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Agenda

• Tool tour
– logcat
– traceview
– hierarchyviewer

• Real world usage
• Pop quiz!
• Q&A (pop quiz for me)
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The dialog of death
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Forensics
Where to begin the autopsy
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logcat
Your news feed
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logcat Levels Defined

• [E]rror
– A unexpected critical or non-recoverable failure happened

• [W]arning
– Something bad happened, but it was handled gracefully

• [I]nfo
– An important event occurred

• [D]ebug
– Something happened that may be useful in isolating a problem

• [V]erbose
– Something occurred in the normal course of operation that was 

expected.
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A simple case
The code can't break!

  public class UriReader extends Thread {
    public String uriToRead = null;
    @Override
    public void run() {
      DefaultHttpClient client = new DefaultHttpClient();
      HttpGet request = new HttpGet(uriToRead);
      try {
        InputStream reader = 
          client.execute(request).getEntity().getContent();
        while (reader.read() != -1);
      } catch (ClientProtocolException e) {
        Log.w(TAG, "Protocol exception while reading URL.");
      } catch (IOException e) {
        Log.e(TAG, "General I/O exception, exact type is: " + 
          e.getClass().getCanonicalName());
      }
    }
  }
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The scene of the crime
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Take a good look around
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The dialog of despair
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Warning signs
What’s that noise?

• Same process id, similar object count, similar sizes

Monday, June 1, 2009



14

Data Management

• Filters
– TAG:SEVERITY

• Smart tagging
– Meaningful
– Related

• !SPAM
– Precise
– Concise
– Privacy sensitive
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tracing and traceview

• Records every function entry and exit point
• Records how long execution took
• Provides a graphical representation of collected data

– Timeline view
– Call tree view

• Is a must-use for any developer serious about performance
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How to start tracing

public class ProfiledActivity extends Activity {
  protected void onCreate(Bundle savedInstanceState) {
    Debug.startMethodTracing();
  }
  ...
  public void onPause() {
    Debug.stopMethodTracing();
  }
}

• Starting and stopping trace data collection is simple

• Controls tracing for entire VM
• Tracing only what you need simplifies analysis

• Tracing has a big impact on performance

justin$ adb shell am profile com.example.foo profile start /
sdcard/trace_file
...
justin$ adb shell am profile com.example.foo stop
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Execution timeline
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Function statistics
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Function statistics
Details

• Name
• “Incl %” - percentage of time including descendants
• Inclusive - raw execution time including descendants
• “Excl %” - percentage of time sans descendants
• Exclusive - time spent executing code only within this function
• “Calls+Recur Calls/Total” - Number of times this method is called
• Time/Call - Average execution time per call
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Getting to the bottom (or top) of things

• The source of the issue may be above or below your code
• traceview allows you to easily navigate the call tree
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Getting to the bottom (or top) of things

• The source of the issue may be above or below your code
• traceview allows you to easily navigate the call tree
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Optimize reality

• traceview gives you a lot of power, take advantage of it
• Design sensibly, build proof of concept, test, and optimize
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HierarchyViewer
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Exploring the UI with HierarchyViewer
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Climbing the tree
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Climbing the tree
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Questionable families

• “Infertile parents” - layout with no or single layout children

• “Clones” - parents with same-type children
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<merge /> your @includes

<merge xmlns:android=”http://schemas.android.com/apk/res/
android”>
    <TextView
        android:layout_width=”wrap_content”
        android:layout_height=”wrap_content”
        android:text=”@string/header_section”
        android:textColor=”@colors/header_color” />
    <ImageView
        android:layout_width=”wrap_content”
        android:layout_height=”wrap_content”
        android:src=”@drawable/logo” />
</merge>

• Merge is a placeholder layout
• Children of <merge> go into the layout where they are included
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Traveler’s Tales: Betrayal 
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TraceView on a shipping product

• Why is something running on the main thread for that long?
• Must be a network request someone forgot to move to a thread
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com.ibm.icu4jni.util.Resources.getTimeZonesNative

• A call about time zones is taking this long?
• Wait, I’m not even doing anything with time zones
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com.ibm.icu4jni.util.Resources.getTimeZonesNative

• A call about time zones is taking this long?
• Wait, I’m not even doing anything with time zones
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com.ibm.icu4jni.util.Resources.getTimeZonesNative

• A call about time zones is taking this long?
• Wait, I’m not even doing anything with time zones
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Fixing the problem

• Move the call
• De-prioritize its execution
• Result: Better perceived startup time
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Fixing the problem

• Move the call
• De-prioritize its execution
• Result: Better perceived startup time

Monday, June 1, 2009



32

Key Learnings

• Trust no one

• A little profiling goes a long way

• Priority matters
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Traveler’s Tales: Finding shortcuts
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Search for hidden inefficiencies

• Look at the function listing for less obvious performance issues

• Sort by exclusive execution
– Shows inside which methods the program spends most of its time
– Long average time methods with a few calls are good targets
– Explore reducing and eliminating these calls
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Search for hidden inefficiencies
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Take a look around

• Explore ancestors and descendants of the method
• Use timeline line view to check what happens before and after 

the method
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Take a look around
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Take a look around
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Iterate the route into a circle (square?)
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Iterate the route into a circle (square?)

Parse response
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Iterate the route into a circle (square?)

Parse response C
reate B

itm
ap
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Iterate the route into a circle (square?)

Parse response C
reate B
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Compress Bitmap
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Fixing the problem

• Read in the full response
• Store the PNG
• Inflate Bitmap from PNG data
• Discard PNG data

• Result: Decrease startup time by 350ms 
– 2% in “debug time”, larger real time effect since its native code
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Key Learnings

• Big is beautiful

• Explore the area first

• Three rights can make a left
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Traveler’s Tales: Packing mistakes

Monday, June 1, 2009



42

Sorting by inclusive execution

• Includes execution time of methods code and its descendants
• List is somewhat like a breadth-first traversal of the call tree
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Sorting by inclusive execution

• Includes execution time of methods code and its descendants
• List is somewhat like a breadth-first traversal of the call tree
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Taking a look at the code

try {
  List<MyDataType> itemsProcessed = new ArrayList<MyDataType>();
  for (int i = 0; i < source.getNumItems(); i++) {
    Item currentItem = source.get(i);
    MyDataType processedItem = new MyDataType(currentItem);
    itemsProcessed.add(processedItem);
    itemProcessedCallback(itemsProcessed);
  }
} catch (IOException e) {
  Log.W(TAG, “Reading data failed, retrying”);
} catch (JSONException e) {
  Log.E(TAG, “JSON parsing failed”);
}

• Items will be processed several times, this seems wrong
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Fixing the problem

• Bug introduced when exception handling was refactored

• Result: Fewer calls to callback, 5% decrease in startup time

try {
  List<MyDataType> itemsProcessed = new ArrayList<MyDataType>();
  for (int i = 0; i < source.getNumItems(); i++) {
    Item currentItem = source.get(i);
    MyDataType processedItem = new MyDataType(currentItem);
    itemsProcessed.add(processedItem);
  }
  itemProcessedCallback(itemsProcessed);
} catch (IOException e) {
  Log.W(TAG, “Reading data failed, retrying”);
} catch (JSONException e) {
  Log.E(TAG, “JSON parsing failed”);
}
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Key Learnings

• Each angle of approach is valuable

• Analyzing performance can reveal unknown bugs
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Traveler’s Tales: Consolidating 
containers
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A “simple” layout examined
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A “simple” layout examined
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Fixing the Problem
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Fixing the Problem
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Fixing the Problem
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Fixing the Problem
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Fixing the Problem
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Fixing the problem
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Fixing the problem
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If it looks the same, who cares?

• Flatten for aerodynamic performance

• RelativeLayouts adapt to their environment

• RelativeLayouts force you to think
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Key Learnings

• Layouts are code too and 
will evolve iteratively

• LinearLayouts are simple to 
visualize and understand, 
but can result in overly 
complex, less flexible 
hierarchies

• Rationalization needs to 
happen to keep the layout 
comprehensible and efficient  

INSERT GLUED TOGETHER UI GRAPHIC
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Traveler’s Tales: Squeaky wheels
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What’s that noise?

• Same process id, similar object count, similar sizes

Monday, June 1, 2009



54

Allocation Tracker
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Allocation Tracking
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Using the right tool

• Problem caused by old code
– Used for speed and convenience, over-stayed its welcome

public static byte[] fetchUri(String url) {
  ...
  InputStream in = openUrl(url);
  byte[] response = new byte[0];
  byte[] readChunk = new byte[384];
  int byteSize = 0;
  while ( (byteSize = in.read(readChunk)) != -1) {
    byte[] alreadyRead = response;
    response = new byte[alreadyRead.length + byteSize];
    mergeArrays(response, alreadyRead, readChunk);
  }
}
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Fixing the problem

• Rewrite code to fit the problem
• Anticipate larger read sizes, read in pieces, zipper together only 

at the end

• Result: 90% decrease in read times

public static byte[] fetchUri(String url) {
  ...
  InputStream in = openUrl(url);
  ArrayList <byte[]> responsePieces = new ArrayList <byte[]>();
  byte[] readChunk = new byte[2048];
  int biteSize = 0;
  int responseSize = 0;
  while ( (biteSize = in.read(readChunk)) != -1) {
    responsePieces.add(readChunk);
    responseSize += biteSize;
    readChunk = new byte[2048];
  }
  byte[] fullResponse = new byte[responseSize];
  mergeArrays(fullResponse, responseSize);
}
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Key Learnings

• Take care with reused or prototype code

• Log messages if code is used beyond tolerances
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Pop quiz!
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What’s gone wrong?
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What’s gone wrong?
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What change caused this slow down?
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Q&A
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