
View live notes and ask questions about
this session on Google Wave
http://bit.ly/ds6t9F

http://bit.ly/ds6t9F

Batch Data Processing
with Google App Engine
Mike Aizatsky
20 May 2010

View live notes and ask questions about
this session on Google Wave
http://bit.ly/ds6t9F

http://bit.ly/ds6t9F

Agenda

The challenge

Early batch processing in App Engine

Batch processing with Task Queues

Batch processing at Google

App Engine approach

Batch Data Processing

Processing thousands of entities is hard on App Engine

Some examples:

schema migration

data export

report generation

What Makes It Hard?

App Engine imposes certain restrictions

Restrictions guarantee automatic scalability

What Makes It Hard?

30s request limit

Transient errors in the system

Datastore latency and timeouts

Changing dataset

Early Batch Processing

Early Batch Processing

Define batch web handler:
class BatchHandler(...):
 def get(self):
 self.processNextBatch()

Use a web page with auto-refresh or use curl:
while true; curl http://batch_url; done

Trivia: Was actually done by the App Engine team on
the day of release

Challenges

Need an external "driver" computer (may fail too)

Difficult error handling and recovery

Slow, inefficient

Complex state management

Possible Improvements

Communicate state with the driver

Sharding/parallel execution

Use remote api for complex scenarios

Typical Example: bulkloader from App Engine SDK

Batch Processing With Task Queues

Batch Processing with Task Queues

Task Queues released a year ago

Can perform work outside of a user request

Reliable, high-performance system

Still 30s limit

Task Chaining

Simple technique of overcoming 30s limit

Task enqueues its continuation when it's close to 30s
limit

Task 1 Task 2 Task 3 Task 4

Task Chaining

Define batch handler:
class BatchHandler(...):
 def get(self):
 next_starting_point =
 self.performNextBatch(
 self.request["starting_point"])
 taskqueue.Task("/batch", params =
 {"starting_point":
 next_starting_point})
 .add("batch_queue")

 To start a process, simply enqueue first task

Nice Task Queue Properties

Guarantees eventual task execution

No need for external drivers

Repeats task execution in case of unhandled failures

Can limit execution rate (both manually and
automatically)

Batch Processing At Google

Batch Processing At Google

MapReduce successfully used for years to do batch
processing at Google scale

Created to help developers work with unreliable
distributed systems

Widely adopted

MapReduce

Developer defines only 2 functions:
map(entity) -> [(key, value)]
reduce(key, [value]) -> [value]

MapReduce Special Cases

Schema migration: empty reduce, update in map

Report generation: reduce generates new entities

App Engine & Google's MapReduce

We want you to use MapReduce too!

There are some unique challenges

App Engine & Google's MapReduce

Additional scaling dimension:

Lots and lots of applications

Many of them will run MapReduce at the same time

Isolation: application shouldn't influence performance of
the other

App Engine & Google's MapReduce

Rate limiting: you don't want to burn all day's resources
in 15min and kill your online traffic

Very slow execution: free apps want to go really slow,
staying under their resource limint

Protection: from malicious App Engine users

App Engine Approach

App Engine Approach

We already have a system to solve (most) of these
problems: Task Queue

Decided to build MapReduce on top of Task Queue

Some additional services will have to be developed

Mapper Library for App Engine

Early experimental release

Reliable, fast and efficient way to iterate over datastore
or blob files

Part 1 of the MapReduce story

You can start playing with it while we're working on the
full MapReduce

http://mapreduce.appspot.com/

Mapper Library Features

Completely user-space. Just pull into your project.

OSS (Apache 2.0). Hack, modify, play around. Patches
welcome!

Python today & Java soon

API is very familiar to Hadoop/Dumbo users

Mapper Library Features

Automatic sharding for faster execution

Automatic rate limiting for slow execution

Status pages

Counters

Parameterized mappers

Batching datastore operations

Iterating over blob data

Demo

Adding Mapper Library To Your Project

Checkout library from svn into your project folder

Add 1 handler to app.yaml:
- url: mapreduce(/.*)?
 script: <script_location>/main.py
 admin: true

Defining Mapper

Define map function:
def process(entity):
 doSomethingWithEntity(entity)

Register in mapreduce.yaml:
mapreduce:
- name: Test Mapper
 mapper:
 input_reader: mapreduce.DatastoreInputReader
 handler: model.Entity

Open http://<your_app>/mapreduce and start your
mapper

Python

Defining Mapper

public class ExampleMapper extends
 AppEngineMapper<Key, Entity> {
 @Override
 public void map(
 Key k, Entity e, Context ctx) {
 processEntity(e);
 }
}

Java

Example: Datastore Operations

def user_ages(user):
 migrate_user(user)
 yield op.db.Put(user)

Example: Counters

def user_ages(user):
 yield op.counter.Increment(
 "age-%d" % user.age)

Example: More Complex Reports

def orders_total(customer):
 orders = Order.by_customer(customer)
 total = sum_orders(orders)
 report_line = ReportLine(
 report_id, customer, total)
 yield op.db.Put(report_line)

Some Implementation Details

Uses task queue chaining

2 types of flows: controller flow & worker flow

Uses datastore for state storage and communication

Important point

We handle most of the task chaining complexity

You should handle only one: idempotence

Idempotence

f(f(x)) = f(x)

Means: your batch handler should be ready to process
the same entity twice

The most important property of batch operation

You should always think about idempotence

Practical Idempotence: Data Migration

Not Idempotent:

def migrate(entity):
 yield op.counters.Increment("updated")
 entity.property =
 compute_property(entity)
 yield op.db.Put(entity)

Practical Idempotence: Data Migration

Idempotent:

def migrate(entity):
 if entity.property_updated:
 return
 yield op.counters.Increment("updated")
 entity.property =
 compute_property(entity)
 entity.property_updated = True
 yield op.db.Put(entity)

Practical Idempotence: Reports

Not Idempotent:

def report(customer):
 #
 report_line = ReportLine(
 report_id, customer, total)
 yield op.db.Put(report_line)

Practical Idempotence: Reports

Idempotent:

def report(customer):
 #
 key_name = "%s-%s" %
 (report_id, customer.id)
 if ReportLine.get_by_key_name(key_name):
 return
 report_line = ReportLine(
 key_name=key_name,
 report_id, customer, total)
 yield op.db.Put(report_line)

Practical Idempotence: Counters

Not Idempotent:

def user_ages(user):
 yield op.counter.Increment(
 "age-%d" % user.age)

Practical Idempotence: Counters

No easy way to achieve

Arguably not needed

Idempotence And Changing Data

Most reports over live data are approximate

Approximate reports are OK for most cases

Margin of error should be quite small due to the way
mapper library is implemented

Summary

Mapper library available today

Reliable, fast and efficient way to iterate over datastore
or blob files

Java & Python

Fully OSS

http://mapreduce.appspot.com/

