
Faster-than-possible Code:

Deferred Binding in GWT

Bruce Johnson
May 2008

“GWT's mission is to radically improve the
web experience for users by enabling
developers to use existing Java tools to
build no-compromise AJAX for any modern
browser.”

“Making GWT Better”

“We definitely do not view development in
GWT as a form of compromise. We firmly
believe that GWT should generate better
JavaScript code than you would write by
hand, and will generally choose to avoid
making concessions to convenience if they
hurt the performance of the resulting AJAX
code. ”

“Making GWT Better”

“We want great results, where great is
defined by how much it benefits end users.”

“It's much better to provide a solid platform
so that other great libraries can be built on
top of GWT rather than trying to be all
things to all people out of the box.”

“Making GWT Better”

No-compromise Ajax

6

The Premise of Deferred Binding

• A modest goal: the best attainable performance

– As determined by the end user

– Fastest possible startup

– Fastest possible execution

• Idea: send exactly the right code for a user’s circumstances

– User agent

– Locale

– Debug vs. production

– Network characteristics

– <anything that might make a difference>

• One single script cannot satisfy all these, so...

7

Modularize, Right?

…

FireFox 1.0.x

App Code

en_US

Safari 2.0.x

App Code

fr_FR

…

IE 6

App Code

en_UK

…

Opera 9

App Code

fr_CA

…

User 1

User 3

User 2

User 4

8

The Obvious Way to Modularize

• Wait! I know this pattern! Service Provider Interface (SPI)!

• Create a nice common interface

• Load the right implementation dynamically

...that sucks

AbstractBrowser

BrowserIE BrowserFF BrowserSaf

Code against ⇒

Dynamically
load one of ⇒

9

The First Rule of GWT Club is...

• Rule #1: Make Fewer HTTP Requests

– Steve Souders, “High Performance Web Sites”

– Look at GWT Mail sample

• Dynamic modules over HTTP is calamity

• Slow to start

– Awful network utilization

– Particularly horrible for mobile

• Slow to execute

– Requires polymorphic dispatch at runtime

– Impossible to eliminate dead code

• Hard to maintain

– “DLL Hell” for the web

– Synchronous XHR is evil

10

Another Obvious Solution

• Wait! I know have a better idea: capability detection!

• Don’t test for specific user agents at all...how elegant!

...that also sucks

function setInnerText(elem, text) {
 if (hasInnerText) {
 // The fast way
 elem.innerText = text;
 } else {
 // The slow way
 while (elem.firstChild) {
 elem.removeChild(elem.firstChild);
 }
 if (text != null) {
 elem.appendChild(document.createTextNode(text));
 }
 }
}

11

The Second Rule of GWT Club is...

• Make Fewer HTTP Requests

• But I digress

12

This Path is Fraught With Peril

• Naive capability detection causes repeated if/then checks

function oneTimeSetup() {
 if (hasDesiredCapability) {
 browser.prototype.crossBrowserMethod = theRightWay;
 } else {
 browser.prototype.crossBrowserMethod = theMaxPowerWay;
 }
}

function crossBrowserMethod() {
 if (hasDesiredCapability)
 { /* do it the good way */ }
 else
 { /* do it the Max Power way */ }
}

• But you’re smarter than that, so:

13

The Third Rule of GWT Club Is...

• “The fastest code is that which does not run.”

– Joel Webber, GWT co-creator and performance zealot

• Back to innerText...when possible, you really want this:

// ...lots of code...
setInnerTextTheMaxPowerWay(elem, str);
// ...lots more code...

// ...lots of code...
elem.innerText = str;
// ...lots more code...

• You want inlining. Don’t pay for abstractions at runtime.

• Does it really matter?

• And when that’s not possible, you want this:

14

When Scripting, Abstractions Cost Ya

• Equivalent setInnerText()
behavior in all three
implementations

• Negligible difference
between polymorphism
trick and capability
detection

• Inlined code is ~10% faster
in this case

• Other browsers have
different behavior, which is
exactly the point
Source: my MacBook Pro running Safari 3.1

Capability Polymorphic Inline

270444
242993243632

Iterations in one second

Permutations

16

Help Wanted: Sane Programming Model

• You won’t achieve speed in practice if it’s too complicated

• What if we use good ol’ polymorphism as a permutation axis?

• Example: DOMImpl

– DOMImpl_InternetExplorer

– DOMImpl_Mozilla

– DOMImpl_WebKit

• That’s exactly what GWT.create() does

17

GWT.create(T.class)

• Gets special treatment from the compiler

• Acts as a pivot point for permutations

• Gets rewritten in each permutation as new Trepl()

• Browser b = GWT.create(Browser.class) becomes

– Browser b = new Mozilla();

– Browser b = new InternetExplorer();

– Browser b = new WebKit();

• This is why T.class must be a class literal

18

Digression: Monolithic Compilation

• Eschew dynamic loading! Just say no to runtime reflection!

• Ideal approach for compiler optimizations

Shape shape = new Square(4); // each side has length 4
int area = shape.getArea(); // polymorphic call

Square shape = new Square(4); // Square is known-final
int area = Square_getArea(shape); // static-ified call

Square shape = new Square(4);
int area = shape.len * shape.len; // inlined!

And maybe in GWT 2.0...

int area = 16; // object existence elided completely

19

Branching Reality

abstract class DOMImpl {
 abstract void setInnerText(Element e, String s);
}

class DOMImplMozilla extends DOMImpl {
 native void setInnerText(Element e, String s)
 /*-{ e.textContent = s; }-*/;
}

class DOMImplInternetExplorer extends DOMImpl {
 native void setInnerText(Element e, String s)
 /*-{ e.innerText = s; }-*/;
}

20

Beauty! Independent Monolithic Compiles

DOMImpl impl = GWT.create(DOMImpl.class);
// ... later ...
impl.setInnerText(x, “foo”);

x.textContent = “foo”;

x.innerText = “foo”;

<Mozilla version>.js

<Internet Explorer version>.js

Beyond User Agent

MyMsgs

MyMsgs_en_US

MyMsgs_fr_FR

MyMsgs_fr_CA

Messages

22

Locale, Also Nothing Special

Tag interface ⇒

GWT.create(MyMsgs.class) ⇒

new MyMsgs_en_US() ⇒
Perm #1

new MyMsgs_fr_FR() ⇒Perm #2

new MyMsgs_fr_CA() ⇒Perm #3

23

Client Properties

• <define-property>

<define-property
 name="locale"
 values="en_US, en_UK"/>

<extend-property
 name="locale"
 values="fr_FR, fr_CA"/>

<set-property
 name="locale"
 values="fr_CA"/>

• <set-property>

• <extend-property>

24

Property Providers

• <property-provider> computes a value by startup sniffing...

<property-provider name="locale"><![CDATA[
 var locale;
 // Look for the locale as a url argument
 if (locale == null) {
 var args = location.search;
 // Look at query params...
 }
 if (locale == null) {
 // Look for the locale on the web page
 locale = __gwt_getMetaProperty("locale")
 }
 if (locale == null) {
 return "default";
 }
 // Iteratively rip off suffixes to find a close match.
 while (!__gwt_isKnownPropertyValue("locale", locale)) {
 // Rip off everything after underscore...
 }
 return locale;
}]]></property-provider>

25

Resolving GWT.create(T.class)

• Rules defined in module XML consulted in reverse lexical
order; first match wins

• Conditions

– <when-type-is>, <when-type-assignable>, <when-property-is>

– <all>, <any>, <none>

• Static substitution: <replace-with>

• Code generation: <generate-with>

<replace-with
 class="com.google.gwt.user.client.impl.DOMImplOpera">
 <when-type-is class="com.google.gwt.user.client.impl.DOMImpl"/>
 <when-property-is name="user.agent" value="opera"/>
</replace-with>

MyService

MyServiceProxy

RemoteService

26

Compile-time Code Generation

<generate-with class="ServiceInterfaceProxyGenerator">
 <when-type-assignable class="RemoteService"/>
</generate-with>

Used to trigger the rule ⇒

GWT.create(MyService.class) ⇒

new MyServiceProxy() ⇒
⇒

Maximum Startup Speed

28

How a Permutation Gets Selected

• Two-phase startup

• Client requests the generated selection script

– <module>.nocache.js

• Property providers run to decide property values

• Property values imply a permutation

map(['ar', 'ie6'], 'C423B4E263DBD2B411765BC573F4B95E.cache.html');

map(['en', 'ie6'], 'AFDD6408D742551B6E7A718388ACC024.cache.html');

map(['fr', 'ie6'], '856C7457EFD4634D93FF08D7B9D218B8.cache.html');

map(['zh', 'ie6'], 'E130C9E6D5962A222D7205C4517D0E9D.cache.html');

map(['ar', 'gecko'], '67F683D03A624E9EABC58780CEFB5F29.cache.html');

map(['en', 'gecko'], 'D903C36E26F86B1FA32E71ECF35524A4.cache.html');

map(['fr', 'gecko'], '3D1AB61674B879226E0479E77EDE9F77.cache.html');

map(['zh', 'gecko'], '63F25F00CB4F5589EEB846B399D12AB0.cache.html');

map(['ar', 'safari'], 'BAEDFF0347B3ED0A49DFF2865F0B6701.cache.html');

map(['en', 'safari'], 'ABD1C87060A7E92586938894CCC4DAC9.cache.html');

map(['fr', 'safari'], '01C1D7F45D4D431EF9049D83AA564583.cache.html');

map(['zh', 'safari'], '5059303563FF45A518434B71E68385BC.cache.html');

strongName = answers[computePropValue('locale')][computePropValue('user.agent')];

29

Perfect Caching

• The natural selection process provides a great opportunity
for an efficient bootstrap mechanism

• <module>.nocache.js has must-revalidate semantics

– But it’s small

• <md5>.cache.js has cache-forever semantics

– And it’s big

• Perfect!

• Never fail to get the newest when it has been updated

• Never even ask if it hasn’t been updated

– That’s right: not even an If-Modified-Since check

• For super-cool people...

– Inline the selection script into the host page

Summary

31

Putting it All Together

Single Java
Code Base

Download exactly what you
need in a single, optimized,

can't-go-wrong chunk

Then cache it on the client
until the sun explodes

…

FireFox 1.0.x

Your Code

en_US

1D04ADDA.cache.html

Safari 2.0.x

Your Code

fr_FR

…

7EFE4D24.cache.html

IE 6

Your Code

en_UK

…

15F361BB.cache.html

Opera 9

Your Code

fr_CA

…

D415D917.cache.html

32

The Big Picture

• GWT.create() + <module>.gwt.xml

– compile-time forking in permutations

– compile-time code generation

• Each permutation is independently highly optimized

– inlining

– dead code elimination

• Two-phase startup

– selects the right permutation

– enables perfect caching

• The result: happy end users

Q & A

