

From Spark Plug to Drive Train:
Life of an App Engine Request

Alon Levi
05/27/09

Post your questions for this talk on Google Moderator:
code.google.com/events/io/questions

Google @@

Agenda

e Designing for Scale and Reliability
e App Engine: Design Motivations

e Life of a Request
Request for static content
Request for dynamic content
Requests that use APls
e App Engine: Design Motivations, Recap

e App Engine: The Numbers

= 0

- Designing for Scale and Reliability I

Google App Engine

Livedournal circa 2007

From Brad Fitzpatrick's USENIX '07 talk:
"Livedournal: Behind the Scenes"

Global Database

master_a_l

slave:l slave2 |_

master_b

B
R

Memcached

[__proxyd | [mc1 |
djabberd
- I proxys] /‘ User DB Cluster 1
|__djabberd | /

[mc3 | / ucla [*=| ucitb

User DB Cluster 2
- L .|y uc2a [*=*| uc2b

Mogile Storage Nodes _mcN_ | User DB Cluster 3
uc3a |*==| uc3b

User DB Cluster N
- " ucNa [*=| ucNb

MogileFS Database workers
gearwrkN | Job Queues (xN)

mog_a || mog_b jgNa [*=| jgNb

/“\
] slave1 l |slaveN|

= 0

Livedournal circa 2007
From Brad Fitzpatrick's USENIX '07 talk:

"LiveJournal: Behind the Scenes"
Application

Frontends

BIG-IP
| bigip1__|
[bigip2__|

/ "\

pe

| proxy1l |
Droxy2

ribal (httpd/proxy)

proxy3

djabberd | proxy4 |
|_djabberd | [proxys |
I djabberd I \

Memcache

Storage

Servers

Global Database

master_b

master_aJ

———

Static File Ser

'S

Mogile Storage Nodes

[stol | sto2 |

[stog8 |
MogileFS Database

mog_a " mog_b

/“\
] slave1 l |slaveN|

User DB Cluster 1
ucla = ucib

User DB Cluster 2
uc2a |+ ucz2b

User DB Cluster 3

uc3a |+ uc3b

User DB Cluster N

o

“workers” J
|_gearwrkN |
| theschwkN | m—

ucNa [*=| ucNb
‘x\ Job Queues (xN)
- jgNa |[**| jgNb

0

Basic LAMP

e Linux, Apache, MySQL,
Programming Language

e Scalable?
Shared machine for database
and webserver

e Reliable?
Single point of failure (SPOF)

Apache

MySQL

= 0

Dedicated Database

e Database running on a
separate server

e Requirements
Another machine plus
additional management

e Scalable?
Up to one web server

e Reliable?
Two single points of failure

Multiple Web Servers

Apache
Apache ‘# MySQL
Apache
e Benefits:
Grow traffic beyond the capacity of one
webserver

e Requirements:
More machines
Set up load balancing Google H@

Multiple Web Servers
Load Balancing: DNS Round Robin

Apache MySQL

Request A DNs q
.

Apache

e Register list of IPs with DNS
e Statistical load balancing

e DNS record is cached with Time To Live (TTL)
o TTL may not be respected

= 0

Multiple Web Servers
Load Balancing: DNS Round Robin

‘P X
%, /
Request ‘ DNS] q Apache

MySQL

Apache

e Register list of IPs with DNS
e Statistical load balancing

e DNS record is cached with Time To Live (TTL)
o TTL may not be respected

Now wait for DNS changes to propagate :-(
Google H@

Multiple Web Servers
Load Balancing: DNS Round Robin

x 2 gl " Apache
Vv [‘ &

Request ‘ DNS

q Apache
Apache

e Scalable?

Add more webservers as necessary
Still I/0O bound on one database

e Reliable?
Cannot redirect traffic quickly
Database still SPOF

MySQL

= 0

Reverse Proxy

Apache

Apache

Request ‘Reverse Proxy ‘ Apache

I3

=

Static Content

e Benefits:

Custom Routing
o Specialization
o Application-level load balancing

e Requirements:
More machines

Configuration and code for reverse proxies

MySQL

= 0

Reverse Proxy

e Scalable?
Add more web servers
Specialization
Bound by

o Routing capacity of reverse proxy
o One database server

e Reliable?
Agile application-level routing
Specialized components are more robust

Multiple reverse proxies requires network-level routing
o DNS Round Robin (again)

o Fancy network routing hardware
Database is still SPOF

= 0

Master-Slave Database

Apache
Read/Write
MySQL
Apache
Replication
Apache
MySQL

' Read-only i
e Benefits:

Better read throughput

Invisible to application
e Requirements:

Even more machines

Changes to MySQL Google m@

Master-Slave Database

e Scalable?

Scales read rate with # of servers
o But not writes

3 3 3

400 writes /second

3

3

What happens eventually?

Master-Slave Database

e Reliable?

Master is SPOF for writes
Master may die before replication

= 0

Partitioned Database

Apache

Reverse Proxy aRache

» h Apache

Reverse Proxy
Apache
e MySQL MySQL MySQL
e Benefits: e Requirements:
Increase in both read Even more machines
and write throughput _ots of management

Re-architect data model
Rewrite queries Corgle H@

The App Engine Stack

Front End 4

Front End

App Engine:
Design Motivations

Design Motivations

e Build on Existing Google Technology

e Provide an Integrated Environment

e Encourage Small Per-Request Footprints

e Encourage Fast Requests

e Maintain Isolation Between Applications

e Encourage Statelessness and Specialization

e Require Partitioned Data Model

= 0

Life of a Request:
Request for Static Content

Request for Static Content on Google Network

Request

e Routed to the nearest Google datacenter
e Travels over Google's network

o Same infrastructure other Google products use
o Lots of advantages for free

= 0

Request for Static Content
Routing at the Front End

q Front End Static Content

e Google App Engine Front Ends

Load balancing
Routing

e Frontends route static requests to specialized serving
infrastructure

= 0

Request for Static Content
Static Content Servers

Front End # Static Content

e Google Static Content Serving

Built on shared Google Infrastructure
e Static files are physically separate from code files
e How are static files defined?

= 0

Request for Static Content
What content is static?

Java Runtime: appengine-web.xml

<static>
<include path="/** png" />
<exclude path="/data/**.png />
</static>

Python Runtime: app.yaml

- url: /images

static_dir: static/images
OR

- url: /images/(.*)
static_files: static/images/\1
upload: static/images/(.*)

= 0

Request For Static Content
Response to the user

h Front End h Static Content

e Back to the Front End and out to the user

e Specialized infrastructure
o App runtimes don't serve static content

= 0

Life of a Request:
Request for Dynamic Content

Request for Dynamic Content
App Servers and App Master

e App Servers
Serve dynamic requests
Where your code runs

e App Master
Schedules applications
Informs Front Ends

: New Components

Front End
Front End

Front End

Front End

App Master

r

A
\

App Server

» App Server

App Server

= 0

Request for Dynamic Content: Appservers
What do they do?

App Server

e Many applications
e Many concurrent requests
o Smaller app footprint + fast requests = more apps
e Enforce Isolation
o Keeps apps safe from each other
e Enforce statelessness
o Allows for scheduling flexibility
e Service API requests

= 0

Request For Dynamic Content
Routing at the Frontend

e Front Ends route dynamic
requests to App Servers

Front End
Front End

Front End

Front End

App Master
N

r

h

App Server

» App Server

App Server

= 0

Request for Dynamic Content
App Server

l App Server

1. Checks for cached runtime
o If it exists, no initialization

2. Execute request

3. Cache the runtime
o System is designed to maximize caching

e Slow first request, faster subsequent requests
e Optimistically cache data in your runtime!

= 0

Life of a Request:
Requests accessing APls

APl Requests
App Server

1. App issues API call

2. App Server accepts
3. App Server blocks runtime

4. App Server issues call
5. Returns the response

e Use APIs to do things you
don't want to do in your
runtime, such as...

App Server

App Server

App Server

| —
.» Datastore
/
TEy
- | ==
\ -4
5
=
Google H@
)

APIls

Memcacheg
A more persistent in-memory cache

eSS

Memcache

e Distributed in-memory cache

e memcacheg
o Also written by Brad Fitzpatrick
o adds: set__muilti, get _multi, add_muilti

e Optimistically cache for optimization
e Very stable, robust and specialized

= 0

The App Engine Datastore

Persistent storage

= 0

The App Engine Datastore

Persistent storage

Ll

Datastore

e Your data is already partitioned
o Use Entity Groups

e Explicit Indexes make for fast reads
o But slower writes

e Replicated and fault tolerant

o On commit: =3 machines
o Geographically distributed

e Bonus: Keep globally unique IDs for free

= 0

Other APIs

M e GMail

e Google

Accounts

m e Picasaweb

ﬁ o Gadget AP

ns) I
v I

N

= [0

e

App Engine:
Design Motivations, Recap

Build on Existing Google Technology

creative commons licensed photograph: http://www.flickr.com/photos/cote/54408562/

- Qi@

Provide an Integrated Environment

e Why?
Manage all apps together

e What it means for you:
Follow best practices
Some restrictions
Use our tools

e Benefits:
Use our tools
Admin Console
All of your logs in one place
No machines to configure or manage
Easy deployment

= 0

Encourage Small Per-Request Footprints

e Why?
Better utilization of App Servers
Fairness

e What it means for your app:
Less Memory Usage
Limited CPU

o Benefits:
Better use of resources

= 0

Encourage Fast Requests

e Why?
Better utilization of appservers
Fairness between applications
Routing and scheduling agility

e What it means for your app:
Runtime caching
Request deadlines

o Benefits:
Optimistically share state between requests
Better throughput
Fault tolerance
Better use of resources

= 0

Maintain Isolation Between Apps

e Why?
Safety
Predictability
e What it means for your app:
Certain system calls unavailable
o Benefits:
Security
Performance

= 0

Encourage Statelessness and Specialization

e Why?
App Server performance
Load balancing
Fault tolerance

e What this means for you app:
Use API calls

e Benefits:
Automatic load balancing
Fault tolerance
Less code for you to write
Better use of resources

= 0

Require Partitioned Data Model

e Why?
The Datastore

e What this means for your app:
Data model + Indexes
Reads are fast, writes are slower

o Benefits:
Design your schema once

o No need to re-architect for scalability

More efficient use of cpu and memory

= 0

- Google App Engine:

The Numbers

Google App Engine
e Currently, over 80K applications

e Serving over 140M pageviews per day

e Written by over 200K developers

= 0

Open For Questions

e The White House's "Open For Questions" application
accepted 100K questions and 3.6M votes in under 48 hours

700

600

500

400

300

Queries Per Second (QPS)

200

100

5:00pm EST:
Link on Google
homepage

Afternoon EST:
NPR, NYTimes,
CNN coverage

l

6:45pm EST:
WhiteHouse.gov
kick-off blog post

W

4 9:30am EST:
Deadline for
submissions

4 11:30am EST:
Townhall begins

5:00pm EST:
WhiteHouse.gov
wrap-up blog post
v

18:00 21:00 24:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00 3(GO 8[6 H@

Questions?

Post your questions for this talk on Google Moderator:
code.google.com/events/io/questions

