

Designing OpenSocial
Apps for Speed and Scale
Arne Roomann-Kurrik & Chris Chabot
5/27/2009

Post your questions for this talk on Google Moderator:
http://code.google.com/events/io/questions
Direct link:
http://bit.ly/opensocialspeedscale-questions

Social application eCPM is lower than average

Direct access to millions of signed in users
Growth functionality built into social platforms

Small margins x Lots of users = Small Tweaks
Matter

Success In A Social Market

Chart from Pubmatic AdPrice Index 2008: http://pubmatic.com/adpriceindex/index.html

"Improving our latency is really,
really important"
+0.5 seconds costs Google 20% search traffic

Marissa Mayer, Google
http://bit.ly/idItc ~12:50

"Even very small delays would
result in substantial and costly
drops in revenue"
+0.1 seconds costs Amazon 1% of sales

Greg Linden, Amazon
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
http://home.blarg.net/~glinden/StanfordDataMining.2006-11-29.ppt

"If you make a product faster,
you get that back in terms of
increased usage"
-30KB gave Google Maps 30% growth in 3 weeks

Marissa Mayer, Google
http://www.youtube.com/watch?v=6x0cAzQ7PVs ~18:10

Measure impact of changes on large scale apps

Sample OpenSocial application
Different strategies
Real performance numbers

Goals

Deliver a fast user experience
Minimize costs of running a large social app
Highlight new OpenSocial features

This Presentation

Introducing Quartermile

Photo by Phil McElhinney http://www.flickr.com/photos/philmcelhinney/1000986005/

http://www.youtube.com/watch?v=f3oP5xYxeMg

Backend:
Built on Google App Engine
Remote Procedure Calls
JSON

Frontend:

Gadgets on many containers
JavaScript library for RPC calls

View the source: http://bit.ly/quartermile-src
XML spec: http://bit.ly/quartermile-app

Building Quartermile

Request types
Quartermile API
OpenSocial API
Assets (images, JS, CSS)

Metrics

Bandwidth / PV (KB)
Requests / PV (#)
Latency / PV (ms)
CPU time (megacycles)

Measuring each individually is important
Have more control over some than others

Measuring Quartermile

Assets

Social requests

Quartermile API calls 44.21

Latency
(ms)

Requests /
PV

Bandwidth /
PV(kb)

Quartermile 'Naive' Implementation Metrics

6490

21.45 804

22135.6 3152

CPU time
(megacycles)

2078

0

0

Quartermile 'Naive' Implementation Costs

Web Development
Best Practices*

Photo by rudolf_schuba http://www.flickr.com/photos/rudolf_schuba/153225000/

* Gadgets are web pages too!

Photo by theeerin http://www.flickr.com/photos/theeerin/3306640432/

We're interested in the following metrics:
Application size
Request count
Latency of initial load

Measuring
Safari: Web Inspector
Firefox: Firebug & YSlow
IE: HttpWatch

Web Development Best Practices
Gadgets are web pages too!

Concatenate JavaScript & CSS files
Reduces latency
Reduces HTTP Requests

Compress JavaScript and CSS
Reduces download size

Web Development Best Practices
Minify JavaScript & CSS

var foo = ['1','2','3','4'];
for (var i = 0 ; i < 4 ; i++) {
 alert(foo[i]);
}

var foo=["1","2","3","4"];for(var i=0;i<4;i++){alert(foo[i])}

Web Development Best Practices
Determining application size

Quartermile Improvement
After JavaScript + CSS Minification (YUI Compressor)

Web Development Best Practices
Measuring Latency

Web Development Best Practices
Measuring latency

Web Development Best Practices
Latency is not a static number

Measure from different locations
Measure often

Web Development Best Practices
Decreasing latency increases user happiness and engagement

JavaScript code for recording gadget latency:

var startTime = new Date();
var imgElement = new Image()
imgElement.onload = function() {
 var endTime = new Date();
 var latency = endTime. getTime() - startTime.getTime();
 // report latency back to your server
}
imgElement.src = "http://your.server.com/ping.gif";

Web Development Best Practices
Automatically collecting latency measurements

Concatenate images into a single file (sprite) and use
CSS to selectively display portions of the sprite

Reduce # of requests
Reduce latency

Web Development Best Practices
Spriting Images

Web Development Best Practices
Determining Request Count With YSlow!

Quartermile Improvement
After Image Spriting

Use the browser's cache for static data
Reduces total bandwidth & requests
Reduces latency

Apache configuration example:

Web Development Best Practices
Adjusting Cache Headers

<FilesMatch "\.(css|js|gif|jpe?g|png)$">
 Header set Cache-Control "max-age=290304000, public"
</FilesMatch>

http://example.org/css/style.css?v=3
Use Cache-busting to force refresh

Server Assisted
Optimizations

Photo by zappowbang http://www.flickr.com/photos/zappowbang/3202362752/

Social gadget:
Small tweak == big gain

Social network
Many small tweaks == very big gain

Social network advantages:

Control over the HTML they output
Better network infrastructure

Server Assisted Optimizations

Social network willing to absorb some traffic for you
Could use content delivery networks (CDNs)
Distributed network, great for serving static content
all over the world

Important for clients further away from your servers!

Static Content Proxies

var div = $("#flashcontainer");
var url = gadgets.io.getProxyUrl(
 "http://me.com/flash.swf");
gadgets.flash.embedFlash(url, div, 10);

Social network has control over its own output
CSS first, JS last
Concatenate, Minify
Rewrite URLs for static proxy

Caching controls in your gadget spec:

Content Rewriting

<Module>
 <ModulePrefs>
 <Optional feature="content-rewrite">
 <Param name="include-urls"></Param>
 <Param name="exclude-urls">.*</Param>
 <Param name="include-tags"></Param>
 </Optional>
 ...

Image by Paul Downey http://www.flickr.com/photos/psd/2841928867/in/datetaken

OpenSocial Best

Practices

Some optimizations only make sense in a social
application context
OpenSocial offers conveniences to social app
developers

Learn from the OpenSocial API when designing your
own application interfaces

OpenSocial: Designed For Social Apps

One API call == 1 HTTP request:

Do as much as you can in a single trip:

2 -> 1 OpenSocial requests
4 -> 1 Quartermile API requests

Batching

osapi.people.getViewer().execute(onVwr);
osapi.people.getOwner().execute(onOwnr);
osapi.people.getViewerFriends().execute(onFrnd);
osapi.people.getOwnerFriends().execute(onOFrnd);

var batch = osapi.newBatch()
 .add("vwr", osapi.people.getViewer())
 .add("vfd", osapi.people.getViewerFriends())
 .add("owr", osapi.people.getOwner())
 .add("ofd", osapi.people.getOwnerFriends())
 .execute(onData);

Quartermile Improvement
After Request Batching

The Naive implementation makes a lot of requests
How can we improve on that?

OpenSocial Best Practices
Data Pipelining + Proxied Content

Using OpenSocial 0.9's Data-Pipelining, we can
declare which social data to POST to your server
Your server operates on the data and returns the
HTML to display
Available in iGoogle & Orkut sandboxes, coming to a
container near you soon(tm)

OpenSocial Best Practices
Data Pipelining + Proxied Content

OpenSocial Best Practices
Data Pipelining + Proxied Content

<Module>
 <ModulePrefs ... etc .../>
 <Content type="html" view="profile"
 href="http://yoursite.com/proxied.php"
 authz="signed">
 <os:ViewerRequest key="vwrData" fields="id,displayName"
/>
 <os:OwnerRequest key="ownData"/>
 <os:PeopleRequest key="ownFriends"
 userId="@owner" groupId="@self"/>
 </Content>
 </Module>

OpenSocial Best Practices
Data Pipelining + Proxied Content

<?php

$postData = json_decode(file_get_contents("php://input"));

echo "<h1>Hello {$postData['vwrData']['name']}</h1>";
echo "These are {$postData['ownData']['name']}'s friends:";
echo "
";

foreach ($postData['ownFriends'] as $friend) {
 echo "{$friend['name']}
";
}

Quartermile Improvement
After Data Pipelining

New application design pattern available with the
features introduced in 0.9
When your internal state changes on the application
server, use REST/RPC calls to invalidate data:

Per user or url
Application ID is determined by 2 Legged OAuth
call

OpenSocial Best Practices
Invalidation Pattern

Calling the invalidation API:

OpenSocial Best Practices
Invalidation Pattern

POST /api/rest/cache/invalidate
HOST opensocial.example.org
Content-Type: application/json
{
 invalidationKeys : [
 "http://www.myapp.com/gadgetspec.xml",
 "http://yoursite.com/proxied.php"
 "user:123"]
}

Image by euthman http://www.flickr.com/photos/euthman/1846038389/

Optimizing Your Data Store

Database joins against friend lists are generally very
expensive
Plan ahead if you're not using App Engine

Master / Slave architecture
Database partitioning

Use Memcache to cache data (in App Engine too!)
Filter results in software, make the most of cache

 Consider storing frequently used data in JSON Blobs
instead traditional relational storage

OpenSocial Best Practices
Data Store Structuring

Consider using background processing
Updates are slightly delayed
Doesn't block user interaction
Great for "What are your friends doing" result sets

Use a off-the-shelf / open source Queue system or
App Engine, use cron.yaml:

OpenSocial Best Practices
Data Store Structuring

cron:
- description: process activities entries
 url: /tasks/processActivities
 schedule: every 1 minutes

How to plan a scalable social application?

Prefer to enforce hard limits up front, than deliver
a poor user experience

Decided friend queries were too expensive:

orkut lets you have 1000 friends
MySpace lets you have 100,000s+ of friends

Do all 100,000 friends need to see your exercises?

Created artificial idea of "teams"
Choose a subset of friends to invite to your team
Side effect: Drive adoption!

Designing Quartermile's Data Model

Goal: Fetch all of a team's data for any given week
in one database query

How many users can we put on a team?

App Engine returns 1000 entries max for any query
1 entry / workout
3 / day ~ 20 / week

1000 / 20 = 50 users

Dreaming Up Reasonable Limits

Goal: Implement "updates from your friends"
inside of the Quartermile app

Slow!

Fetch all friends
See which updated recently
Sort

Friend updates are lower priority than team updates
Process in the background
Fetch friends using 2-legged OAuth
Do "updates from friends" calculation
Store result of calculation (can be stale)

Limits: Made To Be Broken
Not every app will be able to enforce such restrictions

Database
Memcache
OpenSocial App Data

Where To Put It?

"App Data is one of the most
misunderstood and misused
portions of the OpenSocial
specification"
App Data is often used incorrectly

Arne Roomann-Kurrik, Google
Right now

Data store of keys and values
Essentially public, so you can't put secrets here
User writable via JS, so you can't trust it
But it's fast!

Perfect place to cache slow data

Background process does slow calculation
Pushes result to AppData
When rendered, injected directly into the gadget

No server hit!

App Data

Photo by redjar http://www.flickr.com/photos/redjar/704710355/

Container-Mandated
Optimizations

'Naive' implementation:
Easy to make mistakes

Container:

Keep gadgets fast == keep container fast
Userbase affects acceptable latency values
Constraints to keep gadget developers honest

Container-Mandated Optimizations

Directory will soon be taking latency into account
Implicit latency penalty, too:

iGoogle's Latency Penalty

http://www.youtube.com/watch?v=TkPnT2gjx0k

Profiles:
The most traffic on orkut
Users love gadgets!

OpenSocial 0.9 templates

Can display social data
Can display App Data
No external fetches or dynamic data

Produces an extremely fast profile render
Great use case for AppData cache

orkut's Template-Only Profiles

orkut's Template-Only Profiles
<Module>
 <ModulePrefs title="Template">
 <Require feature="opensocial-data" />
 <Require feature="opensocial-templates">
 <Param name="process-on-server">true</Param>
 </Require>
 </ModulePrefs>
 <Content type="html" view="profile"><![CDATA[
 <script type="text/os-data">
 <os:PeopleRequest key="friends" userId="@viewer"
 groupId="@friends"/>
 </script>
 <script type="text/os-template">
 <div repeat="${friends}">${Cur.name.givenName}</div>
 </script>
]]></Content>
</Module>

Photo by peagreengirl http://www.flickr.com/photos/peagreenchick/384744358/in/photostream/

Summary

Comparison of each technique
Summary

Latency:
JS Minification
Spriting
Content Rewriting
Content Proxy
Batching
Data Store Optimization
Background
App Data Cache
Pipelining
Invalidation
Limited Profiles
Cache Headers

App Size:
JS Minification
Content Rewriting
Content Proxy
Pipelining
Invalidation
Cache Headers

Requests:
JS Minification
Spriting
Content Rewriting
Cache Headers

Quartermile 'Most Optmized' Implementation

Post your questions for this talk on Google Moderator:
http://code.google.com/events/io/questions

Q & A

Direct link:
http://bit.ly/opensocialspeedscale-questions

