


Google’s HTML5 Work: 
What’s Next?

Matthew Papakipos
May 27, 2008

Post your questions for this talk on Google Moderator:
code.google.com/events/io/questions



Browsers Started a Revolution that Continues

In 1995 Netscape introduced JavaScript
In 1999, Microsoft introduces XMLHTTP
In 2002, Mozilla 1.0 includes XMLHttpRequest natively

... Then web applications started taking off ...

In 2004, Gmail launches as a beta
In 2005, AJAX takes off (e.g. Google Maps)

... Now web applications are demanding more capabilities



What New Capabilities do Webapps Need?

Plugins currently address some needs, others are still not 
well addressed

Playing video
Webcam / microphone access
Better file uploads
Geolocation
Offline abilities
3D
Positional and multi-channel audio
Drag and drop of content and files into and out of webapps

Some of these capabilities are working their way through 
standards process



Our Goal

Empower web applications
If a native app can do it, why can’t a webapp?
Can we build upon webapps strengths?

Understand what new capabilities are needed
Talking to application developers (you!)
Figure out what native applications people run

And what web applications serve similar purposes
And what native applications have no web equivalent

Implement (we’re going full speed ahead...)
We prototyped in Gears
Now we’re implementing natively in Google Chrome

Standardize



<canvas>

One of the first HTML5 additions to be implemented by 
browsers – in Safari, then Firefox and Opera. (We got it for 
free in Google Chrome from WebKit). 
Provides a surface on which you can draw 2D images
See creative uses in the client pod outside
Talk of extending the model for 3D (more later)

// canvas is a reference to a <canvas> element
var context = canvas.getContext('2d');
context.fillRect(0,0,50,50);
canvas.setAttribute('width', '300'); // clears the canvas
context.fillRect(0,100,50,50);
canvas.width = canvas.width; // clears the canvas
context.fillRect(100,0,50,50); // only this square remains

(reproduced from http://www.whatwg.org/specs/web-apps/current-
work/#canvas with permission)



<canvas> Demo



Local Storage

Provides a way to store data client side
Useful for many classes of applications, especially in 
conjunction with offline capabilities
2 main APIs provided: a database API (exposing a SQLite 
database) and a structured storage api (key/value pairs)
Implementation under way in Google Chrome, already 
working in WebKit.

db.transaction(function(tx) {
tx.executeSql('SELECT * FROM MyTable', [], 
function(tx, rs) {
for (var i = 0; i < rs.rows.length; ++i) {
var row = rs.rows.item(i);
DoSomething(row['column']);
}
}); 
}); 



Workers

Native apps have threads and processes
Workers provide web apps with a means for concurrency
Can offload heavy computation onto a separate thread so 
your app doesn’t block
Come in 3 flavors

Dedicated (think: bound to a single tab)
Shared (shared among multiple windows in an origin)
Persistent (run when the browser is “closed”)

Implementation is ongoing in WebKit and Google Chrome



Application Cache

Application cache solves the problem of how to make it 
such that one can load an application URL while offline and 
it just “works”
Web pages can provide a “manifest” of files that should be 
cached locally
These pages can be accessed offline
Enables web pages to work without the user being 
connected to the Internet
Implemented in WebKit, implementation ongoing in Google 
Chrome



<video>

Allows a page to natively play video
No plugins required
As simple as including an image - <video src=“video.mp4”>

Has built-in playback controls
Stop
Pause
Play

Scriptable, in case you want your own dynamic control
Chrome will support MP4 (H.264 + AAC), and Ogg (Theora 
+ Vorbis)
Implemented in WebKit, implementation under way in 
Google Chrome (now in dev channel).



<video> Demo



Rich Text Editing

contentEditable implementations vary widely between 
browsers
Behaviour for simple things, such as selection ranges, is 
not well defined in any spec
Currently helping to define a specification for existing 
behaviour, as well as improvements for new functionality

Specify exactly what selections select
Add execCommand to additional events where it makes 
sense
getData(‘text/html’) for paste and drop events

No reason web apps should have to ship 200KB to do rich 
text editing



Notifications

Alert() dialogs are annoying, modal, and not a great user 
experience
Provide a way to do less intrusive event notifications
Work regardless of what tab / window has focus
Provide more flexibility than an alert() dialog
Not currently in any standard, we’re currently prototyping



Web Sockets

Allows bi-directional communication between client and 
server in a cleaner, more efficient form than hanging gets 
(or a series of XMLHttpRequests)

Specification is under active development



3D APIs

Canvas 3D, developed by Mozilla, is a command-mode API 
that allows developers to make OpenGL calls via 
JavaScript
O3D is an effort by Google to develop a retain-mode API 
where developers can build up a scene graph and 
manipulate via JavaScript, also hardware accelerated
Discussion on the web and in standards bodies to follow



And So Much More…

There’s much work that we haven’t even started yet.
Some is well defined

Geolocation
Forms2
Datagrid

Many things less defined
P2p APIs
Better drag + drop support
Webcam / Microphone access
O/S integration (protocol / file extension handlers and more)
Managing uploads, “blobs”, file APIs
And more



Our Work in a Nutshell

Web sockets, 
more CSS3 
support hits
dev channel

<video> hits dev channel, with 
local storage, appcache, and 
workers following

Polish work 
on above

Additional APIs 
(TBD) to better 
support web 
applications



Post your questions for this talk on Google Moderator:
code.google.com/events/io/questions

Q & A




