View live notes and ask questions about
this session on Google Wave

http://bit.ly/ds6tOF

Google o)



http://bit.ly/ds6t9F




Batch Data Processing
with Google App Engine

Mike Aizatsky
20 May 2010

Google Hl(®)



View live notes and ask questions about
this session on Google Wave

http://bit.ly/ds6tOF

Google o)



http://bit.ly/ds6t9F

Agenda

e The challenge

e Early batch processing in App Engine
e Batch processing with Task Queues
e Batch processing at Google

e App Engine approach

Google HI(®)




Batch Data Processing

e Processing thousands of entities is hard on App Engine
e Some examples:

o schema migration

o data export

o report generation

Google HI(®)




What Makes It Hard?

e App Engine imposes certain restrictions

e Restrictions guarantee automatic scalability

Google HI(®)




What Makes It Hard?

e 30s request limit
e Transient errors in the system
e Datastore latency and timeouts

e Changing dataset

Google HI(®)




Early Batch Processing

Google Hl(®)



Early Batch Processing

e Define batch web handler:
class BatchHandler(...):
def get(self):
self.processNextBatch()

e Use a web page with auto-refresh or use curl:
while true; curl http://batch_url; done

e Irivia: Was actually done by the App Engine team on
the day of release

Google HI(®)




Challenges

e Need an external "driver" computer (may fail too)
e Difficult error handling and recovery
e Slow, inefficient

e Complex state management

Google HI(®)




Possible Improvements

e Communicate state with the driver
e Sharding/parallel execution
e Use remote api for complex scenarios

e Typical Example: bulkloader from App Engine SDK

Google HI(®)




Batch Processing With Task Queues

Google Hl(®)



Batch Processing with Task Queues

e Task Queues released a year ago

e Can perform work outside of a user request
e Reliable, high-performance system

e Still 30s limit

Google HI(®)




Task Chaining

e Simple technique of overcoming 30s limit

e Task enqueues its continuation when it's close to 30s
limit

Task 1 Task 2 Task 3 Task 4

Google HI(®)




Task Chaining

e Define batch handler:
class BatchHandler(...):
def get(self):
next starting point =
self.performNextBatch(
self.request|"starting_point''])
taskqueue.Task("/batch', params =
{"starting_point'':
next starting point})

.add(""batch_queue")

e To start a process, simply enqueue first task

Google HI(®)




Nice Task Queue Properties

e Guarantees eventual task execution
e No need for external drivers
e Repeats task execution in case of unhandled failures

e Can limit execution rate (both manually and
automatically)

Google HI(®)




Batch Processing At Google

Google Hl(®)



Batch Processing At Google

e MapReduce successfully used for years to do batch
processing at Google scale

e Created to help developers work with unreliable
distributed systems

e Widely adopted

Google HI(®)




MapReduce

e Developer defines only 2 functions:
o map(entity) -> [(key, value)]
o reduce(key, [value]) -> [value]

Map (Shuffle) Reduce

— B |

N — |

N = “

B

- >

N =

B

R ———

= Google @{e)




MapReduce Special Cases

e Schema migration: empty reduce, update in map

e Report generation: reduce generates new entities

Google HI(®)




App Engine & Google's MapReduce

e We want you to use MapReduce too!

e There are some unique challenges

Google HI(®)




App Engine & Google's MapReduce

e Additional scaling dimension:
o Lots and lots of applications
o Many of them will run MapReduce at the same time

e |solation: application shouldn't influence performance of
the other

Google HI(®)




App Engine & Google's MapReduce

e Rate limiting: you don't want to burn all day's resources
in 15min and kill your online traffic

e Very slow execution: free apps want to go really slow,
staying under their resource limint

e Protection: from malicious App Engine users

Google HI(®)




App Engine Approach

Google Hl(®)



App Engine Approach

e We already have a system to solve (most) of these
problems: Task Queue

e Decided to build MapReduce on top of Task Queue

e Some additional services will have to be developed

Google HI(®)




Mapper Library for App Engine

e Early experimental release

e Reliable, fast and efficient way to iterate over datastore
or blob files

e Part 1 of the MapReduce story

e You can start playing with it while we're working on the
full MapReduce

http://mapreduce.appspot.com/

Google HI(®)




Mapper Library Features

e Completely user-space. Just pull into your project.

e OSS (Apache 2.0). Hack, modify, play around. Patches
welcome!

e Python today & Java soon

e APl is very familiar to Hadoop/Dumbo users

Google HI(®)




Mapper Library Features

e Automatic sharding for faster execution

e Automatic rate limiting for slow execution
e Status pages

e Counters

e Parameterized mappers

e Batching datastore operations

e Iterating over blob data

Google HI(®)




Demo

Google Hl(®)



Adding Mapper Library To Your Project

e Checkout library from svn into your project folder

e Add 1 handler to app.yami:

- url: mapreduce(/.*)?
script: <script location>/main.py
admin: true

Google HI(®)




Defining Mapper
Python

e Define map function:

def process(entity):
doSomethingWithEntity(entity)

e Register in mapreduce.yami:
mapreduce:
- name: Test Mapper
mapper:
input_reader: mapreduce.DatastoreInputReader
handler: model.Entity

e Open http://<your_app>/mapreduce and start your
mapper

Google HI(®)




Defining Mapper
Java
public class ExampleMapper extends
AppEngineMapper<Key, Entity> {
@Override
public void map(
Key k, Entity e, Context ctx) {
processEntity(e);

)
)

Google HI(®)




Example: Datastore Operations

def user ages(user):
migrate user(user)
yield op.db.Put(user)

Google HI(®)




Example: Counters

def user ages(user):
yield op.counter.Increment(
"age-%d" % user.age)

Google HI(®)




Example: More Complex Reports

def orders_total(customer):
orders = Order.by customer(customer)
total = sum_orders(orders)
report line = ReportLine(
report id, customer, total)
yield op.db.Put(report line)

Google HI(®)




Some Implementation Details

e Uses task queue chaining
e 2 types of flows: controller flow & worker flow

e Uses datastore for state storage and communication

Google HI(®)




Important point

e We handle most of the task chaining complexity

e You should handle only one: idempotence

Google HI(®)




ldempotence

o f(f(x)) = (x)

e Means: your batch handler should be ready to process
the same entity twice

e The most important property of batch operation

e You should always think about idempotence

Google HI(®)




Practical Idempotence: Data Migration

Not I[dempotent:

def migrate(entity):
yield op.counters.Increment("updated')
entity.property =
compute property(entity)
yield op.db.Put(entity)

Google HI(®)




Practical Idempotence: Data Migration

|[dempotent:

def migrate(entity):
if entity.property updated:
return
yield op.counters.Increment(''updated')
entity.property =
compute property(entity)
entity.property updated = True
yield op.db.Put(entity)

Google HI(®)




Practical I[dempotence: Reports

Not I[dempotent:
def report(customer):
report _line = ReportLine(

report _id, customer, total)
yield op.db.Put(report line)

Google HI(®)




Practical I[dempotence: Reports

|[dempotent:
def report(customer):

key name = "%s-%s" %
(report_id, customer.id)
if ReportLine.get by key name(key name):
return
report line = ReportLine(
key name=key name,
report id, customer, total)
yield op.db.Put(report line)

Google HI(®)




Practical Idempotence: Counters

Not I[dempotent:
def user ages(user):

yield op.counter.Increment(
"age-%d" % user.age)

Google HI(®)




Practical Idempotence: Counters

e NO easy way to achieve

e Arguably not needed

Google HI(®)




ldempotence And Changing Data

e Most reports over live data are approximate
e Approximate reports are OK for most cases

e Margin of error should be quite small due to the way
mapper library is implemented

Google HI(®)




Summary

e Mapper library available today

e Reliable, fast and efficient way to iterate over datastore
or blob files

e Java & Python
e Fully OSS

http://mapreduce.appspot.com/

Google HI(®)







