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What can Guice do for me?

* Write less bolilerplate code
* Easy modularity

» Abstract scope

* Easy unit testing




Guice’s Philosophy

» Back to basics
e @Inject is the new “new’
— Brevity of “new’, flexibility of a factory
 Falil early but not too early
 Make it easy to do the right thing
e Types are the natural currency of Java
* Prefer annotations to convention
e Singletons aren’t bad--their typical implementation is
* Focus on readability over writability
 Maximize power-to-weight ratio of API
e Balance: just because you can, doesn’t mean you should
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Type Safety

* Type safety != compiler errors
Find usages
Documentation
Intelligent auto-completion

Refactoring
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Guice 2

Led by Jesse Wilson
Coming summer 2008
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An Example

 \We'll show
—Less code
—More flexibility
—Simpler unit test
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3 actors

Biller
ShoppingCart
A unit test
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3 approaches

#1: Factory (or service locator)
#2. Dependency injection by hand
#3: Dependency injection with Guice

GuuGLEl
°@9°°0°°0°0°-0000°:°:0°°0°°0°0°-0000°0°°0°°0°0°°-0000 9



00000000
o] lo® 0] /
Qe00000®
0e0C000e




00000000

ceccecce Common Code

0e00000e




public interface Biller {
void bill (Money amount);

}

public class GoogleCheckoutBiller
implements Biller {

public void bill (Money amount) {

}
}




public class MockBiller implements
private Money amount;

public void bill (Money amount) {
this.amount = amount;

}

public Money amountBilled() {
return this.amount;

}

}
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public class BillerFactory ({
private BillerFactory() {}
private static Biller instance = new GoogleCheckoutBiller();

public static Biller getInstance() {
return instance;

}

public static void setInstance(Biller biller) ({
instance = biller;
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public class ShoppingCart {

public void checkOut () {
Biller biller = BillerFactory.getInstance();
Money total = calculateTotal();
biller.bill(total);

}
}
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BillerFactory

Biller ShoppingCart

GoogleCheckout
Biller
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public void testShoppingCart () {
Biller previous =

try {
MockBiller mock = new MockBiller();
BillerFactory.setInstance (mock);

ShoppingCart cart = new ShoppingCart();
// Add some stuff to the cart.

cart.checkOut();

assertEquals (expectedTotal, mock.amountBilled());

BillerFactory.getInstance();

}
finally {

BillerFactory.setInstance(previous);

}
}
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Factory observations

The unit test must pass the mock service to the factory and
clean up afterwards

Compile time dependency on GoogleCheckoutBiller

Reusing Client in another context will be difficult
~60 lines of code
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public class ShoppingCart {
private final Biller biller;

public ShoppingCart(Biller biller) {
this.biller = biller;

}

public void checkOut () {
Money total = calculateTotal();
biller.bill(total);

}
}
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public void testShoppingCart () {
MockBiller mock = new MockBiller();
ShoppingCart cart = new ShoppingCart (mock);
// Add some stuff to the cart.
cart.checkOut();
assertEquals (expectedTotal, mock.amountBilled());
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Before After

public void testShoppingCart() {
Biller previous = BillerFactory.getInstance();
try {
MockBiller mock = new MockBiller();
BillerFactory.setInstance(mock);
ShoppingCart cart = new ShoppingCart();
// Add some stuff to the cart.

public void testShoppingCart() {
MockBiller mock = new MockBiller();
ShoppingCart cart = new ShoppingCart (mock);
// Add some stuff to the cart.

cart.checkOut ();
assertEquals (expectedTotal, mock.amountBilled());

cart.checkOut();
assertEquals (expectedTotal, mock.amountBilled());

}
finally {

BillerFactory.setInstance(previous);
}
}
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Where does the dependency go?

public static class ShoppingCartFactory ({
private ShoppingCartFactory() {}

public static ShoppingCartFactory newInstance() {
Biller biller = BillerFactory.getlInstance();
return new ShoppingCart(biller);

}
}
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Benefits of dependency injection

Simpler, more reliable unit test
Dependencies are expressed in the API
Separates creation from usage

Reuse classes in different contexts
Roughly the same number of lines of code
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Why use a framework?

Writing factories is tedious
Boilerplate code
Circular dependencies
Scopes

More up front checking
Make it easier to do the right thing
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public class BillingModule extends AbstractModule ({
public void configure() {
bind(Biller.class)
.to(GoogleCheckoutBiller.class);
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public class ShoppingCart {
private final Biller biller;

@Inject
public ShoppingCart(Biller biller) {
this.biller = biller;

}

public void checkOut () ({
Money total = calculateTotal();
biller.bill(total);

}
}
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@Singleton
public class GoogleCheckoutBiller
implements Biller {
public void bill (Money amount) {
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BillingModule

Biller ShoppingCart

GoogleCheckout
Biller
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public void testShoppingCart () {
MockBiller mock = new MockBiller();
ShoppingCart cart = new ShoppingCart (mock);
// Add some stuff to the cart.
cart.checkOut();
assertEquals (expectedTotal, mock.amountBilled());
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Conclusions

Less framework code
~20% for this example

More startup checks
Declarative scopes
Better reuse
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Bootstrapping

Injector injector = Guice.createInjector(
new BillingModule(), new PetStoreModule());

PetStore store = injector.getInstance(PetStore.class);
store.start();
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Prefer constructor injection

Fields can be final
Immutability
Easier concurrency

Guaranteed to be called
See all dependencies at a glance
There are exceptions to any rule...
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Binding annotations

Bind multiple implementations to the same type.

bind (Service.class)
.annotatedWith (Blue.class)
.to(BlueService.class);

@Inject
void injectService(@Blue Service service) {

}
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Getting more than one instance

@Inject

void injectAtm(Provider<Money> atm)
Money one = atm.get();
Money two = atm.get();




Binding constants

bindConstant ()
.annotatedWith (TheAnswer.class)
.to("42");

@Inject @TheAnswer int answer;
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Wire objects by hand

@Provides @Singleton
public Widget provideWidget (@Blue Service service) {
return new Widget (Color.BLUE, service);

}
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Scopes

Default: No Scope
Singleton
HTTP Request/Session
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Stages

Use DEVELOPMENT during development
PRODUCTION during integration tests and in production
Coming soon: TOOL
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Error Handling

1) Error at demo.ErrorHandlingTest$BadScope.class (ErrorHandlingTest.java:1) :
Please annotate with @ScopeAnnotation.

2) Error at demo.ErrorHandlingTest$BadScope.class (ErrorHandlingTest.java:1l):
Please annotate with (@Retention (RUNTIME). Bound at demo.ErrorHandlingTest
SMyModule.configure (ErrorHandlingTest.java:139).

3) Error at demo.ErrorHandlingTest$Bar.<init> (ErrorHandlingTest.java:96):

Could not find a suitable constructor in demo.ErrorHandlingTest$Bar. Classes
must have either one (and only one) constructor annotated with @Inject or a zero-
argument constructor.

4) Error at demo.ErrorHandlingTest$Bar.bar (ErrorHandlingTest.java:100) :

Binding to java.lang.String annotated with @com.google.inject.name.Named
(value=foo) not found. Annotations on other bindings to that type include:
[@com.google.inject.name.Named (value=foo) ]

5) Error at demo.ErrorHandlingTest$Bar.setNumbers (ErrorHandlingTest.java:98):
Binding to java.util.List<java.lang.Integer> annotated with

dcom.google.inject.name.Named (value=numbers) not found. No bindings to that type
were found.

6) Error at demo.ErrorHandlingTest$I.class (ErrorHandlingTest.java:1l):
java.lang.String doesn't extend demo.ErrorHandlingTestSI.
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http://code.google.com/p/google-guice
downloads, source, tutorial, users group, blogs
Books:
Dependency Injection by Dhanji R. Prasanna

Google Guice by Robbie Vanbrabant
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http://code.google.com/p/google-guice
http://code.google.com/p/google-guice

http://code.google.com/p/google-guice
downloads, source, tutorial, users group, blogs

Books:
Dependency Injection by Dhanji R. Prasanna

Google Guice by Robbie Vanbrabant
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