GOOGLE

Working With Google App
Engine Models

Rafe Kaplan
May 28, 2008

Google App Engine Models

e |ntroduction

e Relationships
— One-to-many
— Many-to-many
* Aggregated properties

Design Goals

* Declaratively describe entities and their properties
e Single location for model description

* Object Oriented

— Built in encapsulation
— Extensible entity types and properties

Not A Completely New Concept

Object-relational mapping

e ActiveRecord (Ruby on Rails)
* Django Models
e Hibernate (to a lesser degree)

Not An Object-Relational Mapping

* Does not map to underlying SQL database

Does not require a pre-existing schema

Naturally describe things in scalable Python environment

Information in datastore can be heterogeneous

Some aspects that seem like drawbacks

— Does not allow joins

— Absence of aggregation functions (avg, sum, etc.)
— No function calls or stored procedures

— Limited inequality operators

Modeling Relationships

Defining A Real-World Model

Contact database

* What to capture:
— Personal information (name, date of birth)
— Phone number
— Address

* Easy to define a simple Model class to capture this
* Provided GData types help you get started quickly

First Pass

A naive model

class Contact (db.Model) :

Basic info.
name = db.StringProperty ()
birth day = db.DateProperty ()

Address info.
address = db.PostalAddressProperty ()

Phone info.
phone number = db.PhoneNumberProperty ()

@
9

Problems With This Model

 What if a contact has multiple phone numbers
* What if a contact has multiple addresses
e What if you would like to arbitrarily categorize contacts

Single Model Solution
Just add another property

Phone info.

phone number home = db.PhoneNumberProperty ()
phone number work = db.PhoneNumberProperty ()
phone number mobile = db.PhoneNumberProperty ()

«Can't predict how many phone numbers are required — what if
someone invents a phone for a place we never thought of?

*\What if someone has more than one mobile phone number?
«Can't easily perform a search across all phone properties

GOOGLE |
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 11

Need Model Relationships

One-to-many

class Contact (db.Model) :

Basic info.
name = db.StringProperty ()
birth day = db.DateProperty ()

Address info.
address = db.PostalAddressProperty ()

The original phone number property has been replaced by
an implicitly created property called 'phone numbers'.

class PhoneNumber (db.Model) :
contact = db.ReferenceProperty (Contact,
collection name='phone numbers')
phone type = db.StringProperty (
choices=('home', 'work', 'fax', 'mobile', 'other'))
number = db.PhoneNumberProperty ()

@
12

Working With One-To-Many Relationships

Create

scott = Contact (name='Scott')
scott.put ()

PhoneNumber (contact=scott,
phone type='home',
number="'(650) 555 - 2200") .put ()

PhoneNumber (contact=scott,
phone type='mobile',
number="'(650) 555 - 2201"') .put ()

GOOGLE |
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 13

Working With One-To-One Relationships
Read

Accessing the contact from a phone number
print 'The phone number %s belongs to %s' %
(phone.number, phone.contact.name)

Getting scotts phone numbers using GQL
all numbers = PhoneNumber.gqgl (‘WHERE contact=:1 '

‘ORDER BY phone type, number’

scott) .fetch (10)

Traversing from the scott instance
for phone in scott.phone numbers.order ('phone type')
.order ('number') :
print '%s: %s' % (phone.phone type, phone.number)

4

@
14

Working With One-To-One Relationships

Delete

Delete a phone number directly
scott.phone numbers.filter ('phone type =',
'mobile') .get () .delete()

One-to-many relationships are not cleaned up automatically.
Add a method to Contact make it so.
class Contact (db.Model) :

def delete(self):
for phone in scott.phone numbers:
phone.delete ()
super (Contact, self) .delete()

GOOGLE |
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 15

Contact Categories
Many-to-many

e Want to be able to text message a whole category of
contacts

e Keep additional information about a category (long
description)

 Various types of user defined contacts
— friends
— family
— co-workers

e Users can belong to more than one category

List Of Keys

The preferred way to build two way relationships

Choose one side to contain list

*This should be the side expected to have fewer members

*The other side defines a virtual property
class Contact (db.Model) :

Category membership
categories contact is in = db.ListProperty (db.Key)

class Category (db.Model) :

name = db.StringProperty ()
description = db.TextProperty ()

@property
def members (self) :

return Contact.gql (‘WHERE categories contact is in = :1 '/
self . key())

14

GOOGLE |
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 17

Working With Many-To-Many Relationships

Create

friends = Category(name=’friends’)
friends.put ()
co workers = Category(name=’'co-workers’)

co_workers.put ()

scott.categories contact 1is in.append(friends.key())
scott.categories contact 1s in.append(co workers.key())
scott.put ()

@
18

Working With Many-To-Many Relationships
Read

Get all categories that Scott is in
categories = db.get (scott.catagories contact is in)

Use virtual property to get all the members of a group
for member 1n friends.members.order (‘name’) :
print member.name, ‘is a friend of mine.’

GOOGLE |
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 19

Working With Many-To-Many Relationships

Delete

Just delete the key from the list
scott.categories contact is in.remove (friends.key())
scott.put ()

Be careful about dangling queries
co_workers.delete ()
db.get (scott.categories contact i1s in) == [None]

To avoid over-ride Category.delete ()
class Category(db.Model) :

def delete(self):
for member in self.members:
member.groups contact is in.remove (self.key())
member .put ()
super (ContactGroup, self) .delete()

But be wary of large category collections!

@
20

3t Aggregation Properties

Do | Call My Grandmother Enough?

e Grandmother does not remember that | call (or anything else)
* Need to keep track of phone calls

e Count how many phone calls made and their duration

» Get average duration for phone calls

 Remind Grandmother on every call how often | call and for
how long

Defining A Call
Add Call class

*Call records date/time and duration of call
*Has a basic one-to-many relationship with Contact

class Call (db.Model) :
start = db.DateTimeProperty ()
duration = db.IntegerProperty()
contact = db.ReferenceProperty(Contact,
collection name=’'calls’)

@
23

How To Do It In SQL

Use aggregation functions

SELECT count(*) FROM Calls
WHERE contact = 19110606

SELECT avg(duration) FROM Calls
WHERE contact = 19110606

NOTE: 19110606 is the id for my Grandmother contact

GOOGLE |
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 24

How Not To Do It On Google App Engine

Iteration over object elements

e|teration over all elements in a collection produces dynamic
results

*Quickly leads to too much processor use
«Can drain your datastore quota
*Using count() is not efficient either

class Contact (db.Model) :

def average call duration (self):
durations = [call.duration for call in self.calls]
return sum(durations) / len(durations)

def call count (self):
return self.calls.count()

GOOGLE |
@0 °0°0°0000°:°0°°0°°0°0°-0000:°0°°0°°0°0° 0000 25

A Better Way

Maintain aggregate calculations

«Store counts and other computed values on container object
eEncapsulate call insertion within a Contact method

class Contact (db.Model) :

call count = db.IntegerProperty (default=0)
average call duration = db.FloatProperty (default=0)

def record call(self, start, duration):

call.put()

a, ¢ = self.average call duration, self.call count
a= ((a * ¢) + duration) / (c + 1)

self.call count = c + 1

self.average call duration = a

self.put ()

call = Call (contact=self, start=start, duration=duration)

@
26

Thank Youl!

* Docs: http://code.google.com/appengine/datastore
* Articles: http://code.google.com/appengine/articles
e Group: http://groups.google.com/group/google-appengine

http://code.google.com/appengine/datastore
http://code.google.com/appengine/datastore
http://groups.google.com/group/google-appengine
http://groups.google.com/group/google-appengine

GOOGLE

