GOOGLE

More Effective Java

Joshua Bloch
May 29, 2008

e Joshua Bloch A
The wait is over!

Effective Java

Second Edition

MMM lerospstems.

What’s New?

Chapter 5: Generics
Chapter 6: Enums and Annotations
One or more items on all other Java™ 5 language features

Threads chapter renamed Concurrency
Rewritten for java.util.concurrent

All existing items updated to reflect current best practices
A few items added to reflect newly important patterns
First edition had 57 items; second has 78

G\J‘GLE|
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 4

Agenda

Enum types (Items 31-34, 77)
Lazy initialization (Iltem 71)

G\J‘GLE|
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000

Item 28: Bounded Wildcards for API Flexibility

Generic types are invariant
That is, List<String> is not a subtype of List<Object>
Good for compile-time type safety, but inflexible

Bounded wildcard types provide additional API flexibilty
List<String> is a subtype of List<? extends Object>
List<Object> is a subtype of List<? super String>

G\J‘GLE|
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 6

A Mnemonic for Wildcard Usage

roducer extends, Consumer super
use Foo<? extends T> for a T producer
use Foo<? super T> fora T consumer

Only applies to input parameters

Don’t use wildcard types as return types

PECS in Action (1)

Suppose you want to add bulk methods to Stack<E>

void pushAll (Collection<E> src);

void popAll (Collection<E > dst);

G\J‘GLE|
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 8

PECS in Action (1)

Suppose you want to add bulk methods to Stack<E>

void pushAll (Collection > src) ;

srcis an

void popAll (Collection<E> dst) ;

G\J‘GLE|
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 9

PECS in Action (1)

Suppose you want to add bulk methods to Stack<E>

void pushAll (Collection<? extends E> src);

src is an E producer

void popAll (Collection > dst) ;

dst is an

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 10 .@

PECS in Action (1)

Suppose you want to add bulk methods to Stack<E>

void pushAll (Collection<? extends E> src);
void popAll (Collection<? super E> dst);

User can from a or a
Collection<Number> onto a Stack<Number>

User can into a or a
Collection<Number> from a Stack<Number>

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 11 .@

PECS in Action (2)

Consider this generic method:

public static <E> Set<E> union (Set<E> sl, Set<E> s2)

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 12 .@

PECS in Action (2)

Consider this generic method:

public static <E> Set<i> union (Set< > s1,
Set< > s2)

Both s1 and s2 are

No wildcard type for return value

Wouldn't make the APl any more flexible

Would force user to deal with wildcard types explicitly

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 13 .@

Agenda

Generics (Iltems 28)

Lazy initialization (Iltem 71)

G\J‘GLE|
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000

Item 31: How would you implement this

public enum Ensemble ({
SOLO, DUET, TRIO, QUARTET, QUINTET,
SEXTET, SEPTET, OCTET, NONET, DECTET;,

public int numberOfMusicians () {

}

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 15 .@

A common but flawed approach

public enum Ensemble ({
SOLO, DUET, TRIO, QUARTET, QUINTET,
SEXTET, SEPTET, OCTET, NONET, DECTET;,

public int numberOfMusicians () {

}

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 16 .@

What's Wrong With This Usage?

It's a maintenance nightmare

If you (or someone else) reorder constants, program breaks silently
Can’t add multiple constants with same int value
A double quartet is 8 musicians, just like an octet

Awkward to add constants out of sequence

A triple quartet is 12 musicians, but there’s no term for 11

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 17 .@

The Solution—Store int in an Instance Field

public enum Ensemble {
SOLO (1), DUET(2), TRIO(3), QUARTET (4), QUINTET (5),
SEXTET (6) , SEPTET (7), OCTET (8), ,
NONET (9) , DECTET (10), ;

int numberOfMusicians;
Ensemble (int size) {
numberOfMusicians = size;

}

public int numberOfMusicians () {
return numberOfMusicians;

}

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 18 .@

ltem 32: Bit Fields are Obsolete

public class Text {
public static final int STYLE BOLD
public static final int STYLE ITALIC

i
o & N B

N~

public static final int STYLE UNDERLINE =
public static final int STYLE STRIKETHROUGH =

// Param is bitwise OR of 0 or more STYLE values

public void applyStyles () { ... }

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 19 .@

All the Problems of int Constants and More

Bit fields are not typesafe
No namespace—must prefix constant names

Brittle—constants compiled into clients

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 20 .@

The Solution—EnumSet
A Modern Replacement for Bit Fields

public class Text ({
public enum Style {
BOLD, ITALIC, UNDERLINE, STRIKETHROUGH

}

// Any Set could be passed in, but EnumSet is best
public void applyStyles (Set<Style> styles) { ... }
}

Client Code

text.applyStyles (EnumSet.of (Style.BOLD, Style.ITALIC))

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 21 .@

EnumSet Combines Safety, Power, Efficiency

Provides type safety, richness, and interoperability of Set

Internally, each EnumSet is represented as a bit vector
If underlying enum type has <= 64 elements, a single 1long
If underlying enum type has > 64 elements, a long[]

Bulk operations implemented with bitwise arithmetic

Same as you’'d do manually for bit fields

Insulates you from the ugliness of manual bit twiddling

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 22 .@

Item 33: How would you implement this?

public enum Phase {
SOLID, LIQUID, GAS;

public enum Transition {
MELT, FREEZE, BOIL, CONDENSE, SUBLIME, DEPOSIT;

// Returns phase transition from one phase to another
public static Transition from(Phase src, Phase dst) ({

}

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 23 .@

Another common but flawed approach

public enum Phase {
SOLID, LIQUID, GAS;

public enum Transition {
MELT, FREEZE, BOIL, CONDENSE, SUBLIME, DEPOSIT;

private static final Transition[][] TRANSITIONS = {
{ null, MELT, SUBLIME },
{ FREEZE, null, BOIL 1},
{ DEPOSIT, CONDENSE, null }

};

// Returns phase transition from one phase to another
public static Transition from(Phase src, Phase dst) ({

}

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 24 .@

What's Wrong With This Usage?

Mistakes in transition table cause runtime failures

If you're lucky ArrayIndexOutOfBoundsException or
NullPointerException

If not, silent erroneous behavior

Maintenance nightmare

Easy to mess up table if you add an enum value
Size of table is quadratic in the number of phases

If enum is large, table will not be readable

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 25 .@

The Solution—Use a (nested) EnumMap (1)
The Right Way to Associate Data With Enums

public enum Phase {
SOLID, LIQUID, GAS;

public enum Transition ({
MELT (SOLID, LIQUID), FREEZE (LIQUID, SOLID),
BOIL (LIQUID, GAS), CONDENSE (GAS, LIQUID),
SUBLIME (SOLID, GAS), DEPOSIT (GAS, SOLID) ;

private final Phase src;
private final Phase dst;

Transition (Phase src, Phase dst) {
this.src src;
this.dst dst;

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 26 .@

The Solution—Use a (nested) EnumMap (2)
The Right Way to Associate Data With Enums

// Initialize the phase transition map
private static final Map< >m =
new EnumMap<Phase, Map<Phase,Transition>>(Phase.class);

static {
// Insert empty map for each src state
for (Phase p : Phase.values())
m.put (p,new EnumMap<Phase,Transition>(Phase.class));

// Insert state transitions
for (Transition trans : Transition.values())
m.get () .put(, trans);
}

public static Transition from(Phase src, Phase dst) {
return m.get(src) .get(dst) ;

}

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 27 .@

Adding Support for the Plasma State

With original approach:
Add the constant PLASMA to Phase

Add IONIZE, DEIONIZE to Transition

With EnumMap approach:
Add the constant PLASMA to Phase

Add IONIZE (GAS, PLASMA) , DEIONIZE (PLASMA, GAS)

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 28 .@

What is the ordinal Method Good for?

The Enum specification says this:

It is designed for use by general-purpose enum-based data
structures such as EnumSet and EnumMap.

Unless you are writing such a data structure, don’t use it

If you do use ordinal:

Assume only a dense mapping of nonnegative int to enum

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 29 .@

Item 77: Pop Quiz: Is This Class a Singleton?

public class Elvis implements Serializable ({
public static final Elvis INSTANCE = new Elvis();
private Elvis() { }

private final String[] favoriteSongs =
{ "Hound Dog", "Heartbreak Hotel" };

public void printFavorites() {
System.out.println (Arrays.toString(favoriteSongs)) ;

}

private Object readResolve() {
return INSTANCE;

}

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 30 .@

Answer: Unfortunately Not
The first edition oversold the power of readResolve

Elvis has a nontransient field (favoriteSongs)

Cleverly crafted attack can save reference to deserialized

Elvis instance when this field is deserialized

See ElvisStealer for details (Item 77)

GHGLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 31 .@

The Solution—Enum Singleton Pattern
The Right Way to Implement a Serializable Singleton

public enum Elvis {
INSTANCE;

private final String[] favoriteSongs =
{ "Hound Dog", "Heartbreak Hotel" };

public void printFavorites() {

System.out.println (Arrays.toString(favoriteSongs)) ;
}

GHGLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 32 .@

Item 34: Coping With a Limitation of Enums

Enums provide linguistic support for typesafe enum pattern
All the advantages *, and more
Support for EnumSet and EnumMap
Reliable support for serialization
Support for switch statement
But one thing is missing—you can’t extend an enum type

In most cases, you shouldn't

One compelling use case—operation codes

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 33 .@

The Solution—Couple Enum With Interface (1)

Emulated Extensible Enum

public {
double apply (double x, double y);
}

public {
PLUS { double apply(double x, double y){ return x + y; } },
MINUS { double apply(double x, double y){ return x - y; } },
TIMES { double apply(double x, double y){ return x * y; } },
DIVIDE { double apply(double x, double y){ return x / y; } };

}

Use to represent an operation in APls

Use for multiple ops

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 34 .@

The Solution—Couple Enum With Interface (2)

Emulated Extendable Enum

public enum ExtendedOperation {
EXP {
public double apply(double x, double y) {
return Math.pow(x, y):
}

Y
REMAINDER {

public double apply(double x, double y) {
return x % y;,

};

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 35 .@

Enum Summary

Don’t use ordinal to store int data; use int field

Don’t use bit fields; use EnumSet

Don’t use ordinal to index arrays; use EnumMap

Don’t use readResolve for serializable singleton; use enum

Emulate extensible enums with interfaces

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 36 .@

Agenda

Generics (Iltems 28)
Enum types (Items 31-34, 77)

G\J‘GLE|
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000

Item 71: lazy initialization

Delaying the initialization of a field until its value is needed

When should you use it?
To fix an initialization circularity

To solve a performance problem

Otherwise,

private final FieldType field = computeFieldValue () ;

What is the best technique for lazy initialization?

It depends

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 38 .@

To Break an Initialization Circularity,
Use a Synchronized Accessor

private FieldType field;

FieldType getField() {
if (field == null)
field = computeFieldValue() ;
return field;

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 39 .@

For High-Performance on a Static Field,
Use the Lazy Initialization Holder Class Idiom

private static FieldHolder {
static final FieldType field = computeFieldValue

()
}

static FieldType getField() {

}

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 40 .@

For High-Performance on an Instance Field,
Use the Double-Check Idiom

private FieldType field;

FieldType getField() ({
FieldType result = field;
if (result == null) { // lst check (no
lock)
{
result = field;
if (result == null) // 2nd check (w/
lock)
field = result = computeFieldValue() ;

}
}

return result;

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 41 .@

Lazy Initialization Summary

To break an initialization circularity: synchronized accessor
For performance on a static field: holder class idiom

For performance on an instance field: double-check idiom

G\J‘GLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 42 .@

Shameless Commerce Division

* For (much) more information:

Joshua Bloch

Effective Java

Second Edition

GHGLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 43 .@

GOOGLE

