

Working With Google App
Engine Models
Rafe Kaplan
May 28, 2008

3

Google App Engine Models

• Introduction
• Relationships

– One-to-many
– Many-to-many

• Aggregated properties

4

Design Goals

• Declaratively describe entities and their properties
• Single location for model description
• Object Oriented

– Built in encapsulation
– Extensible entity types and properties

5

Not A Completely New Concept

• ActiveRecord (Ruby on Rails)
• Django Models
• Hibernate (to a lesser degree)

Object-relational mapping

6

Not An Object-Relational Mapping

• Does not map to underlying SQL database
• Does not require a pre-existing schema
• Naturally describe things in scalable Python environment
• Information in datastore can be heterogeneous
• Some aspects that seem like drawbacks

– Does not allow joins
– Absence of aggregation functions (avg, sum, etc.)
– No function calls or stored procedures
– Limited inequality operators

Modeling Relationships

8

Defining A Real-World Model

• What to capture:
– Personal information (name, date of birth)‏
– Phone number
– Address

• Easy to define a simple Model class to capture this
• Provided GData types help you get started quickly

Contact database

9

First Pass
A naïve model

 class Contact(db.Model):

 # Basic info.
 name = db.StringProperty()
 birth_day = db.DateProperty()

 # Address info.
 address = db.PostalAddressProperty()

 # Phone info.
 phone_number = db.PhoneNumberProperty()

10

Problems With This Model

• What if a contact has multiple phone numbers
• What if a contact has multiple addresses
• What if you would like to arbitrarily categorize contacts

11

Single Model Solution
Just add another property

•Can't predict how many phone numbers are required – what if
someone invents a phone for a place we never thought of?
•What if someone has more than one mobile phone number?
•Can't easily perform a search across all phone properties

 # Phone info.
 phone_number_home = db.PhoneNumberProperty()
 phone_number_work = db.PhoneNumberProperty()
 phone_number_mobile = db.PhoneNumberProperty()

12

Need Model Relationships
One-to-many

class Contact(db.Model):

 # Basic info.
 name = db.StringProperty()
 birth_day = db.DateProperty()

 # Address info.
 address = db.PostalAddressProperty()

 # The original phone_number property has been replaced by
 # an implicitly created property called 'phone_numbers'.

 ...

class PhoneNumber(db.Model):
 contact = db.ReferenceProperty(Contact,
 collection_name='phone_numbers')
 phone_type = db.StringProperty(
 choices=('home', 'work', 'fax', 'mobile', 'other'))
 number = db.PhoneNumberProperty()

13

Working With One-To-Many Relationships
Create

scott = Contact(name='Scott')
scott.put()

PhoneNumber(contact=scott,
 phone_type='home',
 number='(650) 555 - 2200').put()

PhoneNumber(contact=scott,
 phone_type='mobile',
 number='(650) 555 - 2201').put()

14

Working With One-To-One Relationships
Read

Accessing the contact from a phone number
print 'The phone number %s belongs to %s' %
 (phone.number, phone.contact.name)

Getting scotts phone numbers using GQL
all_numbers = PhoneNumber.gql(‘WHERE contact=:1 ’
 ‘ORDER BY phone_type, number’,
 scott).fetch(10)

Traversing from the scott instance
for phone in scott.phone_numbers.order('phone_type')
 .order('number'):
 print '%s: %s' % (phone.phone_type, phone.number)

15

Working With One-To-One Relationships
Delete

Delete a phone number directly
scott.phone_numbers.filter('phone_type =',
 'mobile').get().delete()

One-to-many relationships are not cleaned up automatically.
Add a method to Contact make it so.
class Contact(db.Model):
 ...

 def delete(self):
 for phone in scott.phone_numbers:
 phone.delete()‏
 super(Contact, self).delete()

16

Contact Categories

• Want to be able to text message a whole category of
contacts

• Keep additional information about a category (long
description)

• Various types of user defined contacts
– friends
– family
– co-workers

• Users can belong to more than one category

Many-to-many

17

List Of Keys
The preferred way to build two way relationships

•Choose one side to contain list
•This should be the side expected to have fewer members
•The other side defines a virtual property

class Contact(db.Model):
...

 # Category membership
 categories_contact_is_in = db.ListProperty(db.Key)

class Category(db.Model):

 name = db.StringProperty()
 description = db.TextProperty()

 @property
 def members(self):
 return Contact.gql(‘WHERE categories_contact_is_in = :1 ’,
 self.key())

18

Working With Many-To-Many Relationships
Create
friends = Category(name=’friends’)
friends.put()
co_workers = Category(name=’co-workers’)
co_workers.put()

scott.categories_contact_is_in.append(friends.key())
scott.categories_contact_is_in.append(co_workers.key())
scott.put()

19

Working With Many-To-Many Relationships
Read
Get all categories that Scott is in
categories = db.get(scott.catagories_contact_is_in)

Use virtual property to get all the members of a group
for member in friends.members.order(‘name’):
 print member.name, ‘is a friend of mine.’

20

Working With Many-To-Many Relationships
Delete
Just delete the key from the list
scott.categories_contact_is_in.remove(friends.key())
scott.put()

Be careful about dangling queries
co_workers.delete()
db.get(scott.categories_contact_is_in) == [None]

To avoid over-ride Category.delete()
class Category(db.Model):
 ...

 def delete(self):
 for member in self.members:
 member.groups_contact_is_in.remove(self.key())
 member.put()
 super(ContactGroup, self).delete()

But be wary of large category collections!

Aggregation Properties

22

Do I Call My Grandmother Enough?

• Grandmother does not remember that I call (or anything else)
• Need to keep track of phone calls
• Count how many phone calls made and their duration
• Get average duration for phone calls
• Remind Grandmother on every call how often I call and for

how long

23

Defining A Call
Add Call class

•Call records date/time and duration of call
•Has a basic one-to-many relationship with Contact

class Call(db.Model):
 start = db.DateTimeProperty()
 duration = db.IntegerProperty()
 contact = db.ReferenceProperty(Contact,
 collection_name=’calls’)

24

How To Do It In SQL
Use aggregation functions

SELECT count(*) FROM Calls
 WHERE contact = 19110606

SELECT avg(duration) FROM Calls
 WHERE contact = 19110606

NOTE: 19110606 is the id for my Grandmother contact

25

How Not To Do It On Google App Engine
Iteration over object elements

•Iteration over all elements in a collection produces dynamic
results
•Quickly leads to too much processor use
•Can drain your datastore quota
•Using count() is not efficient either

class Contact(db.Model):
 ...

 def average_call_duration(self):
 durations = [call.duration for call in self.calls]
 return sum(durations) / len(durations)

 def call_count(self):
 return self.calls.count()

26

A Better Way
Maintain aggregate calculations

•Store counts and other computed values on container object
•Encapsulate call insertion within a Contact method

class Contact(db.Model):
 ...

 call_count = db.IntegerProperty(default=0)
 average_call_duration = db.FloatProperty(default=0)

 def record_call(self, start, duration):
 call = Call(contact=self, start=start, duration=duration)
 call.put()
 a, c = self.average_call_duration, self.call_count
 a = ((a * c) + duration) / (c + 1)
 self.call_count = c + 1
 self.average_call_duration = a
 self.put()

27

Thank You!

• Docs: http://code.google.com/appengine/datastore
• Articles: http://code.google.com/appengine/articles
• Group: http://groups.google.com/group/google-appengine

http://code.google.com/appengine/datastore
http://code.google.com/appengine/datastore
http://groups.google.com/group/google-appengine
http://groups.google.com/group/google-appengine

