

V8 Internals

Mads Sig Ager
May 27, 2009

Agenda

Why a new JavaScript engine?

V8 design overview

V8 internals

Hidden classes

Inline caching

Precise generational garbage collection

Recent developments

Irregexp: new JS regular expression engine

New compiler infrastructure

Object heap scalability

Performance bottlenecks

Why a New JavaScript Engine?

Why Build a New JavaScript Engine?

When the development of V8 started, the existing
JavaScript engines were slow

Interpreters operating on AST or bytecodes
Poor memory management with big GC pauses

High performance JavaScript engines are key to continued
innovation for web applications

Starting from scratch seemed like the best approach

The goal is to push the performance bar for JavaScript

The Challenge

JavaScript is a highly dynamic language

Objects are basically hash maps

Properties are added and removed on-the-fly

Prototype chains are modified during execution

'eval' can change the calling context

'with' introduces objects in the scope chain dynamically

V8 Design Decisions

Design Goals

Make large object-oriented programs perform well

Fast property access

Fast function calls

Fast and scalable memory mangement

Key V8 Components

Hidden classes and class transitions

Compilation to native code with inline caching

Efficient generational garbage collection

V8 Internals

V8 Memory Model

32-bit tagged pointers

Objects are 4-byte aligned, so two bits available for tagging

Small 31-bit signed integers are immediate values
distinguished from pointers by tags

Base JavaScript objects consists of three words

Hidden Classes

Wanted to take advantage of optimization techniques from
statically typed object oriented languages

Introduced the concept of hidden classes to get there

Hidden classes group objects that have the same structure

Hidden Classes by Example

JavaScript objects constructed in the same way
should get the same hidden class

 function Point(x, y) {
 this.x = x;
 this.y = y;
 }
 var p1 = new Point(0,1);
 var p2 = new Point(2,3);

Hidden Classes by Example

 function Point(x, y) {
 this.x = x;
 this.y = y;
 }
 var p1 = new Point(0,1);
 var p2 = new Point(2,3);

Hidden Classes by Example

 function Point(x, y) {
 this.x = x;
 this.y = y;
 }
 var p1 = new Point(0,1);
 var p2 = new Point(2,3);

Hidden Classes by Example

 function Point(x, y) {
 this.x = x;
 this.y = y;
 }
 var p1 = new Point(0,1);
 var p2 = new Point(2,3);

Hidden Classes by Example

 function Point(x, y) {
 this.x = x;
 this.y = y;
 }
 var p1 = new Point(0,1);
 var p2 = new Point(2,3);

Hidden Classes by Example

 function Point(x, y) {
 this.x = x;
 this.y = y;
 }
 var p1 = new Point(0,1);
 var p2 = new Point(2,3);

Hidden Classes by Example

 function Point(x, y) {
 this.x = x;
 this.y = y;
 }
 var p1 = new Point(0,1);
 var p2 = new Point(2,3);

Hidden Classes by Example

 function Point(x, y) {
 this.x = x;
 this.y = y;
 }
 var p1 = new Point(0,1);
 var p2 = new Point(2,3);

Hidden Classes by Example

 function Point(x, y) {
 this.x = x;
 this.y = y;
 }
 var p1 = new Point(0,1);
 var p2 = new Point(2,3);

Hidden Classes by Example

 function Point(x, y) {
 this.x = x;
 this.y = y;
 }
 var p1 = new Point(0,1);
 var p2 = new Point(2,3);

How Dynamic is JavaScript?

In 90% of the cases, only objects having the same map are
seen at an access site

Hidden classes provides enough structure to use
optimization techniques from more static object-oriented
language

We do not know the hidden class of objects at compile time

We use runtime code generation and a technique called
inline caching

Inline Caching

 ...

 load 'x'

 ...

 load 'y'

 ...

Inline Caching

 ...

 load 'x'

 ...

 load 'y'

 ...

Inline Caching

 ...

 load 'x'

 ...

 load 'y'

 ...

Inline Caching

 ...

 load 'x'

 ...

 load 'y'

 ...

Monomorphic Load Inline Cache

0xf7c0d32d (size = 37):
 0 mov eax,[esp+0x4]
 4 test al,0x1
 6 jz 32
12 cmp [eax+0xff],0xf78fab81
19 jnz 32
25 mov ebx,[eax+0x3]
28 mov eax,[ebx+0x7]
31 ret
32 jmp LoadIC_Miss

Monomorphic Load Inline Cache

0xf7c0d32d (size = 37):
 0 mov eax,[esp+0x4] ; receiver load
 4 test al,0x1 ; object check
 6 jz 32
12 cmp [eax+0xff],0xf78fab81
19 jnz 32
25 mov ebx,[eax+0x3]
28 mov eax,[ebx+0x7]
31 ret
32 jmp LoadIC_Miss

Monomorphic Load Inline Cache

0xf7c0d32d (size = 37):
 0 mov eax,[esp+0x4] ; receiver load
 4 test al,0x1 ; object check
 6 jz 32
12 cmp [eax+0xff],0xf78fab81 ; class check
19 jnz 32
25 mov ebx,[eax+0x3]
28 mov eax,[ebx+0x7]
31 ret
32 jmp LoadIC_Miss

Monomorphic Load Inline Cache

0xf7c0d32d (size = 37):
 0 mov eax,[esp+0x4] ; receiver load
 4 test al,0x1 ; object check
 6 jz 32
12 cmp [eax+0xff],0xf78fab81 ; class check
19 jnz 32
25 mov ebx,[eax+0x3] ; load properties
28 mov eax,[ebx+0x7] ; load property
31 ret
32 jmp LoadIC_Miss

Monomorphic Load Inline Cache

0xf7c0d32d (size = 37):
 0 mov eax,[esp+0x4] ; receiver load
 4 test al,0x1 ; object check
 6 jz 32
12 cmp [eax+0xff],0xf78fab81 ; class check
19 jnz 32
25 mov ebx,[eax+0x3] ; load properties
28 mov eax,[ebx+0x7] ; load property
31 ret
32 jmp LoadIC_Miss ; fallback to
 ; generic lookup

Inline Cache States

Three inline cache states

Uninitialized

Monomorphic

Megamorphic

In the megamorphic state a cache of generated stubs is
used

Inline caches are cleared on full garbage collections
Allows us to get rid of unused code stubs
Gives all inline caches a new chance to hit the
monomorphic case

Efficient Memory Management

Precise generational garbage collection

Two generations
Young generation is one small, contiguous space that
is collected often
Old generation is divided into a number of spaces that
are only occasionally collected

Code space (executable)
Map space (hidden classes)
Large object space (>8K)
Old data space (no pointers)
Old pointer space

Objects are allocated in the young generation and moved to
the old generation if they survive in the young generation

Types of Garbage Collection

Scavenge
Copying collection of only the young generation
Pause times ~2ms

Full non-compacting collection
Mark-Sweep collection of both generations
Free memory gets added to free lists
Might cause fragmentation
Pause times ~50ms

Full compacting collection
Mark-Sweep-Compact collection of both generations
Pause times ~100ms

Recent developments

Irregexp: New Regular Expression Engine

V8 initially used a library from WebKit called JSCRE

JSCRE did not fit well with the string types in V8 and did
not perform well

Implemented Irregexp giving a 10x speedup on regular
expression matching on benchmark programs

Irregexp implements full JS regular expressions and there
is no fallback to other libraries

Irregexp Internals

Builds an automaton from the input regular expression

Performs analysis and optimization on the automaton

Generates native code

Uses a number of tricks to avoid backtracking

Reorders operations to perform the least expensive
operations first

Irregexp Examples

Use masks to search for common parts in alternatives first

To search for

 /Sun|Mon/

First search for

 /??n/

Avoids a lot of backtracking

Irregexp Examples

Will match up to four characters at a time on ASCII strings

For

 /foobar/

It will search for

 0x666f6f62 0x6172

Irregexp Examples

Perform cheap operations first

For

 /([fF]oo[bB]ar)/

Perform the following actions
Match oo and ar at positions 1 and 4
Match [fF]at position 0
Match [bB]at position 3
Perform capture

New Compiler Infrastructure

Original compiler was very simple

No static analysis of any kind

No register allocation

We have implemented a new compiler infrastructure which
performs register allocation

Still a one pass compiler

Forms the basis for further native code optimizations

Object Heap Scalability

Scalability

Users use multiple tabs running full applications
Mail
Calendar
News

Applications are becoming bigger with more objects

JavaScript execution should be fast in these situations

The challenge is to scale well with respect to the size of the
object heap

The key to scaling well is generational garbage collection

Scalability Experiment

Artificial scalability experiment approximating this situation
Raytrace benchmark from the V8 benchmark suite
Allocate extra live data on the side
1MB of extra data per iteration

Scalability Experiment - Execution Speed

Bigger is better!

Scalability

This experiment is artificial
�

Try loading GMail in different browsers and then run
JavaScript benchmarks in another tab

Try out your own scalability experiments!

Performance Bottlenecks

Performance bottlenecks

One fully general version of generated code
Generate optimized versions with more assumptions
that falls back to fully general code

Inline caching based on calls to stubs
Inline the fast common case directly and avoid the calls

Slow write barrier
Experiment with other implementations

No special handling of the global object
Loading of global properties can be much faster if we
generate context specific code for global loads

Summary

V8 was designed for speed and scalability

The goal is to raise the performance bar for JavaScript

The full source code is available under a BSD license

http://code.google.com/p/v8

