

Native Client: Accelerating
Web Applications
Henry Bridge
2009 Jun 05

3

Why Native Code?

• Close the gap between desktop and web apps...

– Performance

– Choice of programming language

– Leverage legacy code

• … but do not sacrifice

– Portability

– Safety

4

What we mean by “Performance”

• Key performance features include

• POSIX-like thread support

• Straightforward access to vector instructions

• Hand-coded assembler

Provide performance
features as desktop applications

5

What does it mean for the Web?

• Desktop CPU performance will enable Web apps with:

– Safer multimedia codecs

– Real-time audio and video synthesis

– Real-time physics simulations

– Local audio/video analysis and recognition

– Multimedia editors

– Flexible, high-throughput cryptography

– Application-specific data compression

– Together with O3D we will enable:

– High quality games

– CAD applications

6

The Life of a NaCl-Enabled Web App

7

The Life of a NaCl-Enabled Web App

8

The Life of a NaCl-Enabled Web App

<html>

…

<object src=“game.nexe”>

…

</html>

9

The Life of a NaCl-Enabled Web App

<html>

…

<object src=“game.nexe”>

…

</html>

Native Client Helper

10

The Life of a NaCl-Enabled Web App

?

<html>

…

<object src=“game.nexe”>

…

</html>

Native Client Helper

11

The Life of a NaCl-Enabled Web App

?

<html>

…

<object src=“game.nexe”>

…

</html>

Native Client Helper

12

The Life of a NaCl-Enabled Web App

<html>

…

<object src=“game.nexe”>

…

</html>

Native Client Helper

13

The Life of a NaCl-Enabled Web App

<html>

…

<object src=“game.nexe”>

…

</html>

Native Client Helper

14

The Life of a NaCl-Enabled Web App

NaCl

Runtime

<html>

…

<object src=“game.nexe”>

…

</html>

Native Client Helper

15

The Life of a NaCl-Enabled Web App

NaCl

Runtime

<html>

…

<object src=“game.nexe”>

…

</html>

Native Client Helper

16

The Life of a NaCl-Enabled Web App

NaCl

Runtime

<html>

…

<object src=“game.nexe”>

…

</html>

Native Client Helper

17

The Life of a NaCl-Enabled Web App

<html>

…

<object src=“game.nexe”>

…

</html>

Native Client Helper

NaCl

Runtime

18

The Life of a NaCl-Enabled Web App

NaCl

Runtime

1
9

Native Client Security

20

Native Client Security

• Our goal: make native code at least as safe as JavaScript.

• Steps we’ve taken include:

• Multiple internal security reviews

• Open sourced our system; encouraged critical public review

• Published a peer reviewed technical paper in the IEEE
Symposium on Security and Privacy

– See http://oakland09.cs.virginia.edu

• Held an Security Contest

21

Native Client Security Contest

• 25 February to 5 May 2009

• Over 400 teams and 600 individuals participated

• 22 valid issues submitted

• Profile of valid issues:

– Inner sandbox (1 + 1 prior to contest)

– Outer sandbox (not yet enabled)

– Binary module loader

– Trampoline interfaces (1 – direction flag)

– IMC communications interface

– NPAPI interface (3 – including same origin issues)

– System calls (1 – unmap / map)

– Browser integration (8)

NaCl Today and Tomorrow

23

Native Client Research Release

•NPAPI plugin

•x86-32 only

•Raster graphics

•Mirrored public SVN

Research

24

Native Client Developer Release…

•Built into browser

•Web Workers

•Revised NPAPI

•x86-32, x86-64, ARM

•O3D integration

•Develop off public SVN

•NPAPI plugin

•x86-32 only

•Raster graphics

•Mirrored public SVN

Research Developer

25

Preview: Native Web Workers

• Web Workers: Simple threading model for the browser

� No shared data, no DOM access

� postMessage, XMLHttpRequest, openDatabase

� See specification at http://whatwg.org/ww

• Goals of Native Web Workers:

� Support workers in C, C++, Ruby, ...

� Maintain the simplicity of the Web Worker model

� Support 'low frequency' applications

Demo: Native Web Workers

27

Preview: Revised NPAPI

� Plugin use today is very limited

� Well known security issues

� Pop-up boxes asking unreasonable questions

� API is under-specified

� Web portability falls apart

� Creating a brighter future for plugins

� Address known misfeatures of NPAPI, ActiveX

� Avoid limitations of Web Workers

� High frequency applications

� Real-time applications

� Synchronous DOM access

Example: H.264 Video Player

29

� Based on a Google internal H.264 decoder

� Original test code decoded H.264 into raw frames

� 20-line change to create simple video player

� 230-lines to add audio and frame-rate control

Porting a H.264 transcoder from Linux

Porting a Linux application to
Native Client can be very simple.

30

g264_unittest.c

int main(int argc, char *argv[]) {

...

#ifdef __native_client__

int r = nacl_multimedia_init(NACL_SUBSYSTEM_VIDEO);

if (-1 == r) {

printf("Multimedia system failed to initialize! errno: %d\n",

errno);

exit(-1);

}

r = nacl_video_init(NACL_VIDEO_FORMAT_RGB, image_width,

image_height);

if (-1 == r) {

printf("Video subsystem failed to initialize! errno; %d\n",

errno);

exit(-1);

}

write_file_ptr = NULL;

#else

write_file_ptr = fopen("output.yuv", "wb");

#endif

31

g264_unittest.c
#ifdef __native_client__

YV12toRGB24_generic(img->luma_sample, img->luma_width,

img->chroma_sample[0], img->chroma_sample[1],

img->chroma_width, RGB24_out,

img->luma_width, img->luma_height,

img->luma_width);

r = nacl_video_update(RGB24_out);

if (-1 == r) {

printf("nacl_video_update() returned %d\n", errno);

}

#else

fwrite(img->luma_sample, frame_size, 1, write_file_ptr);

fwrite(img->chroma_sample[0], frame_size>>2, 1, write_file_ptr);

fwrite(img->chroma_sample[1], frame_size>>2, 1, write_file_ptr);

#endif

Demo: H.264 Video Decoder

Demo: Native Client Darkroom

34

Contribute

• Please visit us at http://code.google.com/p/nativeclient

• Write new apps

• Port existing C/C++ libraries

• Help us test

35

Questions?

On the web: http://code.google.com/p/nativeclient

Related projects:

• Chromium: http://dev.chromium.org

• O3D: http://code.google.com/p/o3d

Appendix

37

Example Security Contest Issues

• #50: data16 prefix with two-byte control flow instructions

• We had assumed data16 only applied to data arithmetic,
and was safe with all two-byte instructions

• Problem: data16 also impacts some address calculations

• Solution: disallow data16 for most two-byte instructions

• Solution: protect bottom 64KB of the address space

• #51: stack-smashing attack via eflags direction flag
• eflags state was preserved across trusted runtime calls
• Problem: Some Windows APIs use rep movs without

checking flag direction
• Solution: use cld to clear flags during trusted runtime calls

