

From Spark Plug to Drive Train:
Life of an App Engine Request
Fred Sauer
June 9, 2009

Based on original presentation by Alon Levi

This talk does not...
...tell you how to write an App Engine app
...provide any code samples
...include programming language specific material

What we will cover today...
Overview of App Engine platform
Understand components in the stack
Explore our design motivations
What this means for your apps

From Spark Plug to Drive Train:
Life of an App Engine Request

How to design for Scale and Reliability

App Engine: Design Motivations

Life of a Request:
1. Request for static content
2. Request for dynamic content
3. Requests accessing APIs

App Engine: Design Motivations (Recap)

App Engine: The Numbers

Agenda

How to design for Scale and Reliability

Google App Engine

LiveJournal circa 2007
From Brad Fitzpatrick's USENIX '07 talk:
"LiveJournal: Behind the Scenes"

From Brad Fitzpatrick's USENIX '07 talk:
"LiveJournal: Behind the Scenes"

LiveJournal circa 2007

Frontends Storage
Application
Servers

Memcache

Static File Servers

Basic LAMP

LAMP
 Linux
 Apache
 MySQL
 Programming Language
 (perl, Python, PHP, ...)

Scalable?
Shared machine for database
and webserver

Reliable?
Single point of failure (SPOF)

Database running on a
separate server
Requirements:

Another machine plus
additional management

Scalable?
Up to one web server

Reliable?

Two single points of failure

Dedicated Database

Benefits:
Grow traffic beyond the capacity of one webserver

Requirements:

More machines
Set up load balancing

Multiple Web Servers

Load Balance: DNS Round Robin

Register list of IPs with DNS
Statistical load balancing
DNS record is cached with a Time To Live (TTL)

TTL may not be respected

Register list of IPs with DNS
Statistical load balancing
DNS record is cached with Time To Live (TTL)

TTL may not be respected

Now wait for DNS
changes to propagate :-(

Load Balance: DNS Round Robin

Load Balance: DNS Round Robin

Scalable?
Add more webservers as necessary
Still I/O bound on one database

Reliable?
Cannot redirect traffic quickly
Database still SPOF

Benefits:
Custom Routing

Specialization
Application-level load balancing

Requirements:
More machines
Configuration for reverse proxies

Reverse Proxy

Scalable?
Add more web servers
Bound by

Routing capacity of reverse proxy
One database server

Reliable?
Agile application-level routing
Specialized components are more robust
Multiple reverse proxies requires network-
level routing

Fancy network routing hardware
Database is still SPOF

Reverse Proxy

Master-Slave Database

Benefits:
Better read throughput
Invisible to application

Requirements:
Even more machines
Changes to MySQL, additional maintenance

Master-Slave Database

Scalable?
Scales read rate with # of servers

But not writes
But what happens eventually?

Master-Slave Database

Reliable?
Master is SPOF for writes
Master may die before replication

Partitioned Database

Benefits:
Increase in both read
and write throughput

Requirements:
Even more machines
Lots of management
Re-architect data model
Rewrite queries

Why not use Google App Engine?

App Engine:

Design Motivations

Design Motivations

Build on Existing Google Technology

Provide an Integrated Environment

Encourage Small Per-Request Footprints

Encourage Fast, Efficient Requests

Maintain Isolation Between Applications

Encourage Statelessness and Specialization

Require Partitioned Data Model

Life of an App Engine Request

Life of an App Engine Request

Routed to the nearest Google datacenter
Travels over Google's network

Same infrastructure other Google products use
Lots of advantages for free

Life of an App Engine Request:

1) Request for Static Content

Request for Static Content

Google App Engine Front Ends
Load balancing
Routing

Front Ends route static requests to
specialized serving infrastructure

Routing at the Front End

Request for Static Content

Google Static Content Serving
Built on shared Google Infrastructure
Static files are physically separate from
code files

How are static files defined?

Static Content Servers

Defining static content
Request for Static Content

...
<static>
 <include path="/**.png" />
 <exclude path="/data/**.png />
</static>
...

Java Runtime: appengine-web.xml

...
- url: /images
static_dir: static/images
OR
- url: /images/(.*)
static_files: static/images/\1
upload: static/images/(.*)
...

Python Runtime: app.yaml

Request For Static Content

Back to the Front End and out to the user
Front End handles connection to the user
Frees up Static Content server

Specialized infrastructure
App Server runtimes don't serve static content

Response to the user

Life of an App Engine Request:

2) Request for Dynamic Content

Request for Dynamic Content

Front Ends
Route dynamic requests
to App Servers

App Servers
Serve dynamic requests
Where your code runs

App Master
Schedules applications
Informs Front Ends

Front Ends, App Servers and App Master

1. Checks for cached runtime
If it exists, no initialization

2. Execute request
3. Cache the runtime

Consequences / Opportunities
Slow first request, faster subsequent requests
Optimistically cache data in your runtime!

Request for Dynamic Content
App Server

App Servers - What do they do?

Many applications
Many concurrent requests

Smaller footprint + faster requests = more apps
Enforce Isolation

Keeps apps safe from each other
Enforce statelessness

Allows for scheduling flexibility
Service API requests

Provides access to other services

Life of an App Engine Request:

3) Requests accessing APIs

App Servers
1. App issues API call
2. App Server accepts
3. App Server blocks runtime
4. App Server issues call
5. Returns the response

Use APIs to do things you
don't want to do in your
runtime, such as...

Requests accessing APIs

APIs

Distributed in-memory cache
Very fast
memcacheg

Like memcached
Also written by Brad Fitzpatrick
adds: set_multi, get_multi, add_multi

Optimistic caching
Very stable, robust and specialized

Memcacheg
A more persistent in-memory cache

The App Engine Datastore
Persistent storage

http://labs.google.com/papers/bigtable.html

The App Engine Datastore

Your data is already partitioned on day one
Use Entity Groups

Explicit Indexes make for fast reads
But slower writes

Replicated and fault tolerant
On commit: ≥3 machines
Geographically distributed (shortly thereafter)

Bonus: Keep globally unique IDs for free

Persistent storage

GMail

Google
Accounts

Picasaweb

Other APIs

Gadget API

On roadmap

Google Talk

App Engine:

Design Motivations (Recap)

creative commons licensed photograph from cote

Build on Existing Google Technology

Provide an Integrated Environment

Why?
Manage all apps together

What it means for your app:
Encouraged to follow best practices
Some restrictions
Use our tools

Benefits:
Use our tools
Admin Console
All of your logs in one place
No machines to manage or count
Easy deployment

Encourage Small Per-Request Footprints

Why?
Better utilization of App Servers
Fairness

What it means for your app:
Less Memory Usage
Limited CPU and wall clock time

Benefits:
Better use of resources

Encourage Fast, Efficient Requests

Why?
Better utilization of App Servers
Fairness between applications
Routing and scheduling agility

What it means for your app:
Use runtime caching
Request deadlines

Benefits:
Optimistically share state between requests
Better throughput
Fault tolerance
Better use of resources

Maintain Isolation Between Apps

Why?
Safety
Predictability

What it means for your app:
Certain system calls unavailable

Benefits:
Security
Performance

Encourage Statelessness and Specialization

Why?
App Server performance
Scheduling flexibility
Load balancing
Fault tolerance

What this means for you app:
Use API calls

Benefits:
Automatic load balancing
Fault tolerance
Less code for you to write
Better use of resources

Require Partitioned Data Model

Why?
The Datastore is distributed

What this means for your app:
Data model + Indexes
Reads are fast, writes are slower
Design for writes, enjoy fast reads

Benefits:
Design your schema once
No need to re-architect for scalability
More efficient use of CPU and memory

App Engine:

The Numbers

Google App Engine

Currently, over 80K applications

Serving over 140M pageviews per day

Written by over 200K developers

Two supported languages: Python and Java
See also JRuby, Groovy, Scala, ...

http://groups.google.com/group/google-appengine-
java/web/will-it-play-in-app-engine

http://groups.google.com/group/google-appengine-java/web/will-it-play-in-app-engine
http://groups.google.com/group/google-appengine-java/web/will-it-play-in-app-engine

Open For Questions

The White House's "Open For Questions" application
accepted 100K questions and 3.6M votes in under 48 hours

Thank You

Read more
http://code.google.com/appengine/

Contact info
Fred Sauer (twitter: @fredsa)Developer Advocate
fredsa@google.com

Questions
?

http://code.google.com/appengine/
http://twitter.com/fredsa
mailto:fredsa@google.com

