

The Story of Your Compile:

Reading the Tea Leaves of the GWT
Compiler for an Optimized Future
Lex Spoon and Bruce Johnson
May 28, 2009

3

Would You Take This Deal?

Tweak your app for 1 hour

Reduce your startup
script size by 50%

Showcase startup size, zipped (KB)

56

108

4

Leverage, I Say!

• Initial download reduced by half

• Doesn't load code that doesn't run

• Amortize download delay

• Perfectly-cacheable fragments

Compiled with GWT trunk, r5406

5

Topics

• Should we really care about optimization?
• Stuff we should've said last year
• Code splitting in GWT 2.0
• Code splitting walkthrough
• The story of your compile
• Async package pattern

6

Should We Really Care About Optimization?

YES

Stuff We Should've Said Last Year

8

Deciphering RPC

• As of GWT 1.6, pass -extra flag to the compiler for extras

• module.rpc.log explains the RPC code generator logic

• See dynatable.rpc.log

9

Watching the Compiler Optimize

public class ShapeExample implements EntryPoint {
 private static final double SIDE_LEN_SMALL = 2;
 private final Shape shape = new SmallSquare();

 public static abstract class Shape {
 public abstract double getArea();
 }

 public static abstract class Square extends Shape {
 public double getArea() { return getSideLength() * getSideLength(); }
 public abstract double getSideLength();
 }

 public static class SmallSquare extends Square {
 public double getSideLength() { return SIDE_LEN_SMALL; }
 }

 public void onModuleLoad() {
 Shape shape = getShape();
 Window.alert("Area is " + shape.getArea());
 }

 private Shape getShape() { return shape; }
}

-Dgwt.jjs.traceMethods = "ShapeExample.onModuleLoad"

10

Better, eh?

public class ShapeExample implements EntryPoint {
 public void onModuleLoad() {
 Window.alert("Area is 4.0");
 }
}

Code Splitting in GWT 2.0

“We strongly prioritize features that can make
the biggest differences to end users.
Obviously, we want to make developers' lives
easier, too, but never at the expense of the
user experience.”

"Making GWT Better"

HTML JS Running

JS Running!

JS

Running!!HTML

JS

Running!!!

Time

Speedup

Without splitting

With splitting

13

Why Code Splitting?

• Accessing unloaded code might need a delay
• It can also fail

14

Partially Loaded as the Normal State

GWT.runAsync(new RunAsyncCallback() {
 public void onSuccess() {
 // runs when code loads
 }
 public void onFailure(Throwable reason) {
 // runs on failure
 }
}

Code Splitting Walkthrough

16

Simple Example: Composing Email

public static void onComposeEmailButtonClicked() {
 EmailCompositionView.show();
}

App code for reading email

Library code used by (1)

App code for composing email

Library code used by (3)

Compiled JavaScript

1

2

3

4

17

Not All Functionality is Created Equal

18

Splitting Out "Compose" With runAsync

public void onComposeEmailButtonClicked() {
 GWT.runAsync(new RunAsyncCallback() {
 public void onSuccess() {
 // This will run once the necessary fragment is loaded
 EmailCompositionView.show();
 }
 public void onFailure(Throwable reason) {
 // This will run if the necessary fragment cannot be loaded
 Window.alert("failed to load");
 }});
}

App code for reading email

Library code used by (1)

App code for composing email

Library code used by (3)

Compiled JavaScript

1

2

3

4

X window.alert("Load failed")

19

w00t!

Available
immediately

Deferred until
"Compose"
button clicked

20

A Week Later, un-w00t :-(

// This is reachable directly
// from onModuleLoad()
public void onComposeKeystrokeClicked() {
 EmailCompositionView.show();
}

But then the new guy on the team does this

Recall splitting out "Compose" code like this

public void onComposeEmailButtonClicked() {
 GWT.runAsync(new runAsyncCallback() {
 public void onSuccess() {
 EmailCompositionView.show();
 }
 public void onFailure(Throwable e) {
 Window.alert("failed to load");
 }});
}

Split point...good!

Direct reference...bad!

App code for reading email

Library code used by (1)

App code for composing email

Library code used by (3)

Compiled JavaScript

1

2

3

4

21

Back to Where We Started

The Story of Your Compile

23

Story of Your Compile (SOYC)

• What code downloads when?
• How big is each part?
• Why can't a particular method be deferrred?
• Let's take a look...

24

The Whack-a-Mole Solution
public void onComposeEmailButtonClicked() {
 GWT.runAsync(new runAsyncCallback() {
 public void onSuccess() {
 EmailCompositionView.show();
 }
 public void onFailure(Throwable e) {
 Window.alert("failed to load");
 }
 });
}

public void onComposeKeystrokeClicked(){
 GWT.runAsync(new runAsyncCallback() {
 public void onSuccess() {
 EmailCompositionView.show();
 }
 public void onFailure(Throwable e) {
 Window.alert("failed to load");
 }
 });
}

...repeat everywhere this recurs...

App code for reading email

Library code used by (1)

App code for composing email

Library code used by (3)

Compiled JavaScript

1

2

3

4

X window.alert("Load failed")

25

re-w00t! (+ Uneasiness About Maintainability)

Available
immediately

Deferred until
"Compose"
button clicked

The Async Package Pattern

27

Async Package Pattern

• Only the library developer needs to be careful, not the client
• Carefully isolate classes within a package
• Have exactly one "gateway class"
• Make its constructor private
• Remove static methods
• Instantiate the gateway class only within a runAsync call

28

Async Package Pattern: Gateway Class
public class EmailCompositionView {
 private EmailCompositionView() { }

 public interface Callback {
 void onCreated(EmailCompositionView view);
 void onCreateFailed();
 }

 // Only callable once a client gets an instance
 public show() {
 // Use lots of other code that has restricted visibility
 ...
 }

 public static void createAsync(final Callback callback) {
 GWT.runAsync(new RunAsyncCallback() {
 public void onSuccess() {
 callback.onCreated(new EmailCompositionView());
 }
 public void onFailure(Throwable e) {
 callback.onCreateFailed();
 }
 });
 }
}

29

Callers Can't Get it Wrong

public void onComposeKeystrokeClicked(){

 EmailCompositionView.createAsync(
 new EmailCompositionView.Callback() {
 public void onCreated(EmailCompositionView view) {
 // "show" is only callable once client has an instance
 view.show();
 }
 ...
 }
);
 ...

30

Keep the Module Instance

public class MyModule {
 private final Expensive expensive;
 public MyModule(Expensive expensive) {
 this.expensive = expensive;
 }
 public void randomMethod() {
 expensive.doSomethingExpensive();
 }
}

Wrap-up

32

Summary of Suggestions

• Think about performance early, and track it as your app grows
• Use .rpc.log to understand size costs of RPC
• Identify less-used functionality and use runAsync() to split it out
• Use SOYC to understand code size and to debug splitting
• Find a splitting pattern to keep split points working reliably
• Think about what to do while fragments are being loaded and

what to do if fragment loading fails
• In other words, put yourself in the end-user's shoes

Q & A

