

Google Wave Client:
Powered by GWT
Adam Schuck
28 May, 2009

Google Wave client

abuse
detection

saved
searches

folders

contacts

presence

search authentication

access
control

playback

waves

attachments

gadgets

To GWT or not to GWT
Client architecture
Changes in GWT
Improving Gears
Performance
Mobile client
Testability
UI testing with WebDriver

Outline

fast!
stunning!
think beyond the browser
optimistic

Wave UI Requirements

 <Demo>

http://wave.google.com/a/wavesandbox.com/

 What is GWT?
Java (compiled to JS)

use your favourite IDE (Eclipse, IntelliJ)
can share code between client + server

Deferred binding
JavaScript Native Interface (JSNI)

To GWT or not to GWT

?

Prototype demoed late 2007
Then: The No. 1 GWT Skeptic: me
What changed my mind?
Myth: "Can't build a real app!"
Mindset: e.g. scrolly, panels

To GWT or not to GWT

?

Bi-directional communication channel
Protocol compiler

Generates interfaces, client + server implementations

Concurrency Control stack
Other Talks: Extending Wave; Under the Hood

Client Architecture

FF3

Safari

Chrome

In development:
IE7

Android

iPhone

Supported Browsers

Evolution of GWT

GWT "areas for improvement" late 2007:
UI code cumbersome
Cross-browser CSS
JSON handling heavy-handed
Debugging environment != browser
Monolithic compile -> everything downloaded at start
Mapping from Java <-> JS unclear
Inefficiencies in compiler

What was GWT missing, late 2007?

Issue: creating widgets is time-consuming and heavy handed

I have to write how much code?

promptPanel = new DivPanel();
VerticalPanel panel = new VerticalPanel();
HTML heading = new HTML("Identification");
Label lblPrompt = new Label("Please identify me by:");
final RadioButton r1 = new RadioButton("identity",
 "my Google Wave account (" + uName + ")");
Image imgUser = new Image("images/" + uImage);
final RadioButton r2 = new RadioButton("identity",
 "the following name: ");
Image imgBlog = new Image("images/" + blog.getImage());
final TextBox t = new TextBox();
HorizontalPanel hPanel = new HorizontalPanel();
Button btnOk = new Button("OK");
Button btnCancel = new Button("Cancel");

...

Solution: UiBinder (formerly declarative UI)

Templates allow our UI designer to modify the UI directly!

I have to write how much code?

<ui:UiBinder xmlns:ui='urn:ui.com.google.gwt.uibinder'>
 <div>
 Hello, .
 </div>
</ui:UiBinder>

See: http://code.google.com/p/google-web-toolkit-incubator/wiki/UiBinder

http://code.google.com/p/google-web-toolkit-incubator/wiki/UiBinder

Issue: GWT abstracts cross-browser JS quirks, but not CSS

Solution: StyleInjector + CssResource
Provides:

Validation

Minification + Image Spriting
Allows modularization of CSS: download only when needed
Different CSS for different browsers (compile-time):

But most cross-browser bugs are CSS!

@if user.agent safari {
 \-webkit-border-radius: 5px;
}

See: http://code.google.com/p/google-web-toolkit/wiki/CssResource

http://code.google.com/p/google-web-toolkit/wiki/CssResource

Issue: JSON handling inefficient, requires extra objects

Solution: JavaScriptObject (JSO)

Subclass JavaScriptObject to create an "overlay type"
avoid using JSONObject: use JSO / StringBuffer

Inefficient JSON handling

private native void setPayload(String val) /*-{
 this.payload = val;
}-*/;

private native String getPayload() /*-{
 return this.payload;
}-*/;

See: http://code.google.com/p/google-web-toolkit/wiki/OverlayTypes

http://code.google.com/p/google-web-toolkit/wiki/OverlayTypes

Issue: each browser behaves slightly differently to hosted
mode

Solution: Out-of-process Hosted Mode (OOPHM)
Browser plugin to debug in Eclipse, but run in real browser!

Firebug only for FF:
OOPHM allows Java debugging in FF, Safari, IE
(so far)

See: http://code.google.com/p/google-web-
toolkit/wiki/DesignOOPHM

<Time for a demo!>

Debugging in Eclipse rocks! - but...

http://code.google.com/p/google-web-toolkit/wiki/DesignOOPHM
http://code.google.com/p/google-web-toolkit/wiki/DesignOOPHM

Issue: download size >1 MB (pre-gzip) and counting...

Distribute as a CD-ROM?

Solution: runAsync (dynamic loading of code)

GWT.runAsync() signals a "cut point" to the GWT compiler:
Download what you need, when you need it

Resources (CSS, images, msgs) come with the code that
uses it
Automatically handled by GWT compiler!

Distribute as a CD-ROM? No!

public void onNewWaveClicked() {
 GWT.runAsync(new RunAsyncCallback() {
 public void onSuccess() {
 WaveCreator.createNewWave();
 }
 });
}

See: http://code.google.com/p/google-web-toolkit/wiki/CodeSplitting

http://code.google.com/p/google-web-toolkit/wiki/CodeSplitting

Down and to the right

Issue: need to know what Java causes the most JS

Solution: Story-of-your-Compile (SOYC) reports
What is it?: Java package to JS breakdown report

Helped us identify:
messages too large
compiled class names
what's in the initial download

e.g. before and after messages optimisation project

Where's all the JS coming from?

Issue: we need interfaces for our messages, because:
client + server both have common libraries
they should be implementation-agnostic

Solution: GWT's SingleJsoImpl
In order to inline, JSOs cannot have polymorphic dispatch
SingleJsoImpl: allow at most one JSO class to implement
any interface

JSOs cannot implement interfaces

Declarative UI / UiBinder
StyleInjector + CssResource + ClientBundle
JavaScriptObject
OOPHM
runAsync
Story-of-your-Compile (SOYC)
SingleJsoImpl
-XdisableClassMetadata (saved us ~90KB)

GWT changes summarised

Improving the user experience

Client-side Thumbnailing
send thumbnails before image upload
uses WorkerPool to avoid blocking UI

Desktop Drag + Drop
Resumable uploading

Improving Gears

Startup:
runAsync
fast start
inline images + CSS
smaller download
stats collection
server-side script selection

Loaded client:
optimistic UI
prefetching
flyweight pattern
rendering tricks (prefer DOM over GWT's Widget)

Performance

GWT deferred binding saves the day!

v1 AJAX only
iPhone browser always running

browser starts up faster than native apps

uses mobile-specific communication channel

HTML5 / Gears caching: AppCache manifest GWT linker

<Time for another demo!>

Mobile Client

Testing

Model View Presenter

Prefer JUnit tests over GWTTestCase
Browser automation: WebDriver

Testability

What is it?
developer-focused tool for browser automation

Why do we use it?
native keyboard and mouse events, rather than
synthesised via JS

Challenges:
adopted early by Wave
incomplete

Google Wave's commitment
What's new?

iPhoneDriver
RemoteWebdriver on a grid

<Demo!>

WebDriver

Avoid xpath: slow (JS on IE), brittle
rather: ids, names, and sub-dom navigation

Intent of tests should be clear: use literate programming

Each UI class has a WebDriver helper class

WebDriver Tips

// Type in some stuff
BlipPanel blip = wavePanel.getFocusedBlip();
Editor editor = blip.getEditor();
editor.type("Do you know your abc?")
 .enter()
 .type("And your alpha beta gamma?")
 .back()
 .type("...?");
editor.check("<p _t='title'>Do you know your abc?</p>" +
 "<p>And your alpha beta gamma...?|</p>");
// This will cause a contacts popup
blip.clickSubmit();
assertEquals("Do you know your abc?", wavePanel.getTitle());

To GWT or not to GWT?

Client architecture

Changes in GWT

Improving Gears

Performance

Mobile client

Testability

UI testing with WebDriver

Summary

Thanks! Questions?

Feedback please! http://haveasec.com/io

http://haveasec.com/io

