
Monday, June 1, 2009

Measure in Milliseconds:
Performance Tips for
Google Web Toolkit
Kelly Norton
May 27, 2009

Monday, June 1, 2009

3

the plan

Why worry about performance?

4 things GWT does for you.

4 things you should do for yourself.

Monday, June 1, 2009

Why Worry About Performance?

Monday, June 1, 2009

5

Why worry about performance?
It is a usability concern

Monday, June 1, 2009

5

Why worry about performance?
It is a usability concern

how delay affects us? a simple model.

Monday, June 1, 2009

5

Why worry about performance?
It is a usability concern

0.1 seconds - instantaneous.

how delay affects us? a simple model.

Monday, June 1, 2009

5

Why worry about performance?
It is a usability concern

0.1 seconds - instantaneous.

1 second - pause, but still seems like a single task.

how delay affects us? a simple model.

Monday, June 1, 2009

5

Why worry about performance?
It is a usability concern

0.1 seconds - instantaneous.

1 second - pause, but still seems like a single task.

10 seconds - disruption, abandonment, goes to facebook to
complain about the design.

how delay affects us? a simple model.

Monday, June 1, 2009

6

Why worry about performance?
Users notice

How many times have you encountered something that “just
seems sluggish.”

We’re going to all this trouble to give user’s more control

A study in 1997 even showed that users evaluate the quality of
content lower when latency is increased.

Sears, A., Jacko, J.A., Borella, M.S. (1997), "Internet delay effects: how users perceive quality, organization, and ease of use of
information", Late-Breaking/Short Talks, http://wwacm.org/sigchi/chi97/proceedings/short-talk/als2.htm, pp.22-7.

Monday, June 1, 2009

http://wwacm.org/sigchi/chi97/proceedings/short-talk/als2.htm
http://wwacm.org/sigchi/chi97/proceedings/short-talk/als2.htm

4 things GWT does for you.

Monday, June 1, 2009

8

#1. Produces fast JavaScript
Ported some SunSpider tests to Java to track compiler performance

TODO: Put those tests in
a google code project.

Add legend

v8

jsc

smjs
119ms

37ms

38ms

93ms

9ms

12ms

math-cordic

v8

jsc

smjs
129ms

41ms

53ms

75ms

20ms

19ms

string-fasta

v8

jsc

smjs
54ms

18ms

11ms

47ms

12ms

9ms

math-spectral-norm

v8

jsc

smjs
106ms

46ms

39ms

76ms

37ms

26ms

math-partial-sums

Results are from internally run tests.

Monday, June 1, 2009

9

#1. Produces fast JavaScript
but lest you think we win them all

TODO: Put those tests in
a google code project.

Add legend

v8

jsc

smjs
63ms

13ms

6ms

76ms

15ms

22ms

access-binary-trees

access-binary-trees revealed
an opportunity to make our
constructors faster.

Results are from internally run tests.

Monday, June 1, 2009

9

#1. Produces fast JavaScript
but lest you think we win them all

TODO: Put those tests in
a google code project.

Add legend

v8

jsc

smjs
63ms

13ms

6ms

76ms

15ms

22ms

access-binary-trees

access-binary-trees revealed
an opportunity to make our
constructors faster.

that will be fixed in GWT 2.0
and you will get a speedup just
by recompiling.

Results are from internally run tests.

Monday, June 1, 2009

10

#1. Produces fast JavaScript

Inlining - eliminates levels of method dispatch.

How is GWT faster? We cheat.

Shape s = new Circle(aRadius);
widget.setText(“area: “ + s.getArea());

becomes:
Circle s = new Circle(aRadius);
widget.setText(“area: “ + s.getArea());

then becomes:
Circle s = new Circle(aRadius);
widget.element.textContent = “area: “ + (s.r * s.r * PI);

Monday, June 1, 2009

11

#1. Produces fast JavaScript

String interning - prevents unnecessary object creation and
saves space.

How is GWT faster? We cheat.

Java:
void assignStyles() {
 Style style = this.getElement().getStyle();
 style.setProperty(“color”, “red”);
 style.setProperty(“border”, “1px solid black”);
}

JavaScript:
var a = ‘color’, b = ‘red’, c = ‘border’, d = ‘1px solid black’;
...
function assignStyles() {
 var style = this.element.style;
 style[a] = b;
 style[c] = d;
}

Monday, June 1, 2009

12

#1. Produces fast JavaScript

method de-virtualization - avoids prototype chain lookups.

* In reality, this function would be eliminated entirely and the expression object.text would be inlined.

How is GWT faster? We cheat.

class MyListener implements LibraryDelegate {
 ...
 public String getText() {
 return text;
 }
}

becomes (Java):
static String getText(MyListener self) { return self.text; }

then becomes (JavaScript)*:
function $getText(self) { return self.text; }

Monday, June 1, 2009

13

#2. Loads your non-code resources quickly
As of GWT 1.4, we bundled images but not CSS.

Monday, June 1, 2009

14

#2. Loads your non-code resources quickly

 MyBundle.java
interface MyBundle extends ClientBundle {
 public static final MyBundle INSTANCE = GWT.create(MyBundle.class);

@Source(“chicken.png”) ImageResource chickenImage();

@Source("goat.png") ImageResource goatImage();

 @Source("default.css") CssResource defaultCss();
}

default.css
@if user.agent safari {
 .funky-box { -webkit-border-radius: 4px; }
} @elif user.agent gecko {
 .funky-box { -moz-border-radius: 4px; }
}

@sprite .goat-box { gwt-image: “goatImage”; color: #000; }

Monday, June 1, 2009

15

#3. Splits your code elegantly.
Loading GWT Showcase over a slow connection.

Unsplit version (from GWT 1.6)

19.3s
284.5 kb

loaded

Monday, June 1, 2009

15

#3. Splits your code elegantly.
Loading GWT Showcase over a slow connection.

Unsplit version (from GWT 1.6)

19.3s
284.5 kb

loaded

Split version

11.1s
172.8 kb

3.4s
53.9 kb

loaded

0.1s
1.8k

code loaded on demand

Monday, June 1, 2009

16

#3. Splits your code elegantly.

This will load all the code needed to run everything reachable from the callback,
given all other code you’ve previously loaded.

Just invoke GWT.runAsync and the compiler does the work.

GWT.runAsync(new RunAsyncCallback() {
 public void onFailure(Throwable caught) {
 openErrorNotification();
 }

 public void onSuccess() {
 openSettingsView();
 }
});

Monday, June 1, 2009

17

#4. Interoperates with JavaScript at no cost

The ability to write directly to the DOM, but still get type-safety and GWT
compiler optimizations.

Consider GWT’s DOM library.

document.getBody().appendChild(
 document.createDivElement()).setInnerText(“Hello I/O”);

becomes (JavaScript):
$doc.body.appendChild(
 $doc.createElement(‘div’)).textContents = ‘Hello I/O’;

Monday, June 1, 2009

18

#4. Interoperates with JavaScript at no cost

Use JavaScriptObject to work with JSON.

JSON:
{ ‘firstname’ : ‘Kelly’, ‘lastname’ : ‘Norton’ }

Java:
class Person extends JavaScriptObject {
 protected Person() {}
 final native String getFirstName() /*-{
 return this.firstname;
 }-*/;
}

At runtime, there is no overhead:
p.getFirstName(); => p.firstname;

Monday, June 1, 2009

4 things you should do yourself.

Monday, June 1, 2009

20

#1. Avoid unnecessary widgets.

Building up and tearing down of large Widget hierarchies is
expensive.

2 most common misuses:

Using nested widgets for layout.

Unnecessarily using widgets with listeners inside of panels.

Monday, June 1, 2009

21

#1. Avoid unnecessary widgets.
How to decide if you need a widget.

receives events? No Widget!no

yes

impossible for higher
widget to receive events? No Widget!no

I CAN HAZ WIDGET?

yes

Fine, use a Widget.

Monday, June 1, 2009

22

#1. Avoid unnecessary widgets.

Solution: Use HTMLPanel for layout.

HTMLPanel panel = new HTMLPanel("<div><div><div>” +
 “Header<div id=\"content\"></div>” +
 “</div></div></div>");

FlowPanel content = new FlowPanel();
content.add(new TextBox());
content.add(new Button(“Save”));
panel.add(content, "content");

Monday, June 1, 2009

23

#1. Avoid unnecessary widgets.

Solution: Use event bubble to dispatch child events

class MyWidget extends SimplePanel {
 private DivElement header;
 private DivElement body;

 MyWidget {
 addHandler(new ClickHandler() {
 public void onClick(ClickEvent e) {
 Element el = Element.as(
 e.getNativeEvent().getEventTarget());
 if (el == header) {
 // The header was clicked.
 } else if (el == body) {
 // The body was clicked.
 }
 }
 }, ClickEvent.getType());
 }
}

Monday, June 1, 2009

24

#1. Avoid unnecessary widgets.
InspectorWidget: a bookmarklet for inspecting Widgets in a live app.

http://gwt-instrumental.googlecode.com/svn/latest/inspectorwidget/index.html

Monday, June 1, 2009

http://gwt-instrumental.googlecode.com/svn/latest/inspectorwidget/index.html
http://gwt-instrumental.googlecode.com/svn/latest/inspectorwidget/index.html

25

#2. Use debug builds effectively.
Remember that exceptions are for developers, not users.

void getThingAtIndex(int index) {
 if (index < 0 || index >= length) {
 throw new IndexOutOfBoundsException(
 “Dear User: though you can do nothing about this, ” +
 “I’m going to ensure that you download a message about” +
 “programatic indices! KTHXBAI, The programmer.”);
 }
 return things[index];
}

Some exceptions you will never catch.

Monday, June 1, 2009

26

#2. Use debug builds effectively.
Solution: Use assert instead.

void getThingAtIndex(int index) {
 assert index >= 0 && index < length;
 return things[index];
}

assert is turned on in hosted mode by default.

You can turn them on in web mode by passing -ea to the GWT
compiler.

Monday, June 1, 2009

27

#2. Use debug builds effectively.
In fact, you should setup debug and release builds for your apps.

Create this demo and
make sure it works.

MyAppCommon.gwt.xml
<module>
 ...
 <define-property values="debug, release" name="app.config" />
 <replace-with class="myapp.debug.DebugConsole">
 <when-type-is class="myapp.Console" />
 <when-property-is name="app.config" value="debug" />
 </replace-with>
 ...
</module>

MyAppDebug.gwt.xml
<module>
 ...
 <set-property name="app.config" value="debug" />
</module>

Monday, June 1, 2009

28

#2. Use debug builds effectively.
Use debug mode to track performance constantly.

Monday, June 1, 2009

29

#3. Avoid forcing layout.
How long does it take to get an element’s offsetHeight?

#1
#2
#3
#4
#5
#6
#7
#8
#9

#10
#11
#12
#13
#14
#15
#16
#17
#18 23.14 ms

59.16 ms
84.33 ms

23.91 ms
2.55 ms

49.02 ms
24.18 ms

2.55 ms
.57 ms

6.31 ms
23.7 ms

2.94 ms
19.27 ms

4.27 ms
12.92 ms

40.71 ms
.82 ms

12.57 ms

IE7: offsetHeight called 18 times

Data from instrumented IE7 & Google Calendar

Monday, June 1, 2009

30

It varies wildly, but why?
#3. Avoid forcing layout.

Monday, June 1, 2009

31

#3. Avoid forcing layout.

Try to do what you what you need to with CSS alone.

Do style updates and measurements together:

Solution: Avoid layout from JavaScript.

Avoid:
widgetA.setStyleName(“a”);
int leftA = widgetA.getAbsoluteLeft();
widgetB.setStyleName(“b”);
int leftB = widgetB.getAbsoluteLeft();

Better:
widgetA.setStyleName(“a”);
widgetB.setStyleName(“b”);
int leftA = widgetA.getAbsoluteLeft();
int leftB = widgetB.getAbsoluteLeft();

Monday, June 1, 2009

32

#4. Fetch only what you show with RPC

GWT RPC handles arbitrary object graphs, but you rarely need
that.

Often see apps where time to deserialize data structures bogs
down startup. :-(

Return only what is visible to the user.

Monday, June 1, 2009

33

#4. Fetch only what you show with RPC

When you make a list of Articles, you have to download all the
content.

Omit large fields from your client data objects.

class Article implements Serializable {
 String key;
 String title;
 Date publishedOn;
 String content; // relatively large.
}

class RemoteService {
 Article[] getArticles();
}

Monday, June 1, 2009

34

#4. Fetch only what you show with RPC

Omit large fields from your client data objects.

class Article implements Serializable {
 String key;
 String title;
 Date publishedOn;

 void getContent(AsyncCallback<String> callback);
}

class RemoteService {
 Article[] getArticles();
 String getArticleContent(String key);
}

Monday, June 1, 2009

35

that’s it. Questions?
4 things GWT does for you.
#1. Produces fast JavaScript.
#2. Loads your non-code resources quickly.
#3. Splits your code elegantly.
#4. Interoperates with JavaScript at no cost.

4 things you should do for youself.
#1. Avoid unnecessary widgets.
#2. Use debug builds effectively.
#3. Avoid forcing layout.
#4. Fetch only what you show with RPC.

InspectorWidget:
http://gwt-instrumental.googlecode.com/svn/latest/inspectorwidget/index.html

Monday, June 1, 2009

http://gwt-instrumental.googlecode.com/svn/latest/inspectorwidget/index.html
http://gwt-instrumental.googlecode.com/svn/latest/inspectorwidget/index.html

Monday, June 1, 2009

