

Evolution of the Google
Data Protocol
Sven Mawson
05/27/2009

Introduction
Demo: Photo Shuffle
Introducing JSONC
Introducing Partial GET
ETags and Google Data APIs
Coming Soon
Q/A

Building More Efficient Applications

Based on common standards

The Google Data APIs

Based on common standards
AtomPub

The Google Data APIs

Based on common standards
AtomPub
RSS

The Google Data APIs

Based on common standards
AtomPub
RSS
JSON

The Google Data APIs

Based on common standards
Includes many Google Services

The Google Data APIs

Based on common standards
Includes many Google Services

YouTube

The Google Data APIs

Based on common standards
Includes many Google Services

YouTube
Picasa Web Albums

The Google Data APIs

Based on common standards
Includes many Google Services

YouTube
Picasa Web Albums
Calendar

The Google Data APIs

Based on common standards
Includes many Google Services

YouTube
Picasa Web Albums
Calendar
Docs

The Google Data APIs

Based on common standards
Includes many Google Services

YouTube
Picasa Web Albums
Calendar
Docs
...

The Google Data APIs

Based on common standards
Includes many Google Services
http://code.google.com/apis/gdata/

The Google Data APIs

What kinds of applications need efficiency?

Building More Efficient Applications

What kind of applications need efficiency?
How can we make them more efficient?

Building More Efficient Applications

What kind of applications need efficiency?
How can we make them more efficient?

Reduce Number of Requests

Building More Efficient Applications

What kind of applications need efficiency?
How can we make them more efficient?

Reduce Number of Requests
Reduce Bandwidth

Building More Efficient Applications

What kind of applications need efficiency?
How can we make them more efficient?

Reduce Number of Requests
Reduce Bandwidth
Reduce Latency

Building More Efficient Applications

OK, let's see an example

Introduction
Demo: Photo Shuffle
Introducing JSONC
Introducing Partial GET
ETags and Google Data APIs
Coming Soon
Q/A

Building More Efficient Applications

Do the Photo Shuffle!

http://photoshuffle.appspot.com

Background: XML -> JSON -> XML

XML -> JSON Conversion (and back!)

XML:

<entry>
 ...
 <media:group>
 <media:content
 url='.../foo.jpg'
 type='image/jpeg'
 medium='image'/>
 <media:credit>
Sven Mawson</media:credit>
 <media:description
 type='plain'>
Cool Photo!</media:
description>
 </media:group>
</entry>

JSON:

"entry": {
 ...
 "media$group": {
 "media$content": [{
 "url": ".../foo.jpg",
 "type": "image/jpeg",
 "medium": "image"}],
 "media$credit": {
 "$t": "Sven Mawson"},
 "media$description": {
 "type": "plain",
 "$t": "Cool Photo!"}
 }
}

Elements as JSON objects

XML -> JSON -> XML

Element -> Object Conversion

XML:

<entry>
 ...
 <media:group>
 <media:content
 url='.../foo.jpg'
 type='image/jpeg'
 medium='image'/>
 <media:credit>
Sven Mawson</media:credit>
 <media:description
 type='plain'>
Cool Photo!</media:
description>
 </media:group>
</entry>

JSON:

"entry": {
 ...
 "media$group": {
 "media$content": [{
 "url": ".../foo.jpg",
 "type": "image/jpeg",
 "medium": "image"}],
 "media$credit": {
 "$t": "Sven Mawson"},
 "media$description": {
 "type": "plain",
 "$t": "Cool Photo!"}
 }
}

Elements as JSON objects
Attributes as JSON properties

XML -> JSON -> XML

Attribute -> Property Conversion

XML:

<entry>
 ...
 <media:group>
 <media:content
 url='.../foo.jpg'
 type='image/jpeg'
 medium='image'/>
 <media:credit>
Sven Mawson</media:credit>
 <media:description
 type='plain'>
Cool Photo!</media:
description>
 </media:group>
</entry>

JSON:

"entry": {
 ...
 "media$group": {
 "media$content": [{
 "url": ".../foo.jpg",
 "type": "image/jpeg",
 "medium": "image"}],
 "media$credit": {
 "$t": "Sven Mawson"},
 "media$description": {
 "type": "plain",
 "$t": "Cool Photo!"}
 }
}

Elements as JSON objects
Attributes as JSON properties
Text content as $t

XML -> JSON -> XML

Text Content -> $t Conversion

XML:

<entry>
 ...
 <media:group>
 <media:content
 url='.../foo.jpg'
 type='image/jpeg'
 medium='image'/>
 <media:credit>
Sven Mawson</media:credit>
 <media:description
 type='plain'>
Cool Photo!</media:
description>
 </media:group>
</entry>

JSON:

"entry": {
 ...
 "media$group": {
 "media$content": [{
 "url": ".../foo.jpg",
 "type": "image/jpeg",
 "medium": "image"}],
 "media$credit": {
 "$t": "Sven Mawson"},
 "media$description": {
 "type": "plain",
 "$t": "Cool Photo!"}
 }
}

Photo Shuffle: Using JSON

Loading data using a <script> tag

var head =
 document.getElementsByTagName('head')[0];
var script =
 document.createElement('script');
script.src = 'http://picasaweb.google.com'
 + '/data/feed/api/user/' + username
 + '?alt=json&callback=callback';
head.appendChild(script);

Receiving the Results

function callback(data) {
 var albums = data.feed.entry;

 clearAlbums();
 for (albumKey in albums) {
 addAlbum(albums[albumKey]);
 }
 renderAlbums();
}

Parsing the Albums

function addAlbum(entry) {
 var album = {};
 album.id = entry.gphoto$id.$t;
 album.feed = entry.link[0].href;
 album.thumb = entry.media$group.
media$thumbnail[0].url;
 album.title = entry.title.$t;
 albums.push(album);
}

How can we make this better?

Too many objects

Problems

Objects Everywhere!

"media$group": {
 "media$content": [{
 "url": "http://lh3.ggpht.com/foo.jpg",
 "type": "image/jpeg",
 "medium": "image"}],
 "media$credit": {
 "$t": "Me"},
 "media$description": {
 "type": "plain",
 "$t": "Cool!"}
}

Too many objects
Verbose programming model

Problems

JSON Ugliness

album.id = entry.gphoto$id.$t;
album.img =
 entry.media$group.media$thumbnail[0].
url;

Too many objects
Verbose programming model
Too much extra junk sent on each request

Problems

Is this JSON or XML?

{
 "version": "1.0",
 "encoding": "UTF-8",
 "entry": {
 "xmlns": "http://www.w3.org/2005/Atom",
 "xmlns$media": "http://search.yahoo.
com/mrss/",
 "xmlns$openSearch": "http://a9.com/-
/spec/opensearchrss/1.0/",
 ...

Too many objects
Verbose programming model
Too much extra junk sent on each request
Too much space on the wire

Problems

Bandwidth Used

We Can Do Better!

Introduction
Demo: Photo Shuffle
Introducing JSONC
Introducing Partial GET
ETags and Google Data APIs
Coming Soon
Q/A

Building More Efficient Applications

Minimize the number of JavaScript objects

JSONC: Clean, Compact, and Customizable

Minimize the number of JavaScript objects
Simple Single Elements

JSONC: Clean, Compact, and Customizable

Simple Single Elements

JSON:

"media$credit": {
 "$t": "Sven Mawson"
}

JSONC:

"credit":
 "Sven Mawson"

Minimize the number of JavaScript objects
Simple Single Elements
Complex Single Elements

JSONC: Clean, Compact, and Customizable

Complex Single Elements

JSON:

"summary": {
 "$t":"Nice!",
 "type": "text"
}

JSONC:

"summary": "Nice!",
"summaryType": "text"

Minimize the number of JavaScript objects
Simple Single Elements
Complex Single Elements
Simple Repeating Elements

JSONC: Clean, Compact, and Customizable

Simple Repeating Elements

JSON:

"gphoto$keywords": [
 {"$t": "Google"},
 {"$t": "I/O"}
]

JSONC:

"keywords": [
 "Google",
 "I/O"
]

Minimize the number of JavaScript objects
Simple Single Elements
Complex Single Elements
Simple Repeating Elements
Complex Repeating Elements

JSONC: Clean, Compact, and Customizable

Complex Repeating Elements

JSON:

"link": [{
 "rel": "edit",
 "type":
"application/atom+xml"
,
 "href": "...
/feeds/myfeed/myentry"

},...]

JSONC:

"links": {
 "edit": "...
/feeds/myfeed/myentry",
 ...
}

Full Conversion of media:group

JSON:

"entry": {
 ...
 "media$group": {
 "media$content": [{
 "url": ".../foo.jpg",
 "type": "image/jpeg",
 "medium": "image"}],
 "media$credit": {
 "$t": "Sven Mawson"},
 "media$description": {
 "type": "plain",
 "$t": "Cool!"}
 }
}

JSONC:

"entry": {
 ...
"media": {
 "content": ".../foo.jpg",
 "contentType":
"image/jpeg",
 "contentMedium": "image",
 "credit": "Sven Mawson",
 "description": "Cool!",
 "descriptionType":
"plain"
 }
}

Minimize the number of JavaScript objects
Simple Single Elements
Complex Single Elements
Simple Repeating Elements
Complex Repeating Elements

Remove extra data

JSONC: Clean, Compact, and Customizable

Useless Data: Gone!

Before:

"media": {
 "content": ".../foo.jpg",
 "contentType":"image/jpeg",
 "contentMedium": "image",
 "credit": "Sven Mawson",
 "description": "Cool!",
 "descriptionType": "plain"
}

After:

"media": {
 "content": ".../foo.jpg",
 "contentType":"image/jpeg",
 "credit": "Sven Mawson",
 "description": "Cool!"
}

Photo Shuffle: Switching to JSONC

Asking for JSONC

script.src = 'http://picasaweb.google.com'
 + '/data/feed/api/user/' + username
 + '?alt=jsonc&callback=callback';

Receiving the Results

JSON:

function callback(data) {
var albums =
 data.feed.entry;

 clearAlbums();
 for (key in albums) {
 addAlbum(albums[key]);
 }
 renderAlbums();
}

JSONC:

function callback(data) {
 var albums =
 data.albums;

 clearAlbums();
 for (key in albums) {
 addAlbum(albums[key]);
 }
 renderAlbums();
}

Parsing the Albums

JSON:

function addAlbum(entry) {
 var album = {};
 album.id =
 entry.gphoto$id.$t;
 album.feed =
 entry.link[0].href;
 album.thumb =
 entry.media$group
.media$thumbnail[0].url;
 album.title =
 entry.title.$t;
 albums.push(album);
}

JSONC:

function addAlbum(entry) {
 var album = {};
 album.id =
 entry.id;
 album.feed =
 entry.links.feed;
 album.thumb =
 entry.media.thumbnails[0];

 album.title =
 entry.title;
 albums.push(album);
}

Bandwidth Used

Request Time

Parse Time

Introduction
Demo: Photo Shuffle
Introducing JSONC
Introducing Partial GET
ETags and Google Data APIs
Coming Soon
Q/A

Building More Efficient Applications

Background: RESTful Updates

GET the entry you'd like to update

Read -> Modify -> Write

GET an entry for update
GET /feeds/myfeed/myentry

200 OK
<?xml version='1.0' encoding='UTF-8'?>
<entry xmlns='http://www.w3.org/2005/Atom'
...>
 <id>..../feeds/myfeed/myentry</id>
 <link rel='edit'
type='application/atom+xml'
 href='.../feeds/myfeed/myentry/1992'/>
 <title>My Photo</title>
 ...other fields...
</entry>

GET the entry you'd like to update

Modify the field(s) you'd like to change

Read -> Modify -> Write

Modify the entry

<entry xmlns='http://www.w3.org/2005/Atom'
...>
 <id>..../feeds/myfeed/myentry</id>
 <link rel='edit'
type='application/atom+xml'
 href='...
/feeds/myfeed/myentry/1992'/>
 <title>Favorite Picture</title>
 ...other fields...
</entry>

GET the entry you'd like to update
Modify the field(s) you'd like to change

PUT the entire entry back to the server

Read -> Modify -> Write

PUT back the updated entry

PUT /feeds/myfeed/myentry/1992
<?xml version='1.0' encoding='UTF-8'?>
<entry xmlns='http://www.w3.org/2005/Atom'
...>
 <id>..../feeds/myfeed/myentry</id>
 <link rel='edit'
type='application/atom+xml'
 href='.../feeds/myfeed/myentry/1992'/>
 <title>Favorite Picture</title>
 ...other fields...
</entry>

GET the entry you'd like to update
Modify the field(s) you'd like to change
PUT the entire entry back to the server

Repeat if a conflict was detected

Read -> Modify -> Write

Handling Conflicts

409 Conflict
<?xml version='1.0' encoding='UTF-8'?>
<entry xmlns='http://www.w3.org/2005/Atom'
...>
 <id>..../feeds/myfeed/myentry</id>
 <link rel='edit'
type='application/atom+xml'
href='.../feeds/myfeed/myentry/1994'/>
 <title>My Photo</title>
 <summary>Nice Picture!</summary>
 ...other fields...
</entry>

Introducing Partial GET

“You can't always get what you want.
But if you try sometimes you might find
You get what you need”

The Rolling Stones

Allows clients to specify the elements they want

Partial GET

GET /feed?fields=id,title,entry
GET /feed/entry?fields=id,title,
media:group,georss:where

The "fields" query parameter

Allows clients to specify the elements they want
Can specify sub elements

Partial GET

GET /feed?fields=entry(media:group(
media:thumbnail))

GET /feed/entry?fields=id,author(name),
georss:where(gml:Pos)

Specifying subelements

Allows clients to specify the elements they want
Can specify sub elements
Supports conditional filters

Partial GET

GET /feed?fields=id,entry(media:group(
media:thumbnail[@height=144]))

GET /feed?fields=id,entry
[author/name/text()="Sam"]

Specifying conditional filters

Allows clients to specify the elements they want
Can specify sub elements
Supports conditional filters

Filters are not queries!

Partial GET

Sample Response

200 OK
Content-Type: application/xml
Etag: {resource-etag}

<gd:partial xmlns:'...' fields='...'>
 <feed gd:etag='...'>
 <title>...</title>
 <entry gd:etag='...'>
 <id>...</id>
 <updated>...</updated>
 </entry>
 </feed>
</gd:partial>

Photo Shuffle: Using Partial GET

Asking for a partial response

script.src = 'http://picasaweb.google.com'
 + '/data/feed/api/user/' + username
 + '?alt=jsonc&callback=callback'
 + '&fields='
 + 'albums(id,title,links(feed),'
 + 'media(thumbnails))';

Receiving the Results

JSONC:

function callback(data) {
var albums =
 data.albums;

 clearAlbums();
 for (key in albums) {
 addAlbum(albums[key]);
 }
 renderAlbums();
}

JSONC + Partial:

function callback(data) {
 var albums =
 data.feed.albums;

 clearAlbums();
 for (key in albums) {
 addAlbum(albums[key]);
 }
 renderAlbums();
}

Bandwidth Used

Request Time

Parse Time

Introduction
Demo: Photo Shuffle
Introducing JSONC
Introducing Partial GET
ETags and Google Data APIs
Coming Soon
Q/A

Building More Efficient Applications

Background: Conditional GET

Record Last-Modified header from response

Conditional GET using If-Modified-Since

Recording Last-Modified

200 OK
Date: Wed, 13 May 2009 22:48:42 GMT
Last-Modified: Wed, 01 Sep 2004 13:24:52
GMT
...

Record Last-Modified header from response
Send If-Modified-Since header on request

Conditional GET using If-Modified-Since

Requesting If-Modified-Since

GET /feeds/myfeed/...

Keep-Alive: 300
...
If-Modified-Since: Wed, 01 Sep 2004 13:
24:52 GMT
...

Record Last-Modified header from response
Send If-Modified-Since header on request
Use local cache if resource has not changed

Conditional GET using If-Modified-Since

Not Modified Response

304 Not Modified
Date: Wed, 13 May 2009 22:52:55 GMT
Expires: Thu, 14 May 2009 04:52:55 GMT
...

1 Second granularity

Problems with If-Modified-Since

1 Second granularity
Server only valid source of time

Problems with If-Modified-Since

Introducing ETags

An opaque quoted string

ETags

An opaque quoted string
ETag: "xyzzy"

ETags

An opaque quoted string
May be strong or weak

ETags

An opaque quoted string
May be strong or weak
ETag: w/"xyzzy"

ETags

An opaque quoted string
May be strong or weak
Returned in the Etag header and
feed/entry elements

ETags

ETag Response

200 OK
Content-Type: application/xml
Etag: "xysddf7893sadf"
<feed xmlns:'...'
 gd:etag="xysddf7893sadf">
 ...
 <entry gd:etag="3jpa246ks88dfx">
 ...
 </entry>
</feed>

An opaque quoted string
May be strong or weak
Returned in the Etag header and feed/entry
elements
Use If-None-Match for client-side caching

ETags

If-None-Match Request and Response

GET /feeds/feed?v=2 HTTP/1.1
Host: ...
If-None-Match: W/"CUEAQ342szeCp8"
...

HTTP/1.x 304 Not Modified
...

Request Time

An opaque quoted string
May be strong or weak
Returned in the Etag header and feed/entry
elements
Use If-None-Match for client-side caching
Use If-Match for optimistic concurrency

ETags

If-Match Request and Response

PUT /feeds/feed/10233?v=2 HTTP/1.1
Host: ...
If-Match: "SD772sdlk882dkj9"
...

HTTP/1.x 200 OK
...

If-Match Failure

PUT /feeds/feed/10233?v=2 HTTP/1.1
Host: ...
If-Match: "SD772sdlk882dkj9"
...

HTTP/1.x 412 Precondition Failed
...

An opaque quoted string
May be strong or weak
Returned in the Etag header and feed/entry
elements
Use If-None-Match for client-side caching
Use If-Match for optimistic concurrency

 Can use If-Match: * to force update

ETags

Photo Shuffle: Using ETags

Asking for ETags

script.src = 'http://picasaweb.google.com'
 + '/data/feed/api/user/' + username
 + '?alt=jsonc&callback=callback'
 + '&fields='
 + 'albums(id,title,links(feed),'
 + 'media(thumbnails))'
 + '&v=2';

Introduction
Demo: Photo Shuffle
Introducing JSONC
Introducing Partial GET
ETags and Google Data APIs
Coming Soon
Q/A

Building More Efficient Applications

Coming Soon to an API near you!

JSONC is not read only!

Writable JSONC

JSONC is not read only!
No need to translate back to XML for update

Writable JSONC

JSONC is not read only!
No need to translate back to XML for update
Supports all write operations

Writable JSONC

JSONC is not read only!
No need to translate back to XML for update
Supports all write operations
Can take advantage of browser capabilities

Writable JSONC

JSONC is not read only!
No need to translate back to XML for update
Supports all write operations
Can take advantage of browser capabilities

JSON.stringify(data)

Writable JSONC

Much smaller than current library

JSONC Client Library

Much smaller than current library
Authentication support

JSONC Client Library

Much smaller than current library
Authentication support
Cross Domain support

JSONC Client Library

Partial is not just for GET!

Partial PATCH

Partial is not just for GET!
Update a partial document using PATCH

Partial PATCH

Partial is not just for GET!
Update a partial document using PATCH
Safe If-Match: *

Partial PATCH

Partial is not just for GET!
Update a partial document using PATCH
Safe If-Match: *
Lower client memory requirements

Partial PATCH

Q/A

