


V8 Internals

Mads Sig Ager
May 27, 2009

Google @®



Agenda

e Why a new JavaScript engine?
e \/8 design overview
e V8 internals
o Hidden classes
o Inline caching
o Precise generational garbage collection
e Recent developments
o Irregexp: new JS regular expression engine
o New compiler infrastructure
e Object heap scalability
e Performance bottlenecks Coogle H@



- Why a New JavaScript Engine?



Why Build a New JavaScript Engine”?
e When the development of V8 started, the existing
JavaScript engines were slow
o Interpreters operating on AST or bytecodes
o Poor memory management with big GC pauses

e High performance JavaScript engines are key to continued
innovation for web applications

e Starting from scratch seemed like the best approach

e The goal is to push the performance bar for JavaScript

= 0



The Challenge

e JavaScript is a highly dynamic language

e Objects are basically hash maps

e Properties are added and removed on-the-fly

e Prototype chains are modified during execution
e 'eval' can change the calling context

e 'with' introduces objects in the scope chain dynamically

= 0



- V8 Design Decisions



Design Goals

e Make large object-oriented programs perform well
e Fast property access
e Fast function calls

e Fast and scalable memory mangement

= 0



Key V8 Components

e Hidden classes and class transitions
e Compilation to native code with inline caching

e Efficient generational garbage collection

= 0



- V8 Internals



V8 Memory Model

e 32-bit tagged pointers

e Objects are 4-byte aligned, so two bits available for tagging

e Small 31-bit signed integers are immediate values
distinguished from pointers by tags

Small integer REECEPVLI

Pointer XK. XXX01

e Base JavaScript objects consists of three words

Hidden Class Pointer

Properties Pointer

Elements Pointer

= 0



Hidden Classes

e Wanted to take advantage of optimization techniques from
statically typed object oriented languages
e Introduced the concept of hidden classes to get there

e Hidden classes group objects that have the same structure

= 0



Hidden Classes by Example

e JavaScript objects constructed in the same way
should get the same hidden class

function Point(x, y) {
this.x = x;
this.y =y;
)
var pl = new Point(0,1);
var p2 = new Point(2,3);

= 0



Hidden Classes by Example

function Point(x, y) {
this.x = x;
this.y =y;
h
var pl = new Point(0,1);
var p2 = new Point(2,3);

Point function
initial class

= 0



Hidden Classes by Example

function Point(x, y) {
this.x = x;
this.y =y;
h
mjar pl = new Point(0,1);
var p2 = new Point(2,3);

Hidden Class

Properties

Elements

Point function
initial class

= 0



Hidden Classes by Example

function Point(x, y) {
mpthis.x = x;
this.y =y;
}

var pl = new Point(0,1);
var p2 = new Point(2,3);

Hidden Class

Properties

Elements

Point function
initial class

Class 0
Add X'

Class 1

X':0

= [0



Hidden Classes by Example

function Point(x, y) {
this.x = x;
-this.y =Y;
h
var pl = new Point(0,1);
var p2 = new Point(2,3);

Point function
initial class

Class 0
Add X'

Class 1

X':0

Hidden Class Add y’

Properties

Elements




Hidden Classes by Example

function Point(x, y) {
this.x = x;
this.y =y;
h
var pl = new Point(0,1);
mpar p2 = new Point(2,3);

Point function
initial class

Class 0
Add X'

Class 1
X':0

Hidden Class Add y’

Properties

Elements




Hidden Classes by Example

function Point(x, y) {
this.x = x;
this.y =y;
]
var pl = new Point(0,1);
mpar p2 = new Point(2,3);

Point function
initial class

Class 0
Add X'

Hidden Class
Properties
Elements Class 1

X' 0

Hidden Class A

Properties

Elements




Hidden Classes by Example

var pl = new Point(0,1);
var p2 = new Point(2,3);

Point function
initial class

Hidden Class Class 0
Add %'
Properties

Elements Class 1

X':0

Hidden Class Add y’

Properties

Elements




Hidden Classes by Example

function Point(x, y) {
this.x = x;

‘this.y =Y;
§
var pl = new Point(0,1);

var p2 = new Point(2,3);

B Hidden Class

Properties

Elements

A Hidden Class

Properties

Elements

Point function
initial class

Class 0
Add X'

Class 1

X':0

Add y'

= [0



Hidden Classes by Example

function Point(x, y) {
this.x = x;
this.y =y;
J
var pl = new Point(0,1);
var p2 = new Point(2,3);

VB Hidden Class

Properties

Elements

SN Hidden Class

Properties

Elements

Point function
initial class

Class 0
Add X'

Class 1

X':0

Add y'

= 0



How Dynamic is JavaScript?

e In 90% of the cases, only objects having the same map are
seen at an access site

e Hidden classes provides enough structure to use
optimization techniques from more static object-oriented
language

e We do not know the hidden class of objects at compile time

e We use runtime code generation and a technique called
inline caching

= 0



Inline Caching

(I . Full generic
= load '

load 'y’ N Full generic
lookup

= 0



Inline Caching

m) load X Fast lookup code UL

lookup

load 'y’ N Full generic
lookup

= 0



Inline Caching

load X' Fast lookup code BUIEENEIE

lookup

> load 'y’ M Fullgeneric
lookup

= 0



Inline Caching

(I ) Full generic
load X Fast lookup code loaku

n,1 l~
> load y = E el GoiE Full generic

lookup

= 0



Monomorphic Load Inline Cache

0x17c0d32d (size = 37):

0 mov eax,|esp+0x4]

4 test al,0x1

6jz 32

12 cmp [eax+0x{f],0xf78fab81
19 jnz 32

25 mov ebx,[eax+0x3]

28 mov eax,[ebx+0x7]

31 ret

32 jmp LoadIC_ Miss

= 0



Monomorphic Load Inline Cache

0xf7¢0d32d (size = 37):

0 mov eax,|esp+0x4] ; receiver load
4 test al,0x1 ; object check

6jz 32

12 cmp [eax+0x{f],0xf78fab81

19 jnz 32

25 mov ebx,[eax+0x3]

28 mov eax,[ebx+0x7]

31 ret

32 jmp LoadIC_ Miss

= 0



Monomorphic Load Inline Cache

0xf7¢0d32d (size = 37):

0 mov eax,|esp+0x4] ; receiver load

4 test al,0x1 ; object check

6jz 32

12 cmp [eax+0x{t],0xt78fab81 ; class check
19 jnz 32

25 mov ebx,[eax+0x3]

28 mov eax,[ebx+0x7]

31 ret

32 jmp LoadlIC Miss

= 0



Monomorphic Load Inline Cache

0xf7c¢0d32d (size = 37):

0 mov eax,|esp+0x4] ; receiver load

4 test al,0x1 ; object check

6jz 32

12 cmp [eax+0x{t],0xt78fab81 ; class check
19 jnz 32

25 mov ebx,[eax+0x3] ; load properties
28 mov eax,[ebx+0x7] ; load property
31 ret

32 jmp LoadlIC Miss

= 0



Monomorphic Load Inline Cache

0xf7c¢0d32d (size = 37):

0 mov eax,|esp+0x4] ; receiver load

4 test al,0x1 ; object check

6jz 32

12 cmp [eax+0x{t],0xt78fab81 ; class check
19 jnz 32

25 mov ebx,[eax+0x3] ; load properties
28 mov eax,[ebx+0x7] ; load property
31 ret

32 jmp LoadIC Miss ; fallback to

; generic lookup

= 0



Inline Cache States

e Three inline cache states
o Uninitialized
o Monomorphic
o Megamorphic

e In the megamorphic state a cache of generated stubs is
used

e Inline caches are cleared on full garbage collections

o Allows us to get rid of unused code stubs
o Gives all inline caches a new chance to hit the
monomorphic case

= 0



Efficient Memory Management

e Precise generational garbage collection

e Two generations
o Young generation is one small, contiguous space that
Is collected often
o Old generation is divided into a number of spaces that
are only occasionally collected
m Code space (executable)
m Map space (hidden classes)
m Large object space (>8K)
m Old data space (no pointers)
m Old pointer space
e Objects are allocated in the young generation and moved to
the old generation if they survive in the young generation

= 0



Types of Garbage Collection

e Scavenge
o Copying collection of only the young generation
o Pause times ~2ms

e Full non-compacting collection
o Mark-Sweep collection of both generations
o Free memory gets added to free lists
o Might cause fragmentation
o Pause times ~50ms
e Full compacting collection
o Mark-Sweep-Compact collection of both generations
o Pause times ~100ms

= 0



- Recent developments



Irregexp: New Regular Expression Engine

e V8 initially used a library from WebKit called JSCRE

e JSCRE did not fit well with the string types in V8 and did
not perform well

e Implemented Irregexp giving a 10x speedup on regular
expression matching on benchmark programs

e Irregexp implements full JS regular expressions and there
IS no fallback to other libraries

= 0



Irregexp Internals

e Builds an automaton from the input regular expression
e Performs analysis and optimization on the automaton
e Generates native code

e Uses a number of tricks to avoid backtracking

e Reorders operations to perform the least expensive
operations first

= 0



Irregexp Examples

e Use masks to search for common parts in alternatives first

e 10 search for

/Sun|Mon/

e First search for

[22n/

e Avoids a lot of backtracking

= 0



Irregexp Examples

e Will match up to four characters at a time on ASCII strings

e For

/foobar/

e It will search for

0x66616162 0x6172

= 0



Irregexp Examples

e Perform cheap operations first

e For

/([fF]oo[bB]ar)/

e Perform the following actions
o Match oo and ar at positions 1 and 4
o Match [fF]at position O
o Match [bB]at position 3
o Perform capture

= 0



New Compiler Infrastructure

e Original compiler was very simple
e No static analysis of any kind
e No register allocation

e We have implemented a new compiler infrastructure which
performs register allocation

e Still a one pass compiler

e Forms the basis for further native code optimizations

= 0



- Object Heap Scalability



Scalability

e Users use multiple tabs running full applications

o Mail
o Calendar
o News
e Applications are becoming bigger with more objects

e JavaScript execution should be fast in these situations

e The challenge is to scale well with respect to the size of the
object heap

e The key to scaling well is generational garbage collection

= 0



Scalability Experiment

e Artificial scalability experiment approximating this situation

o Raytrace benchmark from the V8 benchmark suite
o Allocate extra live data on the side
o 1MB of extra data per iteration

= 0



Scalability Experiment - Execution Speed

V8 raytrace benchmark
3,500

3,000

2,500

2.000 | N safari 4
B Firefox 3.5b4
. Chromium

1,500
1,000

500

Ooaee.\ﬂ,.@@,\;,\)-,;\,,o,p,,b.,e,:‘,,sa,.e

Bigger is better!

= 0



Scalability
e This experiment is artificial
]
e Try loading GMail in different browsers and then run
JavaScript benchmarks in another tab

e Try out your own scalability experiments!

= 0



- Performance Bottlenecks



Performance bottlenecks

e One fully general version of generated code

o Generate optimized versions with more assumptions
that falls back to fully general code

e Inline caching based on calls to stubs
o Inline the fast common case directly and avoid the calls

e Slow write barrier
o Experiment with other implementations

e No special handling of the global object
o Loading of global properties can be much faster if we
generate context specific code for global loads

= 0



Summary

e V8 was designed for speed and scalability

e The goal is to raise the performance bar for JavaScript

V8 benchmarks suite score

ToT chromium

2.0 beta

M Score
1.0 stable

1.0 beta

1,000 1,500 2,000 2,500 3,000

= 0







