

More Effective Java

Joshua Bloch
May 29, 2008

3

The wait is over!

4

What’s New?

• Chapter 5: Generics

• Chapter 6: Enums and Annotations
• One or more items on all other Java™ 5 language features
• Threads chapter renamed Concurrency

– Rewritten for java.util.concurrent

• All existing items updated to reflect current best practices
• A few items added to reflect newly important patterns
• First edition had 57 items; second has 78

Agenda

• Generics (Item 28)
• Enum types (Items 31–34, 77)
• Lazy initialization (Item 71)

6

Item 28: Bounded Wildcards for API Flexibility

• Generic types are invariant
– That is, List<String> is not a subtype of List<Object>
– Good for compile-time type safety, but inflexible

• Bounded wildcard types provide additional API flexibilty
– List<String> is a subtype of List<? extends Object>
– List<Object> is a subtype of List<? super String>

7

A Mnemonic for Wildcard Usage

• PECS—Producer extends, Consumer super

– use Foo<? extends T> for a T producer

– use Foo<? super T> for a T consumer

• Only applies to input parameters

– Don’t use wildcard types as return types

Guess who?

8

PECS in Action (1)

• Suppose you want to add bulk methods to Stack<E>

•void pushAll(Collection<E> src);

•void popAll(Collection<E > dst);

9

PECS in Action (1)

• Suppose you want to add bulk methods to Stack<E>

•void pushAll(Collection<? extends E> src);

– src is an E producer

•void popAll(Collection<E> dst);

10

PECS in Action (1)

• Suppose you want to add bulk methods to Stack<E>

•void pushAll(Collection<? extends E> src);

– src is an E producer

•void popAll(Collection<? super E> dst);

– dst is an E consumer

11

PECS in Action (1)

• Suppose you want to add bulk methods to Stack<E>

•void pushAll(Collection<? extends E> src);

•void popAll(Collection<? super E> dst);

• User can pushAll from a Collection<Long> or a
Collection<Number> onto a Stack<Number>

• User can popAll into a Collection<Object> or a
Collection<Number> from a Stack<Number>

12

PECS in Action (2)

• Consider this generic method:

public static <E> Set<E> union(Set<E> s1, Set<E> s2)

13

PECS in Action (2)

• Consider this generic method:

public static <E> Set<E> union(Set<? extends E> s1,
 Set<? extends E> s2)

• Both s1 and s2 are E producers

• No wildcard type for return value

– Wouldn’t make the API any more flexible

– Would force user to deal with wildcard types explicitly

– User should not have to think about wildcards to use your API

Agenda

• Generics (Items 28)
• Enum types (Items 31–34, 77)
• Lazy initialization (Item 71)

15

Item 31: How would you implement this

public enum Ensemble {
 SOLO, DUET, TRIO, QUARTET, QUINTET,
 SEXTET, SEPTET, OCTET, NONET, DECTET;

 public int numberOfMusicians() {
 ???
 }
}

16

A common but flawed approach

public enum Ensemble {
 SOLO, DUET, TRIO, QUARTET, QUINTET,
 SEXTET, SEPTET, OCTET, NONET, DECTET;

 public int numberOfMusicians() {
 return ordinal() + 1;
 }
}

17

What’s Wrong With This Usage?

• It’s a maintenance nightmare

– If you (or someone else) reorder constants, program breaks silently

• Can’t add multiple constants with same int value

– A double quartet is 8 musicians, just like an octet

• Awkward to add constants out of sequence

– A triple quartet is 12 musicians, but there’s no term for 11

18

The Solution—Store int in an Instance Field

public enum Ensemble {
 SOLO(1), DUET(2), TRIO(3), QUARTET(4), QUINTET(5),
 SEXTET(6), SEPTET(7), OCTET(8), DOUBLE_QUARTET(8),
 NONET(9), DECTET(10), TRIPLE_QUARTET(12);

 private final int numberOfMusicians;
 Ensemble(int size) {
 numberOfMusicians = size;
 }

 public int numberOfMusicians() {
 return numberOfMusicians;
 }
}

19

Item 32: Bit Fields are Obsolete
public class Text {

 public static final int STYLE_BOLD = 1;

 public static final int STYLE_ITALIC = 2;

 public static final int STYLE_UNDERLINE = 4;

 public static final int STYLE_STRIKETHROUGH = 8;

 // Param is bitwise OR of 0 or more STYLE_ values

 public void applyStyles(int styles) { ... }

}

20

All the Problems of int Constants and More

• Bit fields are not typesafe

• No namespace—must prefix constant names

• Brittle—constants compiled into clients

• Printed values are cryptic

• No easy way to iterate over elements represented by bit field

• If number of constants grows beyond 32, you are toast.
Beyond 64, you’re burnt toast.

21

The Solution—EnumSet
A Modern Replacement for Bit Fields
public class Text {
 public enum Style {
 BOLD, ITALIC, UNDERLINE, STRIKETHROUGH
 }

 // Any Set could be passed in, but EnumSet is best
 public void applyStyles(Set<Style> styles) { ... }
}

Client Code

text.applyStyles(EnumSet.of(Style.BOLD, Style.ITALIC));

22

EnumSet Combines Safety, Power, Efficiency

• Provides type safety, richness, and interoperability of Set

• Internally, each EnumSet is represented as a bit vector

– If underlying enum type has <= 64 elements, a single long

– If underlying enum type has > 64 elements, a long[]

• Bulk operations implemented with bitwise arithmetic

– Same as you’d do manually for bit fields

– Insulates you from the ugliness of manual bit twiddling

23

Item 33: How would you implement this?
public enum Phase {
 SOLID, LIQUID, GAS;

 public enum Transition {
 MELT, FREEZE, BOIL, CONDENSE, SUBLIME, DEPOSIT;

 // Returns phase transition from one phase to another
 public static Transition from(Phase src, Phase dst) {
 ???
 }
 }
}

24

Another common but flawed approach
public enum Phase {
 SOLID, LIQUID, GAS;

 public enum Transition {
 MELT, FREEZE, BOIL, CONDENSE, SUBLIME, DEPOSIT;

 // Rows indexed by src-ordinal, cols by dst-ordinal
 private static final Transition[][] TRANSITIONS = {
 { null, MELT, SUBLIME },
 { FREEZE, null, BOIL },
 { DEPOSIT, CONDENSE, null }
 };

 // Returns phase transition from one phase to another
 public static Transition from(Phase src, Phase dst) {
 return TRANSITIONS[src.ordinal()][dst.ordinal()];
 }
 }
}

25

What’s Wrong With This Usage?

• Mistakes in transition table cause runtime failures

– If you’re lucky ArrayIndexOutOfBoundsException or
NullPointerException

– If not, silent erroneous behavior

• Maintenance nightmare

– Easy to mess up table if you add an enum value

• Size of table is quadratic in the number of phases

• If enum is large, table will not be readable

26

public enum Phase {
 SOLID, LIQUID, GAS;

 public enum Transition {
 MELT(SOLID, LIQUID), FREEZE(LIQUID, SOLID),
 BOIL(LIQUID, GAS), CONDENSE(GAS, LIQUID),
 SUBLIME(SOLID, GAS), DEPOSIT(GAS, SOLID);

 private final Phase src;
 private final Phase dst;

 Transition(Phase src, Phase dst) {
 this.src = src;
 this.dst = dst;
 }

The Solution—Use a (nested) EnumMap (1)
The Right Way to Associate Data With Enums

27

 // Initialize the phase transition map
 private static final Map<Phase, Map<Phase,Transition>> m =
 new EnumMap<Phase, Map<Phase,Transition>>(Phase.class);

 static {
 // Insert empty map for each src state
 for (Phase p : Phase.values())
 m.put(p,new EnumMap<Phase,Transition>(Phase.class));

 // Insert state transitions
 for (Transition trans : Transition.values())
 m.get(trans.src).put(trans.dst, trans);
 }

 public static Transition from(Phase src, Phase dst) {
 return m.get(src).get(dst);
 }
 }
}

The Solution—Use a (nested) EnumMap (2)
The Right Way to Associate Data With Enums

28

Adding Support for the Plasma State

• With original approach:

– Add the constant PLASMA to Phase

– Add IONIZE, DEIONIZE to Transition

– Add 1 new row and 7 new entries to the transition table

– Don’t make any mistakes or you’ll be sorry (at runtime)

• With EnumMap approach:

– Add the constant PLASMA to Phase

– Add IONIZE(GAS, PLASMA), DEIONIZE(PLASMA, GAS)

– That’s it! Program initializes table for you

29

What is the ordinal Method Good for?

• The Enum specification says this:

 Most programmers will have no use for the ordinal method.
It is designed for use by general-purpose enum-based data
structures such as EnumSet and EnumMap.

• Unless you are writing such a data structure, don’t use it

• If you do use ordinal:

– Assume only a dense mapping of nonnegative int to enum

– Don’t depend on which int value is assigned to which enum

30

Item 77: Pop Quiz: Is This Class a Singleton?
public class Elvis implements Serializable {
 public static final Elvis INSTANCE = new Elvis();
 private Elvis() { }

 private final String[] favoriteSongs =
 { "Hound Dog", "Heartbreak Hotel" };

 public void printFavorites() {
 System.out.println(Arrays.toString(favoriteSongs));
 }

 private Object readResolve() {
 return INSTANCE;
 }
}

31

Answer: Unfortunately Not
The first edition oversold the power of readResolve
•Elvis has a nontransient field (favoriteSongs)

• Cleverly crafted attack can save reference to deserialized

Elvis instance when this field is deserialized

– See ElvisStealer for details (Item 77)

•readResolve works only if all fields are transient

32

The Solution—Enum Singleton Pattern
The Right Way to Implement a Serializable Singleton
public enum Elvis {
 INSTANCE;

 private final String[] favoriteSongs =
 { "Hound Dog", "Heartbreak Hotel" };

 public void printFavorites() {
 System.out.println(Arrays.toString(favoriteSongs));
 }
}

33

Item 34: Coping With a Limitation of Enums

• Enums provide linguistic support for typesafe enum pattern

• All the advantages *, and more

– Support for EnumSet and EnumMap

– Reliable support for serialization

– Support for switch statement

• * But one thing is missing—you can’t extend an enum type

– In most cases, you shouldn’t

– One compelling use case—operation codes

34

The Solution—Couple Enum With Interface (1)
Emulated Extensible Enum
public interface Operation {
 double apply(double x, double y);
}

public enum BasicOperation implements Operation {
 PLUS { double apply(double x, double y){ return x + y; } },
 MINUS { double apply(double x, double y){ return x - y; } },
 TIMES { double apply(double x, double y){ return x * y; } },
 DIVIDE { double apply(double x, double y){ return x / y; } };
}

Use Operation to represent an operation in APIs

Use Collection<? extends Operation> for multiple ops

35

The Solution—Couple Enum With Interface (2)
Emulated Extendable Enum

public enum ExtendedOperation implements Operation {
 EXP {
 public double apply(double x, double y) {
 return Math.pow(x, y);
 }
 },
 REMAINDER {
 public double apply(double x, double y) {
 return x % y;
 };
 }
}

36

Enum Summary

• Don’t use ordinal to store int data; use int field

• Don’t use bit fields; use EnumSet

• Don’t use ordinal to index arrays; use EnumMap

• Don’t use readResolve for serializable singleton; use enum

• Emulate extensible enums with interfaces

Agenda

• Generics (Items 28)
• Enum types (Items 31–34, 77)
• Lazy initialization (Item 71)

38

Item 71: lazy initialization

• Delaying the initialization of a field until its value is needed

• When should you use it?

– To fix an initialization circularity

– To solve a performance problem

• Otherwise, prefer normal initialization

private final FieldType field = computeFieldValue();

• What is the best technique for lazy initialization?

– It depends

39

To Break an Initialization Circularity,
Use a Synchronized Accessor

private FieldType field;

synchronized FieldType getField() {
 if (field == null)
 field = computeFieldValue();
 return field;
}

40

For High-Performance on a Static Field,
Use the Lazy Initialization Holder Class Idiom

private static class FieldHolder {
 static final FieldType field = computeFieldValue
();

}

static FieldType getField() {
 return FieldHolder.field;
}

41

For High-Performance on an Instance Field,
Use the Double-Check Idiom

private volatile FieldType field;

FieldType getField() {
 FieldType result = field;
 if (result == null) { // 1st check (no
lock)

 synchronized(this) {
 result = field;
 if (result == null) // 2nd check (w/
lock)

 field = result = computeFieldValue();
 }
 }
 return result;
}

42

Lazy Initialization Summary

• Your default instinct should be normal (not lazy) initialization

• To break an initialization circularity: synchronized accessor

• For performance on a static field: holder class idiom

• For performance on an instance field: double-check idiom

43

Shameless Commerce Division

• For (much) more information:

