutls_pubkey_export_ecc_raw, 98
gnutls_pubkey_export_ecc_x962, 98
gnutls_pubkey_export_rsa_raw, 98
gnutls_pubkey_get_key_id, 98
gnutls_pubkey_get_pk_algorithm, 98
gnutls_pubkey_get_preferred_hash_algorithm,
98
gnutls_pubkey_import, 97
gnutls_pubkey_import_openpgp, 96
gnutls_pubkey_import_openpgp_raw, 97
gnutls_pubkey_import_pkesl1, 96
gnutls_pubkey_import_privkey, 97
gnutls_pubkey_import_tpm_raw, 124
gnutls_pubkey_import_tpm_url, 125
gnutls_pubkey_import_url, 97
gnutls_pubkey_import_x509, 96
gnutls_pubkey_import_x509_raw, 97
gnutls_pubkey_set_pin_function, 108
gnutls_pubkey_verify_data2, 100
gnutls_pubkey_verify_hash2, 101
gnutls_random_art, 98
gnutls_record_check_pending, 158
gnutls_record_cork, 159
gnutls_record_get_direction, 153, 156
gnutls_record_get_max _size, 12
gnutls_record_recv, 157
gnutls_record_recv_seq, 157
gnutls_record_send, 156
gnutls_record_set_max_size, 12
gnutls_record_uncork, 159
gnutls_register_custom_url, 104
gnutls_rehandshake, 174

Index

gnutls_safe_renegotiation_status, 174
gnutls_sec_param_get_name, 167
gnutls_sec_param_to_pk_bits, 167
gnutls_server_name_get, 12
gnutls_server_name_set, 12
gnutls_session_get_data2, 168
gnutls_session_get_id2, 168
gnutls_session_is_resumed, 168
gnutls_session_resumption_requested, 170
gnutls_session_set_data, 168
gnutls_session_set_verify_cert, 145, 155
gnutls_session_ticket_enable_server, 169
gnutls_session_ticket_key_generate, 170
gnutls_sign_algorithm_get_requested, 142
gnutls_srp_allocate_client_credentials, 145
gnutls_srp_allocate_server_credentials, 145
gnutls_srp_base64_decode2, 83
gnutls_srp_base64_encode2, 83
gnutls_srp_free_client_credentials, 145
gnutls_srp_free_server_credentials, 145
gnutls_srp_set_client_credentials, 145
gnutls_srp_set_client_credentials_function, 146
gnutls_srp_set_prime_bits, 168
gnutls_srp_set_server_credentials_file, 146
gnutls_srp_set_server_credentials_function, 146
gnutls_srp_verifier, 83
gnutls_srtp_get_keys, 17
gnutls_srtp_get_profile_id, 17
gnutls_srtp_get_profile_name, 17
gnutls_srtp_get_selected_profile, 17
gnutls_srtp_profile_t, 16
gnutls_srtp_set_profile, 16
gnutls_srtp_set_profile_direct, 16
gnutls_store_commitment, 172
gnutls_store_pubkey, 171
gnutls_subject_alt_names_get, 25
gnutls_subject_alt_names_init, 25
gnutls_subject_alt_names_set, 25
gnutls_system_key_add x509, 103
gnutls_system_key_delete, 103
gnutls_system_key_iter_deinit, 103
gnutls_system_key_iter_get_info, 103
gnutls_tdb_deinit, 171

gnutls_tdb_init, 171
gnutls_tdb_set_store_commitment_func, 171
gnutls_tdb_set_store_func, 171

308

gnutls_tdb_set_verify_func, 171
gnutls_tpm_get_registered, 124, 125
gnutls_tpm _key _list_deinit, 124, 125
gnutls_tpm _key _list_get_url, 124, 125
gnutls_tpm_privkey_delete, 124, 126
gnutls_tpm_privkey_generate, 123
gnutls_transport_set_errno, 151
gnutls_transport_set_int, 149
gnutls_transport_set_int2, 149
gnutls_transport_set_ptr, 149
gnutls_transport_set_ptr2, 149
gnutls_transport_set_pull_function, 136, 150
gnutls_transport_set_pull_timeout_function, 150,
151
gnutls_transport_set_push_function, 136, 149
gnutls_transport_set_vec_push_function, 150
gnutls_url_is_supported, 98
gnutls_verify_stored_pubkey, 171
gnutls_x509_crl_export, 45
gnutls_x509_crl_get_crt_count, 46
gnutls x509_crl_get_crt_serial, 45
gnutls_x509_crl_get_issuer_dn, 46
gnutls_x509_crl_get_issuer_dn2, 46
gnutls_x509_crl_get_next_update, 46
gnutls x509_crl_get_this_update, 46
gnutls_x509_crl_get_version, 46
gnutls_x509_crl_import, 45
gnutls_x509_crl_init, 45
gnutls_x509_crl_privkey_sign, 47, 101
gnutls_x509_crl_reason_t, 94
gnutls_x509_crl_set_authority key_id, 47
gnutls_x509_crl_set_crt, 46
gnutls_x509_crl_set_crt_serial, 46
gnutls_x509_crl_set_next_update, 46
gnutls_x509_crl_set_number, 47
gnutls_x509_crl_set_this_update, 46
gnutls_x509_crl_set_version, 46
gnutls x509_crl_sign2, 47
gnutls_x509_crq_privkey _sign, 101
gnutls_x509_crq_set_basic_constraints, 42
gnutls_x509_crq_set_dn, 42
gnutls x509_crq_set_dn_by_oid, 42
gnutls_x509_crq_set_key, 42
gnutls_x509_crq_set_key_purpose_oid, 42
gnutls_x509_crq_set_key_usage, 42
gnutls_x509_crq_set_pubkey, 102

Index

gnutls_x509_crq_set_version, 42
gnutls_x509_crq_sign2, 42
gnutls_x509 _crt_deinit, 24
gnutls_x509_crt_get_authority_info_access, 48
gnutls_x509_crt_get_basic_constraints, 30
gnutls_x509_crt_get_dn, 25
gnutls_x509_crt_get_dn2, 25
gnutls_x509_crt_get_dn_by_oid, 25
gnutls_x509_crt_get_dn_oid, 25
gnutls_x509_crt_get_extension_by_oid2, 27
gnutls x509_crt_get_extension_data2, 27
gnutls_x509_crt_get_extension_info, 27
gnutls_x509_crt_get_issuer, 26
gnutls_x509_crt_get_issuer_dn, 26
gnutls_x509_crt_get_issuer_dn2, 26
gnutls_xbH09_crt_get_issuer_dn_by_oid, 26
gnutls_x509_crt_get_issuer_dn_oid, 26
gnutls_x509_crt_get_key_id, 30
gnutls_x509_crt_get_key_usage, 30
gnutls_x509_crt_get_subject, 26
gnutls_x509_crt_get_subject_alt_name2, 24
gnutls_x509_crt_import, 24
gnutls_x509_crt_import_pkes11, 109
gnutls_x509_crt_import_url, 109
gnutls_x509_crt_init, 24
gnutls_x509_crt_list_import, 24
gnutls_x509 _crt_list_import2, 24
gnutls_x509_crt_list_import_pkesl1, 109
gnutls_x509_crt_privkey_sign, 101
gnutls_x509_crt_set_basic_constraints, 30
gnutls_x509_crt_set_key_usage, 30
gnutls_x509_crt_set_pin_function, 108
gnutls_x509_crt_set_pubkey, 102
gnutls_x509_crt_set_subject_alt_name, 24
gnutls x509_dn_get_rdn_ava, 26
gnutls_x509_ext_export_basic_constraints, 27
gnutls_x509_ext_export_key_usage, 27
gnutls_x509_ext_export_name_constraints, 28
gnutls_x509_ext_import_basic_constraints, 27
gnutls_x509_ext_import_key_usage, 27
gnutls_x509_ext_import_name_constraints, 28
gnutls_x509_name_constraints_add_excluded,
28
gnutls_x509_name_constraints_add_permitted,
28
gnutls_x509_name_constraints_check, 28

309

gnutls_x509_name_constraints_check_crt, 28
gnutls_x509_name_constraints_deinit, 28
gnutls_x509_name_constraints_get_excluded,
28
gnutls_x509_name_constraints_get_permitted,
28
gnutls x509_name_constraints_init, 28
gnutls x509_privkey_export2_pkes8, 53
gnutls x509_privkey_export_dsa_raw, 31
gnutls_xb09_privkey_export_ecc_raw, 31
gnutls_xb09_privkey_export_pkecs8, 53
gnutls_x509_privkey_export_rsa_raw2, 31
gnutls_x509_privkey_get_key_id, 31
gnutls_x509_privkey_get_pk_algorithm?2, 31
gnutls_x509_privkey_import2, 52
gnutls_x509_privkey_import_openssl, 56
gnutls x509_privkey_import_pkcs8, 53
gnutls x509_trust_list_add_cas, 31
gnutls x509_trust_list_add_crls, 32
gnutls_xb09_trust_list_add_named_crt, 32
gnutls x509_trust_list_add_system_trust, 34
gnutls_x509_trust_list_add_trust_file, 34
gnutls x509_trust_list_add_trust_mem, 34
gnutls_x509_trust_list_verify_crt, 32
gnutls_x509_trust_list_verify_crt2, 33
gnutls x509_trust_list_verify_named_crt, 33

hacking, 280

handshake protocol, 10
hardware security modules, 105
hardware tokens, 105
heartbeat, 13

installation, 1, 2
internal architecture, 263
isolated mode, 135

key extraction, 176

Key pinning, 39, 170

key sizes, 166

keying material exporters, 176

maximum fragment length, 12

OCSP, 47
OCSP status request, 15
ocsptool, 72

Index

ocsptool help, 72

Online Certificate Status Protocol, 47
OpenPGP certificates, 36

OpenPGP server, 214

OpenSSL, 177

OpenSSL encrypted keys, 55

plltool, 112

plltool help, 113
parameter generation, 175
PCT, 20

PKCS #10, 41

PKCS #11 tokens, 105
PKCS #12, 53

PKCS #8, 52

Priority strings, 161
PSK authentication, 85
psktool, 86

psktool help, 86

reauthentication, 173
record padding, 9

record protocol, 6
renegotiation, 14, 173
reporting bugs, 280
resuming sessions, 11, 168

safe renegotiation, 14

seccomp, 135

Secure RTP, 16

server name indication, 12
session resumption, 11, 168
session tickets, 13

Smart card example, 198

smart cards, 105

SRP authentication, 82

srptool, 83

srptool help, 83

SRTP, 16

SSH-style authentication, 39, 170
SSL 2, 20

Supplemental data, 18
symmetric encryption algorithms, 6
System-specific keys, 103

thread safety, 134
tickets, 13

310

TLS extensions, 12, 13

TLS layers, 5

TPM, 122

tpmtool, 125

tpmtool help, 126

transport layer, 5

transport protocol, 5

Trust on first use, 39, 170
trusted platform module, 122

upgrading, 275

verifying certificate paths, 31, 34, 39
verifying certificate with pkesll, 35

X.509 certificate name, 24
X.509 certificates, 21

X.509 distinguished name, 25
X.509 extensions, 27

	Preface
	Introduction to GnuTLS
	Downloading and installing
	Installing for a software distribution
	Overview

	Introduction to TLS and DTLS
	TLS Layers
	The Transport Layer
	The TLS record protocol
	Encryption algorithms used in the record layer
	Compression algorithms used in the record layer
	Weaknesses and countermeasures
	On record padding

	The TLS alert protocol
	The TLS handshake protocol
	TLS ciphersuites
	Authentication
	Client authentication
	Resuming sessions

	TLS extensions
	Maximum fragment length negotiation
	Server name indication
	Session tickets
	HeartBeat
	Safe renegotiation
	OCSP status request
	SRTP
	Application Layer Protocol Negotiation (ALPN)
	Extensions and Supplemental Data

	How to use TLS in application protocols
	Separate ports
	Upward negotiation

	On SSL 2 and older protocols

	Authentication methods
	Certificate authentication
	X.509 certificates
	OpenPGP certificates
	Advanced certificate verification
	Digital signatures

	More on certificate authentication
	PKCS #10 certificate requests
	PKIX certificate revocation lists
	OCSP certificate status checking
	Managing encrypted keys
	Invoking certtool
	Invoking ocsptool
	Invoking danetool

	Shared-key and anonymous authentication
	SRP authentication
	PSK authentication
	Anonymous authentication

	Selecting an appropriate authentication method
	Two peers with an out-of-band channel
	Two peers without an out-of-band channel
	Two peers and a trusted third party

	Abstract keys types and Hardware security modules
	Abstract key types
	Public keys
	Private keys
	Operations

	System and application-specific keys
	System-specific keys
	Application-specific keys

	Smart cards and HSMs
	Initialization
	Accessing objects that require a PIN
	Reading objects
	Writing objects
	Using a PKCS #11 token with TLS
	Invoking p11tool
	p11tool help/usage (``–help'')
	token-related-options options
	object-list-related-options options
	keygen-related-options options
	write-object-related-options options
	other-options options
	p11tool exit status
	p11tool See Also
	p11tool Examples

	Trusted Platform Module (TPM)
	Keys in TPM
	Key generation
	Using keys
	Invoking tpmtool
	tpmtool help/usage (``–help'')
	debug option (-d)
	generate-rsa option
	user option
	system option
	test-sign option
	sec-param option
	inder option
	outder option
	tpmtool exit status
	tpmtool See Also
	tpmtool Examples

	How to use GnuTLS in applications
	Introduction
	General idea
	Error handling
	Common types
	Debugging and auditing
	Thread safety
	Running in a sandbox
	Sessions and fork
	Callback functions

	Preparation
	Headers
	Initialization
	Version check
	Building the source

	Session initialization
	Associating the credentials
	Certificates
	SRP
	PSK
	Anonymous

	Setting up the transport layer
	Asynchronous operation
	DTLS sessions

	TLS handshake
	Data transfer and termination
	Buffered data transfer
	Handling alerts
	Priority strings
	Selecting cryptographic key sizes
	Advanced topics
	Session resumption
	Certificate verification
	Re-authentication
	Parameter generation
	Deriving keys for other applications/protocols
	Channel bindings
	Interoperability
	Compatibility with the OpenSSL library

	GnuTLS application examples
	Client examples
	Simple client example with X.509 certificate support
	Simple client example with SSH-style certificate verification
	Simple client example with anonymous authentication
	Simple datagram TLS client example
	Obtaining session information
	Using a callback to select the certificate to use
	Verifying a certificate
	Using a smart card with TLS
	Client with resume capability example
	Simple client example with SRP authentication
	Simple client example using the C++ API
	Helper functions for TCP connections
	Helper functions for UDP connections

	Server examples
	Echo server with X.509 authentication
	Echo server with OpenPGP authentication
	Echo server with SRP authentication
	Echo server with anonymous authentication
	DTLS echo server with X.509 authentication

	OCSP example
	Miscellaneous examples
	Checking for an alert
	X.509 certificate parsing example
	Listing the ciphersuites in a priority string
	PKCS #12 structure generation example

	Other included programs
	Invoking gnutls-cli
	Invoking gnutls-serv
	Invoking gnutls-cli-debug

	Internal Architecture of GnuTLS
	The TLS Protocol
	TLS Handshake Protocol
	TLS Authentication Methods
	TLS Extension Handling
	Cryptographic Backend

	Upgrading from previous versions
	Support
	Getting Help
	Commercial Support
	Bug Reports
	Contributing
	Certification

	Supported Ciphersuites
	Error Codes and Descriptions
	GNU Free Documentation License
	Bibliography

