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Batch Data Processing

e Processing thousands of entities is hard on App Engine
e Some examples:

o schema migration

o data export

o report generation
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What Makes It Hard?

e App Engine imposes certain restrictions

e Restrictions guarantee automatic scalability
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What Makes It Hard?

e 30s request limit
e Transient errors in the system
e Datastore latency and timeouts

e Changing dataset

Google HI(®)




Early Batch Processing
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Early Batch Processing

e Define batch web handler:
class BatchHandler(...):
def get(self):
self.processNextBatch()

e Use a web page with auto-refresh or use curl:
while true; curl http://batch_url; done

e Irivia: Was actually done by the App Engine team on
the day of release
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Challenges

e Need an external "driver" computer (may fail too)
e Difficult error handling and recovery
e Slow, inefficient

e Complex state management
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Possible Improvements

e Communicate state with the driver
e Sharding/parallel execution
e Use remote api for complex scenarios

e Typical Example: bulkloader from App Engine SDK
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Batch Processing With Task Queues
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Batch Processing with Task Queues

e Task Queues released a year ago

e Can perform work outside of a user request
e Reliable, high-performance system

e Still 30s limit
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Task Chaining

e Simple technique of overcoming 30s limit

e Task enqueues its continuation when it's close to 30s
limit

Task 1 Task 2 Task 3 Task 4
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Task Chaining

e Define batch handler:
class BatchHandler(...):
def get(self):
next starting point =
self.performNextBatch(
self.request|"starting_point''])
taskqueue.Task("/batch', params =
{"starting_point'':
next starting point})

.add(""batch_queue")

e To start a process, simply enqueue first task
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Nice Task Queue Properties

e Guarantees eventual task execution
e No need for external drivers
e Repeats task execution in case of unhandled failures

e Can limit execution rate (both manually and
automatically)
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Batch Processing At Google
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Batch Processing At Google

e MapReduce successfully used for years to do batch
processing at Google scale

e Created to help developers work with unreliable
distributed systems

e Widely adopted
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MapReduce

e Developer defines only 2 functions:
o map(entity) -> [(key, value)]
o reduce(key, [value]) -> [value]
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MapReduce Special Cases

e Schema migration: empty reduce, update in map

e Report generation: reduce generates new entities
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App Engine & Google's MapReduce

e We want you to use MapReduce too!

e There are some unique challenges
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App Engine & Google's MapReduce

e Additional scaling dimension:
o Lots and lots of applications
o Many of them will run MapReduce at the same time

e |solation: application shouldn't influence performance of
the other
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App Engine & Google's MapReduce

e Rate limiting: you don't want to burn all day's resources
in 15min and kill your online traffic

e Very slow execution: free apps want to go really slow,
staying under their resource limint

e Protection: from malicious App Engine users
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App Engine Approach
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App Engine Approach

e We already have a system to solve (most) of these
problems: Task Queue

e Decided to build MapReduce on top of Task Queue

e Some additional services will have to be developed
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Mapper Library for App Engine

e Early experimental release

e Reliable, fast and efficient way to iterate over datastore
or blob files

e Part 1 of the MapReduce story

e You can start playing with it while we're working on the
full MapReduce

http://mapreduce.appspot.com/
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Mapper Library Features

e Completely user-space. Just pull into your project.

e OSS (Apache 2.0). Hack, modify, play around. Patches
welcome!

e Python today & Java soon

e APl is very familiar to Hadoop/Dumbo users
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Mapper Library Features

e Automatic sharding for faster execution

e Automatic rate limiting for slow execution
e Status pages

e Counters

e Parameterized mappers

e Batching datastore operations

e Iterating over blob data
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Demo
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Adding Mapper Library To Your Project

e Checkout library from svn into your project folder

e Add 1 handler to app.yami:

- url: mapreduce(/.*)?
script: <script location>/main.py
admin: true
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Defining Mapper
Python

e Define map function:

def process(entity):
doSomethingWithEntity(entity)

e Register in mapreduce.yami:
mapreduce:
- name: Test Mapper
mapper:
input_reader: mapreduce.DatastoreInputReader
handler: model.Entity

e Open http://<your_app>/mapreduce and start your
mapper
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Defining Mapper
Java
public class ExampleMapper extends
AppEngineMapper<Key, Entity> {
@Override
public void map(
Key k, Entity e, Context ctx) {
processEntity(e);

)
)
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Example: Datastore Operations

def user ages(user):
migrate user(user)
yield op.db.Put(user)
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Example: Counters

def user ages(user):
yield op.counter.Increment(
"age-%d" % user.age)
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Example: More Complex Reports

def orders_total(customer):
orders = Order.by customer(customer)
total = sum_orders(orders)
report line = ReportLine(
report id, customer, total)
yield op.db.Put(report line)
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Some Implementation Details

e Uses task queue chaining
e 2 types of flows: controller flow & worker flow

e Uses datastore for state storage and communication
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Important point

e We handle most of the task chaining complexity

e You should handle only one: idempotence
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ldempotence

o f(f(x)) = (x)

e Means: your batch handler should be ready to process
the same entity twice

e The most important property of batch operation

e You should always think about idempotence
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Practical Idempotence: Data Migration

Not I[dempotent:

def migrate(entity):
yield op.counters.Increment("updated')
entity.property =
compute property(entity)
yield op.db.Put(entity)
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Practical Idempotence: Data Migration

|[dempotent:

def migrate(entity):
if entity.property updated:
return
yield op.counters.Increment(''updated')
entity.property =
compute property(entity)
entity.property updated = True
yield op.db.Put(entity)
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Practical I[dempotence: Reports

Not I[dempotent:
def report(customer):
report _line = ReportLine(

report _id, customer, total)
yield op.db.Put(report line)
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Practical I[dempotence: Reports

|[dempotent:
def report(customer):

key name = "%s-%s" %
(report_id, customer.id)
if ReportLine.get by key name(key name):
return
report line = ReportLine(
key name=key name,
report id, customer, total)
yield op.db.Put(report line)
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Practical Idempotence: Counters

Not I[dempotent:
def user ages(user):

yield op.counter.Increment(
"age-%d" % user.age)
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Practical Idempotence: Counters

e NO easy way to achieve

e Arguably not needed
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ldempotence And Changing Data

e Most reports over live data are approximate
e Approximate reports are OK for most cases

e Margin of error should be quite small due to the way
mapper library is implemented
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Summary

e Mapper library available today

e Reliable, fast and efficient way to iterate over datastore
or blob files

e Java & Python
e Fully OSS

http://mapreduce.appspot.com/
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