O @
Google

Developer

Day ;

\“ ¥

Building scalable, complex
apps on App Engine

Developer
Day

What we will cover today

e List properties
o What they are, how they work
o Example: Microblogging
o Maximizing performance

e Merge-join
o What it is, how it works; list property magic
o Example: Modeling the social graph

Google
Developer
Day2009

- .‘.

List Properties

; . Google
® o Developer
X o

What is a list property?

e Property in the Datastore that has multiple values
e As easy as:
class Favorites (db.Model) :

username = db.StringProperty()
colors = db.StringListProperty ()

faV,COIOrS — ["red", "green", "blue"]

e An ordered list
e \Which maintains its order
e Queried with an equals filter
o Any value in the list may cause a match
o (Sort order not useful without a composite index)

Google
Developer
Day2009

How can we use list properties?

e Track lists of related items

e Use multiple parallel properties for storing
"tuple"-like data

players.names = ["joe", "jane", "john"]

players.scores =[1290, 54800, 360]

e Easy: compare to this one-to-many query:

class FavoriteColors(db.Model):
username = db.StringProperty()
color = db.StringProperty()

db.gql("SELECT * FROM FavoriteColors "
"WHERE username = :1", ...)

Developer
Day2009

How can we use list properties? (2)

e Great for answering set-membership questions
o e.g., Which users like the color yellow?

results = db.gql(
"SELECT * FROM Favorites "
"WHERE colors = "yellow'")

users = [r.username for r in results]

e Great fan-out capability: cut across all your data
o This query matches any value of "yellow"
in any users' list of favorite colors
across all Favorites entities.

Google
Developer
Day2009

Why use list properties?

Avoids storage overhead:
e Each list item only has an index entry
e No entry in the "by-kind" index
e No key for entities in a one-to-many relationship

e Ultimately: Saves you a ton of storage space

e Simpler to understand than a normalized schema

=)

o It's just a list!

Google
Developer
Day2009

List property Gotchas

e Uses more CPU for serializing/deserializing
the entity when it's accessed

e \Works with sort orders only if querying a
single list property; otherwise indexes
"explode”

Google
Developer
Day2009

Concrete example: Microblogging

e Essentially: Publish/subscribe, broadcast/multicast
o Users send a single message that goes to many
other users

e It's a great example of fan-out
o One user action causes a lot of work
o Work leaves large amount of data to surface
o Fan-out is hard!

Google
Developer
Day2009

Concrete example: Microblogging (2)

e Fan-out can be inefficient, require duplicate data
o Send a copy of a message to N users

Fan-out Receive
Copy Message

U Send
Zer >| Message » Message

Message

(e

G

Google
Developer
Day2009

Concrete example: Microblogging (3)

e Efficient fan-out should not duplicate any data
o Only overhead is cost of indexes

Receive by
reference

Message

Send
User en q
A

Google
Developer
Day2009

Concrete example: Microblogging, with RDBMS

Users table

User ID

Name

42

Ford

43

Messages table

Message ID |Body
o0 Hi there....
o7 Echo...

UsersMessages table

User ID Message ID
42 56
42 82

Developer
Day2009

Concrete example: Microblogging, with RDBMS (2)

e SQL query to find messages for user 'Ford' would be:

SELECT * FROM Messages
INNER JOIN UserMessages USING (message 1d)
WHERE UserMessages.user 1d = 42;

e No joins on App Engine-- how do we do this?
o List properties to the rescue!

Google
Developer
Day2009

Concrete example: Microblogging, with App Engine

class Message (db.Model) :
sender = db.StringProperty ()
body = db.TextProperty()

receivers = db.StringListProperty/()

results = db.GglQuery (
"SELECT * FROM Message "
"WHERE receilvers = :1", me)

e [hat's it!
o This is how Jaiku works

Developer
Day2009

Concrete example: Microblogging, with JDO

@PersistenceCapable (

ldentityType=IdentityType.APPLICATION)
public class Message {

@PrimaryKey
@Persistent (valueStrategy=
ITdGeneratorStrateqgy.IDENTITY)

Long 1d;

dPersistent String sender;
@Persistent Text body;
@Persistent List<String> receilvers;

Developer
Day2009

Concrete example: Microblogging, with JDO (2)

om = PMF.get () .getPersistenceManager () ;
Query query = pm.newQuery (Message.class);
query.setFilter ("receivers == 'foo'");

List<Message> results =
(L1st<Message>) query.executel();

Developer
Day2009

List property performance

e Index writes are done in parallel on Bigtable
o Fast-- e.g., update a list property of 1000 items
with 1000 row writes simultaneously!
o Scales linearly with number of items
o Limited to 5000 indexed properties per entity

e Storage cost same as traditional RDBMS
o RDBMS: User key + Message key
o Datastore: List property value + Entity key

Google
Developer
Day2009

List property performance (2)

e Downside: Serialization overhead
o Not to worry, there's a solution

e \Writes must package all list values into one serialized
protocol buffer*
o OK because writes are relatively infrequent

e But queries must unpackage all result entities
o When list size > ~100, reads are too expensive!
o Slow in wall-clock time
o Costs too much CPU

*Protocol buffers:
http://code.google.com/p/protobuf/ Google

Developer
Day2009

http://code.google.com/p/protobuf/

Improving List Property Performance

e Querying for messages should only return the message
information
o We don't care about the list properties after querying;
this is why inner joins are useful

e \What if we could selectively skip certain properties when
querying?
o Would avoid the serialization cost
o Ideally, it would be great to do this in GQL.:

SELECT foo, bar FROM MyModel ...

But we only have:

SELECT * FROM MyModel ...

Solution-- Relation Index Entities

Relation Index Entities
e Split the message into two entities
o Message contains the info we care about
o Messagelndex has only relationships for querying

class Message (db.Model) :
sender = db.StringProperty ()
body = db.TextProperty()

class Messagelndex (db.Model) :
recelvers = db.StringListProperty ()

Developer
Day2009

Solution-- Relation Index Entities (2)

e Put entities in the same entity group for transactions

class Message (db.Model) :
Message sender = db.StringProperty ()
body = db.TextProperty ()
A
Parent
class Messagelndex (db.Model) :
Message receivers =
Index db.StringListProperty ()

Developer
Day2009

Solution-- Relation Index Entities (3)

e Do a key-only query to fetch the Messagelndexes

indexes = db.GglQuery (
"SELECT key FROM MessageIndex "
"WHERE receivers = :1", me)

e Transform returned keys to retrieve parent entity

keys = [k.parent () for k in indexes]

e Fetch Message entities in batch

messages = db.get (keys)

e Our Datastore works like this under the covers

Developer
Day2009

Relation Index Entities: Conclusion

e Performance is much better
o Writes same cost, reads ~10x faster/cheaper

e Best of both worlds with list properties:
o Low storage cost, low CPU cost

e Even better: Scalable indexes
o Need more indexes? Write multiple
Messagelndexes per Message
o Add indexes in the background (with Task Queue)
o Solution for the million-fan-out problem
o No need for schema migration!

Google
Developer
Day2009

Relation index entities: Conclusion (2)

e Scalable indexes

Message
A
Parent
-
Message —1_
Index

s

Google
Developer
Day2009

- .‘

Merge-join

; ’ Google
® O Developer
X o

What is merge-join?
e People say we don't support joins -- not totally true!
e \We do not support natural, inner, or outer joins
e We do support "merge-join" queries
o A type of self-join query; join a table with itself

o Combine many equality tests into a single query
o Determines Venn-diagram-like overlaps in sets

e Example: & Cows
\(2/
' Google
Developer

Day2009

Why use merge-join?

e Great for exploring your data
o Practical limit of equality tests is high (10+ filters)

e No need to build indexes in advance
o Ad-hoc queries
o Reduces cost

e Provides advanced functionality
o Example query in Gmail: Various labels,
read/unread, month/year/day, number of replies,
recipients, etc

Google
Developer
Day2009

Example merge-join

class Animal (db.Model) :
has = db.StringListProperty ()
color = db.StringProperty ()
legs = db.IntegerProperty ()

results = db.GglQuery (
"U"U"SELECT * FROM Animal WHERE

color = 'spots' AND
has = 'horns' AND
legs — 4nnu)

Developer
Day2009

How does merge-join work?

e Not available in raw Bigtable
o Similar optimizations in other DB systems

e All property indexes are stored in sorted order
e Datastore does a merge-sort at runtime

e Uses a "zig-zag" algorithm to efficiently join tables
o Scan a single Bigtable index in parallel

Google
Developer
Day2009

Example merge-join

Row key Like everything in

color=red,key=ant BigTable, the property
iIndex rows are sorted

color=spots,key=bear

color=spots,key=cow
color=white,key=dog
has=hair,key=cat N

has=horns,key=cow

has=jaws,key=lion

has=jaws,key=shark (Tables represent
legs=2,key=falcon property indexes)
legs=2,key=pigeon
legs=4,key=cat

—_ — Developer
legs=4,key=cow Day2009

Example merge-join

Row key Row key

color=red,key=ant legs=2,key=falcon

color=spots,key=bear legs=2,key=pigeon

color=spots,key=cow legs=4,key=cat

color=white,key=dog legs=4,key=cow
Row key

has=hair key=cat (Tables represent

has=horns,key=cow property indexes)
has=jaws,key=lion

has=jaws,key=shark

Developer
Day2009

Example merge-join

Row key

color=red,key=ant

color=spots,key=bear

color=spots,key=cow

color=white ,key=dog

Row key

legs=2,key=falcon

legs=2,key=pigeon

legs=4,key=cat

legs=4,key=cow

Row key

has=hair,key=cat

has=horns,key=cow

has=jaws,key=lion

has=jaws,key=shark

(Tables represent
property indexes)

Developer
Day2009

Example merge-join

Row key

color=red,key=ant

color=spots,key=bear

color=spots,key=cow

color=white ,key=dog

2

Row key

legs=2,key=falcon

legs=2,key=pigeon

legs=4,key=cat

legs=4,key=cow

Row key

has=hair,key=cat

has=horns,key=cow

has=jaws,key=lion

has=jaws,key=shark

(Tables represent
property indexes)

Developer
Day2009

Example merge-join

Row key

color=red,key=ant

color=spots,key=bear

color=spots,key=cow

color=white ,key=dog

Zig!

2

Row key

legs=2,key=falcon

legs=2,key=pigeon

legs=4,key=cat

legs=4,key=cow

Row key

has=hair,key=cat

has=horns,key=cow

has=jaws,key=lion

has=jaws,key=shark

(Tables represent
property indexes)

Developer
Day2009

Example merge-join

Row key

color=red,key=ant

color=spots,key=bear

color=spots,key=cow

color=white ,key=dog

Zig!

2

Row key

legs=2,key=falcon

legs=2,key=pigeon

legs=4,key=cat

legs=4,key=cow

Row key

has=hair,key=cat

has=horns,key=cow

has=jaws,key=lion

has=jaws,key=shark

(Tables represent
property indexes)

Developer
Day2009

Example merge-join

Row key

Row key

color=red,key=ant

legs=2,key=falcon

color=spots,key=bear

legs=2,key=pigeon

color=spots,key=cow 3) |legs=4 key=cat

color=white ,key=dog

legs=4,key=cow

2

Row key

has=hair,key=cat

(Tables represent

has=horns,key=cow property indexes)
has=jaws,key=lion
has=jaws,key=shark

Developer

Day2009

Example merge-join

Row key Row key
color=red,key=ant legs=2,key=falcon
color=spots,key=bear legs=2,key=pigeon

color=spots,key=cow
color=white ,key=dog

legs=4,key=cat
§ legs=4,key=cow

Zag!

Row key

has=hair key=cat (Tables represent

2 > has=horns,key=cow property indexes)
has=jaws,key=lion

has=jaws,key=shark

Developer
Day2009

Example merge-join

Row key

color=red,key=ant

color=spots,key=bear

color=spots,key=cow

color=white ,key=dog 3

2

Match|

Row key

legs=2,key=falcon

legs=2,key=pigeon

legs=4,key=cat

legs=4,key=cow

Row key

has=hair,key=cat

(Tables represent

has=horns,key=cow

property indexes)

has=jaws,key=lion

has=jaws,key=shark

Developer
Day2009

Concrete example: Social graph

Essentially: Users have a profile and a set of friends
e Use merge-join on list properties-- magic!

Answer queries about relationships
e \Who are my friends?
e WWho are my friends in location L?
e Which friends do | have in common with person P?
e Which friends do | have in common with person P in
location L?

For simplicity, this example assumes all relationships are
two-way
e Concept also works for directed acyclic graphs

Google
Developer
Day2009

Concrete example: Social graph (2)

ooooooooooooooooooooooooooooooooooo

New Y ork San Francisco

- Chicago

Lines are 0
friendships :

Google
Developer
Day2009

Concrete example: Social graph (2)

ooooooooooooooooooooooooooooooooooo

New Y ork San Francisco :

- Chicago

Mutual friend of 0
Willie and Carl ;

Google
Developer
Day2009

Concrete example: Social graph (2)

ooooooooooooooooooooooooo

New York

: . Chicago @ :
Mutual friend of
Bob and Willie in §

San Francisco e :

Google
Developer
Day2009

Concrete example: Social graph, with RDBMS

Person table

User ID Location
1 San Francisco
2 New York

Friends table
UserA ID UserB ID
56 5
57 1

Developer
Day2009

Concrete example: Social graph, with RDBMS (2)

e SQL query to find friends of user 'X"

SELECT * FROM Users

INNER JOIN Friends

ON Users.user 1d = Friends.user b 1id
WHERE Frilends.user a 1d = 'X!'

e To also filter by location, add:

AND Users.location = 'San Francisco'

Google
Developer
Day2009

Concrete example: Social graph, with RDBMS (3)

e SQL query to find friends common to 'X' and "Y":

SELECT * FROM Users
INNER JOIN Friends fl, Friends £f2
ON Users.user 1d = fl.user b 1d AND

Users.user 1d = fZ.user b 1d
WHERE fl.user a 1d = 'X' AND
f2.user a 1d = 'Y' AND

fl.user b 1d = f2.user b 1d

e No inner joins in App Engine, what now?
o We do have merge-join; we can do self-joins!

Developer
Day2009

Concrete example: Social graph, with App Engine

class Person (db.Model) :
location = db.StringProperty ()
friends = db.StringListProperty ()

db.GglQuery (
"U"MSELECT * FROM Person WHERE

friends = :1 AND
friends = :2 AND
location = 'San Francisco'""",

me, otherguy)

e [hat's it!
o Add as many equality filters as you need

Developer
Day2009

Merge-join performance

e Scales with number of filters and size of result set
o Best for queries with fewer results (less than 100)

e Similar access performance as list properties
o Same read/write speed
o No extra storage overhead
o Can avoid serialization with relation index entities

Google
Developer
Day2009

Merge-join performance (2)
Gotchas

e \Watch out for pathological datasets!
o Too many overlapping values = lots of zig-zagging

e Doesn't work with composite indexes because of
"exploding” index combinations

e That means you can't apply sort orders!
o Must sort in memory

Google
Developer
Day2009

- .‘

Wrap-up

; ’ Google
® O Developer
X o

Wrap-up

e Use list properties and merge-join for many things
o Fan-out
o Geospatial info
o Relationship graphs
o "Fuzzy" values

e Think about how to convert your queries into "set
membership" tests

e Compute membership at write time, enjoy fast reads!

Google
Developer
Day2009

Thank You

Read more
http.//code.google.com/appengine/

e Demos available with source code
o http://pubsub-test.appspot.com/
o http://dagpeople.appspot.com/

Contact info
Fred Sauer (twitter: @fredsa)Developer Advocate
fredsa@google.com

Questions
f?

Google
Developer
Day2009

http://code.google.com/appengine/
http://pubsub-test.appspot.com/
http://dagpeople.appspot.com/
http://twitter.com/fredsa
mailto:fredsa@google.com

O @
Google

Developer

Day ;

\“ ¥

