

Debugging Arts of the Ninja Masters
Jason Chen
Google Developer Relations

3

Agenda

• Tool tour
– logcat
– traceview
– hierarchyviewer

• Real world usage
• Pop quiz!
• Q&A (pop quiz for me)

logcat

5

The dialog of death

6

Forensics
Where to begin the autopsy

7

logcat
Your news feed

8

logcat Levels Defined

• [E]rror
– A unexpected critical or non-recoverable failure happened

• [W]arning
– Something bad happened, but it was handled gracefully

• [I]nfo
– An important event occurred

• [D]ebug
– Something happened that may be useful in isolating a problem

• [V]erbose
– Something occurred in the normal course of operation that was

expected.

9

A simple case
The code can't break!

 public class UriReader extends Thread {
 public String uriToRead = null;
 @Override
 public void run() {
 DefaultHttpClient client = new DefaultHttpClient();
 HttpGet request = new HttpGet(uriToRead);
 try {
 InputStream reader =
 client.execute(request).getEntity().getContent();
 while (reader.read() != -1);
 } catch (ClientProtocolException e) {
 Log.w(TAG, "Protocol exception while reading URL.");
 } catch (IOException e) {
 Log.e(TAG, "General I/O exception, exact type is: " +
 e.getClass().getCanonicalName());
 }
 }
 }

10

The scene of the crime

11

Take a good look around

12

The dialog of despair

13

Warning signs
What’s that noise?

• Same process id, similar object count, similar sizes

14

Data Management

• Filters
– TAG:SEVERITY

• Smart tagging
– Meaningful
– Related

• !SPAM
– Precise
– Concise
– Privacy sensitive

traceview

16

tracing and traceview

• Records every function entry and exit point
• Records how long execution took
• Provides a graphical representation of collected data

– Timeline view
– Call tree view

• Is a must-use for any developer serious about performance

17

How to start tracing

public class ProfiledActivity extends Activity {
 protected void onCreate(Bundle savedInstanceState) {
 Debug.startMethodTracing();
 }
 ...
 public void onPause() {
 Debug.stopMethodTracing();
 }
}

• Starting and stopping trace data collection is simple

• Controls tracing for entire VM
• Tracing only what you need simplifies analysis

• Tracing has a big impact on performance

justin$ adb shell am profile com.example.foo profile start /
sdcard/trace_file
...
justin$ adb shell am profile com.example.foo stop

18

Execution timeline

19

Function statistics

20

Function statistics
Details

• Name
• “Incl %” - percentage of time including descendants
• Inclusive - raw execution time including descendants
• “Excl %” - percentage of time sans descendants
• Exclusive - time spent executing code only within this function
• “Calls+Recur Calls/Total” - Number of times this method is called
• Time/Call - Average execution time per call

21

Getting to the bottom (or top) of things

• The source of the issue may be above or below your code
• traceview allows you to easily navigate the call tree

21

Getting to the bottom (or top) of things

• The source of the issue may be above or below your code
• traceview allows you to easily navigate the call tree

22

Optimize reality

• traceview gives you a lot of power, take advantage of it
• Design sensibly, build proof of concept, test, and optimize

HierarchyViewer

24

Exploring the UI with HierarchyViewer

25

Climbing the tree

25

Climbing the tree

26

Questionable families

• “Infertile parents” - layout with no or single layout children

• “Clones” - parents with same-type children

27

<merge /> your @includes

<merge xmlns:android=”http://schemas.android.com/apk/res/
android”>
 <TextView
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@string/header_section”
 android:textColor=”@colors/header_color” />
 <ImageView
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:src=”@drawable/logo” />
</merge>

• Merge is a placeholder layout
• Children of <merge> go into the layout where they are included

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

Traveler’s Tales: Betrayal

29

TraceView on a shipping product

• Why is something running on the main thread for that long?
• Must be a network request someone forgot to move to a thread

30

com.ibm.icu4jni.util.Resources.getTimeZonesNative

• A call about time zones is taking this long?
• Wait, I’m not even doing anything with time zones

30

com.ibm.icu4jni.util.Resources.getTimeZonesNative

• A call about time zones is taking this long?
• Wait, I’m not even doing anything with time zones

30

com.ibm.icu4jni.util.Resources.getTimeZonesNative

• A call about time zones is taking this long?
• Wait, I’m not even doing anything with time zones

31

Fixing the problem

• Move the call
• De-prioritize its execution
• Result: Better perceived startup time

31

Fixing the problem

• Move the call
• De-prioritize its execution
• Result: Better perceived startup time

32

Key Learnings

• Trust no one

• A little profiling goes a long way

• Priority matters

Traveler’s Tales: Finding shortcuts

34

Search for hidden inefficiencies

• Look at the function listing for less obvious performance issues

• Sort by exclusive execution
– Shows inside which methods the program spends most of its time
– Long average time methods with a few calls are good targets
– Explore reducing and eliminating these calls

35

Search for hidden inefficiencies

36

Take a look around

• Explore ancestors and descendants of the method
• Use timeline line view to check what happens before and after

the method

37

Take a look around

37

Take a look around

38

Iterate the route into a circle (square?)

Parse response C
reate B

itm
ap

Compress BitmapA
dd

 re
su

lt
to

 c
ac

he

39

Fixing the problem

• Read in the full response
• Store the PNG
• Inflate Bitmap from PNG data
• Discard PNG data

• Result: Decrease startup time by 350ms
– 2% in “debug time”, larger real time effect since its native code

40

Key Learnings

• Big is beautiful

• Explore the area first

• Three rights can make a left

Traveler’s Tales: Packing mistakes

42

Sorting by inclusive execution

• Includes execution time of methods code and its descendants
• List is somewhat like a breadth-first traversal of the call tree

42

Sorting by inclusive execution

• Includes execution time of methods code and its descendants
• List is somewhat like a breadth-first traversal of the call tree

43

Taking a look at the code

try {
 List<MyDataType> itemsProcessed = new ArrayList<MyDataType>();
 for (int i = 0; i < source.getNumItems(); i++) {
 Item currentItem = source.get(i);
 MyDataType processedItem = new MyDataType(currentItem);
 itemsProcessed.add(processedItem);
 itemProcessedCallback(itemsProcessed);
 }
} catch (IOException e) {
 Log.W(TAG, “Reading data failed, retrying”);
} catch (JSONException e) {
 Log.E(TAG, “JSON parsing failed”);
}

• Items will be processed several times, this seems wrong

44

Fixing the problem

• Bug introduced when exception handling was refactored

• Result: Fewer calls to callback, 5% decrease in startup time

try {
 List<MyDataType> itemsProcessed = new ArrayList<MyDataType>();
 for (int i = 0; i < source.getNumItems(); i++) {
 Item currentItem = source.get(i);
 MyDataType processedItem = new MyDataType(currentItem);
 itemsProcessed.add(processedItem);
 }
 itemProcessedCallback(itemsProcessed);
} catch (IOException e) {
 Log.W(TAG, “Reading data failed, retrying”);
} catch (JSONException e) {
 Log.E(TAG, “JSON parsing failed”);
}

45

Key Learnings

• Each angle of approach is valuable

• Analyzing performance can reveal unknown bugs

Traveler’s Tales: Consolidating containers

47

A “simple” layout examined

47

A “simple” layout examined

48

Fixing the Problem

49

Fixing the problem

49

Fixing the problem

50

If it looks the same, who cares?

• Flatten for aerodynamic performance

• RelativeLayouts adapt to their environment

• RelativeLayouts force you to think

51

Key Learnings

• Layouts are code too and
will evolve iteratively

• LinearLayouts are simple to
visualize and understand,
but can result in overly
complex, less flexible
hierarchies

• Rationalization needs to
happen to keep the layout
comprehensible and efficient

Traveler’s Tales: Squeaky wheels

53

What’s that noise?

• Same process id, similar object count, similar sizes

54

Allocation Tracker

55

Allocation Tracking

56

Using the right tool

• Problem caused by old code
– Used for speed and convenience, over-stayed its welcome

public static byte[] fetchUri(String url) {
 ...
 InputStream in = openUrl(url);
 byte[] response = new byte[0];
 byte[] readChunk = new byte[384];
 int byteSize = 0;
 while ((byteSize = in.read(readChunk)) != -1) {
 byte[] alreadyRead = response;
 response = new byte[alreadyRead.length + byteSize];
 mergeArrays(response, alreadyRead, readChunk);
 }
}

57

Fixing the problem

• Rewrite code to fit the problem
• Anticipate larger read sizes, read in pieces, zipper together only

at the end

• Result: 90% decrease in read times

public static byte[] fetchUri(String url) {
 ...
 InputStream in = openUrl(url);
 ArrayList <byte[]> responsePieces = new ArrayList <byte[]>();
 byte[] readChunk = new byte[2048];
 int biteSize = 0;
 int responseSize = 0;
 while ((biteSize = in.read(readChunk)) != -1) {
 responsePieces.add(readChunk);
 responseSize += biteSize;
 readChunk = new byte[2048];
 }
 byte[] fullResponse = new byte[responseSize];
 mergeArrays(fullResponse, responseSize);
}

58

Key Learnings

• Take care with reused or prototype code

• Log messages if code is used beyond tolerances

Pop quiz!

60

What’s gone wrong?

60

What’s gone wrong?

61

What change caused this slow down?

