

Google Wave: Under the Hood

David Wang, Alexandre Mah, Daniel Danilatos
and Casey Whitelaw
28 May, 2009

What are waves?

• Hosted content
• Live collaboration
• Robust and extensible platform

New technology that makes Google Wave possible:

• Concurrency Control for structured data
• The Wave Editor

New technology that Google Wave makes possible:
• Natural Language Processing in Wave

Concurrency Control

Introduction

• Concurrent rich text editor
• Existing concurrent editors

o Google Docs, EtherPad, Subetha Edit
o Jupiter System

• We want to have both live concurrent editing and rich text
• Operational Transformation

o Our starting point, High-Latency, Low-Bandwidth Windowing in the Jupiter
Collaboration System
(David A. Nichols, Pavel Curtis, Michael Dixon and John Lamping)

Concurrency (the naive way)

Concurrency (the correct way)

Operational Transformation

• Any changes to the shared object are described as an
operation
o e.g. insert character "a" at position x

• As long as there is a function transform() with the following
behaviour, the states of the object in all the clients and the
server will eventually converge.
o S = Server Operation

C = Client Operation
S' = Transformed Server Operation
C' = Transformed Client Operation

(S', C') = transform(S, C)
where

C'⋅S = S'⋅C

State space

The state space the client and server traverses through while processing the operations
• Any left traversal is caused by client operation
• Any right traversal is caused by server operation

State space

Changes to Operational Transformation

• Client waits for an ACK before sending more operations to
the server. i.e. only 1 outstanding unacknowledged delta per
client
o Client keeps the inferred server OT path
o Client transforms cached client operations before sending

to server
• Keeps the server state simple

o Server no longer needs to maintain multiple client states
as clients always sends operations along the server's OT
path

Added Support for Recovery

• Can be caused by
o Client disconnect
o Server crash (front end server or wave server)
o Any form of communication failure

• Reconnect gracefully without user action

Wave Operations

We've introduced the ability to compose together any two
consecutive operations and we've designed our operations in
such a way that the composition of two operations is always
another operation. That is, given two consecutive operations
A and B, their composition B⋅A can be expressed as another
operation.

Handling large transformations!

If the server and client have each accumulated a lot of
concurrent operations, transformation can be expensive.
This requires nm transformations, where n is the number of
client operations and m is the number of server operations.

If efficient composition is possible...

Transforming many client operations with many server
operations can be made efficient.

We can design composition to be efficient enough that we can cut the
transformation running time to O(n log n + m log m), where n is the total size of
the client operations and m is the total size of the server operations.

The document interface

• A streaming interface.
• Traverses the operation linearly.

An example operation could perform the following sequence:

"Zipping"

The operation composer works by "zipping" two streaming
operations into a single streaming operation.

"Zipping" (continued)

The operation transformer works by "zipping" two streaming
operations into two streaming operations.

The composition algorithm illustrated

The composition algorithm illustrated

The composition algorithm illustrated

Composition tree

Composition tree

Editing Waves

Editor Goals

• High granularity extraction and application of
operations

• Rich text and media
• Extensible (custom widgets, extensions)
• Mapping of an abstract Document Model to HTML
• Full control over concurrent rich text editing
• Multilingual (IMEs, RTL, etc)

Document Model

XML + Annotations

• Simple XML for structure
• Standoff annotations for style and metadata

<blip>
<p>

Hey have you seen this website?
</p>
<p>

It's sweet!
</p>

</blip>

Image Thumbnail Example

<w:image attachment="...">
<w:caption>
A Thumbnail

</w:caption>
</w:image>

A Thumbnail

Content XML to Rendered HTML

<w:image
attachment="...">
<w:caption>
pony

</w:caption>
</w:image>

<table unselectable='on' cellpadding='0' class='ittt' cellspacing='0'>
<tbody>
<tr unselectable='on'>
<td unselectable='on' style='visibility: visible;' class='itco'>
<div unselectable='on' style='width: 120px; height: 79px;' class='itci'>

<div style='display: none;' class='itcc' />
<div style='display: none;' class='pw'>
<div style='width: 0%;' class='pwa' />
<div style='width: 100%;' class='pwg' />

</div>
</div>

</td>
</tr>
<tr unselectable='on'>

<td unselectable='on' style='visibility: visible;'>
<div contenteditable='true'>pony
</div>

</td>
</tr>

</tbody>
</table>

Annotations

Appears as:

hi
ho

Properties of Annotations

• Don't affect the structural content or its operations
• Clients may choose to ignore some or all annotations

Some uses for annotations

• Other users' cursor position, selection
• Rich link annotations
• Robot-specific data
• Diff highlighting (using local annotations)
• May reference structured data in another document

o E.g. spelling suggestions and state

<blip>
<p>

Hey haev you seen
</p>
<p>

this website? And some
</p>
<p>

styled text
</p>

</blip>

<blip>
<p>

Hey <l:p hover="...">haev</l:p><l:spell/> you seen
</p>
<p>

<l:p href="...">this</l:p> website?
And <l:p fontWeight="bold">some</l:p>

</p>
<p>

<l:p fontWeight="bold" fontStyle="italic">styled</l:p>
<l:p fontStyle="italic">text</l:p>

</p>
</blip>

l:p - "paint"
l:xyz - "boundary"

Rendering the Document Wave Model

Extracting Operations

How this all fits together

Editor within the Document Wave Model

Editor within the Document Wave Model

Summary

• Arbitrary separation of document model from rendering
• Balance between maintaining control, and leveraging native

support.

Natural Language Processing

Text: Not So Plain Anymore

Google Wave is an ideal platform for building smarter tools
• Structure
• Collaboration
• Liveness
• Hosting / The Cloud

Spelling Correction

The typist's dream: concentrate on writing, let the spelling
mistakes sort themselves out!

Interacting With Spelling Suggestions

Representing Spelling Suggestions

<spell>

<suggestion type="original">starled</suggestion>

<suggestion score="2.6">started</suggestion>

<suggestion score="1.2">startled</suggestion>

<suggestion score="0.6">stared</suggestion>

</spell>

Spelly, the spelling robot

Listen to changes on waves
Check spelling
Add suggestions into the wave

Robots in the Cloud

• available from any device
• more data → better quality
• shared resources → more efficient
• interactive → positive feedback and learning

Collaborative Robots

Collaborative System

