Google

GWT Can Do What?!
A Preview of Google Web Toolkit 2.0

Bruce Johnson
May 27, 2009

Google @@

Google Web Toolkit Overview

 Write code in the Java™ language using your favorite Java IDE
* Debug as bytecode against a special browser (hosted mode)
* Cross-compile into standalone optimized JavaScript (web mode)
* No browser plugins / no obligatory server-side machinery
* Includes extensive cross-browser libraries

—User interface (DOM, widgets, ...)

— Client/server communication (XHR, RPC, JSON, ...)

— App infrastructure (history, timers, unit testing, i18n, al1y, ...)

— External services (Gadgets, Gears, Google Maps, ...)

« JavaScript integration
—JavaScript Native Interface (JSNI)
— Overlay types

* Fully open source under Apache 2.0 . m@
. so0gle

What's Coming in GWT 2.07?

* In-browser hosted mode (formerly known as “OOPHM”)
» Compiler enhancements

* Developer-guided code splitting

* Resource optimization: ClientBundle

* Faster, easier, more predictable layout

* Also noteworthy...
—RPC blacklists
—RpcRequestBuilder
— Client-side stack traces

= [0
|

- Hosted Mode

Hosted Mode, Reborn

* Hosted mode is the key to productive development with GWT
— Debugging
— Edit/refresh
— Compiler isn't meant to be an alternative
* Problem: hosted mode browser is too special
— On Linux, hosted browser is an ancient Mozilla
—Hard to debug CSS quirks (e.g. no Firebug)
—Hard to simulate interactions with other technologies (e.g. Flash)
—Impossible to debug browsers on non-dev OSes (e.g. IE from Mac)
* Solution: make hosted mode work with "any" browser
—And make it work across the network

« L et's see how this works...

= [0

- Compiler Enhancements

360

270

90

Faster Compilation (TODO: real data)

1.6

2.0
Speedups

-localWorkers=4

-draftCompile

Single
Permutation

Hosted Mode Hosted Mode
Startup Refresh

Times compiling Showcase on my 2-core MacBook Pro

= [0

-XdisableClassMetadata

» Calling obj.getClass () or clazz.getName () forces Class
objects and their names to be generated into JavaScript

* But if you don't really care what Class#getName() returns...

—var javalangObjectClass = new Class("java.lang.Object");
— can become var jarLangObjectClass = new Class();

Showcase metadata before

Showcase metadata after
5% - 10%
script reduction

* Size, speed, and obscurity benefits . .
so0gle [F] @

9

-XdisableCastChecking

* Nobody actually catches ClassCastException in app code

void makeItQuack (Animal animal)
try { ((Quacker) animal) .quack(); }
catch (ClassCastException c) { Window.alert ("This doesn't quack."); }

}

* The above example generates a call like this:

‘dynamicCast(animal, 2) .quack () ;

 But with the flag turned on, you get only this:

‘animal.quack(); ‘

* In a real-world (and very large) Google app...
— 1% script size reduction
—10% speed improvement in performance-sensitive code

= [0
10

Interfaces on JavaScript Overlay Types (JSOs)
*In GWT 1.6, JSOs are nifty but tied to JavaScript

final class Person extends JavaScriptObject {
protected Person() {}
public native String getFirstName () /*-{ return this.firstName; }-*/;
public native String getLastName() /*-{ return this.lastName; }-*/;

}

» Server code barfs on JSOs, though, so...

Client/server agnostic code using Person
(e.g. unit tests, business logic)

{TTTTTT l

JavaScriptObject | , [: Person i
(Interface) T

(Class)

Person_Clientimpl Person_Serverimpl
(JSO + Interface) (POJO or whatever)

GO SIC @
"

- Code Splitting

Big Scripts, Big Problems

* It's easy to ignore compiled script size until it's too big
* Many problems here
— Initial download can be slooooow
— Super-linear parse time on some browsers
— Ul hangs during script parsing
— Script parsing adds latency to initial Ul setup
* Why not use multiple compiled modules?
— Compiled modules are black-boxes unless you explicitly export

— Splitting functionality across modules with exports...
* Is laborious
* |s error-prone
* Prevents tasty compiler optimizations such as dead-code elimination

= [0

« Is wonderful (but only for the right reasons)

Meet runAsync
Drop hints to the GWT compiler where splitting seems reasonable

public void onMySettingsLinkClicked() {

Split point GWT . runAsync (new RunAsyncCallback () {

public void onSuccess() {

Runs after a pOSSIbIe new MySettingsDialog() .show() ;

(probably rare) delay }

Runs if required SCl'ipt public void onFailure(Throwable ohNoes) {

// indicate that something went wrong,
cannot be downloaded // usually a connectivity or server problem
}

}) i
L

= [0
14

Splitting Showcase (TODO: gather data)

¢ Demo: Showcase
« Split point per link in tree

288

101

Milliseconds

Startup JS (KB)
= O

Getting to Know runAsync

* Intentionally developer-guided
* Intentionally async
* Intentionally forces you to think about failure paths
* Split point doesn't necessarily split
— Compiler decides how to cluster code

— Guaranteed to be correct, ordering-wise...
—...but might not split as you had hoped due to cross-refs

» Using modular patterns is key
* Shameless plug: Reading Tea Leaves / Story of Your Compile

= [0

- Resource Optimization: ClientBundle I

ImageBundle Redux
ImageBundle was only the beginning

» —_ » 7 »
20,558 bytes = o l - -, >»1

1 bundled image

11 separate images

¢ Bundled ("sprited") automatically at
compile-time
« Fewer round-trips (1 request vs. 11)
6,624 bytes « Many browsers have 2-connection max

* Bundled image can be smaller than the
sum of its constituent images

¢ Great caching story

> Separate Bundled

Meet ClientBundle

ClientBundle generalizes ImageBundle to arbitrary resource types

interface MyBundle extends ClientBundle {
public static final MyBundle INSTANCE = GWT.create (MyBundle.class);

@Source ("smiley.gif")
ImageResource smileyImage () ;

@Source ("frowny.png")
ImageResource frownyImage () ;

@Source ("app_config.xml")
TextResource appConfig();

@Source ("wordlist.txt")
ExternalTextResource wordlist () ;

@Source ("manual.pdf")
DataResource ownersManual () ;

@Source ("super-fancy.css"
CssResource superFancy();

GO Sle @
19

A Simple Example: TextResource

interface MyBundle extends ClientBundle {
public static final MyBundle INSTANCE = GWT.create (MyBundle.class);
@Source ("app_config.xml") TextResource appConfig();

}

Figure 1 — Declaration

<app-config animation-speed="1500" failover-strategy="give-up" ... />

Figure 2 — Text Resource (app_config.xml) found on your classpath at compile-time

void configureMyApp () {
MyBundle bundle = MyBundle.INSTANCE;
TextResource txtres = bundle.appConfig() ;
String xml = txtres.getText ();
Document doc = XMLParser.parse (xml);
// ...configure application using XML DOM. ..

}

Figure 3 — Point of Use
» Guaranteed to succeed because the text resource is compiled in
* Use the file format that is most appropriate; separate data from code if desired

* No HTTP request required

= [0

ClientBundle's Killer Feature: CssResource

Compiles CSS with an enhanced syntax

* Define and use constants in CSS

@def hardToMissThickness 8px;
@def scaryColor #F00;
.error-border {
border: hardToMissThickness solid scaryColor;

}

« Conditional rules for user agent, locale, or...anything

@if user.agent safari {
.error-border {
-webkit-border-radius: 4px;
} @elif user.agent gecko {
-moz-border-radius: 4px;
}
}

* More...Demo!

= [0

- Predictable Layout

Predictable Layout

* The philosophy of layout in GWT: Don't do it yourself
—Have cold sweats when considering measuring anything
— Use implicit layout for speed instead
— See Kelly Norton’s “Measuring in Milliseconds” for details

* Downside: unintuitive and inconsistent layout behavior
—Width 100%? Often fits like a glove
—Height 100%? Often smells like a glove

* Demo of yuckiness: Look at Mail in FF 3.5

» Standards mode provides new leverage
— Constraint-based layout that actually does what you say
—You'll never have to hook the window resize event again
— An updated set of Panels in GWT 2.0

= [0

Demo: New and Improved DockPanel

public void onModuleLoad () {

final DockLayoutPanel p = new DockLayoutPanel (Unit.PX) ;

'‘C 'O ' 'O 'C ‘T 'O T 'O

.add (createHtml ("north"), Direction.NORTH, 438);
.addSplitter();

.add (createHtml ("south"), Direction.SOUTH, 48);
.addSplitter();

.add (createHtml ("east"), Direction.EAST, 60);
.addSplitter () ;

.add (createVerticalStack (), Direction.WEST, 160);
.addSplitter();

.add (createLoremIpsum(), Direction.CENTER, O0);

Window.setMargin ("0px") ;
Window.enableScrolling(false);

RootPanel.get () .add (new RootLayoutPanel (p));

}

* Doesn't run JavaScript during resize

* Constraint-based layout similar to Cocoa on OS X
* Animation to switch between constraints is baked-in

= [0

- Also Noteworthy

Also Noteworthy

* RPC blacklist: Tell the RPC subsystem to skip types that you
know aren't ever sent across the wire

<extend-configuration-property name="rpc.blacklist"
value="com.example.myapp.client.WidgetList"/>

<extend-configuration-property name="rpc.blacklist"
value="com.example.myapp.client.TimerList"/>

* RpcRequestBuilder: Customize XHRs for all RPCs in a service

ServiceDefTarget sdt = (ServiceDefTarget)myService;
sdt.setRpcRequestBuilder (myBuilderWithCustomHttpHeaders) ;

// All calls will use the same XHR settings
// (e.g. custom HTTP request headers)
myService.doSomethingOnTheServer(a, b, c);

« Client-side stack traces on some browsers

—In other words, Throwable#getStackTrace () actually does
something sometimes

—Let's talk details in the GWT developer forum Googe mm

- Summary

Recap of What's Coming in GWT 2.0

Feature

Productivity
for you

Performance
for your users

* In-browser hosted mode

* Faster compilation

* Script size reductions and
speed improvements

» Code splitting

* ClientBundle
(w/ CssResource!)

* Layout you can count on

Debug in real browsers

Less thumb-twiddling

Simple flags enable
size/speed gains

High-leverage, low-risk way
to spread download time

Project organization !=
deployment organization

Less time fighting with CSS
and layout

Apps start faster;
run faster

Apps start faster;
stay interactive

Fewer HTTP
round-trips

Faster, smoother
layout and resizing

= [0

Google

