

Rapid Development with
Django and App Engine

Guido van Rossum
May 28, 2008

3

Talk Overview

• This is not a plug for Python, Django or Google App Engine

– Except implicitly :)

• Best practices for using Django with App Engine

– Project setup

– The "Google App Engine Django Helper" module

– Using App Engine's db.Model instead of Django's Model class

– Writing unit tests

• Q & A

– Anything goes!

4

Google App Engine Recap

• Does one thing well: run web apps

• Simple configuration

• Request handlers

• Accelerators and shortcuts

5

App Engine Does One Thing Well

• App Engine handles HTTP requests, nothing else

– Think RPC: request in, processing, response out

– Works well for the web and AJAX; also for other services

• Resources are scaled automatically

– Requests may go to the same process, serially

– Requests may go to different processes, in parallel or serially

• Highly scalable datastore based on Bigtable

– Not SQL; no joins

6

Configuring an App Engine Application

• An application is a directory with everything underneath it

– Symbolic links are followed!

• Single file app.yaml in app root directory

– Defines application metadata

– Maps URL patterns (regular expressions) to request handlers

– Separates static files from program files

• Dev server (SDK) emulates deployment environment

7

Request Handlers

• URL patterns are mapped to request handlers by app.yaml

• Handler is invoked like a CGI script

• Environment variables give request parameters

– E.g. PATH_INFO, QUERY_STRING, HTTP_REFERER

• Write response to stdout

– Status (optional), headers, blank line, body

8

Request Handler Accelerators and Shortcuts

• CGI doesn't mean slow!

• Define a main() function

– Module will remain loaded, main() called for each requests

– Can use module globals for caching

– Must use "if __name__ == '__main__': main()" boilerplate

• CGI doesn't mean clumsy!

• WSGI support layered on top of CGI: util.run_wsgi_app(app)

9

Django Project Setup for App Engine

• Django is a bit finicky about project structure

– Code in one or more 'app' (application) subdirectories

• Cannot have the same name as the project

– Must have a single settings.py file

• Found via DJANGO_SETTINGS_MODULE environment variable

• App Engine vs. Django

– No SQL; must use App Engine's own database

– Top-level directory appended at end of sys.path

– Django 0.96.1 preloaded, which is pretty old

– Slight differences between dev_appserver and real deployment

10

Boilerplate Files, Standard Project Lay-out

• Boilerplate files

– These hardly vary between projects

– app.yaml: direct all non-static requests to main.py

– main.py: initialize Django and send it all requests

– settings.py: change only a few settings from defaults

• Project lay-out

– static/*: static files; served directly by App Engine

– myapp/*.py: app-specific python code

• urls.py, views.py, models.py, tests.py, and more

– templates/*.html: templates (or myapp/templates/*.html)

11

Minimal app.yaml

application: myapp # .appspot.com

version: 1

runtime: python

api_version: 1

handlers:

- url: /static

 static_dir: static

- url: .*

 script: main.py

12

Contents and Purpose of main.py

• Set DJANGO_SETTINGS_MODULE environment variable

– Must do before importing Django

• Arrange for your version of Django to be loaded

• Monkey-patch some parts of Django (optional)

• Arrange to log all tracebacks using the logging module

• Define main() to invoke Django to handle one request

The Most Minimal main.py

import os

from google.appengine.ext.webapp import util

os.environ['DJANGO_SETTINGS_MODULE'] = 'settings'

from django.core.handlers import wsgi

def main():
 app = wsgi.WSGIHandler()
 util.run_wsgi_app(app)

if __name__ == '__main__':
 main()

13

Bare Minimal settings.py

import os

DEBUG = os.environ['SERVER_SOFTWARE'].startswith('Dev')

INSTALLED_APPS = (
'myapp',
)

MIDDLEWARE_CLASSES = ()

ROOT_URLCONF = 'myapp.urls'

TEMPLATE_CONTEXT_PROCESSORS = ()

TEMPLATE_DEBUG = DEBUG

TEMPLATE_DIRS = (
os.path.join(os.path.dirname(__file__), 'templates'),
)

TEMPLATE_LOADERS = (
'django.template.loaders.filesystem.load_template_source',
)

TZ = 'UTC'

14

15

Google App Engine Django Helper

• Separate open source project

– By two Googlers, Matt Brown and Andy Smith

– http://code.google.com/p/google-app-engine-django/

• Takes care of monkey-patching Django

– Loads newer version of Django if available in app root dir

• Enables using standard Django project management tool

– For unit tests and fixture loading (development only)

• Comes with boilerplate app.yaml, main.py, settings.py

16

Getting Started

• Download and unzip appengine_helper_for_django_rN.zip

• Rename directory to 'mysite' or whatever you like

• This becomes your project root; contents:

– COPYING, KNOWN_ISSUES, Makefile, README

– __init__.py (empty)

– app.yaml (edit application: only)

– appengine_django/... (helper code lives here)

– main.py (generic bootstrap)

– manage.py (Django management script)

– settings.py (edit settings here)

– urls.py (edit URL mappings here)

Changing the Standard Set-up

• Edit app.yaml to set your application id (can do this later)

• Create subdirectory myapp

• Edit settings.py, adding 'myapp' to INSTALLED_APPS

• In myapp, create:

– __init__.py (empty)

– views.py (add your view code here)

– models.py (add your model definitions here)

– tests.py (add your unit tests here)

• To use Django HEAD, copy the django package here

• /usr/local/google_appengine must be your App Engine SDK

17

Your First View

• Edit urls.py:

 from django.conf.urls.defaults import *
urlpatterns = patterns('myapp.views',
 (r'^$', 'index'),
 # ...more here later...
)

• Edit myapp/views.py:

 from django.http import HttpResponse
def index(request):
 return HttpResponse('Hello world')

• Run it: ./manage.py runserver

• Point your browser to: http://localhost:8080

18

Using Models

• Edit models.py:

 from google.appengine.ext import db

 from appengine_django.models import BaseModel

 class Shout(BaseModel): # subclass of db.Model

 title = db.StringProperty(required=True)
 text = db.TextProperty()
 mtime = db.DateTimeProperty(auto_now_add=True)
 user = db.UserProperty()

• Up next:

– Write views to use models

– Use forms derived from your models, with templates

19

Using Forms

• I tend to put forms in views.py; do as you please

 from django.shortcuts import render_to_response

 from google.appengine.ext.db import djangoforms

 import models

 class ShoutForm(djangoforms.ModelForm):
 class Meta:
 model = models.Shout
 exclude = ['mtime', 'user']

 query = models.Shout.gql("ORDER BY mtime DESC")

 def index(request):
 return render_to_response('index.html',
 {'shouts': query.run(),
 'form': ShoutForm()})

20

Using Templates

• Put this in templates/index.html

 {% for shout in shouts %}

 <p>{{ shout.user }} : {{ shout.title }}

{{ shout.text }}

{{ shout.mtime|timesince }}<hr> </p>

 {% endfor %}

 <form method="POST" action="/post/">

 <table>

 {{ form }}

 <tr><td><input type="submit"></td></tr>

 </table>

 </form>

21

The post() Method

• Add to urls.py:

 (r'^post/$', 'post'),

•Add to views.py:

 from google.appengine.api import users
from django.http import HttpResponseRedirect

 def post(request):
 form = ShoutForm(request.POST)
 if not form.is_valid():
 return render_to_response('index.html',
 {'form': form})
 shout = form.save(commit=False)
 shout.user = users.get_current_user()
 shout.put()
 return HttpResponseRedirect('/')

22

Writing Tests

• Python has two test frameworks:

• doctest.py

– Tests are interactive sessions captured in doc strings

– Really easy to get started

– Some caveats (output must be reproducible)

• unittest.py

– Tests are methods in classes derived from unittest.TestCase

– Modeled after JUnit

23

Running Tests

• Use whichever test framework you like

•./manage.py test myapp

• Runs all tests found in myapp

• Specifically:

– looks for doctest and unittest tests

– looks in models.py and tests.py

24

Example Doc Tests

• Put this in myapp/tests.py

 r"""

 >>> from django.test.client import Client
>>> from models import *

 >>> c = Client()
>>> r = c.get('/')
>>> r.status_code
200
>>> r.content
'\n\n<form ...</form>\n'

 >>> s = Shout(title='yeah', text='hello world')
>>> key = s.put()
>>> r = c.get('/')
>>> r.status_code
200
>>> assert 'yeah' in r.content
>>>

 """

25

Test Fixtures

• ./manage.py: manages the datastore used

• ./manage.py runserver: uses a persistent datastore in /tmp

• ./manage dumpdata: writes datastore contents to stdout

– Format can be JSON (default) or XML (not fully supported yet)

• ./manage loaddata: loads datastore from a file

• Fixtures can also be added to TestCase classes:

 from django.test import TestCase

 class MyTestCase(TestCase):

 fixtures = ['test_data.json', 'more_test_data']

 def testSomething(self):
 ...

26

Q & A

• Your turn!

27

