GOOGLE

Rapid Development with
Django and App Engine

Guido van Rossum
May 28, 2008

Talk Overview

This is not a plug for Python, Django or Google App Engine
Except implicitly :)

Best practices for using Django with App Engine

Project setup
The "Google App Engine Django Helper" module
Using App Engine's db.Model instead of Django's Model class

Writing unit tests

Q&A
Anything goes!

GU‘GLE|
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 3

Google App Engine Recap

Does one thing well: run web apps
Simple configuration
Request handlers

Accelerators and shortcuts

GA)GLE|
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 4

App Engine Does One Thing Well

App Engine handles HTTP requests, nothing else
Think RPC: request in, processing, response out
Works well for the web and AJAX; also for other services

Resources are scaled automatically
Requests may go to the same process, serially
Requests may go to different processes, in parallel or serially

Highly scalable datastore based on Bigtable
Not SQL; no joins

GU‘GLE|
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 5

Configuring an App Engine Application
An application is a directory with everything underneath it

Symbolic links are followed!

Single file app.yaml in app root directory
Defines application metadata
Maps URL patterns (regular expressions) to request handlers
Separates static files from program files

Dev server (SDK) emulates deployment environment

GU‘GLE|
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 6

Request Handlers

URL patterns are mapped to request handlers by app.yaml
Handler is invoked like a CGl script

Environment variables give request parameters
E.g. PATH_INFO, QUERY_STRING, HTTP_REFERER

Write response to stdout
Status (optional), headers, blank line, body

GU‘GLE|
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 7

Request Handler Accelerators and Shortcuts

CGI doesn't mean slow!

Define a main() function
Module will remain loaded, main() called for each requests
Can use module globals for caching

Mustuse "if _name =="' main__ " main()" boilerplate
CGl doesn't mean clumsy!

WSGI support layered on top of CGl: util.run_wsgi_app(app)

GA)GLE|
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 8

Django Project Setup for App Engine django

Django is a bit finicky about project structure

Code in one or more 'app’' (application) subdirectories
Cannot have the same name as the project

Must have a single settings.py file
Found via DJANGO_SETTINGS MODULE environment variable

App Engine vs. Django
No SQL; must use App Engine's own database
Top-level directory appended at end of sys.path
Django 0.96.1 preloaded, which is pretty old
Slight differences between dev_appserver and real deployment

GA)GLE|
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 9

Boilerplate Files, Standard Project Lay-out

Boilerplate files
These hardly vary between projects
app.yamil: direct all non-static requests to main.py
main.py: initialize Django and send it all requests
settings.py: change only a few settings from defaults

Project lay-out
static/*: static files; served directly by App Engine
myapp/*.py: app-specific python code
urls.py, views.py, models.py, tests.py, and more
templates/*.html: templates (or myapp/templates/*.html)

GU‘GLE|
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 10

Minimal app.yaml

application: myapp # .appspot.com
version: 1

runtime: python
api_version: 1

handlers:
- url: /static
static_dir: static
- url:
script: main.py

GHGLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 11 .@

Contents and Purpose of main.py

Set DJANGO SETTINGS MODULE environment variable
Must do before importing Django

Arrange for your version of Django to be loaded
Monkey-patch some parts of Django (optional)
Arrange to log all tracebacks using the logging module

Define main() to invoke Django to handle one request

GU‘GLE|
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 12

The Most Minimal main.py

import os
from google.appengine.ext.webapp import util

os.environ['DJANGO_SETTINGS_MODULE'] = 'settings'
from django.core.handlers import wsgi

def main():
app = wsgi.WSGIHandler()
util.run_wsgi_app(app)

1f _name__ == '_main__":
main()

GHGLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 13 .@

Bare Minimal settings.py

import os
DEBUG os.environ['SERVER_SOFTWARE'].startswith('Dev')

INSTALLED_APPS = (
Smyapp',

MIDDLEWARE_CLASSES = ()
ROOT_URLCONF = "myapp.urls'
TEMPLATE_CONTEXT_PROCESSORS = ()
TEMPLATE_DEBUG = DEBUG

TEMPLATE_DIRS = (
os.path.join(os.path.dirname(__file__), 'templates'),

TEMPLATE_LOADERS = (
'django.template.loaders.filesystem.load_template_source',

)
TZ = 'UTC'

GHGLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 14 .@

Google App Engine Django Helper

Separate open source project
By two Googlers, Matt Brown and Andy Smith
http://code.google.com/p/google-app-engine-django/

Takes care of monkey-patching Django
Loads newer version of Django if available in app root dir

Enables using standard Django project management tool
For unit tests and fixture loading (development only)

Comes with boilerplate app.yaml, main.py, settings.py

GU‘GLE|
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 15

Getting Started

Download and unzip appengine_helper for django rN.zip
Rename directory to 'mysite' or whatever you like

This becomes your project root; contents:
COPYING, KNOWN _ISSUES, Makefile, README

__init_.py (empty)

app.yaml (edit application: only)
appengine_django/... (helper code lives here)
main.py (generic bootstrap)
manage.py (Django management script)
settings.py (edit settings here)

urls.py (edit URL mappings here)

GU‘GLE|
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 16

Changing the Standard Set-up

Edit app.yaml to set your application id (can do this later)

Create subdirectory myapp
Edit settings.py, adding 'myapp’' to INSTALLED_APPS

In myapp, create:

__init_.py (empty)

views.py (add your view code here)
models.py (add your model definitions here)
tests.py (add your unit tests here)

To use Django HEAD, copy the django package here
/usr/local/google appengine must be your App Engine SDK

GU‘GLE|
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 17

Your First View

» Edit urls.py:

from django.conf.urls.defaults import *
urlpatterns = patterns('myapp.views',
(r'A$', "dindex'),
...more here later...

)
* Edit myapp/views.py:

from django.http i1mport HttpResponse
def index(request):

return HttpResponse('Hello world')
* Runit: . /manage.py runserver
* Point your browser to: http://localhost:8080

GHGLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 18 .@

Using Models

* Edit models.py:
from google.appengine.ext import db
from appengine_django.models import BaseModel
class Shout(BaseModel): # subclass of db.Model

title = db.StringProperty(required=True)

text = db.TextProperty()

mtime = db.DateTimeProperty(auto_now_add=True)
user = db.UserProperty()

* Up next:
— Write views to use models
— Use forms derived from your models, with templates

GHGLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 19 .@

Using Forms

* | tend to put forms in views.py; do as you please

from django.shortcuts import render_to_response
from google.appengine.ext.db import djangoforms

import models

class ShoutForm(djangoforms.ModelForm) :
class Meta:
model = models.Shout
exclude = ['mtime', 'user']

query = models.Shout.gql ("ORDER BY mtime DESC")

def index(request):
return render_to_response('index.html’',
{'shouts': query.run(Q),
"form': ShoutForm()})

GHGLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 20 .@

Using Templates

* Put this in templates/index.html

{% for shout in shouts %}

<p>{{ shout.user }} : {{ shout.title }}

{{ shout.text }}

{{ shout.mtime|timesince }}<hr> </p>

{% endfor %}
<form method="POST" action="/post/">
<table>

{{ form }}
<tr><td><input type="submit'"></td></tr>

</table>
</form>

GHGLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 21 .@

The post() Method

* Add to urls.py:
(r'Apost/$', 'post'),
-Add to views.py:

from google.appengine.api import users
from django.http import HttpResponseRedirect

def post(request):
form = ShoutForm(request.POST)
if not form.is_valid():
return render_to_response('index.html’',
{"form': form})
shout = form.save(commit=False)

shout.user = users.get_current_user()
shout.put()

return HttpResponseRedirect('/"')

GHGLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 22 .@

Writing Tests

Python has two test frameworks:

doctest.py
Tests are interactive sessions captured in doc strings
Really easy to get started
Some caveats (output must be reproducible)

unittest.py
Tests are methods in classes derived from unittest. TestCase
Modeled after JUnit

GU‘GLE|
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 23

Running Tests

Use whichever test framework you like
./manage.py test myapp
Runs all tests found in myapp

Specifically:
looks for doctest and unittest tests
looks in models.py and tests.py

GA)GLE|
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 24

Example Doc Tests

* Put this in myapp/tests.py

r

>>> from django.test.client import Client
>>> from models import *

>>> c = Client()

>>> r = c.get('/")

>>> r.status_code

200

>>> r.content

"\n\n<form ...</form>\n'

>>> s = Shout(title="'yeah', text="hello world")
>>> key = s. put()

>>> r = c.get('/")

>>> r.status_code

200

>>> assert 'yeah' 1n r.content
>>>

GHGLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 25 .@

Test Fixtures

/manage.py: manages the datastore used

/manage.py runserver: uses a persistent datastore in /tmp

/manage dumpdata: writes datastore contents to stdout
— Format can be JSON (default) or XML (not fully supported yet)

/manage loaddata: loads datastore from a file

Fixtures can also be added to TestCase classes:

from django.test import TestCase

class MyTestCase(TestCase):
fixtures = ['test_data.json', 'more_test_data']
def testSomething(self):

G\JGLE|
@0 °0°0°-0000:°0°°0°°0°0°°-0000:°0°°0°°0°0°°-0000 26 .@

Q&A

Your turn!

GU‘GLE|
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 27

GOOGLE

