


Building high-throughput data
pipelines on Google App Engine
Brett Slatkin
May 20th, 2010



View live notes and ask questions about 
this session on Google Wave

http://tinyurl.com/app-engine-pipelines

Me
http://onebigfluke.com

http://tinyurl.com/app-engine-pipelines
http://onebigfluke.com


Agenda

 
Intro
Fan-out 
Transactional sequences
Fan-in
Bonus round
Future directions 



Intro





What are pipelines?

  
Constant trickle/torrent of inputs and outputs

Assembly-line
Optimize for end-to-end latency of input to output (~seconds)
Minimize incremental cost
Not lossy, eventually consistent, all inputs served



What are NOT pipelines?

  
Offline systems like MapReduce
Batch processing, report generation
Outputs are from a snapshot of inputs
Latency from input to output is ~hours



Example apps

Pipelines
Email, Twitter, PubSubHubbub (routing)
Reddit, Digg (voting, agg)
CRM (~yeah, really)

 
Not pipelines

Guestbook (flat)
Terasort (snapshot)
Chat (transient)

Hybrid
YouTube, Vimeo (transcode)
Flickr, Picasa (face recog, tags)



Fan-out: Continuations



What is fan-out? 
 

One action leads to many others 

Datastore-based inbox systems (eg, microblogging)
Send notification emails, XMPP, SMS, Channel API, APN
Web service calls
Enqueue more tasks



Example fan-out
 

Update a party invitation, send an email to everyone
 
class Party(db.Model):
  when = db.DateTimeProperty()
  host = db.UserProperty()
class PartyGoer(db.Model): 
  party = db.ReferenceProperty(Party)
  name = db.StringProperty()
  address = db.EmailProperty()



Continuation passing (naively)

class EmailHandler(webapp.RequestHandler):
  def post(self):
    my_party = self.request.get("party_key")
    cursor = self.request.get("cursor") 
    query = PartyGoer.all().filter(
      "party =", db.Key(my_party))
    if cursor:
      query.with_cursor(cursor)
    goers = query.fetch(10)
    # Send some emails ...
    if len(goers) == 10: 
      taskqueue.add(url='/work/email',
        params={'party_key': my_party,
                'cursor': query.cursor()})



Continuation passing (the wrong way)

Any failures and...



Continuation passing (the right way)
class EmailHandler(webapp.RequestHandler):
  def post(self):
    my_party = self.request.get("party_key")
    cursor = self.request.get("cursor") 
    query = PartyGoer.all().filter(...)
    if cursor:
      query.with_cursor(cursor)
    goers = query.fetch(10)
    if len(goers) == 10: 
      taskqueue.add(
        url='/work/email',
        params={'party_key': my_party,
                'cursor': query.cursor()},
        name=int(self.request.get('gen')) + 1)
    # Send some emails ...



Continuation passing (the right way)



Failures and spurious retries are isolated
Execute continued work in parallel

 

Continuation passing benefits



Pairs well with asynchronous APIs
Async URLFetch in Python

Java support since 1.3.1 (February)
Async Datastore

Python: http://asynctools.googlecode.com
Java: http://twig-persist.googlecode.com

Used in PubSubHubbub reference hub
100-300 worker requests/sec constantly

Continuation passing benefits 2

http://asynctools.googlecode.com
http://twig-persist.googlecode.com


Transactional sequences



Datastore transactions and transactional tasks
Guarantee that tasks run after data is written 

Strong consistency when task is run

Enables roll-forward semantics to fanned-out data
Build materialized views 

What are transactional sequences?



A query that's saved back into the database 
Read-heavy, cached, secondary indexes 
Eventually consistent views

 
Incremental aggregations (commutative)
Natural and left-joins
Filter/query/sorting materialized results 

What are materialized views good for?



Student | Grade
Bob     |     4
Daisy   |     3
...   
         
SELECT grade, count(*) as count
    FROM Student 
    GROUP BY grade;
 
grade   | count
3       |     5
4       |     7
... 

SQL Example: Students in school



class Student(db.Model):
  name = db.StringProperty()
  grade = db.IntegerProperty()
 
 
class Marker(db.Model):
  sequence = db.IntegerProperty(default=0)
  present = db.BooleanProperty()
 
 
class GroupCount(db.Model):
  grade = db.IntegerProperty()
  count = db.IntegerProperty(default=0)

App Engine Example: Students in school



Roll-forward semantics: Update source data 



def update(name, new, id):
  def txn():
    if id:
      student = Student.get_by_id(id)
      old, student.grade = student.grade, new
    else:
      student = Student(name=name, grade=new)
      student.put()  # Assign ID
      old, id = None, student.key().id()

    marker_key = db.Key.from_path(
        'Marker', id, parent=student.key())
    marker = db.get(marker_key)
    if not marker: marker = Marker(key=marker_key)
    marker.sequence += 1
    # continues on next slide 

Update source data



    db.put([student, marker])
    taskqueue.Task(
      url='/work',
      params={'student_id': id, 'grade': new,
              'sequence': marker.sequence,
              'present': True}
    ).add(transactional=True)
    if old is not None:
      taskqueue.Task(
      url='/work',
      params={'student_id': id, 'grade': old,
              'sequence': marker.sequence,
              'present': False}
    ).add(transactional=True)
  db.run_in_transaction(txn) 

Update source data continued



class Student(db.Model):
  name = db.StringProperty()
  grade = db.IntegerProperty()
 
 
class Marker(db.Model):
  sequence = db.IntegerProperty(default=0)
  present = db.BooleanProperty()
 
 
class GroupCount(db.Model):
  grade = db.IntegerProperty()
  count = db.IntegerProperty(default=0)

App Engine Example: Students in school



Roll-forward semantics: View initial state



Roll-forward semantics: Update old value



Roll-forward semantics: Update old value



Roll-forward semantics: Update new value 



Roll-forward semantics: Update new value 



def apply(sequence, present, grade, id)
  group_key = db.Key.from_path('GroupCount', grade))
  marker_key = db.Key.from_path(
    'Marker', id, parent=group_key)
 
  def txn():
    group, marker = db.get([group_key, marker_key])
    if not group:
      group = GroupCount(key=group_key)
    if not marker:
      marker = Marker(key=marker_key)
    if marker.sequence >= sequence:
      raise db.Rollback('Ignore out-of-order')
    # continues on next slide

Update group counts



    old, marker.present = marker.present, present
    marker.sequence = sequence
    db.put(marker)

    if old:
      group.count -= 1
    if present:
      group.count += 1

    if group.count == 0:
      group.delete()
    else:
      db.put(group)

  db.run_in_transaction(txn)

Update group counts countinued



Coordination sequence



Transactional sequences demo



Each aggregation row is in its own entity group
Update aggregation rows in separate transactions
Order of task application doesn't matter 

 
Marker entity is child of each Count (aggregation) row

Marker indicates presence of Student in aggregation
Sequence numbers let you ignore old/stale updates

 
Bridge transactions across entity groups

Sequencing details



Works well for commutative operations (count, sum)
Toggling presence is add or subtract
Ancestor queries for more complex functions
Use continuations and cursors to continue queries

 
Enqueue multiple tasks at source data write time

Update many aggregations in parallel
 
 

Sequencing details 2



Max throughput proportional to number of aggregation rows
Watch out: Data distribution across aggregation
Rate-limit materialized view tasks to 1/sec for safety

 
Storage cost for "presence" entities 

 

Sequencing details 3



Fan-in: Fork-join queues



Apply multiple data transforms in batches
Counters, aggregations, roll-ups, reservations
Reddit/Digg-style: Save users' voting history
Beat the ~1 write/sec per entity group safety margin

Wait for high-latency API calls simultaneously 
RSS aggregators, microblog data sinks
Use fewer threads = more throughput
Ensure queues do not back up

Amortize overhead costs with parallel work
 

Why fan in?



Polling workers: Traditional approach



How many polling workers do you need to ensure 50 new 
tasks per second are serviced within 500ms?

What if tasks take at least 10 seconds?
 

How do you guarantee exclusivity? 

Polling workers: Problems



Not dynamic, not low-latency
Must have enough workers running to match peak load
Eliminates the benefits of App Engine's push task queue

Polling workers are for offline processing



Fork incoming work items apart as they enter
Work starts within maximum fixed period after arrival
Execute work in batch for efficiency
Join completed work items together into a result (optional)

What is a fork-join queue?



Fork-join queue with Datastore



Fork-join queue with Datastore



Fork-join queue with Datastore



Fork-join queue with Datastore



Fork-join queue with Datastore



Fork-join queue with Datastore



Fork-join queue with Datastore



Fork-join queue with Datastore



Fork-join queue with Datastore



Fork-join queue with Datastore



Fork-join queue with Datastore: Race conditions



 
class MySum(db.Model):
  name = db.StringProperty()
  total = db.IntegerProperty()

class MyWork(db.Model): 
  work_index = db.StringProperty()
  delta = db.IntegerProperty(indexed=False)

Fork-join queue example: Models



def insert(sum_name, delta):
  index = memcache.get('index-' + sum_name)
  if index is None:
    memcache.add('index-' + sum_name, 1) 
    index = memcache.get('index-' + sum_name)
 
  lock = '%s-lock-%d' % (sum_name, index)
  writers = memcache.incr(lock, initial_value=2**16)
  if writers < 2**16:
    memcache.decr(lock)
    return False  # Insert fails, try again
  work = MyWork(delta=delta, work_index='%s-%d' % 
                (sum_name, knuth_hash(index)))
  work.put()
  # ... continues on next slide 
  

Fork-join queue example: Insert



  
  now = time.time()
  try:
    taskqueue.add(
      name='%s-%d-%d' % ( 
        sum_name, int(now / 30), index),
      url='/work',
      eta=datetime.datetime.utcfromtimestamp(now) +
          datetime.timedelta(seconds=1))
  except taskqueue.TaskAlreadyExistsError:
    pass # Fan-in magic
  finally:
    memcache.decr(lock)

  return True
  

Fork-join queue example: Insert continued



def join(sum_name, index):
  # force new writers to use the next index
  memcache.incr('index-' + sum_name)

  lock = '%s-lock-%d' % (sum_name, index)
  memcache.decr(lock, 2**15) # You missed the boat

  # busy wait for writers
  for i in xrange(20):  # timeout after 5s
    counter = memcache.get(lock)
    if counter is None or int(counter) <= 2**15:
      break
    time.sleep(0.250)
 
  # ... continues on next slide 

Fork-join queue example: Join



  results = list(MyWork.all()
      .filter('work_index =', '%s-%d' %
              (sum_name, knuth_hash(index)))
      .order('__key__'))
  delta = sum(r.delta for r in results)
  def txn():
    my_sum = MySum.get_by_key_name(sum_name)
    if my_sum is None:
      my_sum = MySum(key_name=sum_name,
                     name=sum_name, total=0)
    my_sum.total += delta
    my_sum.put()
  db.run_in_transaction(txn)
  db.delete(results)

Fork-join queue example: Join continued



Fork-join queue example: Demo



Task names are the fan-in mechanism
Task ETA for periodic batching
memcache reader/writer locks for batch coordination

Spin locks with timeout 
Datastore queries to find work

 
Use offline job to pick up drops (memcache failures) 

Fork-join queue details



Depends on your batch size (work items per task)
Can achieve 80 to 1 easily.

Fork-join queue performance

Items per second Average insert latency
22.1 223ms
39.7 245ms
55.6 258ms
75.8 249ms



Work index must be a hash
Distribute load across Bigtable tablets
Alternative is tablet splits, unavailability

Eliminate all other indexes on work items
Prevent overloading contiguous Bigtable rows
Can keep indexes if you're "boxcar"-ing transactions

 
The magic of batch period = 0 

Fork-join queue performance 2



Bonus: Fan-in with materialized views



1. Configure fan-in queue to batch once per second
2. User starts transaction on input data, update its value

Get fork-join work indexes for target aggregations
Assign work indexes to your input sequence markers
Enqueue update tasks (unnamed), Commit 

3. Optimistically insert named fan-in tasks
Guarantees completion; ignored in common case

4. Later: Fan-in worker queries for inputs by work index
5. Worker transacts on aggregation data rows

Batch get of aggregation markers for inputs
Compare old markers to input sequence numbers 
Compute commutative diff of up-to-date inputs
Update aggregation rows, Commit

Fan-in with materialized views: A sketch



Please build this!

Fan-in with materialized views: A sketch



Future directions



Background servers
No wall-clock limits (30 sec deadline removed)
Chunk through fan-in queues in bulk

 
Addressable servers

Send RPCs from user-facing requests to backends
Fan-in queues can be in memory

 
Order of magnitude faster, skip disk writes

Future directions



View live notes and ask questions about 
this session on Google Wave

http://tinyurl.com/app-engine-pipelines

Me
http://onebigfluke.com

http://tinyurl.com/app-engine-pipelines
http://onebigfluke.com



