Bob Lee & Jesse Wilson

What can Guice do for me?

* Write less bolilerplate code
* Easy modularity

» Abstract scope

* Easy unit testing

Guice’s Philosophy

» Back to basics
e @Inject is the new “new’
— Brevity of “new’, flexibility of a factory
 Falil early but not too early
 Make it easy to do the right thing
e Types are the natural currency of Java
* Prefer annotations to convention
e Singletons aren’t bad--their typical implementation is
* Focus on readability over writability
 Maximize power-to-weight ratio of API
e Balance: just because you can, doesn’t mean you should

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 3

Type Safety

* Type safety != compiler errors
Find usages
Documentation
Intelligent auto-completion

Refactoring

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 4

Productivity Continuum

>
—
5
©
=
©
ujed
=
©
S

flexibility

GOUGLE |
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 5

Guice 2

Led by Jesse Wilson
Coming summer 2008

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 6

An Example

 \We'll show
—Less code
—More flexibility
—Simpler unit test

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 7

3 actors

Biller
ShoppingCart
A unit test

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 8

3 approaches

#1: Factory (or service locator)
#2. Dependency injection by hand
#3: Dependency injection with Guice

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 9

00000000
o] lo® 0] /
Qe00000®
0e0C000e

00000000

ceccecce Common Code

0e00000e

public interface Biller {
void bill (Money amount);

}

public class GoogleCheckoutBiller
implements Biller {

public void bill (Money amount) {

}
}

public class MockBiller implements
private Money amount;

public void bill (Money amount) {
this.amount = amount;

}

public Money amountBilled() {
return this.amount;

}

}

00000000
o] lo® 0] /
Qe00000®
0e0C000e

csocsses Approach #1:

ol Jolo? T I 11 F a Ct 0O ry

public class BillerFactory ({
private BillerFactory() {}
private static Biller instance = new GoogleCheckoutBiller();

public static Biller getInstance() {
return instance;

}

public static void setInstance(Biller biller) ({
instance = biller;

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 14

public class ShoppingCart {

public void checkOut () {
Biller biller = BillerFactory.getInstance();
Money total = calculateTotal();
biller.bill(total);

}
}

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 15

BillerFactory

Biller ShoppingCart

GoogleCheckout
Biller

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 16

public void testShoppingCart () {
Biller previous =

try {
MockBiller mock = new MockBiller();
BillerFactory.setInstance (mock);

ShoppingCart cart = new ShoppingCart();
// Add some stuff to the cart.

cart.checkOut();

assertEquals (expectedTotal, mock.amountBilled());

BillerFactory.getInstance();

}
finally {

BillerFactory.setInstance(previous);

}
}

Gu~GLE|
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 17

Factory observations

The unit test must pass the mock service to the factory and
clean up afterwards

Compile time dependency on GoogleCheckoutBiller

Reusing Client in another context will be difficult
~60 lines of code

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 18

00000000
o] lo® 0] /
Qe00000®
0e0C000e

00000000 Approach H2:

o] lo® 0] /
o] 00 0] /

Ce0Ce00e Dependency |njeCtiOn

public class ShoppingCart {
private final Biller biller;

public ShoppingCart(Biller biller) {
this.biller = biller;

}

public void checkOut () {
Money total = calculateTotal();
biller.bill(total);

}
}

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 20

public void testShoppingCart () {
MockBiller mock = new MockBiller();
ShoppingCart cart = new ShoppingCart (mock);
// Add some stuff to the cart.
cart.checkOut();
assertEquals (expectedTotal, mock.amountBilled());

Gu~GLE|
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 21

Before After

public void testShoppingCart() {
Biller previous = BillerFactory.getInstance();
try {
MockBiller mock = new MockBiller();
BillerFactory.setInstance(mock);
ShoppingCart cart = new ShoppingCart();
// Add some stuff to the cart.

public void testShoppingCart() {
MockBiller mock = new MockBiller();
ShoppingCart cart = new ShoppingCart (mock);
// Add some stuff to the cart.

cart.checkOut ();
assertEquals (expectedTotal, mock.amountBilled());

cart.checkOut();
assertEquals (expectedTotal, mock.amountBilled());

}
finally {

BillerFactory.setInstance(previous);
}
}

Gu\.GLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 22

Where does the dependency go?

public static class ShoppingCartFactory ({
private ShoppingCartFactory() {}

public static ShoppingCartFactory newInstance() {
Biller biller = BillerFactory.getlInstance();
return new ShoppingCart(biller);

}
}

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 23

BillerFactory Sh‘::':'f:'t’;?‘?a” |

Biller ShoppingCart

GoogleCheckout
Biller

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 24

Benefits of dependency injection

Simpler, more reliable unit test
Dependencies are expressed in the API
Separates creation from usage

Reuse classes in different contexts
Roughly the same number of lines of code

00000000
o] lo® 0] /
Qe00000®
0e0C000e

0g308eee Approach #3:

0000000 Dependency InjeCtion with

Why use a framework?

Writing factories is tedious
Boilerplate code
Circular dependencies
Scopes

More up front checking
Make it easier to do the right thing

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 27

public class BillingModule extends AbstractModule ({
public void configure() {
bind(Biller.class)
.to(GoogleCheckoutBiller.class);

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 28

public class ShoppingCart {
private final Biller biller;

@Inject
public ShoppingCart(Biller biller) {
this.biller = biller;

}

public void checkOut () ({
Money total = calculateTotal();
biller.bill(total);

}
}

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 29

@Singleton
public class GoogleCheckoutBiller
implements Biller {
public void bill (Money amount) {

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 30

BillingModule

Biller ShoppingCart

GoogleCheckout
Biller

Gu~GLE|
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 31

public void testShoppingCart () {
MockBiller mock = new MockBiller();
ShoppingCart cart = new ShoppingCart (mock);
// Add some stuff to the cart.
cart.checkOut();
assertEquals (expectedTotal, mock.amountBilled());

Gu~GLE|
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 32

Conclusions

Less framework code
~20% for this example

More startup checks
Declarative scopes
Better reuse

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 33

00000000
o] lo® 0] /
Qe00000®
0e0C000e

00000000
o] lo® 0] /
Qe00000®
0e0C000e

Bootstrapping

Injector injector = Guice.createInjector(
new BillingModule(), new PetStoreModule());

PetStore store = injector.getInstance(PetStore.class);
store.start();

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 35

Prefer constructor injection

Fields can be final
Immutability
Easier concurrency

Guaranteed to be called
See all dependencies at a glance
There are exceptions to any rule...

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 36

Binding annotations

Bind multiple implementations to the same type.

bind (Service.class)
.annotatedWith (Blue.class)
.to(BlueService.class);

@Inject
void injectService(@Blue Service service) {

}

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 37

Getting more than one instance

@Inject

void injectAtm(Provider<Money> atm)
Money one = atm.get();
Money two = atm.get();

Binding constants

bindConstant ()
.annotatedWith (TheAnswer.class)
.to("42");

@Inject @TheAnswer int answer;

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 39

Wire objects by hand

@Provides @Singleton
public Widget provideWidget (@Blue Service service) {
return new Widget (Color.BLUE, service);

}

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 40

Scopes

Default: No Scope
Singleton
HTTP Request/Session

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 41

Stages

Use DEVELOPMENT during development
PRODUCTION during integration tests and in production
Coming soon: TOOL

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 42

Error Handling

1) Error at demo.ErrorHandlingTest$BadScope.class (ErrorHandlingTest.java:1) :
Please annotate with @ScopeAnnotation.

2) Error at demo.ErrorHandlingTest$BadScope.class (ErrorHandlingTest.java:1l):
Please annotate with (@Retention (RUNTIME). Bound at demo.ErrorHandlingTest
SMyModule.configure (ErrorHandlingTest.java:139).

3) Error at demo.ErrorHandlingTest$Bar.<init> (ErrorHandlingTest.java:96):

Could not find a suitable constructor in demo.ErrorHandlingTest$Bar. Classes
must have either one (and only one) constructor annotated with @Inject or a zero-
argument constructor.

4) Error at demo.ErrorHandlingTest$Bar.bar (ErrorHandlingTest.java:100) :

Binding to java.lang.String annotated with @com.google.inject.name.Named
(value=foo) not found. Annotations on other bindings to that type include:
[@com.google.inject.name.Named (value=foo)]

5) Error at demo.ErrorHandlingTest$Bar.setNumbers (ErrorHandlingTest.java:98):
Binding to java.util.List<java.lang.Integer> annotated with

dcom.google.inject.name.Named (value=numbers) not found. No bindings to that type
were found.

6) Error at demo.ErrorHandlingTest$I.class (ErrorHandlingTest.java:1l):
java.lang.String doesn't extend demo.ErrorHandlingTestSI.

GOUGLE |
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 43

http://code.google.com/p/google-guice
downloads, source, tutorial, users group, blogs
Books:
Dependency Injection by Dhanji R. Prasanna

Google Guice by Robbie Vanbrabant

00000000
o] lo® 0] /
o] 00 0] /
0e0C000e

http://code.google.com/p/google-guice
http://code.google.com/p/google-guice

http://code.google.com/p/google-guice
downloads, source, tutorial, users group, blogs

Books:
Dependency Injection by Dhanji R. Prasanna

Google Guice by Robbie Vanbrabant

00000000

Seccesse Questions?

0e00000e

http://code.google.com/p/google-guice
http://code.google.com/p/google-guice

