
Monday, June 1, 2009

Monday, June 1, 2009

The Softer Side Of
Schemas
Max Ross
May 28, 2009

Monday, June 1, 2009

Overview

• The App Engine Datastore
• Soft Schemas
• Migrating to App Engine
• Migrating from App Engine
• Questions

3

Monday, June 1, 2009

Monday, June 1, 2009

The App Engine Datastore

Monday, June 1, 2009

5

The Datastore Is...

• Transactional
• Natively Partitioned
• Hierarchical
• Schema-less
• Based on Bigtable
• Not a relational database
• Not a SQL engine

Monday, June 1, 2009

“I don’t want an RDBMS for my application, I
just want persistence.”

Luiz-Otavio Zorzella, Software Engineer and fellow GBus patron

Monday, June 1, 2009

7

Simplifying Storage

• Simplify development of apps
• Simplify management of apps
• App Engine services build on Google’s strengths
• Scale always matters

– Request volume
– Data volume

Monday, June 1, 2009

8

Datastore Storage Model

• Basic unit of storage is an Entity consisting of
– Kind (table)
– Key (primary key)
– Entity Group (partition)
– 0..N typed Properties (columns)

Kind Person
Entity Group /Person:Ethel
Key /Person:Ethel
Age Int64: 30
Best Friend Key:/Person:Sally

Monday, June 1, 2009

9

Noteworthy Datastore Features

• Ancestor
• Heterogenous property types
• Multi-value properties
• Variable properties

Kind Person
Entity Group /Person:Ethel
Key /Person:Ethel/Person:Jane
Age Double: 8.5
Best Friend Key:/Person:Eloise Key:/Person:Patty
Grade Int64: 3

Kind Person

Entity Group /Person:Ethel

Key /Person:Ethel

Age Int64: 30

Best Friend Key:/Person:Sally

Monday, June 1, 2009

10

Datastore Transactions

• Transactions apply to a single Entity Group
– Watch out for contention!
– Global transactions are feasible

• get(), put(), delete() are transactional
• Queries cannot participate in transactions (yet)

/Person:Ethel/Person:Jane

/Person:Ethel

/Person:Max

Transaction

Monday, June 1, 2009

Monday, June 1, 2009

Soft Schemas

Monday, June 1, 2009

“A soft schema is a schema whose constraints
are enforced purely in the application layer.”

Monday, June 1, 2009

13

Soft Schema Pluses

• Simpler development process
– Rapid typesafe prototyping

• One less language in your SDLC
– Online evolution works!

Monday, June 1, 2009

14

Implementing A Soft Schema On The Datastore

• JDO or JPA meta-data defines the soft schema
• Established apis
• Existing tooling
• Easier porting
• Specs are (mostly) mappable to datastore features
• Datastore features are (mostly) mappable to specs

Monday, June 1, 2009

15

Filtering By Ancestor

• Expose ‘parent’ on your model object
• Filter on it (equality only)
• Decent substitute for a composite pk

@Entity
public class Address {
 // ...
 @Extension(vendorName = ”datanucleus”, key = ”gae.parent-pk”)
 private Key personKey;
}

select from com.example.Address where personKey = :personKey

Monday, June 1, 2009

16

Filtering By Multi-value Properties

@PersistenceCapable
public class Person {
 // ...
 @Persistent
 private List<String> hobbies;
}

select from com.example.Person where hobbies.contains(“yoga”)

Monday, June 1, 2009

17

Transactions

• API is a good fit

• Implementation is tougher

• Global vs Entity Group transactions
– Similar to sharding

• Two phase commit

Monday, June 1, 2009

18

Relationship Management

• JDO and JPA are not just about object relationships
– Transparent persistence
– Object view of your data
– Centralized mapping
– Big maintainability win

• Letting a framework manage relationships can simplify code
– True for RDBMS
– Especially true for App Engine Datastore

Monday, June 1, 2009

19

Transparent Entity Group Management

• Entity Group layout is important
– Write throughput
– Atomicity of updates

• Object relationships can be described as “owned” or “unowned”

• We let ownership imply co-location within an Entity Group

Monday, June 1, 2009

20

Owned One To Many (Today)

@Entity
class Person {
 // ...
 @OneToMany
 List<Pet> petList;
}

Kind Person
Entity Group /Person:13
Key /Person:13

Kind Pet
Entity Group /Person:13
Key /Person:13/Pet:18

Monday, June 1, 2009

21

Owned One To Many (Future)

@Entity
class Person {
 // ...
 @OneToMany
 List<Pet> petList;
}

Kind Person
Entity Group /Person:13
Key /Person:13
Pets /Person:13/Pet:18

Kind Pet
Entity Group /Person:13
Key /Person:13/Pet:18

Monday, June 1, 2009

22

Future JDO/JPA Work

• Provide more control over physical layout
– Requires getNextId() to avoid multiple updates to same entity

• Create parent to get parent key
• Create child with parent key to get child key
• Update parent with child key

• Support unowned relationships
– Tricky transaction issues here

• Loosen our query restrictions
– Parity with Python

Monday, June 1, 2009

Monday, June 1, 2009

Migrating To App Engine

Monday, June 1, 2009

24

Bringing Existing Code To The App Engine Party

• The Datastore is not a drop-in replacement for an RDBMS

• Analyze your use of
– Primary keys
– Transactions
– Queries
– Views
– Triggers

• Don’t forget about data migration!

Monday, June 1, 2009

25

Porting On: Primary Keys

• Single-column numeric and string primary keys fit nicely
• Composite keys can map to an ancestor chain

• Mapping tables can be represented using multi-value properties

PET_ID (pk) PERSON_ID (pk)(fk)
8 44

PET

P_ID1 (pk)(fk) P_ID2 (pk)(fk)
8 32
8 34

FRIENDSHIP

Key /Person:8
Friends /Person:32 /Person:34

Key /Person:44/Pet:8

Monday, June 1, 2009

26

Porting On: Transactions

• Identify “roots” in your data model
– User is often a good choice for online services

• Identify operations that transact on multiple roots

• Analyze the impact of partial success and then either
– refactor
– disable the transaction
– disable the transaction and write compensating logic

Monday, June 1, 2009

27

Porting On: Queries

• Shift processing from reads to writes
• Identify joins

– Denormalize or rewrite as multiple queries

• Identify unsupported filter operations (distinct, toUpper)
– Rewrite as multiple queries
– Filter in-memory

select * from PERSON p, ADDRESS a
 where a.person_id = p.id and p.age > 25 and a.country = “US”

select from com.example.Person where age > 25 and country = “US”

Monday, June 1, 2009

Monday, June 1, 2009

Migrating From App Engine

Monday, June 1, 2009

29

Taking Your Code To Someone Else’s Party

• App Engine persistence code is generally more restrictive
– Queries
– Transactions
– Multiple updates

• Decide what portability means and how important it is
– To Key or not to Key?
– Multi-value properties

• Congratulations, you’ve already sharded your data model!

Monday, June 1, 2009

30

Portable Root Object

@Entity
class Book {
 @Id
 String id;
 String title;
 // ...
}

Kind Book
Entity Group /Book:2
Key /Book:2
Title Vineland

ID (pk) TITLE
2 Vineland

BOOK

Monday, June 1, 2009

31

Portable Child Object

@Entity
class Chapter {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 @Extension(vendorName = "datanucleus", key = “gae.encoded-pk”)
 String id;

 @Extension(vendorName = “datanucleus”, key = “gae.parent-pk”)
 Long bookId;

 String pages;
 // ...
}

Kind Chapter
Entity Group /Book:2
Key /Book:2/Chapter:8
Pages 23

ID (pk) BOOK_ID (pk)(fk) PAGES
8 2 23

CHAPTER

Monday, June 1, 2009

32

Key Takeaways

• The App Engine Datastore simplifies persistence

• You can use JDO/JPA to implement a soft schema

• Denormalization is not a dirty word

• Plan for portability

Monday, June 1, 2009

Monday, June 1, 2009

Questions

Monday, June 1, 2009

34

For More Information

• http://code.google.com/appengine
• http://code.google.com/p/datanucleus-appengine
• http://groups.google.com/group/google-appengine-java

• App Engine Chat Time
– irc.freenode.net#appengine
– First and third Wednesday of each month

• maxr@google.com

• To give feedback on this talk: http://haveasec.com/io

Monday, June 1, 2009

http://code.google.com/appengine
http://code.google.com/appengine
http://code.google.com/p/datanucleus-appengine
http://code.google.com/p/datanucleus-appengine
http://groups.google.com/group/google-appengine-java
http://groups.google.com/group/google-appengine-java
mailto:maxr@google.com
mailto:maxr@google.com

Monday, June 1, 2009

