

Building scalable, complex
apps on App Engine
Brett Slatkin
May 27th, 2009

Agenda

List properties
What they are, how they work
Example: Microblogging
Maximizing performance

Merge-join

What it is, how it works; list property magic
Example: Modeling the social graph

Moderator

http://tinyurl.com/complextalk

http://tinyurl.com/complextalk

List properties

What is a list property?

Property in the Datastore that has multiple values
An ordered list that maintains its order
Queried with an equals filter

Any value in the list may cause a match
Sort order not useful without a composite index

As easy as:

 class Favorites(db.Model):
 colors = db.StringListProperty()
 username = db.StringProperty()

fav.colors = ["red", "blue", "green"]

Why use list properties?

Densely pack information
Track lists of related items
Use multiple parallel properties for storing "tuple"-
like data

Easy: compare to this one-to-many query

class FavoriteColors(db.Model):
 color = db.StringProperty()
 username = db.StringProperty()

db.GqlQuery(
 "SELECT * FROM FavoriteColors "
 "WHERE username = :1", ...)

Why use list properties? (2)

Great for answering set-membership questions
e.g., Which users like the color yellow?

Great fan-out capability: cut across all your data
This query matches any value of "yellow" in users'
lists of favorite colors across all FavoriteColors
entities.

results = db.GqlQuery(
 "SELECT * FROM FavoriteColors "
 "WHERE color = 'yellow'")

users = [r.username for r in results]

Why use list properties? (3)

Avoids storage overhead
Each list item only has an index entry
No keys for entities in a one-to-many relationship
No entry in the "by-kind" index

Ultimately: Saves you a ton of storage space
Simpler to understand than a normalized schema

It's just a list!

Why use list properties? (4)

Gotchas
Uses more CPU for serializing/deserializing the
entity when it's accessed
Works with sort orders only if querying a single list
property; otherwise indexes "explode"

Concrete example: Microblogging

Essentially: Publish/subscribe, broadcast/multicast
Users send a single message that goes to many
other users

It's a great example of fan-out

One user action causes a lot of work
Work leaves large amount of data to surface
Fan-out is hard!

Fan-out can be inefficient, require duplicate data
Send a copy of a message to N users

Concrete example: Microblogging (2)

Efficient fan-out should not duplicate any data
Only overhead is cost of indexes

Concrete example: Microblogging (3)

Concrete example: Microblogging, with RDBMS

User ID ...

1 ...

2 ...

Users table
Message ID Body
56 Hi there....

57 Echo...

Messages table

User ID Message ID

1 56

1 82

UsersMessages table

Concrete example: Microblogging, with RDBMS (2)

SQL query to find messages for user 'X' would be:

 No joins on App Engine-- how do we do this?
List properties to the rescue!

SELECT * FROM Messages
INNER JOIN UserMessages USING (message_id)
WHERE UserMessages.user_id = 'X';

Concrete example: Microblogging, with App Engine

class Message(db.Model):
 sender = db.StringProperty()
 receivers = db.StringListProperty()
 body = db.TextProperty()

results = db.GqlQuery(
 "SELECT * FROM Message "
 "WHERE receivers = :1", me)

That's it!
This is how Jaiku works

Concrete example: Microblogging, with JDO

@PersistenceCapable(
 identityType=IdentityType.APPLICATION)
public class Message {
 @PrimaryKey
 @Persistent(valueStrategy=
 IdGeneratorStrategy.IDENTITY)
 Long id;

 @Persistent String sender;
 @Persistent Text body;
 @Persistent List<String> receivers;
}

Concrete example: Microblogging, with JDO (2)

pm = PMF.get().getPersistenceManager();
Query query = pm.newQuery(Message.class);
query.setFilter("receivers == 'foo'");
List<Message> results =
 (List<Message>) query.execute();

Concrete example: Microblogging Demo

List property performance

Index writes are done in parallel on Bigtable
Fast-- e.g., update a list property of 1000 items
with 1000 row writes simultaneously!
Scales linearly with number of items
Limited to 5000 indexed properties per entity

Storage cost same as traditional RDBMS

RDBMS: User key + message key
Datastore: Entity key + list property value

List property performance (2)

Downside: Serialization overhead

Writes must package all list values into one serialized
protocol buffer

OK because writes are relatively infrequent

But queries must unpackage all result entities
When list size > ~100, reads are too expensive!
Slow in wall-clock time
Costs too much CPU

Improving list property performance

Querying for messages should only return the
message information

We don't care about the list properties after
querying; this is why inner joins are useful

What if we could selectively skip certain properties
when querying?

Would avoid the serialization cost
Ideally, it would be great to do this in GQL:

SELECT foo, bar FROM MyModel ...
But this is not available...

Solution-- Relation index entities

Split the message into two entities
Message model contains the info we care about
MessageIndex has only relationships for querying

class Message(db.Model):
 sender = db.StringProperty()
 body = db.TextProperty()

class MessageIndex(db.Model):
 receivers = db.StringListProperty()

Solution-- Relation index entities (2)

Put entities in the same entity group for transactions

Solution-- Relation index entities (3)

Do a key-only query to fetch the MessageIndexes
Transform returned keys to retrieve parent entity
Fetch Message entities in batch

 Our Datastore works like this under the covers

indexes = db.GqlQuery(
 "SELECT __key__ FROM MessageIndex "
 "WHERE receivers = :1", me)

keys = [k.parent() for k in indexes]
messages = db.get(keys)

Concrete example: Microblogging Demo (2)

Relation index entities: Conclusion

Performance is much better
Writes same cost, reads ~10x faster/cheaper

Best of both worlds with list properties:
Low storage cost, low CPU cost

Even better: Scalable indexes

Need more indexes? Write multiple relation index
entities per Message
Add indexes in the background (with Task Queue)
Solution for the million-fan-out problem
No need for schema migration!

Relation index entities: Conclusion (2)

Scalable indexes

Merge-join

What is merge-join?

People say we don't support joins -- not totally true!
We do not support natural, inner, or outer joins

We do support "merge-join" queries
A type of self-join query; join a table with itself
Combine many equality tests into a single query
Determines Venn-diagram-like overlaps in sets

 Example

Why use merge-join?

Great for exploring your data
Practical limit of equality tests is high (10+ filters)

No need to build indexes in advance
Ad-hoc queries
Reduces cost

Provides advanced functionality

Example query in Gmail: Various labels,
read/unread, month/year/day, number of replies,
recipients, etc

Example merge-join

class Animal(db.Model):
 has = db.StringListProperty()
 color = db.StringProperty()
 legs = db.IntegerProperty()

results = db.GqlQuery(
 """SELECT * FROM Animal WHERE
 color = 'spots' AND
 has = 'horns' AND
 legs = 4""")

How does merge-join work?

Not available in raw Bigtable
Similar optimizations in other DB systems

All property indexes are stored in sorted order
Datastore does a merge-sort at runtime
Uses a "zig-zag" algorithm to efficiently join tables

Scan a single Bigtable index in parallel

How does merge-join work?

Not available in raw Bigtable
Similar optimizations in other DB systems

All property indexes are stored in sorted order
Datastore does a merge-sort at runtime
Uses a "zig-zag" algorithm to efficiently join tables

Scan a single Bigtable index in parallel

Is this a Google Interview? :(

Example merge-join

Row key
color=red,key=ant
color=spots,key=bear
color=spots,key=cow
color=white,key=dog

Row key
has=hair,key=cat
has=horns,key=cow
has=jaws,key=lion
has=jaws,key=shark

Row key
legs=2,key=falcon
legs=2,key=pigeon
legs=4,key=cat
legs=4,key=cow

(Tables represent
property indexes)

Example merge-join

Row key
color=red,key=ant
color=spots,key=bear
color=spots,key=cow
color=white,key=dog

Row key
has=hair,key=cat
has=horns,key=cow
has=jaws,key=lion
has=jaws,key=shark

Row key
legs=2,key=falcon
legs=2,key=pigeon
legs=4,key=cat
legs=4,key=cow

(Tables represent
property indexes)

Example merge-join

Row key
color=red,key=ant
color=spots,key=bear
color=spots,key=cow
color=white,key=dog

Row key
has=hair,key=cat
has=horns,key=cow
has=jaws,key=lion
has=jaws,key=shark

Row key
legs=2,key=falcon
legs=2,key=pigeon
legs=4,key=cat
legs=4,key=cow

(Tables represent
property indexes)

Example merge-join

Row key
color=red,key=ant
color=spots,key=bear
color=spots,key=cow
color=white,key=dog

Row key
has=hair,key=cat
has=horns,key=cow
has=jaws,key=lion
has=jaws,key=shark

Row key
legs=2,key=falcon
legs=2,key=pigeon
legs=4,key=cat
legs=4,key=cow

(Tables represent
property indexes)

Zig!

Example merge-join

Row key
color=red,key=ant
color=spots,key=bear
color=spots,key=cow
color=white,key=dog

Row key
has=hair,key=cat
has=horns,key=cow
has=jaws,key=lion
has=jaws,key=shark

Row key
legs=2,key=falcon
legs=2,key=pigeon
legs=4,key=cat
legs=4,key=cow

(Tables represent
property indexes)

Zig!

Example merge-join

Row key
color=red,key=ant
color=spots,key=bear
color=spots,key=cow
color=white,key=dog

Row key
has=hair,key=cat
has=horns,key=cow
has=jaws,key=lion
has=jaws,key=shark

Row key
legs=2,key=falcon
legs=2,key=pigeon
legs=4,key=cat
legs=4,key=cow

(Tables represent
property indexes)

Example merge-join

Row key
color=red,key=ant
color=spots,key=bear
color=spots,key=cow
color=white,key=dog

Row key
has=hair,key=cat
has=horns,key=cow
has=jaws,key=lion
has=jaws,key=shark

Row key
legs=2,key=falcon
legs=2,key=pigeon
legs=4,key=cat
legs=4,key=cow

(Tables represent
property indexes)

Zag!

Example merge-join

Row key
color=red,key=ant
color=spots,key=bear
color=spots,key=cow
color=white,key=dog

Row key
has=hair,key=cat
has=horns,key=cow
has=jaws,key=lion
has=jaws,key=shark

Row key
legs=2,key=falcon
legs=2,key=pigeon
legs=4,key=cat
legs=4,key=cow

(Tables represent
property indexes)

Essentially: Users have a profile and a set of friends
Use merge-join on list properties-- magic!

Answer queries about relationships
Who are my friends?
Who are my friends in location L?
Which friends do I have in common with person P?
Which friends do I have in common with person P
in location L?

For simplicity, this example assumes all relationships
are two-way

Concept also works for directed acyclic graphs

Concrete example: Social graph

Concrete example: Social graph (2)

Concrete example: Social graph (2)

Concrete example: Social graph (2)

Concrete example: Social graph, with RDBMS

User ID Location ...

1 San Francisco ...

2 New York ...

Person table

UserA ID UserB ID

56 5

57 1

Friends table

Concrete example: Social graph, with RDBMS (2)

SQL query to find friends of user 'X':

To also filter by location, add:

SELECT * FROM Users
INNER JOIN Friends
ON Users.user_id = Friends.user_b_id
WHERE Friends.user_a_id = 'X'

 AND Users.location = 'San Francisco'

Concrete example: Social graph, with RDBMS (3)

SQL query to find friends common to 'X' and 'Y':

 No inner joins in App Engine, what now?
We do have merge-join; we can do self-joins!

SELECT * FROM Users
INNER JOIN Friends f1, Friends f2
ON Users.user_id = f1.user_b_id AND
 Users.user_id = f2.user_b_id
WHERE f1.user_a_id = 'X' AND
 f2.user_a_id = 'Y' AND
 f1.user_b_id = f2.user_b_id

Concrete example: Social graph, with App Engine

class Person(db.Model):
 location = db.StringProperty()
 friends = db.StringListProperty()

db.GqlQuery(
 """SELECT * FROM Person WHERE
 friends = :1 AND
 friends = :2 AND
 location = 'San Francisco'""",
 me, otherguy)

That's it!
Add as many equality filters as you need

Concrete example: Social graph Demo

Merge-join performance

Scales with number of filters and size of result set
Best for queries with fewer results (less than 100)

Similar access performance as list properties
Same read/write speed
No extra storage overhead
Can avoid serialization with relation index entities

Merge-join performance (2)

Gotchas
Watch out for pathological datasets!

Too many overlapping values = lots of zig-
zagging

Doesn't work with composite indexes because of
"exploding" index combinations
That means you can't apply sort orders!

Must sort in memory

Wrap-up

Wrap-up

Use list properties and merge-join for many things
Fan-out
Geospatial info
Relationship graphs
"Fuzzy" values

Think about how to convert your queries into "set
membership" tests
Compute membership at write time, enjoy fast reads!

Wrap-up (2)

Demos available with source code
http://pubsub-test.appspot.com
http://dagpeople.appspot.com

More info on our site

http://code.google.com/appengine

http://pubsub-test.appspot.com
http://dagpeople.appspot.com
http://code.google.com/appengine

Questions?

