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Correctness & Performance

 Correctness and performance are the heart of 
engineering.

 Correctness: the output is what you want.

 Performance: the output doesn’t cost too much.

 Where cost is any resource: time, space, 
energy, money, people, machines.



Correctness Requires 
Invariants

 Reasoning about program correctness requires 
invariants.
 Invariant: a sentence that is always true; that which 

does not change when all else is changing.

 Use invariants from which you can ensure correctness.

 Initialize invariants during construction;

 Maintain them during operation.

 If you aren’t thinking in terms of invariants, start now.

 If you get nothing else out of my talk, remember this.



Example Invariant:
Data-structures

 A doubly-linked list module/class maintains the 
invariant that (credit: Scott McPeak):

 x->next == null OR

 x->next->prev == x

 Many other data-structures are similar.
next

prev



Example Invariant:
Conservation of Money

 You are implementing a bank.

 Alice transfers $20 to Bob.

 But no “money” is actually “transferred”:

 numbers simply change within a machine.

 The illusion of transferring an object is 
maintained by several invariants, one being that

 the sum of all of the money does not change.



Scalability Requires
Distributed Computing

 Unbounded performance scalability requires a large 
and therefore distributed computing machine.

 “Small” machines give us the illusion of a single-point 
abstraction; this makes us lazy programmers.

 However, large/distributed machines are:

 non-reliable: ongoing random local failures,

 non-serial: operate in massive parallel, and

 non-synchronized: lack coordination of behavior.

 This is the future.



Distributed Computing 
makes Maintaining 

Invariants Hard
 Alice sends $20 to Bob.

 Step 1: $20 added to Bob’s account.

 Process times out / machine fails....

 The $20 was never subtracted from Alice’s 
account.

 Money has been created

 ... only the Federal Government can do that.



Transactions Maintain 
Invariants

 (Correctness) Let a “good” state be one where all 
invariants are satisfied.

 (Performance) To make something happen, 
invariants often must be temporarily violated.

 Call a set of operations that take us from one 
good state to another a “transaction”.



ACID:
The Correctness Perspective
 Correctness: program state stays within the subset of 

good machine states.

 Performance: something has to happen.

 Transactions jump the machine from state to state:

 Durable: states persist.

 Atomic and Isolated: there are no in-between states 
for yourself or others.

 Consistent: jump only from good state to good 
state.



ACID in Detail
 Durable: once a transaction is done, need that the 

changes persist.

 Atomic: machines fail & processes time out, need 
that the set of operations is all or nothing.

 Isolated: need that others see only states before 
or after the transaction, not in the middle.

 Isolated rather implies Atomic.

 Consistent: need that transactions only go from 
one good state to another good state.



Local Transactions
 If transaction data is localized: gathered onto one 

machine, one locality within the distributed system,

 then the process is easier to control and one may 
more easily implement the ACID properties.

 Google App Engine provides local txns:

 at obj. construction time objects may be grouped;

 a txn may only operate on the data of one group.

 But then only local invariants can be maintained !

 (Note that GAE is also strongly consistent.)



Google App Engine

 Google App Engine allows people to build 
applications that scale arbitrarily.

 However applications have been able to ensure 
local invariants,

 but not global ones...

 Until now.



Algorithm Overview
 Run client:

 serve reads and record their version numbers;

 buffer writes in shadow objects.

 Get write locks on written objects in key-order.

 Check version numbers of read objects;
 also check they are not write locked.

 Copy shadows to their user objects in a local txn;

 also update object version numbers and
 delete write locks and shadows.



Optional Cooperation
 These actions not needed for correctness, but 

should help reduce aborts due to contention.

 Readers wait: when read an object having a write 
lock, wait until the write lock is gone; otherwise we 
will abort later.

 Simple and likely effective.

 Writers wait: before getting write locks, query for 
DTs reading it and wait if is unusually large; 
otherwise we abort them.

 Needs calibration and may not be effective.



This is Not as Easy
As It Looks

 Deadlock prevention: holding locks creates a waits-
for graph; a cycle means no progress will be made.

 Ongoing progress: a DT must not languish for lack 
of attention if it’s thread times-out.

 Concurrent roll-forward: once past the client stage, 
other threads may have to roll-forward a DT in 
parallel; doing so must maintain correct operation.

 Proof of Isolation: guarantee that some serialization 
of the transactions is possible.



Deadlock Prevention

 We use the traditional method of preventing 
deadlock: lock the objects in an order consistent 
with a shared total order.

 We use the string ordering on the object keys.

 A DT can only wait for locks later in the order 
than the ones it already holds.

 Therefore there can be no cycle in the wait-for 
graph.



Ongoing Progress
 ... requires many subtleties to be handled correctly:

 A read-storm (mostly) cannot keep out a write: 
write lock taken but write not operated until reads 
complete.  (A “read hurricane” will defeat it though.)

 When blocked on another DT, pause and roll it 
forward,

 optimization: but only after it is more than about 
10 seconds old (clocks are only approx. synch’ed).

 The client should roll forward DTs for same user 
before creating more DTs; we provide a way for that.

 We take care to not create garbage.



Concurrent Roll-Forward

 In the Client Operation stage, the transaction is single-
threaded and a timeout aborts it;

 However all later stages may be concurrently 
rolled-forward.

 Therefore all stages of getting locks, copying shadows, 
and releasing locks must be

 Monotonic: states progress in a sequence that can 
never go back.



Monotonic Locking
 How to get and release locks in monotonic way?

 Getting goes in one direction and releasing goes in 
another.  Different threads could fight over the lock.

 Example: three monotonic stages of writing

 Create a shadow object in the same entity group as 
the user object when the client writes.

 Get a write lock by writing the key of the DT into 
the object to be locked.

 Copy and delete the shadow and delete the write 
lock in one local transaction on the user object.



Need Strong Consistency 

 Vogels: "Eventual consistency: the storage system 
guarantees that if no new updates are made to the object, 
eventually all accesses will return the last updated value".

 Vogels: "Strong consistency: After the update completes, 
any subsequent access [by any process in the system] will 
return the updated value."  We need that.



Saving Users from 
Themselves 

 Distributed and Local txns don’t mix.  Erick and 
Ryan require an object to be DT or LT flavored.

 Local txns don’t honor the Distributed txn locks.

 Read then Write then Stop: client reads x=1, writes 
x=2, then reads x again; writes are buffered, so the 
client will read x=1 !

 Thus, allow neither reads nor writes after a write.

 Did my DT finish?: the client must query for any 
timed-out DTs and first roll them forward.

 User can query for async complete/abort DTs.



Queries Are Not Handled 
 We provide no transactional semantics for queries,

 only for reads and writes on sets of objects 
specified directly by the object key.

 In Google App Engine, queries can return objects 
that do not satisfy the query and can fail to return 
objects that do satisfy the query.

 Modulo that, you are free to make a query and then 
mark as read all object returned from a query.

 Further work on queries is needed.  Providing 
transactional semantics is very predicate-dependent.



ACID Correctness 
Example, Isolation

 The hardest part of proving that we provide the ACID 
properties is showing Isolation.

 Example:

 DT1 has write locks on objects A and B and has 
written A but not yet B.

 DT2 reads both A and B -- an inconsistent read!

 As Simon says, “we want to make sure that DT2 is 
doomed”.



An Inconsistent Read
is Doomed (cont.)

 DT1 has written A but not B; DT2 has read A and B.

 DT2 has an inconsistent read and we want it to fail.

 If DT1 completes first

 when DT2 tries to complete, it will fail when doing 
the version number check on B.

 If DT2 tries to complete first

 it cannot because DT1 still has the write locks on 
A and B and will fail the write lock check.



Detailed Example Transcript
Continuing the previous example, here is a possible transcript.

Initial: Alice, balance: $200; Bob, balance: $100.

DT1: Client Operation start: transfer $20 from Alice to Bob.
DT1: Client Operation done.
DT1: Get Locks.
DT1: Read Check (no changes written yet...).

DT2: Client Operation start: transfer $190 from Alice to Bob.
DT2: Alice, balance: $200; Bob, balance: $100.
DT2: Client Operation done.

DT1: Copy Shadows (incl. updating version nums) and DONE.

DT2: Get Locks.
DT2: Read Check version number check fails; ABORT!

Final: Alice, balance: $180; Bob, balance: $120.



Future Work

 Queries within transactions?

 Locking is very dependent upon the predicate.

 Do we need the underlying layer to be strongly 
consistent?

 Performance?

 Deep integration with GAE/Big Table 
infrastructure?



Conclusion

 Distributed Transactions on Google App Engine exist.

 Let us know if they help you.


