

Designing OpenSocial
Apps for Speed and Scale

Arne Roomann-Kurrik & Chris Chabot
5/27/2009

Post your questions for this talk on Google Moderator:

http://code.google.com/events/io/questions
Direct link:

http://bit.ly/opensocialspeedscale-questions

Google @@

Success In A Social Market

e Social application eCPM is lower than average

@ Social Networks

1.300 News :
Entertainment a]

1.114]
Technology

0.929 b= Gaming

0.743

0.557

0.371

0.186 032 027

0.19
0
April 2008 May 2008 June 2008

e Direct access 10 miilions or signea In users
o Growth functionality built into social platforms
e Small margins x Lots of users = Small Tweaks

Matter

= [0
Chart from Pubmatic AdPrice Index 2008: http://pubmatic.com/adpriceindex/index.html
BB e

"Improving our latency is really,

really important”
+(0.5 seconds costs Google 20% search traffic

Marissa Mayer, Google
http://bit.ly/idltc ~12:50

"Even very small delays would
result in substantial and costly

drops In revenue”
+(0.1 seconds costs Amazon 1% of sales

Greg Linden, Amazon
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
http://home.blarg.net/~glinden/StanfordDataMining.2006-11-29.ppt

"If you make a product faster,
you get that back in terms of

Increased usage”
-30KB gave Google Maps 30% growth in 3 weeks

Marissa Mayer, Google
http://www.youtube.com/watch?v=6x0cAzQ7PVs ~18:10

This Presentation

e Measure impact of changes on large scale apps

e Sample OpenSocial application
o Different strategies
o Real performance numbers

e Goals
o Deliver a fast user experience
o Minimize costs of running a large social app
o Highlight new OpenSocial features

= 0

- e,

- —
S — — -._._.-_'__'_
2] e

Introducing Quartermile

S guarter mile

http://www.youtube.com/watch?v=f3oP5xYxeMg

Building Quartermile

e Backend:
o Built on Google App Engine @
o Remote Procedure Calls ———
o JSON

e Frontend:

o Gadgets on many containers
o JavaScript library for RPC calls

e View the source: http://bit.ly/quartermile-src
e XML spec: http://bit.ly/quartermile-app

= 0

Measuring Quartermile

e Request types
o Quartermile API
o OpenSocial API
o Assets (images, JS, CSS)

e Metrics
o Bandwidth / PV (KB)
o Requests / PV (#)
o Latency / PV (ms)
o CPU time (megacycles)

e Measuring each individually is important
e Have more control over some than others

= 0

Quartermile 'Naive' Implementation Metrics

Bandwidth / Requests / Latency CPU time
PV(kb) PV (ms) (megacycles)

Quartermile API calls 421 4 6490 2078
Social requests 1 45 2 804 O
1356 22 3152 0

= 0

Quartermile 'Naive' Implementation Costs

SPEED
LATENCY (Gadget)
LATENCY (Page)
REQUESTS

YSlow! SCORE

COST NUMBER

5582 e
1859 wr

BANDWIDTH

CPUTIME

$/ MONTH (11 QPS)

NAIVE

2730 ws
3536 s
26
72

COST

$0.12
$0.10

TOTAL

$669.84
$185.90
$855.74

e -.A,‘l ¥ i . e
Photo by rudolf _schuba http://Nﬂickr.cothos/rudolf_schuba/153225000/ \ / ":3\ W
v

Web Development Best Practices
Gadgets are web pages too!

e We're interested in the following metrics:
o Application size
o Request count
o Latency of initial load
e Measuring
o Safari: Web Inspector
o Firefox: Firebug & YSlow
o |E: HttpWatch

Web Development Best Practices
Minify JavaScript & CSS

e Concatenate JavaScript & CSS files
o Reduces latency
o Reduces HTTP Requests

e Compress JavaScript and CSS
o Reduces download size

var foo =['1",'2",'3','4";

for(vari=0;1<4;i++){
alert(fool[i]);

}

var foo=["1","2","3","4"];for(var i=0;i<4;i++){alert(fooli])}

= 0

Web Development Best Practices
Determining application size

Documents [Stylesheets Images Scripts XHR Total
12.07KB 11.03KB 10.31KB 517.31KB 2.76KB 553.47KB
RESOURCES 27.06K8B 54.12K8 81.18KB 108.24K8 13531KB 162.37KB 189.43KB 216.49KB 243.55KB 270.61K

default,columnchart,linec...
www.google.com/uds/api/visu...

content-rewrite:dynami...
www.sandbox.orkut.gmodules...

jquery-1.3.2.min.js y
quartermile-app.appspot.com/... |

jsapi

www.google.com

ifr
/gadgers

Quartermile Improvement
After JavaScript + CSS Minification (YUl Compressor)

AFTER
Mehi2 MINIFICATION SAMANES

SIZE / REQUEST 33 ks |5 ks -54%
SIZE / MONTH 930 420 ce

s $111.60 $5040 -$61.20

= 0

Web Development Best Practices
Measuring Latency

§ -0

= 0

Web Development Best Practices
Measuring latency

T T T T

Documents [Stylesheets Images [Scripts M XHR [Other Total
2.93s 941ms 1.14s 1.73s 2.40s 871ms 6.06s
RESOURCES 606ms 1.21s 1.82s 2.42s 3.03s 3.64s 4.24s 4.85s 5.46s
<> main | ST
|oss] Brestscese O G
D isfx.apzcléjls.sandbox.orkut.c:am... o o
[[®
& i © ®
about:blank

— | in_frame039.js ‘ S

6.06s

O testimonials 200 . . May 22,2000
SR 0 | - == Dan H ran 1.0
- | = —y < >
dr‘ Inspect Clear @D HTML CSS JS XHR Images Flash Q @
Console HTML CSS Script DOM Netw Optionsr
+ POST msg?clid=7DA00 OK talkgadget.google.com 238 115ms
 POST makeRequest’ 00 OX kkbut7alhp6jl7ved4Sullagpldstabgl.a.sandbox.orkut.gmodules.com 1788 1.03s
- POST bind?clid=7D4&00 Ox talkgadget.google.com 268 59ms
+ POST msg?clid=7DAa00 OX talkgadget.google.com 238 67ms
 POST msg?clid=7Da00 Ox talkgadget.google.com 238 65ms
- GET csi?v=3&s=talkg4 No Content csi.gstatic.com ? 90ms
 POST msg?clid=7DAa00 0K talkgadget.google.com 238 | 112ms
 POST msg?clid=7Da00 OX talkgadget.google.com 238 . 56ms
+ POST makeRequest’ 00 OX kkbut7alhpbjl7vedSullagpldStabgl.a.sandbox.orkut.gmodules.com 957 8 3.27s
+ POST makeRequest’ 00 OX kk6ut7alhp6jl7ved4SullagpldStabgl.a.sandbox.orkut.gmodules.com 3718 .| 1.04s
46 requests 192 KB (101 KB from cache) 10.85s

Web Development Best Practices
Latency is not a static number

Q]),
) e]

Gg[

Web Development Best Practices
Decreasing latency increases user happiness and engagement

e Measure from different locations
e Measure often

Visits

~

Visits
1 ||| B

4,228 visits came from 84 countries/territories

Web Development Best Practices
Automatically collecting latency measurements

e JavaScript code for recording gadget latency:

var startTime = new Date();

var imgElement = new Image()

imgElement.onload = function() {
var endTime = new Date();

var latency = endTime. getTime() - startTime.getTime();
/l report latency back to your server

}

imgElement.src = "http://your.server.com/ping.gif";

= 0

Web Development Best Practices

Spriting Images

e Concatenate images into a single file (sprite) and use

CSS to selectively display portions of the sprite

o Reduce # of requests

o Reduce latency

-

= 0

Web Development Best Practices
Determining Request Count With YSlow!

a: Inspect

Console

HTML CSS

Script

DOM Net Hammerhead

Grade | Components | Statistics Tools

Statistics

WEICHT GRAPHS

cmpty Cache

\

e pag¢

I

1S a total of

HTTP Requests - 20
Total Weight - 130.2K

YSlow

and a t

ta

......

Rulesets ‘ YSlow(V2)

S

E Edit

weignt ol 130.2K bytes with em

pty

cacne

Q @ |

Options

.1, Printable View (7) Help v

HTTP Requests - 19
Total Weight - 37.8K

[1 HTML /Text

1 Crig rie
I heet File
i} SS
m !

Quartermile Improvement
After Image Spriting

AFTER AFTER

NAIVE

SAVINGS

SPRITING PALETTE FIX

Gaggey D92 wms 378 wms 325w -45%
SIZE 959w |1.15« 5.82 «s -39%

REQUESTS |5 |

-93%

: $27.30 $38.28 $16.80 -%$10.5

= 0

Web Development Best Practices
Adjusting Cache Headers

e Use the browser's cache for static data
o Reduces total bandwidth & requests
o Reduces latency

e Apache configuration example:

<FilesMatch "\. (css|js|gif|jpe?g|png)$">
Header set Cache-Control "max-age=290304000, public"
</FilesMatch>

e Use Cache-busting to force refresh

http://example.org/css/style.css?v=3

= 0

- \

-l Server Assisted
& Optimizations

1111111

Photo by z#ang http://www.flickr.com/photos/zappowban

Server Assisted Optimizations

e Social gadget:
o Small tweak == big gain
e Social network
o Many small tweaks == very big gain

e Social network advantages:
o Control over the HTML they output
o Better network infrastructure

= 0

Static Content Proxies

e Social network willing to absorb some traffic for you
o Could use content delivery networks (CDNs)
o Distributed network, great for serving static content
all over the world
e Important for clients further away from your servers!

var div = $("#flashcontainer") ;

var url = gadgets.io.getProxyUrl (
"http://me.com/flash.swf") ;

gadgets.flash.embedFlash (url, div, 10);

= 0

Content Rewriting

e Social network has control over its own output
o CSS first, JS last
o Concatenate, Minify
o Rewrite URLs for static proxy

e Caching controls in your gadget spec:

<Module>
<ModulePrefs>
<Optional feature="content-rewrite">
<Param name="include-urls'"></Param>
<Param name="exclude-urls">.*</Param>
<Param name="include-tags'"></Param>
</Optional>

= 0

CeS

OpenSocial: Designed For Social Apps

e Some optimizations only make sense in a social
application context

e OpenSocial offers conveniences to social app
developers

e Learn from the OpenSocial APl when designing your
own application interfaces

= 0

Batching
e One APl call == 1 HTTP request:

osapi.people.getViewer () .execute (onVwr) ;
osapi.people.getOwner () .execute (onOwnr) ;
osapi.people.getViewerFriends () .execute (onFrnd) ;
osapil.people.getOwnerFriends () .execute (onOFrnd) ;

e Do as much as you can in a single trip:

var batch = osapi.newBatch ()
.add("vwr" , osapi.people.getViewer())
.add("vfd", osapi.people.getViewerFriends())
.add ("owr", osapi.people.getOwner())
.add ("ofd", osapi.people.getOwnerFriends())
.execute (onData) ;

e 2 -> 1 OpenSocial requests
e 4 -> 1 Quartermile API requests Congie H@

Quartermile Improvement
After Request Batching

SPEED NAIVE BATCHED DELTA

LATENCY (Gadget) 2730 ws 2743 vs +13 ms
LATENCY (Page) 3536 ws 3504 vs -32 s

REQUESTS 26 24 -2
YSlow! SCORE 72 74 +?
cosT NUMBER cosT TOTAL CHANGE

eanowidTH 5576 cz $0.12 $669.12
CPUTIME 1499 v« $0.10 $149.90
$ / MONTH (11 QPS) $8|902 -$3672

OpenSocial Best Practices
Data Pipelining + Proxied Content

e The Naive implementation makes a lot of requests
e How can we improve on that?

= 0

OpenSocial Best Practices
Data Pipelining + Proxied Content

e Using OpenSocial 0.9's Data-Pipelining, we can
declare which social data to POST to your server

e Your server operates on the data and returns the
HTML to display

e Available in iGoogle & Orkut sandboxes, coming to a
container near you soon(tm)

OpenSocial Best Practices
Data Pipelining + Proxied Content

<Module>
<ModulePrefs ... etc .../>
<Content type="html" view="profile"
href="http://yoursite.com/proxied.php"
authz="signed">
<os:ViewerRequest key="vwrData" fields="id,displayName"
/>
<0s:0wnerRequest key="ownData"/>
<o0s:PeopleRequest key="ownFriends"
userld="@owner" groupld="@self"/>
</Content>
</Module>

= 0

OpenSocial Best Practices
Data Pipelining + Proxied Content

<?php
$postData = json_decode(file get contents("php://input"));
echo "<h1>Hello {$postData['vwrData']['name']}</h1>";

echo "These are {$postData['ownData']['name']}'s friends:";
echo "
";

foreach ($postData['ownFriends'] as $friend) {
echo "{$friend['name']}
";

J

= 0

Quartermile Improvement
After Data Pipelining

SPEED NAIVE PROXIED

LATENCY (Gadget) 2730 ms 1094 s -1636 ms
LATENCY (Page) 3536 ws 286' MS -675 ws

REQUESTS 26
YSlow! SCORE]2
cosT NUMBER cosT

TOTAL CHANGE

sanowdTH 3705 e $0.12 $444.60
CPUTIME 902 v $0.10 $90.20
$/ MONTH (11 QPS) $534.80 -$32094

OpenSocial Best Practices
Invalidation Pattern

e New application design pattern available with the
features introduced in 0.9
e When your internal state changes on the application
server, use REST/RPC calls to invalidate data:
o Per user or url
o Application ID is determined by 2 Legged OAuth
call

= 0

OpenSocial Best Practices
Invalidation Pattern

e Calling the invalidation API:

‘POST /apilrest/cachelinvalidate
HOST opensocial.example.org
Content-Type: application/json

{
invalidationKeys : |
"http://www.myapp.com/gadgetspec.xml”,
"http://yoursite.com/proxied.php"
"user:123"]

}

= 0

OpenSocial Best Practices
Data Store Structuring

e Database joins against friend lists are generally very
expensive
e Plan ahead if you're not using App Engine
o Master / Slave architecture
o Database partitioning
e Use Memcache to cache data (in App Engine too!)
o Filter results in software, make the most of cache
e Consider storing frequently used data in JSON Blobs
iInstead traditional relational storage

= 0

OpenSocial Best Practices
Data Store Structuring

e Consider using background processing

o Updates are slightly delayed

o Doesn't block user interaction

o Great for "What are your friends doing" result sets
e Use a off-the-shelf / open source Queue system or
e App Engine, use cron.yaml:

cron:

- description: process activities entries
url: /tasks/processActivities
schedule: every 1 minutes

= 0

Designing Quartermile’'s Data Model

e How to plan a scalable social application?

e Prefer to enforce hard limits up front, than deliver
a poor user experience

e Decided friend queries were too expensive:
o orkut lets you have 1000 friends
o MySpace lets you have 100,000s+ of friends

e Do all 100,000 friends need to see your exercises?
o Created artificial idea of "teams"
o Choose a subset of friends to invite to your team
o Side effect: Drive adoption!
Google m@

Dreaming Up Reasonable Limits

e Goal: Fetch all of a team's data for any given week
in one database query

e How many users can we put on a team?
e App Engine returns 1000 entries max for any query
e 1 entry / workout

e 3/day ~ 20/ week

e 1000/ 20 = 50 users

= 0

Limits: Made To Be Broken
Not every app will be able to enforce such restrictions

e Goal: Implement "updates from your friends"™
inside of the Quartermile app

o Slow!
o Fetch all friends
o See which updated recently
o Sort

e Friend updates are lower priority than team updates
o Process in the background
o Fetch friends using 2-legged OAuth
o Do "updates from friends" calculation
o Store result of calculation (can be stale)

= 0

Where To Put It?

e Database
e Memcache
e OpenSocial App Data

A«— App Data

/ Disk / DB \

= 0

"App Data is one of the most
misunderstood and misused
portions of the OpenSocial

specification”
App Data is often used incorrectly

Arne Roomann-Kurrik, Google
Right now

App Data

e Data store of keys and values
o Essentially public, so you can't put secrets here
o User writable via JS, so you can't trust it

o But it's fast!
e Perfect place to cache slow data

e Background process does slow calculation

e Pushes result to AppData

e \When rendered, injected directly into the gadget
o No server hit!

= 0

Container-Mandated
Optlmlatlons

— * Gt
=, b gl L T T il L Pyl ol s e
« + - = | & - o - .

I-"I ;

) r] = =

Pt i Ky
2 v o P8 BT I s S L - ¥ = e
T a3 TR T s A I

Photo by redjar httg //www ﬁ' ckr com/aphofos/rédjadf04?10355/ pEn

- "‘.-l- | . "'".'-- K, -
= A e E ’ = i T % = -
A -".-_.* . -_..-' Ay .,.—._ iy e R i T Y

Container-Mandated Optimizations

e 'Naive' implementation:
o Easy to make mistakes

e Container:
o Keep gadgets fast == keep container fast
o Userbase affects acceptable latency values
o Constraints to keep gadget developers honest

= 0

IGoogle's Latency Penalty

e Directory will soon be taking latency into account
e Implicit latency penalty, too:

~: }] .

http://www.youtube.com/watch?v=TkPnT2gjx0k

orkut's Template-Only Profiles

e Profiles:
o The most traffic on orkut
o Users love gadgets!

e OpenSocial 0.9 templates
o Can display social data
o Can display App Data
o No external fetches or dynamic data

e Produces an extremely fast profile render
e Great use case for AppData cache

= 0

orkut's Template-Only Profiles

<Module>
<ModulePrefs title="Template">
<Require feature="opensocial-data" />
<Require feature="opensocial-templates">
<Param name="process-on-server'>true</Param>
</Require>
</ModulePrefs>
<Content type="html" view="profile"><![CDATA]|
<script type="text/os-data">
<os:PeopleRequest key="friends" userId="(@viewer"
groupId="Q@friends" />
</script>
<script type="text/os-template">
<div repeat="${friends}">${Cur.name.givenName}</div>
</script>
]1></Content>
</Module>

_)

ik 2

Dpreit I srarale.

AAB | A Lot

.f':l 3 —:f

Summary gt | Y
& by 5™

M ﬁfﬁ/ﬁfﬁw W _ / / 2|/
w ,.,__-"‘g}.u.ﬁj‘;f{.’f__ _./5; ,Z_
2t /|74

/d:»rm.-y @M

‘fi Y Bt Bt X A A
AHght= | 3|2

= A

Photo by peagreengirl http:///\&/w.ﬂickr.com/photos/peagreenchick/384744358/in/photostrégfﬁ/

e

P AMry, /527

jrai y e j..r
1577, ;:j

§ 4

Summary
Comparison of each technique

App Size:
e JS Minification
e Content Rewriting
e Content Proxy
e Pipelining
e Invalidation
e Cache Headers

Requests:
e JS Minification
e Spriting
e Content Rewriting
e Cache Headers

Latency:
e JS Minification
e Spriting
e Content Rewriting
e Content Proxy
e Batching
e Data Store Optimization
e Background
e App Data Cache

Pipelining
nvalidation

_imited Profiles

e Cache Headers

= 0

Quartermile 'Most Optmized' Implementation

SPEED NAIVE OPTIMAL DELTA
LATENCY (Gadget) 2730 MS 833 MS - | 636 MS
LATENCY (Page) 3536 ws 2686 s -675 ms
REQUESTS 26 6 -20
YSlow! SCORE 72 89 +17
COST NUMBER COST TOTAL CHANGE

sanowibTH 3616 ez $0.12 $433.92
CPUTIME 963 v $0.10 $96.30
$/MONTH (11 QPS) $530.22 '$325.52

Q&A

Post your questions for this talk on Google Moderator:
http://code.google.com/events/io/questions

Direct link:
http://bit.ly/opensocialspeedscale-questions

