
Golang, Micro Service,
Continuous Delivery and
Docker

郭峰
联合创始⼈人@DaoCloud

README.md

Development Challenge

Solution of Challenge: **Micro Service**

Challenge of Solution of Challenge

Solution of Challenge of Solution: **Docker**

Demo

Iteration 1

> go install github.com/DaoCloud/shop

> go test github.com/DaoCloud/shop

CHEERS
☺

Iteration 1

Iteration 2

NOT BAD

Iteration 2

> go install github.com/DaoCloud/shop

> go test github.com/DaoCloud/shop

Iteration
3 Iteration

4Iteration
5 Iteration

6 Iteration
7 Iteration

8Iteration
9Iteration …

GET
CRAZY

Iteration n

Order

Payment

Customer

Report

Dashboard

Cart

Monitoring
Supply

Recommend

Item

Comments

Intimidate Developers

Obstacle to Frequent Development

• Need to redeploy everything for a new feature
• Interrupts long running background jobs
• Increasing risk of failure
• Updates will happen less often – really long QA

cycles

Overloads Your IDE and Focus

Slow down the loop

Require long-term commitment to a
tech stack

MicroService needs  
Self-Sufficient

Import Proxy

Vendoring/Versioning
http://godoc.org/github.com/tools/godep

http://godoc.org/github.com/tools/godep
http://godoc.org/github.com/tools/godep
http://godoc.org/github.com/tools/godep
http://godoc.org/github.com/tools/godep
http://godoc.org/github.com/tools/godep
http://godoc.org/github.com/tools/godep

Self-Sufficient

Code-Sufficient

Static website Web frontend User DB Queue Analytics DB

Development
VM

QA server Public Cloud Contributor’s
laptop

Docker is a shipping container
system for code

M
ul

ti
pl

ic
it

y
of

 S
ta

ck
s

M
ul

ti
pl

ic
it

y
of

ha

rd
w

ar
e

en
vi

ro
nm

en
ts

Production
Cluster

Customer Data
Center

D
o services and apps

interact
appropriately?

Can I m
igrate

sm
oothly and
quickly

…that can be manipulated using
standard operations and run
consistently on virtually any
hardware platform

An engine that enables any
payload to be encapsulated
as a lightweight, portable,
self-sufficient container…

Self-sufficient in Docker Way
• A Docker container contains everything it

needs to run:
– Minimal base OS
– Libraries and frameworks
– Application code

Self-sufficient in Docker Way 
- Dockerfile

Docker & Micro Service

Dev✓ Develop simplest possible solution

✓ Configuration is a runtime constraint

✓ Not extra-extra-complex application

new WebServer().start(8080);

Ops
✓ Manage hardware / infrastructure

✓ Monitoring / backups

✓ Not apps implementation details

MicroService needs  
CI/CD

Automation is Implicit

Continuous Integration

Continuous Integration to 
Continuous Diverse!

Continuous Integration to 
Continuous Delivery

“Works for me”
“You need start A first”
“A with version 1.2.5-xx cannot work with B
with version 2.0.7”
“So to trigger the bug you have to install X
and Y then configure A, B and C, then
download the extra file, put it in this
directory.

Duang, Duang…

Docker Compose
• One binary to start/manage multiple

containers and volumes on a single Docker
host

• Originated from Fig

• Move your docker run commands to a
YAML file

YAML description
wordpress:
 image: wordpress
 links:
 - mysql
 ports:
 - "80:80"
 environment:
 - WORDPRESS_DB_NAME=wordpress
 - WORDPRESS_DB_USER=wordpress
 - WORDPRESS_DB_PASSWORD=wordpresspwd
mysql:
 image: mysql
 volumes:
 - /home/docker/mysql:/var/lib/mysql
 environment:
 - MYSQL_ROOT_PASSWORD=wordpressdocker
 - MYSQL_DATABASE=wordpress
 - MYSQL_USER=wordpress
 - MYSQL_PASSWORD=wordpresspwd

Use
$ docker-compose up -d
Creating vagrant_mysql_1...
Creating vagrant_wordpress_1...
$ docker-compose ps
Name Command State
Ports

vagrant_mysql_1 /entrypoint.sh mysqld Up
3306/tcp
vagrant_wordpress_1 /entrypoint.sh apache2-for ... Up
0.0.0.0:80->80/tcp

Reproducible Delivery

The Landscape with Containers

Demo

Q&A

