

Building high-throughput data
pipelines on Google App Engine

Brett Slatkin
May 20th, 2010

Google {ife)

View live notes and ask questions about
this session on Google Wave

http://tinyurl.com/app-endine-pipelines

Me
http://onebigfluke.com

Google {ife)

http://tinyurl.com/app-engine-pipelines
http://onebigfluke.com

Agenda

e Intro

e Fan-out

e Transactional sequences
e Fan-in

e Bonus round

e Future directions

Google {ife)

Intro

Google Hl(®)

What are pipelines?

e Constant trickle/torrent of inputs and outputs
o Assembly-line
e Optimize for end-to-end latency of input to output (~seconds)
e Minimize incremental cost
e Not lossy, eventually consistent, all inputs served

Google {ife)

What are NOT pipelines?

e Offline systems like MapReduce

e Batch processing, report generation

e Outputs are from a snapshot of inputs
e Latency from input to output is ~hours

Google {ife)

Example apps

e Pipelines
o Email, Twitter, PubSubHubbub (routing)
o Reddit, Digg (voting, agg)
o CRM (~yeah, really)

e Not pipelines
o Guestbook (flat)
o Terasort (snapshot)
o Chat (transient)

e Hybrid
o YouTube, Vimeo (transcode)
o Flickr, Picasa (face recog, tags)

Google {ife)

Fan-out: Continuations

Google o)

What is fan-out?

e One action leads to many others

e Datastore-based inbox systems (eg, microblogging)

e Send notification emails, XMPP, SMS, Channel API, APN
e Web service calls

e Enqueue more tasks

Google {ife)

Example fan-out

e Update a party invitation, send an email to everyone

class Party (db.Model) :
when = db.DateTimeProperty ()
host = db.UserProperty ()
class PartyGoer (db.Model) :
party = db.ReferenceProperty (Party)
name = db.StringProperty ()
address = db.EmailProperty()

Google {ife)

Continuation passing (naively)

class EmailHandler (webapp.RequestHandler) :
def post(self):
my party = self.request.get("party key")
cursor = self.request.get ("cursor")
query = PartyGoer.all () .filter(
"party =", db.Key(my party))
1f cursor:
query.wlith cursor (cursor)
goers = query.fetch (10)
Send some emails
1f len(goers) == 10:
taskqueue.add (url="'/work/email',
params={ 'party key': my party,
'cursor': query.cursor() })

Google {ife)

Continuation passing (the wrong way)

1 2 3
Task Task Task
2 3
Task Task
3
Task Task
3 >

Task

e Any failures and... Task> Task> Task> Task

Task

Task

Task

JYPIIII

Google {ife)

Continuation passing (the right way)

class EmailHandler (webapp.RequestHandler) :
def post(self):
my party = self.request.get("party key")
cursor = self.request.get ("cursor")
query = PartyGoer.all().filter(...)
1f cursor:
query.wilth cursor (cursor)
goers = query.fetch (10)
1f len(goers) == 10:
taskqueue.add (
url='/work/email',
params={ 'party key': my party,
'cursor': query.cursor() },
name=int (self.request.get('gen'))

Send some emails
Google {ife)

+ 1)

Continuation passing (the right way)

Parallel

execution
Task
T

ask
2 Task >

3 Task
D m

Task

Task
Task

Ay

b =

1
Prevented by /

Tombstones Goog[e" @

>
e
D m
ol

Continuation passing benefits

e Failures and spurious retries are isolated
e Execute continued work in parallel

Google {ife)

Continuation passing benefits 2

e Pairs well with asynchronous APls
o Async URLFetch in Python
m Java support since 1.3.1 (February)
o Async Datastore
m Python: http://asynctools.googlecode.com
m Java: http://twig-persist.googlecode.com

e Used in PubSubHubbub reference hub
o 100-300 worker requests/sec constantly

Google {ife)

http://asynctools.googlecode.com
http://twig-persist.googlecode.com

Transactional sequences

Google o)

What are transactional sequences?

e Datastore transactions and transactional tasks
e Guarantee that tasks run after data is written
o Strong consistency when task is run

e Enables roll-forward semantics to fanned-out data
o Build materialized views

Google {ife)

What are materialized views good for?

e A query that's saved back into the database
o Read-heavy, cached, secondary indexes
o Eventually consistent views

e Incremental aggregations (commutative)
e Natural and left-joins
e Filter/query/sorting materialized results

Google {ife)

SQL Example: Students in school

Student Grade
Bob 4
Dalisy 3

SELECT grade,
FROM Student
GROUP BY grade;

count (*) as count

grade count

3 5

4 '/
]

Google {ife)

App Engine Example: Students in school

class Student (db.Model) :
name = db.StringProperty ()
grade = db.IntegerProperty ()

class Marker (db.Model) :
sequence = db.IntegerProperty(default=0)
present = db.BooleanProperty ()

class GroupCount (db.Model) :
grade = db.IntegerProperty ()
count = db.IntegerProperty(default=0)

Google {ife)

Roll-forward semantics: Update source data

1. Change Bob's

| |
grade: 4 to 3 ; !
- Student :
:
. 2. Increment sequence
«ehild» l number: 16 to 17
Student
Marker

3. Enqueue tasks

with sequence
number

Old value task

4. Run
tasks

New value task

\/

Transaction

Google {ife)

Update source data

def update (name, new, 1d):

def txn () :
1f i1d:
student = Student.get by 1d(i1d)
old, student.grade = student.grade, new
else:
student = Student (name=name, grade=new)
student.put () # Assign ID

old, id = None, student.key().id()

marker key = db.Key.from path
'Marker', 1d, parent=student.key/())
marker = db.get (marker key)

1f not marker: marker = Marker (key=marker key)
marker.sequence += 1
continues on next slide

Google {ife)

Update source data continued

db.put ([student, marker])
taskqueue.Task (
url="'/work',

params={'student 1d': 1d, 'grade': new,
'sequence': marker.sequence,
'present': True}

) .add (transactional=True)
1f old 1is not None:
taskqueue.Task (
url="'/work',
params={'student 1d': 1d, 'grade': old,
'sequence': marker.sequence,
'present': False}
) .add (transactional=True)
db.run in transaction (txn)

Google {ife)

App Engine Example: Students in school

class Student (db.Model) :
name = db.StringProperty ()
grade = db.IntegerProperty ()

class Marker (db.Model) :
sequence = db.IntegerProperty(default=0)
present = db.BooleanProperty ()

class GroupCount (db.Model) :
grade = db.IntegerProperty ()
count = db.IntegerProperty(default=0)

Google {ife)

Roll-forward semantics: View initial state

GroupCount=3 GroupCount=2

grade = 4 grade = 3

» »
l- A ' r ~
Student Marker l Student Marker Student Marker Student Marker : Student Marker Student Marker
Bob=16 =+ John =22 Daisy=7 Bob=16 — ! John=12 Daisy=3
. l [

Google {ife)

Roll-forward semantics: Update old value

Transaction

Old value
task

GroupCount=3
grade =4

GroupCount=2
grade =3

ro
Student Marker
Bob=16 =

r

Student Marker Student Marker Student Marker

Bob=16 — John=12 Daisy=3

' Student Marker Student Marker
l John =22 Daisy=7
L

Roll-forward semantics: Update old value

Transaction

Old value
task

GroupCount=2
grade =4

GroupCount=2
grade =3

ro
Student Marker
Bob=17 —

r

Student Marker Student Marker Student Marker

Bob=16 — John=12 Daisy=3

' Student Marker Student Marker
l John =22 Daisy=7
L

Roll-forward semantics: Update new value

Transaction

New value
task

GroupCount =2

grade = 4 grade =3

|
|
|
|
|
]
|
|
|
|
GroupCount=2 1
|
|
|
|
|
|
|

»
r 2 l
Student Marker Student Marker Student Marker Student Marker ' Student Marker Student Marker
Bob=17 — John=22 Daisy=7 Bob =16 — l John=12 Daisy =3

S GOOSIQ’L @]

Roll-forward semantics: Update new value

Transaction

New value
task

GroupCount =2

grade = 4 grade =3

|
|
|
|
|
]
|
|
|
|
GroupCount=3 1
|
|
|
|
|
|
|

<
r ~
Student Marker Student Marker Student Marker Student Marker ! Student Marker Student Marker
Bob=17 — John =22 Daisy=7 Bob =17 + ' John=12 Daisy =3
A |

S GOOSIQ’L @]

Update group counts

def apply(sequence, present, grade, 1d)

group key = db.Key.from path('GroupCount', grade))
marker key = db.Key.from path/(

'"Marker', 1d, parent=group key)

def txn () :

group, marker = db.get([group key, marker key])
1f not group:
group = GroupCount (key=group key)
1f not marker:
marker = Marker (key=marker key)
1f marker.sequence >= sequence:
raise db.Rollback ('Ignore out-of-order')
continues on next slide

Google {ife)

Update group counts countinued

old, marker.present = marker.present, present
marker.sequence = sequence
db.put (marker)

1f old:

group.count -= 1
1f present:
group.count += 1

1f group.count ==
group.delete ()
else:
db.put (group)

db.run in transaction (txn)

Google {ife)

Coordination sequence

|

6. Increment |

Student Group Student
S Marker Uk Count Marker
1.Change _ | 1617 . | u
student grade» 2. Increment , old grade — 4 ; ;‘
SEQUENCE = new grade = 3, | |
> | |
| | I
1 1 n
f > i 3
| | 3. Transactional — | i
| Enqueue L Run | l
! [| I
: :) z
! I 4. Fetch new | |
; | grade group _ 5.Compare | Cuyrrent= 16: 16 < 17,
| w' - sequence allow mutation
| I
i » D
| I
| [L |
| [
! I

count

l

Google {ife)

Transactional sequences demo

Google {ife)

Sequencing details

e Each aggregation row is in its own entity group
o Update aggregation rows in separate transactions
o Order of task application doesn't matter

e Marker entity is child of each Count (aggregation) row
o Marker indicates presence of Student in aggregation
o Sequence numbers let you ignore old/stale updates

e Bridge transactions across entity groups

Google {ife)

Sequencing details 2

e Works well for commutative operations (count, sum)
o Toggling presence is add or subtract
o Ancestor queries for more complex functions
o Use continuations and cursors to continue queries

e Enqueue multiple tasks at source data write time
o Update many aggregations in parallel

Google {ife)

Sequencing details 3

e Max throughput proportional to number of aggregation rows
o Watch out: Data distribution across aggregation
o Rate-limit materialized view tasks to 1/sec for safety

e Storage cost for "presence” entities

Google {ife)

Fan-in: Fork-join queues

Google o)

Why fan in?

e Apply multiple data transforms in batches
o Counters, aggregations, roll-ups, reservations
o Reddit/Digg-style: Save users' voting history
o Beat the ~1 write/sec per entity group safety margin

e Walit for high-latency API calls simultaneously
o RSS aggregators, microblog data sinks
o Use fewer threads = more throughput
o Ensure queues do not back up

e Amortize overhead costs with parallel work

Google {ife)

Polling workers: Traditional approach

newer tasks
------- >
Queue E E E

T Pop head

Queue mediator

A
Poll Poll Poll
WorkerA WorkerB WorkerC Workers _always
running

Google {ife)

Polling workers: Problems

e How many polling workers do you need to ensure 50 new
tasks per second are serviced within 500ms?

e \What if tasks take at least 10 seconds?

e How do you guarantee exclusivity?

Google {ife)

Polling workers are for offline processing

e Not dynamic, not low-latency
e Must have enough workers running to match peak load
e Eliminates the benefits of App Engine's push task queue

Google {ife)

What is a fork-join queue?

e Fork incoming work items apart as they enter

e Work starts within maximum fixed period after arrival

e Execute work in batch for efficiency

e Join completed work items together into a result (optional)

Google {ife)

Fork-join queue with Datastore

Google {ife)

Fork-join queue with Datastore

Work sasscssssssss Io

l Insert work item

Google {ife)

Fork-join queue with Datastore

Woark

l Insert work item

|

Insert task with
future ETA, name

Task

Google {ife)

Fork-join queue with Datastore

Wiark sesssssssssss P

l Insert work item

Google {ife)

Fork-join queue with Datastore

Work

l Insert work item

DataStOI'e ---T---_---_"'T--—T--—T-——-l

Queue .

|

Task

Task already
exists!

Google {ife)

Fork-join queue with Datastore

Woark

l Insert work item

Datastore
Queue

|

Task

Task already
exists!

Google {ife)

Fork-join queue with Datastore

Work

Datastore
Queue

T Task already

exists!

Task

Google {ife)

Fork-join queue with Datastore

Task executes

Google {ife)

Fork-join queue with Datastore

time
Work R -
l Insert work item
Datastore I
Queue e]
{ Batch 1; 500ms H Batch 2; 500ms }
Task '""T"'T"'T'" "":""':""
Queue U IO R SN e
Insert
task

Task

Google {ife)

Fork-join queue with Datastore

Work

Datastore
Queue

Task already
exists

Task

Google {ife)

Fork-join queue with Datastore: Race conditions

Datastore
Queue

Work time

O IR

Work inserted in old batch
while task is executing?

Task executes

Google {ife)

Fork-join queue example: Models

class MySum (db.Model) :
name = db.StringProperty ()

total = db.IntegerProperty()

class MyWork (db.Model) :

work 1ndex = db.StringProperty ()
delta = db.IntegerProperty(indexed=False)

Google {ife)

Fork-join queue example: Insert

def 1nsert (sum name, delta):

index = memcache.get ('index-' + sum name)
1f 1index 1s None:
memcache.add ('index-"' + sum name, 1)
index = memcache.get ('index-' + sum name)
lock = '"$s-lock-%d' % (sum name, index)
writers = memcache.incr (lock, 1nitial value=2**106)

1f writers < 2**16:
memcache.decr (lock)
return False # Insert fails, try again
work = MyWork (delta=delta, work index='%s-%d' %
(sum name, knuth hash (index)))
work.put ()
... continues on next slide

Google {ife)

Fork-join queue example: Insert continued

now = time.time ()
try:
taskqueue.add (
name="'3ss-%d-%d' % (
sum name, int(now / 30), index),
url="/work',
eta=datetime.datetime.utcfromtimestamp (now) +
datetime.timedelta (seconds=1))
except taskqueue.TaskAlreadyExistsError:
pass # Fan-in magic
finally:
memcache.decr (lock)

return True

Google {ife)

Fork-join queue example: Join

def joiln(sum name, index):
force new writers to use the next index

memcache.incr ('index-' + sum name)
lock = "%s-lock-%d"' % (sum name, 1ndex)

memcache.decr (lock, 2**15) # You missed the boat

busy wait for writers

for 1 in xrange (20): # timeout after 5s
counter = memcache.get (lock)
1f counter 1s None or int (counter) <= 2**15:

break
time.sleep (0.250)

... continues on next slide

Google {ife)

Fork-join queue example: Join continued

results = list (MyWork.all ()

.filter ('work index =', '%Ss-%d' %
(sum name, knuth hash (index)))
.order (' key ")) B
delta = Sum(zfdelgg for r in results)
def txn () :

my sum = MySum.get by key name (sum name)
1f my sum 1s None:
my sum MySum (key name=sum name,
name=sum name, total=0)
my sum.total += delta
my sum.put ()
db.run 1n transaction (txn)
db.delete (results)

Google {ife)

Fork-join queue example: Demo

Google {ife)

Fork-join queue details

e Task names are the fan-in mechanism

e Task ETA for periodic batching

e memcache reader/writer locks for batch coordination
o Spin locks with timeout

e Datastore queries to find work

e Use offline job to pick up drops (memcache failures)

Google {ife)

Fork-join queue performance

e Depends on your batch size (work items per task)
o Can achieve 80 to 1 easily.

ltems per second Average insert latency
221 223ms
39.7 245ms
95.6 258ms
75.8 249ms
Google {ife)

Fork-join queue performance 2

e Work index must be a hash
o Distribute load across Bigtable tablets
o Alternative is tablet splits, unavailability

e Eliminate all other indexes on work items
o Prevent overloading contiguous Bigtable rows
o Can keep indexes if you're "boxcar"-ing transactions

e The magic of batch period = 0

Google {ife)

Bonus: Fan-in with materialized views

Google o)

Fan-in with materialized views: A sketch

1. Configure fan-in queue to batch once per second
2. User starts transaction on input data, update its value
o Get fork-join work indexes for target aggregations
o Assign work indexes to your input sequence markers
o Enqueue update tasks (unnamed), Commit
3. Optimistically insert named fan-in tasks
o Guarantees completion; ignored in common case
4. Later: Fan-in worker queries for inputs by work index
5. Worker transacts on aggregation data rows
o Batch get of aggregation markers for inputs
o Compare old markers to input sequence numbers
o Compute commutative diff of up-to-date inputs
o Update aggregation rows, Commit

Google {ife)

Fan-in with materialized views: A sketch

e Please build this!

Google {ife)

Future directions

Google o)

Future directions

e Background servers
o No wall-clock limits (30 sec deadline removed)
o Chunk through fan-in queues in bulk

e Addressable servers
o Send RPCs from user-facing requests to backends
o Fan-in queues can be in memory

e Order of magnitude faster, skip disk writes

Google {ife)

View live notes and ask questions about
this session on Google Wave

http://tinyurl.com/app-endine-pipelines

Me
http://onebigfluke.com

Google {ife)

http://tinyurl.com/app-engine-pipelines
http://onebigfluke.com

