

Exploring
Chrome Internals
Darin Fisher
May 28, 2009

Simple interface, powerful core

“Modern browsers resemble the co-
operatively multi-tasked operating systems
of the past.”

Guiding sentiment, 2006

Goals

Speed

Stability

Security

Use multiple processes!

Speed: Separate threads for separate web apps

Stability: Separate address spaces for separate web apps

Security: Sandbox the web app's process

Moar speed please

WebKit
Super fast, opensource rendering engine
Small footprint (witness: mobile browsers)

V8
Optimized JavaScript engine
Opportunity for web apps to do way more

Under the hood...

The major components

Chromium
UI: tab strip, omnibox, new tab page, ...
Multi-process architecture
History system
Network stack
Sandbox
etc...

Skia

WebKit

V8

Multi-process architecture

Process Types

Browser
Main coordinator
IO proxy
Trusted

Renderer, Worker
Embeds WebKit
Untrusted

Plugin:
Embeds NPAPI (Flash,
Java, Silverlight, etc.)
Trusted :-(

Inter-process Communication

Apartment model
Primarily async communication over named pipes
Limited blocking calls and call nesting

Some exchange of shared memory
Each process has a thread dedicated to IPC:

Process assignments

Approximating process per tab

Tabs share processes when:
They have a (potential) script connection
Opened via link click:
The process limit is reached

New process for Omnibox navigations when domain doesn't
match. Tossing the old process -- ultimate GC!

Process per domain would be nice, but...

The sandbox

Primary goal:
Protect the user's system by blocking malware

Restrictions:
Limit access to the file system and network
Limit access to the windowing system
Limit access to input devices

Mechanism:
Strip the user's token
Use a job object to further restrict
Run on a separate desktop

The sandbox

But, but... a browser needs to access the file system!
Supporting file uploads
Supporting file:// URLs

What isn't protected?
Cookies
Passwords
HTML5 database, local/session storage
Cross-site attacks (user data in the cloud)

Rendering in a sandbox

Short version:
Render to a bitmap
Send bitmap to the browser process
Browser copies the bitmap to the screen

Complexities:
Limited access to OS APIs (fonts, etc.)
A hung renderer should not lock up the browser
Needs to be fast!

Painting and scrolling

Lock free:
Browser maintains a backingstore
Renderer sends updates to the backingstore via SHM
Browser paints to the screen from the backingstore
Browser ACKs renderer to allow another update

Scrolling is similar (includes a scroll delta)

Resource loading

Browser serves as proxy for all IO
Restricts access to file:// and chrome://
Performs safe-browsing checks
Vends cookies

Before WebKit sees any data, the browser...
Follows HTTP redirects
Handles HTTP auth
Detects MIME type (handles downloads browser-side)
Performs security checks for SSL

History system

Lock free visited links system
Shared memory containing bitmap
Indexed by hash(URL)
Only the browser process can write
Grow map size by creating a copy

After a page loads,
Text is extracted and fed into the FTS index (sqlite)
Thumbnail is generated and stored

Plugins

Supports:
Netscape style plugins
Whitelist of ActiveX controls (only WMP now)

One process per plugin type
Mimics the environment of a single-proc browser
Some plugins take a while to load :-/

Challenge: NPAPI is a synchronous API
Cache rendering of windowless plugins
Jump through hoops for windowed plugins
Porting!

WebKit

WebKit overview

Comprised of several modules:
JavaScriptCore: JS engine (not used)
WebCore: HTML+CSS rendering, DOM, etc.
WebKit: embedding API layer (not used)

WebCore conditionals:
PLATFORM(CHROMIUM) platform/chromium
PLATFORM(SKIA) platform/graphics/skia
USE(V8) bindings/v8

WebKit versions:
Chrome 1 ~ Safari 3
Chrome 2 ~ Safari 4

WebKit development

The Chromium devs on #webkit
3 reviewers
Over a dozen contributors and counting

Status: Unforked!!

Focus going forward:
WebKit API for Chromium
Open web platform (HTML5, etc.)
Web compatibility improvements
Performance

Open web platform

In progress:
Audio/video
Application caches
Database
Local storage
Session storage
Notifications
Web workers: dedicated, persistent, shared

Multi-process arch and sandbox pose challenges

Network stack

Making a better wheel

From Wininet to Winhttp to src/net/http/

DNS prefetching

In development:
Feature parity (client certs, socks, IPv6 literals, etc.)
Sparse caching
Pseudo-pipelining
Deferred connection binding
Parallel proxy auto config

