
Confidential

Effective GWT: Developing a complex, high-

performance app with Google Web Toolkit

Confidential

Examples

Code for the examples is available from

development.lombardi.com

Confidential

GWT – What and Why?

‣ GWT is a toolkit that allows you to write Java code that will be

compiled into JavaScript and executed client side in a user’s

browser.

‣ You can use your favorite Java based tools to develop, test

and debug your web application.

‣ It handles some of the differences between how different

browsers handle JavaScript and the HTML DOM so you don’t

have to.

‣ The compiler optimizes JavaScript allowing you to write faster

than possible JavaScript.

‣ Can integrate with existing JavaScript code and libraries.

Confidential

QUICK DEMO

To provide some context if you’ve not seen Blueprint before

Confidential

UI DEVELOPMENT

UI Development is an infinite capacity for taking pains

Confidential

Wireframe

Confidential

Interaction Mockup

‣ Still an open question for us.

‣ We use PowerPoint or Keynote at the moment.

‣ Investigating iPlotz

Confidential

High Fidelity Mockup

Confidential

Going to code

‣ Be involved in the design.

‣ You need to know CSS and the HTML DOM.

‣ Fundamentally.

• What’s the appropriate DOM structure?

• How create and manipulate with GWT?

‣ GWT removes browser specific JS and DOM issues

• But you still have to deal with cross browser CSS

• And the browser quirks

Confidential

Example UI

Confidential

Confidential

Header

Confidential

Header

Confidential

Header

Confidential

Header

Confidential

Building the header (1)

private Widget buildHeader(ClickHandler buttonHandler) {

Label authorCount =

new Label(messages.numberOfAuthors(0));

Label description =

new Label(messages.authorsDescription());

FlowPanel left = new FlowPanel();

left.setStyleName("left");

left.add(authorCount);

left.add(description);

addButton = new Button(messages.add());

addButton.addClickHandler(buttonHandler);

Confidential

Building the header (2)

FlowPanel right = new FlowPanel();

right.setStyleName("right");

right.add(addButton);

FlowPanel header = new FlowPanel();

header.setStyleName("header");

header.add(left);

header.add(right);

return header;

}

Confidential

Outer Panel

Confidential

Outer Panel

public class RoundedContainerWithHeader

extends Composite {

…

public RoundedContainerWithHeader(Widget header,

Widget content) {

this.header = header;

this.content = content;

DecoratorPanelWithHeader panel =

new DecoratorPanelWithHeader();

initWidget(panel);

setStyleName("roundedContainerWithHeader");

}

Confidential

Rounded Corners CSS

.roundedContainerWithHeader .topLeft {

background-image: url(“images/top_left.gif");

background-repeat: no-repeat;

width: 12px;

height: 43px;

}

.roundedContainerWithHeader .topCenter {

background-image: url(“images/top_repeat.gif");

background-repeat: repeat-x;

height: 43px;

}

Confidential

Handling Window Resizing

‣ The content in the center cell reveals a resizing issue.

‣ With static HTML you’re limited to what you can achieve with

CSS.

‣ With GWT you can do programmatic layout.

‣ Listen for the ResizeEvent from the window and propagate

sizes down to children.

Confidential

Extending DecoratorPanel

private void setHeader(Widget header) {

DOM.appendChild(getCellElement(0, 1),

header.getElement());

adopt(header);

}

public Iterator<Widget> iterator() {

// Need to return header here.

}

http://development.lombardi.com/?p=644

Confidential

List and Row

Confidential

Highlighting Rows (1)

‣ Done by adding and removing a CSS class

‣ Use mouseOver and mouseOut

private static MouseOverHandler mouseOverHandler =

new MouseOverHandler() {

public void onMouseOver(MouseOverEvent

mouseOverEvent) {

Row row = (Row) ((FocusPanel)

mouseOverEvent.getSource()).getParent();

row.mouseOver();

}

};

…

private void mouseOver() {

getWidget().addStyleName("focussed");

}

Confidential

Highlighting Rows (2)

‣ Additional class added to row

‣ Used to set background images

.row .rightEndCap {

float: right;

width: 10px;

height: 23px;

background-color: white;

}

.row.focussed .rightEndCap {

background-image: url(”focus_right_end_cap.gif");

}

Confidential

Animation

‣ You must use JavaScript, and therefore GWT (no CSS3 yet)

‣ A little animation goes a long way.

‣ Helps users understand the behavior of the application.

‣ Generally you change

• Size

• Position

• Opacity

Confidential

Fading rows

‣ Rows fade in when added and out when removed.

‣ Subclass GWT Animation class

‣ Each animation has

• onStart- Some initial processing

• onUpdate- Called from timer on regular basis

• onComplete- After animation is finished

• onCancel – If animation is cancelled

Confidential

Fading Rows

Row

FadingRow

Animation

FadeInAnimation

onUpdate()fadeIn()

uses

Confidential

Adding the row

private FlowPanel listPanel;

…

private void addUser() {

FadingRow row = new FadingRow(…);

listPanel.add(row);

row.fadeIn();

}

Confidential

Fade In

public class FadingRow extends Row {

…

public void fadeIn() {

runningAnimation = new FadeInAnimation(this);

runningAnimation.run(750);

}

…

public class FadeInAnimation extends Animation {

…

private Element e;

…

protected void onUpdate(double progress) {

DOMHelper.setOpacity(e, progress);

}

Confidential

PERFORMANCE

Demo …

Confidential

Original Implementation

‣Typical MVC Design

‣Created GWT widgets for each item on the

diagram and attached handlers to each widget.

for each item (complete object containing all our data properties)

ActivityWidget widget = new ActivityWidget()

widget.addKeyPressHandler(…)

widget.addMouseDownHandler(…)

root.add(widget)

ActivityWidget()

FlowPanel panel = new FlowPanel()

TextBoxtextBox = new TextBox()

Image gotoLinkedImage = new Image()

panel.add(textBox)

panel.add(gotoLinkedImage)

…

Create a complex widget

with nested components.Add handlers to the widget
Add the widget to the root

Confidential

This Has Some Problems

‣This design is very heavy. It creates lot of

Javascript objects including multiple UI widget

objects for each item and multiple handler

objects.

‣Handler objects could have been reused since

they provide the appropriate Widget when called.

‣But requires attaching handlers to each widget.

‣This standard design is used for most of our

application, but the diagram was too complicated

for it.

Confidential

New Implementation

‣Goal #1: render as quickly as possible.

‣Generate raw HTML in Javascript.

‣Use a fly-weight pattern for event handling.

‣Two classes and instances for each type of

object (Activity, Decision, Line, Swimlane,

etc.). One for rendering HTML and one for

event handling.

‣One handler for the entire diagram.

Confidential

Rendering

StringBuilder buffer = new StringBuilder()

for each item

switch (item.type)

case Activity: ActivityRenderer.render(buffer, item)

…

DOM.setInnerHTML(rootElement, buffer.toString())

ActivityRenderer.render(StringBuilder buffer, Activity item)

buffer.append(“<div id=„”)

buffer.append(item.getId())

buffer.append(“‟ class=„activity‟ style=„left:”)

buffer.append(String.valueOf(item.getX())

buffer.append(“px‟>”)

buffer.append(item.getName())

buffer.append(“</div>”)

Create HTML for each item

Stuff all of it into the DOM in one go

Create a buffer for all the

HTML

Confidential

Event Handling

<div class=„diagram‟>

<div id=‟1‟ class=„activity‟ style=„left:10px;top:10px‟>

<table><div>…My First Activity Name…</div></table>

</div>

<div id=‟2‟ class=„activity‟ style=„left:50px;top:10px‟>

<table><div>…My Second Activity Name…</div></table>

</div>

</div> User clicks on innermost DIV

Event bubbles up to the top element and includes the deepest

element that was clicked on.

Confidential

Event Handling

Diagram()

sinkEvents(Event.ONMOUSEDOWN | Event.ONDBLCLICK |…)

public void onBrowserEvent(Event event)

Element target = event.getEventTarget();

String itemId;

do {

itemId = target.getAttribute(“id”)

if (itemId == null) {

target = target.getParentElement();

}

} while (itemId == null);

int type = getType(itemId)

EventHandler handler = getHandler(type)

switch (event.getTypeInt()) {

case Event.ONMOUSEOVER: handler.onMouseOver(event, itemId)

…

}

Innermost DIV user clicked

on.

Walk up the tree until we

find the root element for

the item.

Get the specific handler for

this item type.

Let the specific handler

handle the event.

Enable a single handler for

the entire diagram.

Confidential

Event Handling…Need Some Help

‣All we have to work with after rendering is HTML (the

DOM).

‣Need useful data structures to handle events.

‣Construct those data structures later after rendering

by using the information in the DOM.

‣Data structures can be simpler than a complete UI

Widget.

Confidential

Event Handling…Need Some Help

public void setRenderedHTML(String html)

DOM.setInnerHTML(root, html)

DeferredCommand.addCommand(new Command() {

public void execute() {

createCache()

}

}

public void createCache() {

for (int index; index < root.getChildNodes().getLength(); index++) {

Element item = root.getChildNodes().getItem(index);

String id = item.getAttribute(“id”);

int x = item.getStyle().getProperty(“left”);

…

new DiagramObject(id, x, y, …)

}

}

Execute deferred to allow the

browser to display the HTML

The DOM has all the data we

need

All the HTML for the diagram

Confidential

When All Else Fails

‣Dual compile your code to Javascript and Java bytecode.

‣ If code is too slow to run on the client, run it on the server.

‣The Java VM is *much* faster than the Javascript engine
in IE6 (it’s faster in IE7 and FF).

‣A simple algorithm:
• Run the command on the client the first time.

• If at any point, the average client time is slower than some
threshold, run the next command on the server.

• From then on, run the command on whichever has the best
average time.

‣For us the RPC interface is almost entirely HTML. This
works well since we already have the ability to generate
the data structures we need from HTML.

Confidential

Server Side In Action

‣ Demo …

Confidential

Miscellaneous Tips

‣ To save compile time during development, compile only for the
browser you’re actively working on and only compile the
modules you’ve changed.

<module>

<inherits name='com.google.gwt.user.User'/>

<source path="client"/>

<!– ie6, gecko, gecko1_8, safari or opera -->

<!--

<set-property name="user.agent" value="ie6"/>

-->

</module>

Confidential

And Finally…

‣ Put as many style constants as possible in CSS and avoid
calling Element.getStyle().setProperty().

‣ Avoid using iterators over lists (unnecessary object creation).

‣ Use IncrementalCommand to handle large lists.

‣ For performance or non-hosted mode testing create your own
“console” using an HTML frame and document.write. You can
also use the gwt-log library or the Logging library from the gwt
incubator.

Confidential

