

Java on Guice
Dependency Injection the Java Way

Bob Lee

Copyright 2007 Google Inc.3

What can dependency injection do for me?

• Easier testing
• More decoupling
• Less boilerplate
• Better maintainability

A Simple Example

Copyright 2007 Google Inc.5

High Level Design

ClientClientTest Service

ServiceImpl

Copyright 2007 Google Inc.6

We’ll examine 3 approaches...

1. The Factory Pattern
2. Dependency Injection by Hand
3. Dependency Injection with Guice

Copyright 2007 Google Inc.7

One Variable

• From approach to approach, how does Client get a
Service?

Client Service

Copyright 2007 Google Inc.8

A Few Constants

public interface Service {
 void go();
}

public class ServiceImpl
 implements Service {
 public void go() {
 // Some expensive stuff.
 ...
 }
}

Service

ServiceImpl

• Regardless of the approach, Service stays the same:

Copyright 2007 Google Inc.9

Mock Service

public class MockService
 implements Service {

 private boolean gone = false;

 public void go() {
 gone = true;
 }

 public boolean isGone() {
 return gone;
 }
}

Service

MockService

• We also need a mock implementation of Service which
we can use to test clients:

Approach #1:
The Factory Pattern

Copyright 2007 Google Inc.11

The Factory Client

public class Client {

 public void go() {
 Service service = ServiceFactory.getInstance();
 service.go();
 }
}

Copyright 2007 Google Inc.12

Service Factory

public class ServiceFactory {

 private ServiceFactory() {}

 private static Service instance = new ServiceImpl();

 public static Service getInstance() {
 return instance;
 }

 public static void setInstance(Service service) {
 instance = service;
 }
}

Copyright 2007 Google Inc.13

A Unit Test

public void testClient() {
 Service previous = ServiceFactory.getInstance();
 try {
 final MockService mock = new MockService();
 ServiceFactory.setInstance(mock);
 Client client = new Client();
 client.go();
 assertTrue(mock.isGone());
 }
 finally {
 ServiceFactory.setInstance(previous);
 }
}

Copyright 2007 Google Inc.14

Factory Observations

• Our unit test had to pass the mock to the factory and
then clean up afterwards.

• You have to look at the implementation of Client to know
it depends on Service.

• Reusing Client in a different context will be difficult.
• We have to write the same factory code for every

dependency.
• Client has a compile time dependency on ServiceImpl.

Approach #2:
Dependency Injection by Hand

Copyright 2007 Google Inc.16

“Don’t call me. I’ll call you.”

public class Client {

 private final Service service;

 public Client(Service service) {
 this.service = service;
 }

 public void go() {
 service.go();
 }
}

Copyright 2007 Google Inc.17

The Factory-based Unit Test (Again)

public void testClient() {
 Service previous = ServiceFactory.getInstance();
 try {
 final MockService mock = new MockService();
 ServiceFactory.setInstance(mock);
 Client client = new Client();
 client.go();
 assertTrue(mock.isGone());
 }
 finally {
 ServiceFactory.setInstance(previous);
 }
}

Copyright 2007 Google Inc.18

The Test With Dependency Injection

public void testClient() {
 MockService mock = new MockService();
 Client client = new Client(mock);
 client.go();
 assertTrue(mock.isGone());
}

Copyright 2007 Google Inc.19

Passing Service to the Client

public static class ClientFactory {

 private ClientFactory() {}

 public static Client getInstance() {
 Service service = ServiceFactory.getInstance();
 return new Client(service);
 }
}

Copyright 2007 Google Inc.20

Further Observations

• In our test, we now pass our mock directly to Client.
– No middle man

• You can’t create a Client without providing a Service.
– Fewer unexpected surprises.

• We can easily reuse Client with multiple different Service
implementations, even in the same application.

• Client no longer depends on ServiceImpl at compile
time.
– We moved the dependency to the application level.

• We have to write even more factory code.

Approach #3:
Dependency Injection with Guice

Copyright 2007 Google Inc.22

Why use a framework?

• Writing factories is tedious
– Scopes

• We need more up front checking
• We want more flexibility
• Make it easier to do the right thing

Copyright 2007 Google Inc.23

In place of factories, we have modules.

public class MyModule extends AbstractModule {
 protected void configure() {
 bind(Service.class)
 .to(ServiceImpl.class)
 .in(Scopes.SINGLETON);
 }
}

Copyright 2007 Google Inc.24

And we apply @Inject...

public class Client {

 private final Service service;

 @Inject
 public Client(Service service) {
 this.service = service;
 }

 public void go() {
 service.go();
 }
}

Copyright 2007 Google Inc.25

Our test stays exactly the same.

public void testClient() {
 MockService mock = new MockService();
 Client client = new Client(mock);
 client.go();
 assertTrue(mock.isGone());
}

Copyright 2007 Google Inc.26

Conclusions

• Guice requires much less boilerplate code
– ~20% for this simple example
– The more you use a dependency, the more you save.

• More startup checks
• Declarative scopes
• More flexibility
• Easier up front design decisions

Getting Started with Guice

Copyright 2007 Google Inc.28

Bootstrapping

public class MyApplication {
 public static void main(String[] args) {

 Injector injector = Guice.createInjector(new MyModule());
 Client client = injector.getInstance(Client.class);
 client.go();

 }
}

public class MyModule extends AbstractModule {
 protected void configure() {
 bind(Service.class)
 .to(ServiceImpl.class)
 .in(Scopes.SINGLETON);
 }
}

• Objects must be “in the club” to be injected.

Copyright 2007 Google Inc.29

Adding a Dependency

public class ServiceImpl implements Service {
 @Inject Emailer emailer;
 public void go() {
 // Some expensive stuff.
 ...
 // Send confirmation.
 emailer.send(...);
 }
}

public class Emailer {
 ...
}

• Service is “in the club.”

Copyright 2007 Google Inc.30

Handling Multiple Implementions

public class ServiceImpl implements Service {
 @Inject @Transactional Emailer emailer;
 public void go() {
 ...
 }
}

public class MyModule extends AbstractModule {
 protected void configure() {
 bind(Service.class)
 .to(ServiceImpl.class)
 .in(Scopes.SINGLETON);
 bind(Emailer.class)
 .annotatedWith(Transational.class)
 .to(TransactionalEmailer.class);
 }
}

• Use a binding annotation

Copyright 2007 Google Inc.31

Providing Objects Manually

bind(Emailer.class).toProvider(new Provider<Emailer>() {
 @Inject @Named(“email.host”) String emailHost;
 public Emailer get() {
 return new Emailer(emailHost);
 }
}).in(Scopes.SINGLETON);

Copyright 2007 Google Inc.32

Scopes

• Scope: a policy for reusing objects
• Two ways to specify a scope:

bind(Emailer.class).in(Scopes.SINGLETON);

@Singleton
class Emailer {
 ...
}

or

Copyright 2007 Google Inc.33

Delaying Provision

@Inject
void injectAtm(Provider<Money> atm) {
 Money one = atm.get();
 Money two = atm.get();
 ...
}

Copyright 2007 Google Inc.34

Constructor vs. Method vs. Field Injection

• Prefer constructor injection
– You can use final fields

• Use method injection when constructor injection won’t
work. For example:
– If you don’t want subclasses to know about your

dependencies
– If Guice can’t create your objects

• Use field injection when you need concision and don’t
care about using your class outside of Guice
– Custom providers
– Slides for your talk

Copyright 2007 Google Inc.35

Other Notable Features

• Type conversion for constants
• AOP Alliance-based method interception
• Development stages
• Optional injection
• Integration with:

– JNDI
– Spring
– JMX
– Struts2

Copyright 2007 Google Inc.36

Upcoming Features

• Provider methods
• Mixed automatic and custom injection
• Construction listeners

Questions?

