

Offline Processing on
App Engine: A Look Ahead

Brett Slatkin
May 28th, 2009

Google @@

Agenda

e The Task Queue API
o Tasks, Webhooks
o Push versus Pull, Performance

o ldempotence, Queues, Throttling
o Names, ETA

e Example applications (interspersed)
o Sending emaill
o Schema migration
o Write-behind cache

e The future

= 0

Moderator and Feedback

e Moderator questions
o http://tinyurl.com/offlinetalk

e Immediate feedback about this presentation
o http://haveasec.com/io/

= 0

http://tinyurl.com/offlinetalk
http://haveasec.com/io/

- Motivation

3

Motivation

e Google App Engine is great for web apps
o Request-based, database backed apps

e Background and batch processing are highly
requested features
o Cron good for periodic jobs, but not enough
o Would enable a range of new applications to be
built entirely on App Engine

= 0

Motivation (2)

e \Why do background processing?
o Do work continuously without user requests
o Incrementally process data, compute results
o Smooth out load patterns, lower user latency

e A new style of computation on App Engine

= 0

- Introduction

Overview

e New API for App Engine: Task Queue

e Part of App Engine Labs
o APl may change until it's graduated from Labs
o Not yet specified how we will enable billing

e Not released; should launch in a couple weeks
e Live for demoing today with working code

= 0

What is a task queue?

e Simple idea in general:
1. Describe the work you want to do now
2. Save the description somewhere
3. Have something else execute the work later

e Work executed in the order received (best-effort FIFO)
e If execution fails, work will be retried until successful

e Smallest example:

taskqueue.add (description of work)

= 0

What is a task queue? (2)

e Benefits
o Asynchronous
= \Why do work now when we can do it later?
o Low-latency (for users)
m Tasks are light-weight; ~3x faster than
Datastore
o Reliable
m Once written, a task will eventually complete
o Scalable
m Storage of new tasks has no contention
m Parallelizable with multiple workers

e Many features can extend this basic concept

= 0

What is a task queue, historically?

e UNIX had at and batch commands

e People use cron jobs and flat files
o Append to a DB or file with work to do
o Cron job periodically consumes the whole queue

e Lots of reliability and scalability issues here

= 0

What other task queue systems exist?

e There are many task-queue-like systems out there
o *MQ, Amazon SQS, Azure queues, TheSchwartz,
Twisted, Starling, beanstalkd, etc
o Often conflated with publish-subscribe messaging
e Queueing systems maximize data throughput
o Routers, data pipelines
o Fully saturate network, CPU, disk
e Pub-sub systems maximize transactions, decoupling
o Large numbers of small transactions per second
o One-to-many fan-out with changing receivers
o Guaranteed ordering, filtering, two-phase commit

e Our new API implements queueing, not pub-sub

= 0

How do traditional task queues work?

Queue
T Pop head
Queue mediator
A
Poll Poll
WorkerA WorkerB

newer tasks

------- >
T T T T T T Th
I I I
PN PSP ISR

Poll
WorkerC Workers a lways
running

= 0

How do traditional task queues work? (2)

e Polling has problems:

o Worker sits in a loop polling the front of the queue
m Not event driven; wasted work

o Workers stay resident when there's no work to do
m \Wastes machine resources

o Fixed number of workers
m Admins must manually add more workers to

keep up or queue will grow without bounds

e Limited optimization possible
o Many systems fake a polling interface with
something event-driven under the hood
o Long-lived, hanging connections

= 0

How does our Task Queue API work?

e \We push tasks to your app; no polling necessary

e HI'TP Web hooks!
o RESTful, push-based interface for doing work
o Concept used outside Google and App Engine
o Many of our upcoming APIls use this style
o See http://en.wikipedia.org/wiki/\Web_hooks

e Tasks as web hooks
o Task is just an HTTP request (URL, body, etc)
o Enqueue and we send your app the request later

o If the web hook returns HTTP 200 OK, it's done
o Any other response causes back-off and retries

= 0

http://en.wikipedia.org/wiki/Web_hooks

Concrete example: Mail sending queue

class MailWorker (webapp.RequestHandler) :
def post (self):
mall.send mail (
'me@example.com’,
self.request.get (' "),
self.request.get (' subject) ,
self.request.get ('body'))

To enqueue a task:

taskqueue.add (url="'/work/mail', params=dict (
to='foolexample.com',
subject="'Hello'
body='this 1s a message!'))

= 0

Concrete example: Mail sending queue demo

= 0

How does our Task Queue API work? (2)

newer tasks

Queue | | .

e — e — e

l Pull head

Queue mediator

Push

\

Request
Handler

= 0

How does our Task Queue APl work? (3)

newer tasks
------- -
Queue E E i
l Pull head
Queue mediator
Push
Yvy V Yy
Automatically adds
Request worker threads
Handler based on load

= 0

How does our Task Queue API work? (4)

e Worker threads added depending on work-load
o Max number of threads depends on throughput
o High maximum rate limits for safety

e Integrated into admin console as normal requests
o Application and request logs searchable
o Dashboard statistics and error-rate monitoring
o Graphs include offline work

= 0

- Details

Working with Tasks: ldempotence

e Important for tasks to be idempotent
e Run the same task repeatedly without harmful effects
o Or acceptable effects (e.g., duplicate emails)
e Necessary because failure may happen at any time
e Tasks will be retried until success
e Possible for a task to spuriously run twice even
without server failures!

e It is your responsibility as the application developer
to ensure idempotence of tasks

= 0

Working with Queues

e Each task added to a single Queue for execution
o Multiple queues allowed per application

e Queues provide isolation and separation of tasks

e Configure how each queue is throttled

e Example queue.yaml

queue:

- name: mall queue
rate: 2000/d

- name: speedy Jqueue
rate: 5/s

= 0

Working with Queues (2)

e \Why do you want to throttle?

o Combine work periodically; execute in batches

o Ensure stability of workload (CPU, bandwidth, $)

o Not exceed maximum writes per second for a
single entity group in Datastore

o Not overload a partner site with web service calls

o Not send too many emails at a time (to a single
host, recipient, etc)

e Also enables prioritization of work
o Tasks are only defined by the web hook request,
not the queue they are on
o Could have a queue for each level of service

= 0

Working with Queues (3)

e Many-to-many queue throttling

Mail Task

Mail
Worker

High priority queue

Fetch
Task

Medium priority queue >

Fetch
Worker

Compute
Task

L ow priority queue

Compute
Worker

= 0

Concrete Example: Schema migration

e Without Task Queue API
o Cron job slowly iterates through entities; migrates
them; stores current entity location in memcache
o Use remote_api or bulkloader to dump the whole
dataset and reupload it

= 0

Concrete Example: Schema migration (2)

e With Task Queue API
o Define handler to: query for next N entities; modify
them; do a batch update; then enqueue a task to
resume starting after the current position
o Failures at any point will cause the task to be
retried later, picking up exactly where it left off

= 0

Concrete Example: Schema migration (3)

class FirstUserKind (db.Model) :
name = db.StringProperty ()

class SecondUserKind (db.Model) :
first = db.StringProperty ()
last = db.StringProperty ()

def second from first(u):
first, last = u.name.split (' ")
return SecondUserKind (
first=first, last=last)

def first from second(u):
return FirstUserKind (

— 10)

name='%s %s' % (u.first, u.last))

= 0

Concrete Example: Schema migration (4)
query = from kind.all ()

1f start:

query.filter(' key >', db.Key(start))
old = query.fetch(10)
1f not old:

logging.info('All done!")

return

next start = old[-1].key()

new = [migrate(x) for x 1n old]

db.put (new)

db.delete (0ld)

taskqueue.add (url="'/worker/migration’',
params=dict (start=next start, kind=kind))

= 0

Concrete Example: Schema migration demo

= 0

Working with Tasks: ETA

e "Estimated time of arrival”
o How long until a task should be executed
o Different than "visibility timeouts" in other systems

e Useful for doing work in the relatively near future
o More fine-grained, programmatic control than cron

e Example uses:
o Periodically clear caches, flush buffers, report
incremental results (via email, web service call),
prioritize tasks

= 0

Working with Tasks: Names

e Each task may be given a unique name by the app
o When not supplied, an ID is auto-generated
e After a named task completes, its "tombstone" will
remain for a few days
e Adding tasks with tombstoned names raises an error
e Enforces "only-once" semantics
o Example: Migrate the schema for these entities
once and only once

= 0

Concrete Example: Write-behind cache

= 0

Concrete Example: Write-behind cache

e Minimizes writes with repeated cache flushing
1. Write new data to the cache
2. Periodically read cache and persist to disk

e Benefits
o Database writes no longer increase as a function
of overall user traffic!
o 100 cache writes/sec becomes 1 DB write/sec

e Problem
o Time window (small!) for loss of cached data

= 0

Concrete Example: Write-behind cache (2)

Request Cache Task Datastore
handler Queue
; : : :
> Write : :
> [[
| |
I Add task I
} - |
I I
I T |
I I I I
: : : Handle :
! ! Periodic ') task !
. Read !
| - [
I Batch I
: > write
I >
|
I |
|
I

Time

I
= 0

Concrete Example: Write-behind cache (2)

Request Cache Task Datastore
handler Queue
! . : :
. Wite : :
- I I
| |
I Add task I
4 - |
I I
I : Cache : :
: : fails ! Handle :
I I task I
: ' J :
| - [
I Batch I
: > write
I
|
I |
|
I

Time

I
= 0

Concrete Example: Write-behind cache (3)
e Write-behind page-hit counter
e Page-hit counter without Task Queue API:

o Sharded counters; relatively expensive
o No control over write throughput

= 0

Concrete Example: Write-behind cache (3)

e Page-hit counter with Task Queue API:
o All hits increment a counter in memcache
o Copy memcache values to Datastore with a Task
o Queue throttle used to limit max writes per second
to the counter's entity group
o Read from memcache or Datastore

= 0

Concrete Example: Write-behind cache (4)

class Counter (db.Model) :
count = db.IntegerProperty (indexed=False)

class CounterHandler (webapp.RequestHandler) :
def post(self) :
key = self.request.get('key')
1f (memcache.incr (key) 1s None and
not memcache.add (key, 1)) :

memcache.incr (key)

1f memcache.add(key + ' dirty', 1):
taskqueue.add (url="'/worker',

params={'key': key})

= 0

Concrete Example: Write-behind cache (5)

class PageHitWorker (webapp.RequestHandler) :
def post(self) :

key = self.request.get('key')

memcache.delete (key + ' dirty'):

value = memcache.get (key)

1f value 1s None:
logging.error ('Failure for %s', key)
return

Counter (key name=key, count=value) .put ()

= 0

Concrete Example: Write-behind cache demo

= 0

- The Future

The Future

e Coming soon
o Release of Task Queue API in App Engine Labs
o Python-only at first, Java soon after

e Java support in the works
o Web hooks interface
o JMS integration

e More API features
o Queue management functions (e.g., flush)
o Queue contents viewing in admin console
o Notification of queue events (e.g., empty)

= 0

The Future

e Batch processing
o Task APl good for small datasets (< 100k rows)
o More tools required for parallelization, high
throughput processing of Datastore entities
o Need rich features for aggregations, statistics

e Map Reduce
o Plan to eventually support MapReduce abstraction
o Need more tools: intermediary storage, sorting, etc
o Want it to work with small (50k entities) and very
large (> 1TB) datasets

= 0

Wrap-up

e Use the Task Queue API! (once it's launched =)

e Make your existing app faster, lower latency

e Scale your app further with reduced costs

e Add new functionality you couldn't implement before
e Take advantage of web hooks for easy debugging

= 0

Questions?

e Add to Moderator
o http://tinyurl.com/offlinetalk

e Give me feedback about this presentation!
o http://haveasec.com/io/

http://tinyurl.com/offlinetalk
http://haveasec.com/io/

