

From Spark Plug to Drive Train:
Life of an App Engine Request
Alon Levi
05/27/09

Post your questions for this talk on Google Moderator:
code.google.com/events/io/questions

Designing for Scale and Reliability

App Engine: Design Motivations

Life of a Request
Request for static content
Request for dynamic content
Requests that use APIs

App Engine: Design Motivations, Recap

App Engine: The Numbers

Agenda

Designing for Scale and Reliability

Google App Engine

LiveJournal circa 2007
From Brad Fitzpatrick's USENIX '07 talk:
"LiveJournal: Behind the Scenes"

From Brad Fitzpatrick's USENIX '07 talk:
"LiveJournal: Behind the Scenes"

LiveJournal circa 2007

Frontends Storage
Application
Servers

Memcache

Static File Servers

Basic LAMP

Linux, Apache, MySQL,
Programming Language
Scalable?
Shared machine for database
and webserver
Reliable?
Single point of failure (SPOF)

Database running on a
separate server
Requirements
Another machine plus
additional management
Scalable?
Up to one web server

Reliable?
Two single points of failure

Dedicated Database

Benefits:
Grow traffic beyond the capacity of one
webserver
Requirements:
More machines
Set up load balancing

Multiple Web Servers

Load Balancing: DNS Round Robin
Multiple Web Servers

Register list of IPs with DNS
Statistical load balancing
DNS record is cached with Time To Live (TTL)

TTL may not be respected

Register list of IPs with DNS
Statistical load balancing
DNS record is cached with Time To Live (TTL)

TTL may not be respected

Load Balancing: DNS Round Robin
Multiple Web Servers

Now wait for DNS changes to propagate :-(

Scalable?
Add more webservers as necessary
Still I/O bound on one database

Reliable?
Cannot redirect traffic quickly
Database still SPOF

Load Balancing: DNS Round Robin
Multiple Web Servers

Benefits:
Custom Routing

Specialization
Application-level load balancing

Requirements:
More machines
Configuration and code for reverse proxies

Reverse Proxy

Scalable?
Add more web servers
Specialization
Bound by

Routing capacity of reverse proxy
One database server

Reliable?
Agile application-level routing
Specialized components are more robust
Multiple reverse proxies requires network-level routing

DNS Round Robin (again)
Fancy network routing hardware

Database is still SPOF

Reverse Proxy

Master-Slave Database

Benefits:
Better read throughput
Invisible to application

Requirements:
Even more machines
Changes to MySQL

Master-Slave Database

Scalable?
Scales read rate with # of servers

But not writes

What happens eventually?

Master-Slave Database

Reliable?
Master is SPOF for writes
Master may die before replication

Partitioned Database

Benefits:
Increase in both read
and write throughput

Requirements:
Even more machines
Lots of management
Re-architect data model
Rewrite queries

The App Engine Stack

App Engine:
Design Motivations

Design Motivations

Build on Existing Google Technology

Provide an Integrated Environment

Encourage Small Per-Request Footprints

Encourage Fast Requests

Maintain Isolation Between Applications

Encourage Statelessness and Specialization

Require Partitioned Data Model

Life of a Request:
Request for Static Content

Request for Static Content on Google Network

Routed to the nearest Google datacenter
Travels over Google's network

Same infrastructure other Google products use
Lots of advantages for free

Request for Static Content

Google App Engine Front Ends
Load balancing
Routing

Frontends route static requests to specialized serving
infrastructure

Routing at the Front End

Request for Static Content

Google Static Content Serving
Built on shared Google Infrastructure

Static files are physically separate from code files
How are static files defined?

Static Content Servers

What content is static?
Request for Static Content

...
<static>
 <include path="/**.png" />
 <exclude path="/data/**.png />
</static>
...

Java Runtime: appengine-web.xml

...
- url: /images
static_dir: static/images
OR
- url: /images/(.*)
static_files: static/images/\1
upload: static/images/(.*)
...

Python Runtime: app.yaml

Request For Static Content

Back to the Front End and out to the user

Specialized infrastructure
App runtimes don't serve static content

Response to the user

Life of a Request:
Request for Dynamic Content

Request for Dynamic Content: New Components

App Servers
Serve dynamic requests
Where your code runs

App Master
Schedules applications
Informs Front Ends

App Servers and App Master

Request for Dynamic Content: Appservers

Many applications
Many concurrent requests

Smaller app footprint + fast requests = more apps
Enforce Isolation

Keeps apps safe from each other
Enforce statelessness

Allows for scheduling flexibility
Service API requests

What do they do?

Request For Dynamic Content

Front Ends route dynamic
requests to App Servers

Routing at the Frontend

1. Checks for cached runtime
If it exists, no initialization

2. Execute request
3. Cache the runtime

System is designed to maximize caching

Slow first request, faster subsequent requests
Optimistically cache data in your runtime!

Request for Dynamic Content
App Server

Life of a Request:
Requests accessing APIs

App Server

1. App issues API call
2. App Server accepts
3. App Server blocks runtime
4. App Server issues call
5. Returns the response

Use APIs to do things you
don't want to do in your
runtime, such as...

API Requests

APIs

Distributed in-memory cache
memcacheg

Also written by Brad Fitzpatrick
adds: set_multi, get_multi, add_multi

Optimistically cache for optimization
 Very stable, robust and specialized

Memcacheg
A more persistent in-memory cache

The App Engine Datastore
Persistent storage

The App Engine Datastore

Your data is already partitioned
Use Entity Groups

Explicit Indexes make for fast reads
But slower writes

Replicated and fault tolerant
On commit: ≥3 machines
Geographically distributed

Bonus: Keep globally unique IDs for free

Persistent storage

GMail

Google
Accounts

Picasaweb

Other APIs

Gadget API

On roadmap

Google Talk

App Engine:
Design Motivations, Recap

creative commons licensed photograph: http://www.flickr.com/photos/cote/54408562/

Build on Existing Google Technology

Provide an Integrated Environment

Why?
Manage all apps together

What it means for you:
Follow best practices
Some restrictions
Use our tools

Benefits:
Use our tools
Admin Console
All of your logs in one place
No machines to configure or manage
Easy deployment

Encourage Small Per-Request Footprints

Why?
Better utilization of App Servers
Fairness

What it means for your app:
Less Memory Usage
Limited CPU

Benefits:
Better use of resources

Encourage Fast Requests

Why?
Better utilization of appservers
Fairness between applications
Routing and scheduling agility

What it means for your app:
Runtime caching
Request deadlines

Benefits:
Optimistically share state between requests
Better throughput
Fault tolerance
Better use of resources

Maintain Isolation Between Apps

Why?
Safety
Predictability

What it means for your app:
Certain system calls unavailable

Benefits:
Security
Performance

Encourage Statelessness and Specialization

Why?
App Server performance
Load balancing
Fault tolerance

What this means for you app:
Use API calls

Benefits:
Automatic load balancing
Fault tolerance
Less code for you to write
Better use of resources

Require Partitioned Data Model

Why?
The Datastore

What this means for your app:
Data model + Indexes
Reads are fast, writes are slower

Benefits:
Design your schema once

No need to re-architect for scalability
More efficient use of cpu and memory

Google App Engine:
The Numbers

Google App Engine

Currently, over 80K applications

Serving over 140M pageviews per day

Written by over 200K developers

Open For Questions

The White House's "Open For Questions" application
accepted 100K questions and 3.6M votes in under 48 hours

Questions?
Post your questions for this talk on Google Moderator:
code.google.com/events/io/questions

