
Java on

Guice
Bob Lee & Jesse Wilson

What can Guice do for me?

• Write less boilerplate code
• Easy modularity

• Abstract scope
• Easy unit testing

2

Guice’s Philosophy

• Back to basics
• @Inject is the new “new”

– Brevity of “new”, flexibility of a factory
• Fail early but not too early
• Make it easy to do the right thing
• Types are the natural currency of Java
• Prefer annotations to convention
• Singletons aren’t bad--their typical implementation is
• Focus on readability over writability
• Maximize power-to-weight ratio of API
• Balance: just because you can, doesn’t mean you should

3

Type Safety

• Type safety != compiler errors
• Find usages
• Documentation
• Intelligent auto-completion
• Refactoring

4

Productivity Continuum

5

m
a

in
ta

in
a

b
il
it

y

flexibility

Java

Java + Guice

Ruby

Guice 2

• Led by Jesse Wilson
• Coming summer 2008

6

An Example

• We’ll show
–Less code
–More flexibility
–Simpler unit test

7

3 actors

• Biller
• ShoppingCart

• A unit test

8

3 approaches

#1: Factory (or service locator)
#2: Dependency injection by hand
#3: Dependency injection with Guice

9

Common Code

public interface Biller {

 void bill(Money amount);
}

public class GoogleCheckoutBiller
 implements Biller {

 public void bill(Money amount) {
 ...
 }
}

11

public class MockBiller implements Biller {

 private Money amount;

 public void bill(Money amount) {
 this.amount = amount;
 }

 public Money amountBilled() {
 return this.amount;
 }
}

12

Approach #1:
Factory

public class BillerFactory {

 private BillerFactory() {}

 private static Biller instance = new GoogleCheckoutBiller();

 public static Biller getInstance() {
 return instance;
 }

 public static void setInstance(Biller biller) {
 instance = biller;
 }
}

14

public class ShoppingCart {

 ...

 public void checkOut() {
 Biller biller = BillerFactory.getInstance();
 Money total = calculateTotal();
 biller.bill(total);
 }
}

15

16

ShoppingCartBiller

GoogleCheckout
Biller

BillerFactory

public void testShoppingCart() {
 Biller previous = BillerFactory.getInstance();
 try {
 MockBiller mock = new MockBiller();
 BillerFactory.setInstance(mock);
 ShoppingCart cart = new ShoppingCart();
 // Add some stuff to the cart.
 ...
 cart.checkOut();
 assertEquals(expectedTotal, mock.amountBilled());
 }
 finally {
 BillerFactory.setInstance(previous);
 }
}

17

Factory observations

• The unit test must pass the mock service to the factory and
clean up afterwards

• Compile time dependency on GoogleCheckoutBiller

• Reusing Client in another context will be difficult
• ~60 lines of code

18

Approach #2:
Dependency Injection

public class ShoppingCart {

 private final Biller biller;

 public ShoppingCart(Biller biller) {
 this.biller = biller;
 }

 ...

 public void checkOut() {
 Money total = calculateTotal();
 biller.bill(total);
 }
}

20

public void testShoppingCart() {
 MockBiller mock = new MockBiller();
 ShoppingCart cart = new ShoppingCart(mock);
 // Add some stuff to the cart.
 ...
 cart.checkOut();
 assertEquals(expectedTotal, mock.amountBilled());
}

21

public void testShoppingCart() {
 Biller previous = BillerFactory.getInstance();
 try {
 MockBiller mock = new MockBiller();
 BillerFactory.setInstance(mock);
 ShoppingCart cart = new ShoppingCart();
 // Add some stuff to the cart.
 ...
 cart.checkOut();
 assertEquals(expectedTotal, mock.amountBilled());
 }
 finally {
 BillerFactory.setInstance(previous);
 }
}

public void testShoppingCart() {
 MockBiller mock = new MockBiller();
 ShoppingCart cart = new ShoppingCart(mock);
 // Add some stuff to the cart.
 ...
 cart.checkOut();
 assertEquals(expectedTotal, mock.amountBilled());
}

22

Before After

public static class ShoppingCartFactory {

 private ShoppingCartFactory() {}

 public static ShoppingCartFactory newInstance() {
 Biller biller = BillerFactory.getInstance();
 return new ShoppingCart(biller);
 }
}

23

Where does the dependency go?

24

ShoppingCartBiller

GoogleCheckout
Biller

BillerFactory
ShoppingCart

Factory

Benefits of dependency injection

• Simpler, more reliable unit test
• Dependencies are expressed in the API

• Separates creation from usage
• Reuse classes in different contexts
• Roughly the same number of lines of code

25

Approach #3:
Dependency Injection with Guice

Why use a framework?

• Writing factories is tedious
– Boilerplate code
– Circular dependencies
– Scopes

• More up front checking

• Make it easier to do the right thing

27

public class BillingModule extends AbstractModule {
 public void configure() {
 bind(Biller.class)
 .to(GoogleCheckoutBiller.class);
 }
}

28

public class ShoppingCart {

 private final Biller biller;

 @Inject
 public ShoppingCart(Biller biller) {
 this.biller = biller;
 }

 ...

 public void checkOut() {
 Money total = calculateTotal();
 biller.bill(total);
 }
}

29

@Singleton
public class GoogleCheckoutBiller
 implements Biller {
 public void bill(Money amount) {
 ...
 }
}

30

31

ShoppingCartBiller

GoogleCheckout
Biller

BillingModule

public void testShoppingCart() {
 MockBiller mock = new MockBiller();
 ShoppingCart cart = new ShoppingCart(mock);
 // Add some stuff to the cart.
 ...
 cart.checkOut();
 assertEquals(expectedTotal, mock.amountBilled());
}

32

Conclusions

• Less framework code
– ~20% for this example

• More startup checks

• Declarative scopes
• Better reuse

33

Using Guice

Injector injector = Guice.createInjector(
 new BillingModule(), new PetStoreModule());
PetStore store = injector.getInstance(PetStore.class);
store.start();

Bootstrapping

35

Prefer constructor injection

• Fields can be final
– Immutability
– Easier concurrency

• Guaranteed to be called

• See all dependencies at a glance
• There are exceptions to any rule...

36

bind(Service.class)
 .annotatedWith(Blue.class)
 .to(BlueService.class);

@Inject
void injectService(@Blue Service service) {
 ...
}

Binding annotations

• Bind multiple implementations to the same type.

37

Getting more than one instance

@Inject
void injectAtm(Provider<Money> atm) {
 Money one = atm.get();
 Money two = atm.get();
 ...
}

38

Binding constants

bindConstant()
 .annotatedWith(TheAnswer.class)
 .to("42");

@Inject @TheAnswer int answer;

39

Wire objects by hand

@Provides @Singleton
public Widget provideWidget(@Blue Service service) {
 return new Widget(Color.BLUE, service);
}

40

Scopes

• Default: No Scope
• Singleton

• HTTP Request/Session
• ...

41

Stages

• Use DEVELOPMENT during development
• PRODUCTION during integration tests and in production

• Coming soon: TOOL

42

Error Handling
1) Error at demo.ErrorHandlingTest$BadScope.class(ErrorHandlingTest.java:1):
 Please annotate with @ScopeAnnotation.

2) Error at demo.ErrorHandlingTest$BadScope.class(ErrorHandlingTest.java:1):
 Please annotate with @Retention(RUNTIME). Bound at demo.ErrorHandlingTest
$MyModule.configure(ErrorHandlingTest.java:139).

3) Error at demo.ErrorHandlingTest$Bar.<init>(ErrorHandlingTest.java:96):
 Could not find a suitable constructor in demo.ErrorHandlingTest$Bar. Classes
must have either one (and only one) constructor annotated with @Inject or a zero-
argument constructor.

4) Error at demo.ErrorHandlingTest$Bar.bar(ErrorHandlingTest.java:100):
 Binding to java.lang.String annotated with @com.google.inject.name.Named
(value=foo) not found. Annotations on other bindings to that type include:
[@com.google.inject.name.Named(value=foo)]

5) Error at demo.ErrorHandlingTest$Bar.setNumbers(ErrorHandlingTest.java:98):
 Binding to java.util.List<java.lang.Integer> annotated with
@com.google.inject.name.Named(value=numbers) not found. No bindings to that type
were found.

6) Error at demo.ErrorHandlingTest$I.class(ErrorHandlingTest.java:1):
 java.lang.String doesn't extend demo.ErrorHandlingTest$I.

43

• http://code.google.com/p/google-guice
– downloads, source, tutorial, users group, blogs

• Books:
– Dependency Injection by Dhanji R. Prasanna
– Google Guice by Robbie Vanbrabant

http://code.google.com/p/google-guice
http://code.google.com/p/google-guice

Questions?

• http://code.google.com/p/google-guice
– downloads, source, tutorial, users group, blogs

• Books:
– Dependency Injection by Dhanji R. Prasanna
– Google Guice by Robbie Vanbrabant

http://code.google.com/p/google-guice
http://code.google.com/p/google-guice

