
Monday, June 1, 2009

Monday, June 1, 2009

Debugging Arts of the
Ninja Masters
Justin Mattson
Developer Advocate
Android Team @ Google
28/5/2009

Monday, June 1, 2009

3

Agenda

• Tool tour
– logcat
– traceview
– hierarchyviewer

• Real world usage
• Pop quiz!
• Q&A (pop quiz for me)

Monday, June 1, 2009

Monday, June 1, 2009

logcat

Monday, June 1, 2009

5

The dialog of death

Monday, June 1, 2009

6

Forensics
Where to begin the autopsy

Monday, June 1, 2009

7

logcat
Your news feed

Monday, June 1, 2009

8

logcat Levels Defined

• [E]rror
– A unexpected critical or non-recoverable failure happened

• [W]arning
– Something bad happened, but it was handled gracefully

• [I]nfo
– An important event occurred

• [D]ebug
– Something happened that may be useful in isolating a problem

• [V]erbose
– Something occurred in the normal course of operation that was

expected.

Monday, June 1, 2009

9

A simple case
The code can't break!

 public class UriReader extends Thread {
 public String uriToRead = null;
 @Override
 public void run() {
 DefaultHttpClient client = new DefaultHttpClient();
 HttpGet request = new HttpGet(uriToRead);
 try {
 InputStream reader =
 client.execute(request).getEntity().getContent();
 while (reader.read() != -1);
 } catch (ClientProtocolException e) {
 Log.w(TAG, "Protocol exception while reading URL.");
 } catch (IOException e) {
 Log.e(TAG, "General I/O exception, exact type is: " +
 e.getClass().getCanonicalName());
 }
 }
 }

Monday, June 1, 2009

10

The scene of the crime

Monday, June 1, 2009

11

Take a good look around

Monday, June 1, 2009

12

The dialog of despair

Monday, June 1, 2009

13

Warning signs
What’s that noise?

• Same process id, similar object count, similar sizes

Monday, June 1, 2009

14

Data Management

• Filters
– TAG:SEVERITY

• Smart tagging
– Meaningful
– Related

• !SPAM
– Precise
– Concise
– Privacy sensitive

Monday, June 1, 2009

Monday, June 1, 2009

traceview

Monday, June 1, 2009

16

tracing and traceview

• Records every function entry and exit point
• Records how long execution took
• Provides a graphical representation of collected data

– Timeline view
– Call tree view

• Is a must-use for any developer serious about performance

Monday, June 1, 2009

17

How to start tracing

public class ProfiledActivity extends Activity {
 protected void onCreate(Bundle savedInstanceState) {
 Debug.startMethodTracing();
 }
 ...
 public void onPause() {
 Debug.stopMethodTracing();
 }
}

• Starting and stopping trace data collection is simple

• Controls tracing for entire VM
• Tracing only what you need simplifies analysis

• Tracing has a big impact on performance

justin$ adb shell am profile com.example.foo profile start /
sdcard/trace_file
...
justin$ adb shell am profile com.example.foo stop

Monday, June 1, 2009

18

Execution timeline

Monday, June 1, 2009

19

Function statistics

Monday, June 1, 2009

20

Function statistics
Details

• Name
• “Incl %” - percentage of time including descendants
• Inclusive - raw execution time including descendants
• “Excl %” - percentage of time sans descendants
• Exclusive - time spent executing code only within this function
• “Calls+Recur Calls/Total” - Number of times this method is called
• Time/Call - Average execution time per call

Monday, June 1, 2009

21

Getting to the bottom (or top) of things

• The source of the issue may be above or below your code
• traceview allows you to easily navigate the call tree

Monday, June 1, 2009

21

Getting to the bottom (or top) of things

• The source of the issue may be above or below your code
• traceview allows you to easily navigate the call tree

Monday, June 1, 2009

22

Optimize reality

• traceview gives you a lot of power, take advantage of it
• Design sensibly, build proof of concept, test, and optimize

Monday, June 1, 2009

Monday, June 1, 2009

HierarchyViewer

Monday, June 1, 2009

24

Exploring the UI with HierarchyViewer

Monday, June 1, 2009

25

Climbing the tree

Monday, June 1, 2009

25

Climbing the tree

Monday, June 1, 2009

26

Questionable families

• “Infertile parents” - layout with no or single layout children

• “Clones” - parents with same-type children

Monday, June 1, 2009

27

<merge /> your @includes

<merge xmlns:android=”http://schemas.android.com/apk/res/
android”>
 <TextView
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@string/header_section”
 android:textColor=”@colors/header_color” />
 <ImageView
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:src=”@drawable/logo” />
</merge>

• Merge is a placeholder layout
• Children of <merge> go into the layout where they are included

Monday, June 1, 2009

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

Monday, June 1, 2009

Traveler’s Tales: Betrayal

Monday, June 1, 2009

29

TraceView on a shipping product

• Why is something running on the main thread for that long?
• Must be a network request someone forgot to move to a thread

Monday, June 1, 2009

30

com.ibm.icu4jni.util.Resources.getTimeZonesNative

• A call about time zones is taking this long?
• Wait, I’m not even doing anything with time zones

Monday, June 1, 2009

30

com.ibm.icu4jni.util.Resources.getTimeZonesNative

• A call about time zones is taking this long?
• Wait, I’m not even doing anything with time zones

Monday, June 1, 2009

30

com.ibm.icu4jni.util.Resources.getTimeZonesNative

• A call about time zones is taking this long?
• Wait, I’m not even doing anything with time zones

Monday, June 1, 2009

31

Fixing the problem

• Move the call
• De-prioritize its execution
• Result: Better perceived startup time

Monday, June 1, 2009

31

Fixing the problem

• Move the call
• De-prioritize its execution
• Result: Better perceived startup time

Monday, June 1, 2009

32

Key Learnings

• Trust no one

• A little profiling goes a long way

• Priority matters

Monday, June 1, 2009

Monday, June 1, 2009

Traveler’s Tales: Finding shortcuts

Monday, June 1, 2009

34

Search for hidden inefficiencies

• Look at the function listing for less obvious performance issues

• Sort by exclusive execution
– Shows inside which methods the program spends most of its time
– Long average time methods with a few calls are good targets
– Explore reducing and eliminating these calls

Monday, June 1, 2009

35

Search for hidden inefficiencies

Monday, June 1, 2009

36

Take a look around

• Explore ancestors and descendants of the method
• Use timeline line view to check what happens before and after

the method

Monday, June 1, 2009

37

Take a look around

Monday, June 1, 2009

37

Take a look around

Monday, June 1, 2009

38

Iterate the route into a circle (square?)

Monday, June 1, 2009

38

Iterate the route into a circle (square?)

Parse response

Monday, June 1, 2009

38

Iterate the route into a circle (square?)

Parse response C
reate B

itm
ap

Monday, June 1, 2009

38

Iterate the route into a circle (square?)

Parse response C
reate B

itm
ap

Compress Bitmap

Monday, June 1, 2009

38

Iterate the route into a circle (square?)

Parse response C
reate B

itm
ap

Compress BitmapA
dd

 re
su

lt
to

 c
ac

he

Monday, June 1, 2009

39

Fixing the problem

• Read in the full response
• Store the PNG
• Inflate Bitmap from PNG data
• Discard PNG data

• Result: Decrease startup time by 350ms
– 2% in “debug time”, larger real time effect since its native code

Monday, June 1, 2009

40

Key Learnings

• Big is beautiful

• Explore the area first

• Three rights can make a left

Monday, June 1, 2009

Monday, June 1, 2009

Traveler’s Tales: Packing mistakes

Monday, June 1, 2009

42

Sorting by inclusive execution

• Includes execution time of methods code and its descendants
• List is somewhat like a breadth-first traversal of the call tree

Monday, June 1, 2009

42

Sorting by inclusive execution

• Includes execution time of methods code and its descendants
• List is somewhat like a breadth-first traversal of the call tree

Monday, June 1, 2009

43

Taking a look at the code

try {
 List<MyDataType> itemsProcessed = new ArrayList<MyDataType>();
 for (int i = 0; i < source.getNumItems(); i++) {
 Item currentItem = source.get(i);
 MyDataType processedItem = new MyDataType(currentItem);
 itemsProcessed.add(processedItem);
 itemProcessedCallback(itemsProcessed);
 }
} catch (IOException e) {
 Log.W(TAG, “Reading data failed, retrying”);
} catch (JSONException e) {
 Log.E(TAG, “JSON parsing failed”);
}

• Items will be processed several times, this seems wrong

Monday, June 1, 2009

44

Fixing the problem

• Bug introduced when exception handling was refactored

• Result: Fewer calls to callback, 5% decrease in startup time

try {
 List<MyDataType> itemsProcessed = new ArrayList<MyDataType>();
 for (int i = 0; i < source.getNumItems(); i++) {
 Item currentItem = source.get(i);
 MyDataType processedItem = new MyDataType(currentItem);
 itemsProcessed.add(processedItem);
 }
 itemProcessedCallback(itemsProcessed);
} catch (IOException e) {
 Log.W(TAG, “Reading data failed, retrying”);
} catch (JSONException e) {
 Log.E(TAG, “JSON parsing failed”);
}

Monday, June 1, 2009

45

Key Learnings

• Each angle of approach is valuable

• Analyzing performance can reveal unknown bugs

Monday, June 1, 2009

Monday, June 1, 2009

Traveler’s Tales: Consolidating
containers

Monday, June 1, 2009

47

A “simple” layout examined

Monday, June 1, 2009

47

A “simple” layout examined

Monday, June 1, 2009

48

Fixing the Problem

Monday, June 1, 2009

48

Fixing the Problem

Monday, June 1, 2009

48

Fixing the Problem

Monday, June 1, 2009

48

Fixing the Problem

Monday, June 1, 2009

48

Fixing the Problem

Monday, June 1, 2009

48

Fixing the Problem

Monday, June 1, 2009

48

Fixing the Problem

Monday, June 1, 2009

48

Fixing the Problem

Monday, June 1, 2009

48

Fixing the Problem

Monday, June 1, 2009

48

Fixing the Problem

Monday, June 1, 2009

48

Fixing the Problem

Monday, June 1, 2009

49

Fixing the problem

Monday, June 1, 2009

49

Fixing the problem

Monday, June 1, 2009

50

If it looks the same, who cares?

• Flatten for aerodynamic performance

• RelativeLayouts adapt to their environment

• RelativeLayouts force you to think

Monday, June 1, 2009

51

Key Learnings

• Layouts are code too and
will evolve iteratively

• LinearLayouts are simple to
visualize and understand,
but can result in overly
complex, less flexible
hierarchies

• Rationalization needs to
happen to keep the layout
comprehensible and efficient

INSERT GLUED TOGETHER UI GRAPHIC

Monday, June 1, 2009

Monday, June 1, 2009

Traveler’s Tales: Squeaky wheels

Monday, June 1, 2009

53

What’s that noise?

• Same process id, similar object count, similar sizes

Monday, June 1, 2009

54

Allocation Tracker

Monday, June 1, 2009

55

Allocation Tracking

Monday, June 1, 2009

56

Using the right tool

• Problem caused by old code
– Used for speed and convenience, over-stayed its welcome

public static byte[] fetchUri(String url) {
 ...
 InputStream in = openUrl(url);
 byte[] response = new byte[0];
 byte[] readChunk = new byte[384];
 int byteSize = 0;
 while ((byteSize = in.read(readChunk)) != -1) {
 byte[] alreadyRead = response;
 response = new byte[alreadyRead.length + byteSize];
 mergeArrays(response, alreadyRead, readChunk);
 }
}

Monday, June 1, 2009

57

Fixing the problem

• Rewrite code to fit the problem
• Anticipate larger read sizes, read in pieces, zipper together only

at the end

• Result: 90% decrease in read times

public static byte[] fetchUri(String url) {
 ...
 InputStream in = openUrl(url);
 ArrayList <byte[]> responsePieces = new ArrayList <byte[]>();
 byte[] readChunk = new byte[2048];
 int biteSize = 0;
 int responseSize = 0;
 while ((biteSize = in.read(readChunk)) != -1) {
 responsePieces.add(readChunk);
 responseSize += biteSize;
 readChunk = new byte[2048];
 }
 byte[] fullResponse = new byte[responseSize];
 mergeArrays(fullResponse, responseSize);
}

Monday, June 1, 2009

58

Key Learnings

• Take care with reused or prototype code

• Log messages if code is used beyond tolerances

Monday, June 1, 2009

Monday, June 1, 2009

Pop quiz!

Monday, June 1, 2009

60

What’s gone wrong?

Monday, June 1, 2009

60

What’s gone wrong?

Monday, June 1, 2009

61

What change caused this slow down?

Monday, June 1, 2009

Q&A

Monday, June 1, 2009

