

Dissecting a
Google Chrome Extension

Aaron Boodman
May 2009

Google @®

Administrativa

e Introductions
e Caveats
e Agenda
o Three cool things about Google Chrome
Extensions

But First: Why Extensions?

e Seriously, Why ?

But First: Why Extensions?

e Seriously, Why ?
e YOU made us

Project Home Wiki Issues
New issue | Search | Openissues v | for | areaexensions | | Advanced search | Search tips

Issue 18: Wishlist: Chrome does not have an addon-system
808 people starred this issue and may be notified of changes.

Status: Available Reported by florian. haas, Sep 02, 2008
Owner: all-bugs-test@chromium.org product Version s all

Type-Feature URLs (if applicable) : not applicable

i Other browsers tested:

Pri-2 Add OK or FAIL after other browsers where you have tested this issue:
O0S-All Safari 3: Fail

Firefox 3: Pass

Area-Extensions))
IE 7: partial Fail

Mstone-X

Go 3Ic 09 @

But First: Why Extensions?

e Seriously, Why ?
e YOU made us

Some other good reasons:

e Keep Chrome minimal

e A customized browser for every
user

e Prototype new feature ideas

- CT1: Extensions are Web Pages

HTML, CSS, and JavaScript

e Extensions are packages (zip files) containing
HTML, CSS, and JavaScript

e Each piece of Ul in an extension is a fully-
functioning webpage

e \Writing extensions is just like writing web pages.
Use the same debugging tools, the same JavaScript
libraries, and the same techniques.

e There's an easy, iterative development cycle

o Try it! Google:

http://www.google.com/search?q=chrome extensions howto

We make them look good

<div 1d="button' class="toolstrip-button™

Subscribe

</div>

P Gmail - Inbox (153) tree: open) Subscribe

e But you can use all your CSS tricks, if you want
e ... Or pick up some new tricks for webkit-specific CSS
extensions.

Cross-origin XMLHttpRequest

var req = new XMLHttpRequest();

req.open("GET", "http://www.google.com/reader/api/0/...",
true);

req.onreadystatechange = function() {

s
req.send(false);

e Shared cookie jar with web content
e Extensions declare the origins they want access to in the
manifest

HTMLS Local Storage

localStorage.setltem("foo", "bar");
console.log(localStorage.getltem("foo"));

e Reuse standard APls, no separate settings API
e More coming all the time...

o @

Browser APls: Approach

e Narrow
e Webby

chrome.bookmarks.create({
title: "Lovely green",
url: "javascript:void(document.body.bgColor='green")"

1)

Browser APIls: Which?

e Tabs and windows

e Bookmarks

e Downloads

e etc... (exact list TBD)

- CT2: Extension Process Model

Chrome: A Multiprocess Browser

e One process for each
tab and plugin
Browser e Web pages and plugins
can't crash browser
e EXploits in tabs are
— — 8 contained

e Better resource sharing
Renderer Renderer Renderer

Extensions have their own processes, too.

e One process for each

Extension Extension Extension extension

e Extensions can't crash
browser

e EXploits are contained

e Better resource sharing

Browser

1

1 "
Renderer | Renderer \ Renderer \

o+ (]{@)

Extensions are multiple web pages

e Each toolstrip, sidebar, etc. is a web page.
e Each browser window gets its own set of widgets.

Extensions pages can communicate

e They're all in the same process, on the same thread.

e Communication is similar to inter-frame communication, or talking to a
popup window.
e Direct function calls.

var total = 0;

chrome.extension.getToolstrips().forEach(function(toolstrip) {
total += toolstrip.someFunction("foobar");

$);

console.log("total 1s: " + total);

The background page ties it all together

e A single persistent context
independent of windows.

: :

| |

| |

| _ i

| | Prowser Window i e Majority of "application code"
' Toommn i goes in background page,

i : T——=| Background i toolstrips and sidebars more
i e r— Page i like dumb views.

| rowse Inaow |

i Toolstrip i

| |

| |

| |

button.onclick = function() {
div.innerHTML = chrome.getBackgroundPage().doSomethingHard();

)

AJAX-Style, Asynchronous APIs

chromium.tabs.create(
{ url: "http://www.google.com/" },
function(tab) {
alert("Got tab with 1d: " + tab.1d);

h
);

e Multiprocess requires async APIs.

e The browser process becomes the "server".

e We use common AJAX patterns to make async
programming easier.

- CT3: Packaging and Distribution

CRX files

signature

manifest

Zip file of contents

e Extensions are signed to prevent MITM attacks.

e Manifest is prepended to allow install Ul to show up quickly.

e Don't worry about package details. Google will provide a service that
does this, but the format is open.

Deployment, Installation

e Copy CRX to your server to deploy.
e Installation is instant
o No restart!
e There will be a Google service to host your CRX files

o @

Update

e Updates are automatic
o no work required by users
o users always have latest version
o no restart prompt

e Forward compatible with future Chrome versions
e Google will provide an easy-to-use update service

Gallery

e There will be an extension gallery
e Nothing more on this quite yet :)

Get Started

Google:

Email:

o (]{)

http://dev.chromium.org/developers/design-documents/extensions/howto
mailto:chromium-discuss@googlegroups.com

