

Practical Standards-based
Security and Identity
Eric Sachs
Product Manager, Google Security & CIO
organization
May 27-28, 2009

“SAML, SaaS, OAuth, OpenID, OpenSocial,
.. Oh my!”

Unnamed security "expert"

Part One: Federated Logon (user authentication)
Especially for enterprise SaaS vendors who target small-
medium sized businesses

Part Two: Web service authentication

Enabling web apps to identify each other across multiple
platforms (Windows, Linux, Force.com, App Engine,
Gadgets, Azure, Amazon, ...)

Part One: User authentication

Software IDPs for large enterprises

Large enterprises
Central single-signon (SSO) system

Frequently purchased from a software vendor
Run on multiple servers and data-centers for high
reliability

Multiple Software-as-a-Service (SaaS) vendors
Salesforce.com
Google Apps Premier Edition
etc.

SAML=open standard for federated login, supported
by some SaaS vendors

But what if you are not a large enterprise?

Small-Medium sized business (SMBs)
Option 1: On-premise

Usually Active Directory or nothing
Don't make SSO a Single Source Of failure!

SSO/IDP as a service
Growing set of vendors (Ping Connect, Symplified,
MS Azure, Google Apps, Lotus Live, ...)

Guidance for SMBs

Smaller businesses using SaaS offering can similarly use
a service based sign-on offering

Quickly evolving space, especially the next few months...
Chained identity providers
SAML
OpenID
Stronger authentication
Provisioning
Group membership
etc.

Watch for more vendor/service provider interoperability
results

What if you are a SaaS vendor?

Demand is changing
Historically only large enterprises wanted federated
login to SaaS vendors.
Expect growing demand from SMBs

Options
Roll your own
Purchase SAML or OpenID relying party software
Use a RP (relying party) service as a bridge (Janrain,
Ping, etc.)

Two challenges to consider

SaaS vendors with native (non-browser) apps
Most apps are hard-coded to ask for Email/password,
and do not work with Federated Login
Try OAuth

Login box
Traditional Email/password login box is not sufficient
Try asking for E-mail address first without a password

...search for "goog oauth" for a site with more details

What if you are a super techie?

Join a standards community!
OpenID
OAuth
SAML
etc.

Many of the techniques will be shared across those
standards.

Lots of work left to do
Improved user experience
Automated setup of federated login
Better crypto hygine
Integration with provising and group membership

Part Two: Web service authentication

I know how to authenticate a user accessing
my app, but how do I authenticate another
web-service accessing my app?

Unnamed CIO

Common problems

1. I want to build a frontend app on my Windows server
to access a backend hosted on Linux.

2. I want to write a system management console on App
Engine to monitor my app running on Amazon (or a
different app running on App Engine)

3. I want to build a frontend on App Engine to manage
data stored in my ERP system

Welcome the crypto experts

Numerous proprietary and standard
options

If API calls route through firewalls,
REST API format is frequently the
easiest

Try OAuth. The standard is small
(spec is only a few pages) and
extensible

For more crypto details, visit the
Google I/O OAuth helpdesk

Quick version

Traditional REST API call
acme.com/salary?u=sara&s=90000

REST API call + OAuth
acme.com/salary?u=sara&s=90000

&oauth_consumer_key=frontend.acme.com
&oauth_signature=A23F68

consumer_key=claimed name of the calling app
signature=digital signature to prove it came from that app,
and that the URL has not been modified

Okay, a little hard

Generating (and verifying) the OAuth signature parameter
is the key technique that is standardized by OAuth

Easy to get it wrong, so use open source libraries where
possible
http://oauth.net

Crypto hygiene

The signer and verifier need to agree upon the crypto
mechanism
1. HMAC (symmetric) - Simper, less CPU intensive
2. RSA (Public Key, asymmetric) - Verifier cannot

impersonate the signer
If there are multiple calling apps, issue each of them a
different HMAC secret or RSA key pair

I want to build a frontend app on my Windows
server to access a backend hosted on Linux.

1. Create a REST (or SOAP) endpoint on the Linux app
2. Make REST calls to it from the Windows app
3. Have the Windows app add oauth_consumer_key

with a name that references the Windows app
4. Agree on a crypto scheme
5. Have the Windows app add oauth_signature with a

signed version of the REST URL
6. Have the Linux app require a signature on all

requests, and verify the signature
7. Confirm the verified calling app is authorized to

perform the request (such as changing an employee's
salary)

OAuth terminology/history

Basic version: 2-legged OAuth

Original version: 3-legged (consumer scenarios)

Developed in 2007 by a number of consumer oriented
websites (Yahoo, AOL, Google, Flickr, Plaxo, Twitter,
Digg, ...) to replace similar proprietary mechanisms

Making OAuth even simpler

Some applications run in containers such as an
OpenSocial gadget container, App Engine, Google
Spreadsheets, etc.

Those containers can perform signing on behalf of apps

Traditional REST API call
acme.com/salary?u=sara&s=90000

Container based REST API call
URLFetch(acme.com/salary?u=sara&s=90000, SIGNED)

Note: function names vary by container. Search for
"oauth proxy" for an example

Verifying a "signed-fetch"

Final output from container
acme.com/salary?u=sara&s=90000

&opensocial_app_url=hrtool.appspot.com
&oauth_consumer_key=appspot.com
&oauth_signature=D1C952A

consumer_key=the container
app_url=the app on the container

The container picks the crypto mechanism (including
rotation), and the app name. The receiving system just
needs to read the container documentation.

I want to write a system management console on
App Engine to monitor my app on Amazon

1. Create a REST endpoint on the Amazon app
2. Make URLFetch calls to it from the AppEngine app
3. Have the Amazon app require a signature on all

requests, and verify the signature
4. Confirm the verified calling app is authorized to

perform the request (such as adding more virtual
servers at Amazon)

Search for "oauth google app engine" for software
examples.

I want to build a frontend on App Engine to
manage data stored in my ERP system

How do I get through my firewall?

VPN, Google Secure Data Connector, ...

Back to our example:

acme.com/salary?u=sara&s=90000
But who wants to change sara's salary?

Best practice:
acme.com/salary?u=sara&s=90000
&opensocial_viewer_email=tom

In this case, Tom is logged into the calling app. Any
parameter name can be used, however..

Domain APIs

Standard names improve interoperability

For example

Company X hosts their email/calendars at Google
Their admin can register a 2-legged OAuth consumer
key and secret with Google
The company can then run an app to access the
calendars of all their employees, for example:

calendar.google.com/?opensocial_viewer_email=tom

For more information, attend the Google I/O Session
"Building Enterprise applications in the cloud"

Containers adding identity information

If a container is used:
URLFetch(acme.com/salary?u=sara&s=90000, SIGNED)

Final output from container
acme.com/salary?u=sara&s=90000

&opensocial_viewer_email=tom
&opensocial_app_url=hrtool.appsport.com
&oauth_consumer_key=appspot.com
&oauth_signature=D1C952A

Standards under development

Google App Engine
URLVerify(a signed OAuth URL)

Three step process
1. Calling app gets secret from Google
2. Use secret to sign urls in external apps
3. App engine can have Google infrastructure verify

signature without managing the secret itself

Search for "app engine oauth verify" for software
examples.

How simple can we make it?

GAE app 1
URLFetch(acme.com/salary?u=sara&s=90000,SIGNED)

GAE app 2
URL=acme.com/salary?u=sara&s=90000

&opensocial_viewer_id=tom
&opensocial_app_url=hrtool.appsport.com
&oauth_consumer_key=appspot.com
&oauth_signature=D1C952A)

If URLVerify(URL)
if trustedapp(URL.param(opensocial_app_url,

oauth_consumer_key)
if URL.param(u).mananger =

URL.param(opensocial_viewerid)
URL.param(u).salary=URL.param(s)

Secure mashups are possible!

Questions?
Visit us at the Google I/O OAuth helpdesk staffed by Brian Eaton
and Kevin Brown

For more information, use the OAuth mailing list or do a Google search
for "oauth goog" for a site with more details

